JP2003202191A - Air cooling method - Google Patents

Air cooling method

Info

Publication number
JP2003202191A
JP2003202191A JP2002002204A JP2002002204A JP2003202191A JP 2003202191 A JP2003202191 A JP 2003202191A JP 2002002204 A JP2002002204 A JP 2002002204A JP 2002002204 A JP2002002204 A JP 2002002204A JP 2003202191 A JP2003202191 A JP 2003202191A
Authority
JP
Japan
Prior art keywords
cooling
air
water
honeycomb
oblique honeycomb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002002204A
Other languages
Japanese (ja)
Other versions
JP4033677B2 (en
Inventor
Tadahiro Omi
忠弘 大見
Yasuyuki Shirai
泰雪 白井
Sadao Kobayashi
貞雄 小林
Isao Terada
功 寺田
Toshihisa Okabe
稔久 岡部
Takashi Taniguchi
隆志 谷口
Naoki Mori
直樹 森
Hiroshi Ito
宏 伊藤
Yoshihide Wakayama
恵英 若山
Hitoshi Inaba
仁 稲葉
Kazuo Saito
一夫 斎藤
Kikuji Kobayashi
菊治 小林
Hideo Hanaoka
秀夫 花岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Takasago Thermal Engineering Co Ltd
Nichias Corp
Hitachi Plant Technologies Ltd
Original Assignee
Taisei Corp
Takasago Thermal Engineering Co Ltd
Nichias Corp
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=27642134&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2003202191(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Taisei Corp, Takasago Thermal Engineering Co Ltd, Nichias Corp, Hitachi Plant Technologies Ltd filed Critical Taisei Corp
Priority to JP2002002204A priority Critical patent/JP4033677B2/en
Publication of JP2003202191A publication Critical patent/JP2003202191A/en
Application granted granted Critical
Publication of JP4033677B2 publication Critical patent/JP4033677B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Central Air Conditioning (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air cooling method satisfactory in thermal efficiency, low in liquid gas ratio, low in pressure drop and capable of saving space and energy. <P>SOLUTION: In this air cooling method, air to be cooled is introduced to a front surface opening part of an oblique honeycomb of a cooling unit with using an oblique honeycomb having openings on both of front and rear surfaces and both of upper and lower surfaces and arranged to have air to be cooled introduced from the front surface opening part and cooled air discharged from the rear surface opening part, a cooling water supply means supplying cooling water to the upper surface opening part of the oblique honeycomb, a cooling unit including a water receiving part receiving discharged water discharged from the lower surface opening part of the oblique honeycomb. At least one cooling unit is used and height of one oblique honeycomb in the cooling unit is 200-800 mm. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、夏場等の高温の空
気を効率良く冷却する空気冷却方法に関するものであ
る。さらに詳しくは、オフィスビル、病院、生産工場の
空気の空気冷却方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air cooling method for efficiently cooling high temperature air such as in summer. More specifically, it relates to an air cooling method for air in office buildings, hospitals, and production plants.

【0002】[0002]

【従来の技術】現在、オフィスビルや工場等空調に使用
されるエネルギーは、日本のエネルギー消費の30%以
上を占め、その削減は緊急の課題になっている。従来、
オフィスビルや工場の循環空気や取り入れ空気は、冷媒
や冷却水を流したフィンコイル式熱交換器に空気を送っ
て、フィンコイル中を通過させることによって冷却する
方法が採られてきた。しかし、フィンコイル式熱交換器
では、被冷却空気量に対して大量の冷却水が必要である
ため、すなわち液ガス比が大きいため、冷却水の循環ポ
ンプ等の稼動のために多くの電力が必要であり、また圧
損が大きく、さらにフィンコイルに水滴が付着すると水
滴が熱伝導を大きく妨げて熱効率が大幅に低下する。な
お、付着した水滴を除去する方法としてはブロア−等で
吹き飛ばす方法も考えられるが、ブロア−等の設置スペ
ースや電力が余分に必要になるため、スペース効率や省
電力の観点からは好ましくない。
2. Description of the Related Art At present, energy used for air conditioning in office buildings and factories accounts for more than 30% of Japan's energy consumption, and reduction thereof is an urgent task. Conventionally,
Circulating air and intake air in office buildings and factories have been cooled by sending air to a fin-coil heat exchanger in which a refrigerant or cooling water has flowed and passing through the fin-coil. However, in the fin-coil heat exchanger, a large amount of cooling water is required for the amount of air to be cooled, that is, since the liquid-gas ratio is large, a large amount of electric power is required to operate the cooling water circulation pump and the like. It is necessary, the pressure loss is large, and further, when the water droplets adhere to the fin coil, the water droplets greatly impede the heat conduction and the thermal efficiency is significantly reduced. As a method of removing the adhered water droplets, a method of blowing off with a blower or the like can be considered, but it is not preferable from the viewpoint of space efficiency and power saving because it requires an extra installation space for the blower and the like and electric power.

【0003】[0003]

【発明が解決しようとする課題】そこで、上記フィンコ
イルを用いずに、斜行ハニカムを用いて水と空気とを直
接接触させる方法が提案されている。例えば、特開20
00―317248号公報には、水を固体に沿うように
流したぬれ壁塔をシリーズに繋いで、このぬれ壁塔の中
に空気を通過させて、空気中のNOx等を除去する方法が
開示されている。しかしながら、この方法を空気の冷却
方法として用いようとしても、一旦ぬれ壁塔を流下して
温まった水を次のぬれ壁塔で再び流下させるため、空気
を十分に冷却することができないという問題があった。
また、各塔に給水するためのポンプがそれぞれ必要にな
るため、ポンプの設置コストと運転経費が嵩むという問
題があった。
Therefore, there has been proposed a method of directly contacting water and air by using an oblique honeycomb without using the fin coil. For example, JP 20
Japanese Patent Laid-Open No. 00-317248 discloses a method for removing NOx and the like in air by connecting a series of wet-wall towers in which water flows along solids and allowing air to pass through the wet-wall towers. Has been done. However, even if this method is used as a method for cooling air, water that has once flowed down the wetted wall tower is allowed to flow back again in the next wetted wall tower, so there is a problem that the air cannot be sufficiently cooled. there were.
In addition, since a pump for supplying water to each tower is required, there is a problem that the installation cost and operating cost of the pump increase.

【0004】また、フィンコイルを用いずに斜行ハニカ
ムを用いて水と空気とを直接接触させる他の方法とし
て、通常のポリ塩化ビニル製斜行ハニカムをクーリング
タワーに用いて温水又は熱水を空気で冷却する方法も知
られている。しかしながら、この方法は、斜行ハニカム
の材質が通常のポリ塩化ビニルであるため、温水等が斜
行ハニカム表面からはじかれ、水滴状になって落下す
る。すなわち、温水等が斜行ハニカム表面を均一に濡ら
した状態にはならず、斜行ハニカムの有する大きな表面
積を十分に活用することができないため、フィンコイル
式冷却器よりも熱効率が低くなり、熱効率のよい空気冷
却器として用いることはできなかった。
Further, as another method of directly contacting water and air by using a diagonal honeycomb without using a fin coil, a normal polyvinyl chloride diagonal honeycomb is used in a cooling tower to heat hot water or hot water. A method of cooling with is also known. However, in this method, since the material of the oblique honeycomb is ordinary polyvinyl chloride, warm water or the like is repelled from the surface of the oblique honeycomb and drops in the form of water drops. In other words, hot water does not uniformly wet the surface of the oblique honeycomb, and the large surface area of the oblique honeycomb cannot be fully utilized, so the thermal efficiency is lower than that of the fin-coil cooler, and the thermal efficiency is lower. It could not be used as a good air cooler.

【0005】従って、本発明の目的は、熱効率がよく、
液ガス比が小さく、圧損が小さく、省スペース及び省エ
ネルギーを図れ、さらに、低コストな空気冷却方法を提
供することにある。
Therefore, an object of the present invention is to be heat efficient
An object of the present invention is to provide an air cooling method that has a small liquid-gas ratio, a small pressure loss, space and energy savings, and is low cost.

【0006】[0006]

【課題を解決するための手段】かかる実情において、本
発明者は鋭意検討を行った結果、斜行ハニカムと冷却水
供給装置と受水部とを有する冷却ユニットを少なくとも
1個用い、該冷却ユニット中の斜行ハニカム1個当りの
高さが特定範囲内のものであれば、熱効率がよく、液ガ
ス比が小さく、圧損が小さく、省スペース且つ省エネル
ギーである空気冷却方法とすることができることを見出
し、本発明を完成するに至った。
Under the above circumstances, as a result of intensive studies by the present inventor, at least one cooling unit having a diagonal honeycomb, a cooling water supply device, and a water receiving portion is used, and the cooling unit is used. If the height of each oblique honeycomb in the middle is within a specific range, it is possible to provide an air cooling method that has high thermal efficiency, a small liquid-gas ratio, a small pressure loss, and is space-saving and energy-saving. Heading out, the present invention has been completed.

【0007】すなわち、本発明は、前後両面と上下両面
とが開口し、前面開口部から被冷却空気が導入されると
共に後面開口部から冷却空気が排出されるように配置さ
れる斜行ハニカム、該斜行ハニカムの上面開口部へ冷却
水を供給する冷却水供給手段、及び該斜行ハニカムの下
面開口部から排出される排出水を受ける受水部を有する
冷却ユニットを用い、該冷却ユニットの前記斜行ハニカ
ムの前面開口部に被冷却空気を導入し該斜行ハニカムの
後面開口部から冷却空気を排出する空気冷却方法であっ
て、前記冷却ユニットを少なくとも1個用いると共に、
該冷却ユニット中の前記斜行ハニカム1個当りの高さが
200〜800mmであることを特徴とする空気冷却方法
を提供するものである。
That is, according to the present invention, the oblique honeycomb is arranged so that both front and rear surfaces and upper and lower surfaces are opened, and the air to be cooled is introduced from the front opening and the cooling air is discharged from the rear opening. Using a cooling unit having cooling water supply means for supplying cooling water to the upper opening of the oblique honeycomb, and a water receiving part for receiving discharged water discharged from the lower opening of the oblique honeycomb, An air cooling method for introducing cooled air into a front opening of the oblique honeycomb and discharging cooling air from a rear opening of the oblique honeycomb, using at least one cooling unit,
The height of each of the oblique honeycombs in the cooling unit is 200 to 800 mm, and the air cooling method is provided.

【0008】[0008]

【発明の実施の形態】まず、本発明の第1の実施の形態
における空気冷却方法で使用する空気冷却装置について
図1を参照して説明する。図1は、本例で使用する空気
冷却装置の一部を切り欠いて示す模式図である。図1
中、1は空気冷却装置、2は水分散装置(冷却水供給手
段)、3は斜行ハニカム、4は受水パン(受水部)、5
は冷却ユニットである。本例の空気冷却装置1は、水分
散装置2、斜行ハニカム3及び受水パン4を有する冷却
ユニット5と図示しない送風手段とを備えるものであ
る。
BEST MODE FOR CARRYING OUT THE INVENTION First, an air cooling device used in an air cooling method according to a first embodiment of the present invention will be described with reference to FIG. FIG. 1 is a schematic view showing a part of the air cooling device used in this example by cutting out. Figure 1
Inside, 1 is an air cooling device, 2 is a water dispersion device (cooling water supply means), 3 is a diagonal honeycomb, 4 is a water receiving pan (water receiving part), 5
Is a cooling unit. The air cooling device 1 of the present example includes a water dispersion device 2, a diagonal honeycomb 3, and a cooling unit 5 having a water receiving pan 4 and a blower unit (not shown).

【0009】冷却ユニット5に用いられる斜行ハニカム
3は、一方向に向かって伝播する波形形状を有する波形
シート21、22(以下、「コルゲート状シート」とも
いう。)が複数積層されてハニカム形状を呈するもので
あって、積層されるコルゲート状シート21、22は波
の伝播方向が一枚おきに斜めに交差するように積層さ
れ、且つ、二層おきのシートの波の伝播方向がそれぞれ
略同一方向になるように配置されたハニカム状体であ
る。
The oblique honeycomb 3 used in the cooling unit 5 is formed by laminating a plurality of corrugated sheets 21 and 22 (hereinafter, also referred to as "corrugated sheets") having a corrugated shape that propagates in one direction. The corrugated sheets 21 and 22 to be laminated are laminated so that the wave propagation directions of the corrugated sheets 21 and 22 intersect diagonally every other sheet, and the wave propagation directions of every two layers are substantially the same. The honeycomb-shaped bodies are arranged in the same direction.

【0010】該斜行ハニカム3は、コルゲート状シート
21、22に平行な面に対して垂直な4面101〜10
4で切断して直方体を形成し、且つ、該切断面がコルゲ
ート状シートの波の伝播方向と平行でなく、且つ、垂直
でもないようにした場合、該直方体を切断面の1つ10
4を下面にし、且つ、コルゲート状シートの最外層10
5、106をそれぞれ左右面にして載置すると、切断面
である前後両面102、103及び上下両面101、1
04の4面は全てハニカムセルが開口し、左右面10
5、106はコルゲート状シートで閉じられた構造を有
する。すなわち、斜行ハニカム3は、前後両面102、
103と、上下両面101、104とが開口する構造を
有するものである。また、該切断面の、例えば前後両面
102、103は、斜め上方向に延設されるセルと斜め
下方向に延設されるセルとが一層おきに形成される。斜
め方向に延設されるセルの前後両面からみた場合の空気
の流入、流出方向(水平方向)に対する斜め角度(図
中、符号X)は、通常15〜45度、好ましくは25〜
35度の範囲内にする。上記斜め角度が該範囲内にある
と、流下速度が適度の範囲となり接触効率が向上するた
め好ましい。
The oblique honeycomb 3 has four surfaces 101 to 10 which are perpendicular to the surfaces parallel to the corrugated sheets 21 and 22.
4 is cut to form a rectangular parallelepiped, and the cut surface is neither parallel nor perpendicular to the wave propagation direction of the corrugated sheet, the rectangular parallelepiped is one of the cut surfaces.
4 as the lower surface, and the outermost layer 10 of the corrugated sheet
When 5 and 106 are placed on the left and right sides, respectively, the front and rear double-sided surfaces 102 and 103 and the upper and lower double-sided surfaces 101 and 1 are cut surfaces.
Honeycomb cells are open on all four surfaces of 04, and the left and right surfaces 10
Reference numerals 5 and 106 have a structure closed by a corrugated sheet. That is, the oblique honeycomb 3 has front and rear surfaces 102,
It has a structure in which 103 and both upper and lower surfaces 101 and 104 are open. Further, for example, front and rear surfaces 102 and 103 of the cut surface are formed with alternate cells extending diagonally upward and cells extending diagonally downward. The oblique angle (reference numeral X in the drawing) with respect to the inflow and outflow directions (horizontal direction) of the air when viewed from both front and rear surfaces of the cells extending in the oblique direction is usually 15 to 45 degrees, preferably 25 to
Within 35 degrees. It is preferable that the above-mentioned oblique angle is within this range, because the flow-down velocity is in the appropriate range and the contact efficiency is improved.

【0011】上記斜行ハニカム3において、積層された
コルゲート状シートの一層おきの波の伝播方向が互いに
交差する角度(図中、符号Y)は、通常30〜90度、
好しくは50〜70度である。このようにコルゲート状
シートを上記角度範囲内で交差するように積層すると、
上記のように斜め角度(X)を上記の15〜45度とし
た場合に、被冷却空気及び水がハニカムセルと実質的に
接触する面積が大きくなるため、被冷却空気と水との接
触、すなわち、被冷却空気の冷却効率が高くなるため好
ましい。すなわち、後述のように、本発明において、被
冷却空気は斜行ハニカム3の前面開口部103から導入
され、また、水は上面開口部101から冷却水供給手段
2、例えば給水ダクト23により供給され斜行ハニカム
のコルゲート状シートに浸透し、且つ、該コルゲート状
シートの極く表面をゆっくりと下方に流下するため、被
冷却空気の通気方向と浸透壁面の水の流下方向とが適度
の角度を保持し、接触効率が高くなる。
In the oblique honeycomb 3, the angle (reference numeral Y in the figure) at which the wave propagation directions of every other layers of the stacked corrugated sheets intersect with each other is usually 30 to 90 degrees,
It is preferably 50 to 70 degrees. In this way, when the corrugated sheets are laminated so as to intersect within the above angle range,
When the oblique angle (X) is 15 to 45 degrees as described above, the area where the air to be cooled and the water substantially come into contact with the honeycomb cells becomes large, so that the contact between the air to be cooled and the water, That is, the cooling efficiency of the air to be cooled is increased, which is preferable. That is, as described below, in the present invention, the air to be cooled is introduced from the front opening 103 of the oblique honeycomb 3, and the water is supplied from the upper opening 101 by the cooling water supply means 2, for example, the water supply duct 23. Since it permeates the corrugated sheet of the oblique honeycomb and slowly flows down the very surface of the corrugated sheet, an appropriate angle is formed between the ventilation direction of the cooled air and the water flowing direction of the permeation wall surface. Holds and improves contact efficiency.

【0012】本発明で用いられる斜行ハニカムのセルの
高さ、すなわち、波形の山と谷間の寸法を示すセルの山
高寸法は、通常2.5〜8.0mm、好ましくは3〜5mm
である。セルの山高寸法が2.5mm未満であると製造が
困難であり、圧力損失が大きくなるため好ましくない。
また、セルの山高寸法が8.0mmを越えると冷却効率が
低下するため好ましくない。
The height of the cells of the oblique honeycomb used in the present invention, that is, the height of the peaks of the cells showing the dimensions of the peaks and valleys of the corrugation is usually 2.5 to 8.0 mm, preferably 3 to 5 mm.
Is. If the peak height of the cell is less than 2.5 mm, it is difficult to manufacture and the pressure loss becomes large, which is not preferable.
If the height of the cell is more than 8.0 mm, the cooling efficiency is lowered, which is not preferable.

【0013】斜行ハニカムのコルゲート状シートの状態
におけるセルの幅、すなわち、セルピッチは、通常6〜
16mm、好ましくは7〜10mmである。また、斜行ハニ
カムの前面開口部と後面開口部との間の寸法、すなわ
ち、斜行ハニカムの厚さ(t)は、通常100〜100
0mm、好ましくは200〜800mmである。該厚さが1
00mm未満であると、冷却効率が低下するため好ましく
なく、該厚さが1000mmを越えると冷却効率がこれ以
上向上せず、圧力損失が大きくなるため好ましくない。
なお、本発明において、斜行ハニカムの厚さは、斜行ハ
ニカムを複数枚使用する場合には、この合計の厚さが上
記範囲内のものであればよい。例えば、厚さが300mm
の斜行ハニカムを用いる場合には、厚さが100mmの斜
行ハニカムを3枚厚さ方向に重ねて合計の厚さを300
mmとしてもよい。なお、冷却手段として斜行ハニカムを
用いると、体積当りの熱交換率が従来用いられていたフ
ィンコイルよりも高いため、斜行ハニカムの厚さを小さ
くすることができ、装置の設置スペースを小さくするこ
とができる。さらに、水の循環量が、従来のフィンコイ
ルのものと比較すると格段に少なくて済み、大幅な省エ
ネルギー化をも図ることができる。
The width of the cells in the state of the corrugated sheet of the oblique honeycomb, that is, the cell pitch is usually 6 to.
It is 16 mm, preferably 7 to 10 mm. The dimension between the front opening and the rear opening of the oblique honeycomb, that is, the thickness (t) of the oblique honeycomb is usually 100 to 100.
It is 0 mm, preferably 200 to 800 mm. The thickness is 1
When the thickness is less than 00 mm, the cooling efficiency is lowered, which is not preferable, and when the thickness exceeds 1000 mm, the cooling efficiency is not further improved and the pressure loss becomes large, which is not preferable.
In the present invention, the thickness of the oblique honeycomb may be such that the total thickness is within the above range when a plurality of oblique honeycombs are used. For example, the thickness is 300mm
In the case of using the oblique honeycomb of No. 3, three oblique honeycombs each having a thickness of 100 mm are stacked in the thickness direction so that the total thickness is 300.
It may be mm. When the oblique honeycomb is used as the cooling means, the heat exchange rate per volume is higher than that of the conventionally used fin coil, so that the thickness of the oblique honeycomb can be reduced and the installation space of the apparatus can be reduced. can do. Further, the amount of water circulation is much smaller than that of the conventional fin coil, and a great energy saving can be achieved.

【0014】斜行ハニカムを構成するシート状部材は、
表面に凹凸があり、内部が多孔質であるものであること
が、エレメントの表面積を大きく採れ、エレメントに浸
透して流下する水と空気との接触面積が高まる点で好ま
しい。このようなシート状部材としては、例えば、アル
ミナ、シリカ及びチタニアからなる群より選択される1
又は2以上の充填材又は結合材と、ガラス繊維、セラミ
ック繊維又はアルミナ繊維等の繊維基材とからなるもの
が挙げられる。この内、チタニアを配合したものは酸性
の化学汚染物質の除去効率が向上するため好ましい。ま
た、シート状部材は、通常、充填材又は結合材を60〜
93重量%、繊維基材を7〜40重量%含み、好ましく
は充填材又は結合材を70〜88重量%、繊維基材を1
2〜30重量%含む。シート状部材の配合比率が該範囲
内にあると、シート状部材の水浸透性及び強度が高いた
め好ましい。
The sheet-like member forming the oblique honeycomb is
It is preferable that the surface has irregularities and the inside is porous, because the surface area of the element can be made large and the contact area between water and air that permeates the element and flows down is increased. As such a sheet-like member, for example, 1 selected from the group consisting of alumina, silica and titania
Alternatively, a material composed of two or more fillers or binders and a fiber base material such as glass fiber, ceramic fiber or alumina fiber may be used. Of these, those containing titania are preferable because the efficiency of removing acidic chemical contaminants is improved. In addition, the sheet-like member usually contains 60 to 60% of a filler or a binder.
93% by weight, containing 7 to 40% by weight of fiber base material, preferably 70 to 88% by weight of filler or binder, 1% of fiber base material
2 to 30% by weight is included. It is preferable that the mixing ratio of the sheet-shaped member is within the range because the sheet-shaped member has high water permeability and strength.

【0015】上記シート状部材は、公知の方法で作製で
き、例えば、ガラス繊維、セラミック繊維又はアルミナ
繊維で作製されたペーパーを、アルミナゾル等の結合材
とアルミナ水和物等の充填材を混合したスラリーに浸漬
した後、乾燥し、コルゲート加工し、その後、乾燥処理
と熱処理を行い、水分と有機分を除去すれば得ることが
できる。アルミナ以外にシリカやチタニアを含有する場
合、例えば、シリカ及びチタニアの配合量は、アルミナ
100重量部に対してそれぞれ、通常5〜40重量部で
ある。
The above-mentioned sheet-like member can be manufactured by a known method. For example, paper made of glass fiber, ceramic fiber or alumina fiber is mixed with a binder such as alumina sol and a filler such as alumina hydrate. It can be obtained by immersing in a slurry, drying, corrugating, and then performing a drying treatment and a heat treatment to remove water and organic components. When silica or titania is contained in addition to alumina, the compounding amount of silica and titania is usually 5 to 40 parts by weight with respect to 100 parts by weight of alumina, respectively.

【0016】また、斜行ハニカムは、シート状部材の厚
さが通常200〜1000μm 、好ましくは300〜8
00μm である。また、斜行ハニカムの空隙率は、通常
50〜80%、好ましくは60〜75%である。空隙率
を該範囲内とすることにより、ほどよい浸透性を実現で
き、空気と水との接触効率を高めることができる。該シ
ート状部材が、上記厚さと空隙率を有すると、液ガス比
及び水の浸透速度が適度な範囲となり、水と空気の接触
効率を高めると共に、強度的にも十分となる。
In the oblique honeycomb, the thickness of the sheet-like member is usually 200 to 1000 μm, preferably 300 to 8
It is 00 μm. The porosity of the oblique honeycomb is usually 50 to 80%, preferably 60 to 75%. By setting the porosity within the above range, it is possible to achieve appropriate permeability and improve the contact efficiency between air and water. When the sheet-shaped member has the above-mentioned thickness and porosity, the liquid-gas ratio and the permeation rate of water are in appropriate ranges, the contact efficiency between water and air is increased, and the strength is sufficient.

【0017】斜行ハニカム3の高さは、200〜800
mm、好ましくは400〜600mmである。高さが200
mm未満であると、斜行ハニカム最下部に流下した冷却水
の温度がまだ低く、冷却水として有効利用されないまま
排出されるため好ましくない。また、高さが800mmを
越えると、斜行ハニカム最下部に流下した冷却水の温度
と被冷却空気の温度との差が小さくなり、斜行ハニカム
下部での熱交換効率が低下するため好ましくない。
The height of the oblique honeycomb 3 is 200 to 800.
mm, preferably 400-600 mm. Height is 200
If it is less than mm, the temperature of the cooling water flowing down to the lowermost portion of the oblique honeycomb is still low, and it is not preferable because it is discharged without being effectively used as cooling water. Further, if the height exceeds 800 mm, the difference between the temperature of the cooling water flowing down to the bottom of the oblique honeycomb and the temperature of the air to be cooled becomes small, and the heat exchange efficiency at the lower part of the oblique honeycomb decreases, which is not preferable. .

【0018】上記シート状部材をコルゲート状シートに
成形する方法としては、径方向に振幅する波形の凹凸が
表面に形成された複数の幅広の歯車間に平板状シートを
通すような公知のコルゲーターを用いる方法が挙げられ
る。得られたコルゲート状シートから上記斜行ハニカム
を成形する方法としては、例えば、まず、上記コルゲー
ト状シートを縦100mm(斜行ハニカム成形後の厚み寸
法)×横800mm(斜行ハニカム成形後の幅方向又は高
さ方向の寸法)程度の矩形の裁断型に対し、波の伝播方
向が矩形型の一辺に対して15〜45度になるように配
置して裁断して矩形のコルゲート状シートを作製し、次
いで、得られた矩形のコルゲート状シートを1枚おきの
波の伝播方向が斜交するように配置し、これらを接着し
て積層する方法が挙げられる。なお、このようにして製
造した場合、斜行ハニカム1枚の厚さは上記裁断型の縦
の長さとなる。このため、例えば、冷却ユニット1個に
組込まれる斜行ハニカムの厚さ、すなわち、斜行ハニカ
ムの前面開口部と後面開口部との間の寸法が300mm必
要である場合に、縦100mmの裁断型で作製した厚さ1
00mmの斜行ハニカムを用いるときは、斜行ハニカムを
厚さ方向に3枚重ねて使用すればよい。また、高さ方向
又は幅方向に1個の斜行ハニカムでは寸法が不足すると
きは、斜行ハニカムを高さ方向に複数個重ねて又は幅方
向に複数個並べて使用してもよい。なお、このように複
数個重ねて又は並べて使用する場合、斜行ハニカム同士
は、接着しても接着しなくてもどちらでもよい。接着し
ない場合には、複数個の斜行ハニカムを重ねて又は並べ
て配置するだけでよい。
As a method for forming the above-mentioned sheet-shaped member into a corrugated sheet, a known corrugator in which a flat sheet is passed between a plurality of wide gears having undulating undulations radially oscillating is formed. The method used may be mentioned. As a method for forming the oblique honeycomb from the obtained corrugated sheet, for example, first, the corrugated sheet is 100 mm in length (thickness dimension after oblique honeycomb formation) × 800 mm in width (width after oblique honeycomb formation). Direction or height dimension), a rectangular corrugated sheet is prepared by arranging and cutting so that the wave propagation direction is 15 to 45 degrees with respect to one side of the rectangular mold. Then, a method of arranging the obtained rectangular corrugated sheets so that the wave propagation directions of every other sheet cross each other, and bonding and laminating them. When manufactured in this manner, the thickness of one oblique honeycomb is the vertical length of the cutting die. For this reason, for example, when the thickness of the oblique honeycomb incorporated in one cooling unit, that is, the dimension between the front opening and the rear opening of the oblique honeycomb is required to be 300 mm, a cutting die having a length of 100 mm is used. Thickness produced in 1
When the 00 mm diagonal honeycomb is used, three diagonal honeycombs may be stacked in the thickness direction. When the size of one oblique honeycomb in the height direction or the width direction is insufficient, a plurality of oblique honeycombs may be stacked in the height direction or arranged in the width direction. When a plurality of stacked honeycombs are used or arranged side by side, the oblique honeycombs may or may not be bonded. In the case of not adhering, it is only necessary to arrange a plurality of oblique honeycombs on top of each other or side by side.

【0019】冷却ユニット5に用いられる冷却水供給手
段2は、斜行ハニカム3の上面開口部に冷却水を供給す
るものである。冷却水供給手段2の形態としては特に限
定されないが、例えば、図1に示す単に水滴を滴下する
通常の給水ダクト23や、図示しないが給水管にスプレ
ーノズルを取り付けて水を斜行ハニカムの上面開口部に
分散して供給しうるようにしたもの等が挙げられる。ま
た、冷却水供給手段2は、斜行ハニカム3に必要最低量
の冷却水量が供給されるように、水量調整が可能なもの
であることが好ましい。
The cooling water supply means 2 used in the cooling unit 5 supplies the cooling water to the upper opening of the oblique honeycomb 3. Although the form of the cooling water supply means 2 is not particularly limited, for example, an ordinary water supply duct 23 for simply dropping water droplets shown in FIG. 1 or a water supply pipe (not shown) with a spray nozzle attached to the top surface of the oblique honeycomb. The thing etc. which were made to be able to distribute and be supplied to an opening part are mentioned. Further, it is preferable that the cooling water supply means 2 is capable of adjusting the amount of water so that the minimum necessary amount of cooling water is supplied to the oblique honeycomb 3.

【0020】冷却ユニット5に用いられる受水部4は、
斜行ハニカム3の下面開口部104から排出される排出
水を受けるものである。受水部4の形態としては特に限
定されないが、例えば、図1に示す雨どい形状の受水パ
ン等が挙げられ、受水部4には、排出水を受水部4外に
排出する排出管41を設けてもよい。冷却ユニット5
は、通常、図示しない枠体に組み込まれて固定される。
この際、給水ダクト23と斜行ハニカムの上面開口部1
01とは少しの隙間を形成することが、斜行ハニカムの
上面開口部101全体に給水を均一分散下することがで
きる点で好ましい。また、斜行ハニカムの下面開口部1
04と受水部4はできるだけ近接するように配置するこ
とが、省スペース化が図れる点で好ましい。
The water receiving portion 4 used in the cooling unit 5 is
It receives the discharged water discharged from the lower surface opening 104 of the oblique honeycomb 3. Although the form of the water receiving part 4 is not particularly limited, for example, there is a rain gutter-shaped water receiving pan shown in FIG. 1, and the water receiving part 4 discharges discharged water to the outside of the water receiving part 4. The tube 41 may be provided. Cooling unit 5
Are usually assembled and fixed in a frame not shown.
At this time, the water supply duct 23 and the upper opening 1 of the oblique honeycomb
It is preferable to form a small gap with 01 because the water can be uniformly dispersed over the entire upper opening 101 of the oblique honeycomb. Also, the lower surface opening 1 of the oblique honeycomb
04 and the water receiving portion 4 are preferably arranged as close to each other as possible in terms of space saving.

【0021】空気冷却装置1は、さらに、斜行ハニカム
3の前面開口部103に被冷却空気を導入し該斜行ハニ
カム3の後面開口部102から冷却空気を排出する送風
手段を備えるものである。送風手段としては、例えば、
ファンを備えた送風機等が挙げられる。また、空気冷却
装置1は、図示しない排出水を冷する冷却手段及び排出
水を冷却水供給手段2に供給する水循環手段を設けるこ
とが、斜行ハニカム3を流下して被冷却空気で温められ
た冷却水(排出水)を再利用することができる点で好ま
しい。冷却手段としては、例えば、熱交換器が挙げられ
る。また、水循環手段としては、例えば、循環ポンプが
挙げられる。
The air cooling device 1 further comprises a blowing means for introducing cooling air into the front opening 103 of the oblique honeycomb 3 and discharging cooling air from the rear opening 102 of the oblique honeycomb 3. . As the blowing means, for example,
A blower equipped with a fan can be used. Further, the air cooling device 1 may be provided with a cooling means (not shown) for cooling the discharged water and a water circulation means for supplying the discharged water to the cooling water supply means 2 so that the oblique cooling honeycomb 3 is flowed down and warmed by the air to be cooled. It is preferable in that the cooling water (exhaust water) can be reused. Examples of the cooling means include a heat exchanger. Further, as the water circulation means, for example, a circulation pump can be mentioned.

【0022】次に、第1の実施の形態の空気冷却方法に
ついて図1を参照して説明する。まず、斜行ハニカム3
の上面開口部101に、冷却水供給手段2から冷却水1
2を流下する。この際、冷却水12の供給水量を適宜調
整して、斜行ハニカム3全体を濡れた状態とする。次
に、図示しない送風手段等により被冷却空気を斜行ハニ
カム3の前面開口部103から図1中の矢印9の方向に
導入する。斜行ハニカム3内のセルでは、流下される冷
却水12と導入される被冷却空気とが直接気液接触し
て、被冷却空気が冷却されると共に、被冷却空気中に化
学汚染物質等が存在する場合は該化学汚染物質等が冷却
水12に取り込まれる。熱交換して温まり且つ場合によ
り化学汚染物質を取り込んだ冷却水12は、斜行ハニカ
ム3を流下し切ったところで排出水13となり、受水部
4に移動する。受水部4中の排出水13は、排水管41
を通って図示しない循環ポンプで熱交換器に供給されて
所定温度まで冷却され、冷却された排出水13は、再び
冷却水供給手段2に供給され、冷却水12として再利用
される。一方、斜行ハニカム3の後面開口部102から
は冷却された冷却空気が得られる。
Next, the air cooling method of the first embodiment will be described with reference to FIG. First, diagonal honeycomb 3
To the upper opening 101 of the cooling water supply means 2 from the cooling water supply means 2.
Run down 2. At this time, the supply amount of the cooling water 12 is appropriately adjusted to bring the entire oblique honeycomb 3 into a wet state. Next, the air to be cooled is introduced from the front opening 103 of the oblique honeycomb 3 in the direction of arrow 9 in FIG. In the cells in the oblique honeycomb 3, the cooling water 12 flowing down and the cooled air to be introduced are brought into direct gas-liquid contact with each other to cool the cooled air, and at the same time, chemical pollutants and the like are contained in the cooled air. If present, the chemical contaminants and the like are taken into the cooling water 12. The cooling water 12 that has been warmed by heat exchange and has taken in chemical pollutants in some cases becomes discharge water 13 when it has flowed down the oblique honeycomb 3 and moves to the water receiving portion 4. The drainage water 13 in the water receiving section 4 is drainage pipe 41.
The discharged water 13 is supplied to a heat exchanger through a circulation pump (not shown) and cooled to a predetermined temperature, and the cooled discharged water 13 is supplied again to the cooling water supply means 2 and is reused as the cooling water 12. On the other hand, cooled cooling air is obtained from the rear opening 102 of the oblique honeycomb 3.

【0023】第1の実施の形態に係る空気冷却方法は、
被冷却空気と冷却水とが直接接触する斜行ハニカムを含
む冷却ユニットを用い、しかも、斜行ハニカムの高さを
所定範囲内のものとしたため、冷却水を冷えたまま使用
でき、熱効率がよく、液ガス比が小さく、圧損が小さ
く、省スペース及び省エネルギーを図れ、さらに、低コ
ストである。
The air cooling method according to the first embodiment is
A cooling unit including a diagonal honeycomb in which the air to be cooled and the cooling water come into direct contact is used, and since the height of the diagonal honeycomb is within a predetermined range, the cooling water can be used while being cooled, and thermal efficiency is good. The liquid gas ratio is small, the pressure loss is small, space and energy can be saved, and the cost is low.

【0024】本発明で使用する空気冷却装置は、冷却ユ
ニット5を複数用いることができる。この場合の冷却ユ
ニット5の配置の態様としては、例えば、斜行ハニカム
3の上下方向に複数個配置する態様(多段配置)、被冷
却空気の流れ方向に複数個配置する態様(多列配置)、
斜行ハニカム3の幅方向に複数個配置する態様、及び、
これらの配置を1又は2以上組み合わせた複合配置の態
様等が挙げられる。斜行ハニカム3の上下方向とは斜行
ハニカム3の上面開口部と下面開口部とを結ぶ方向であ
り、被冷却空気の流れ方向とは斜行ハニカム3の前面開
口部と後面開口部とを結ぶ方向であり、斜行ハニカム3
の幅方向とは上下方向及び被冷却空気の流れ方向それぞ
れに略直交する方向である。そこで、冷却ユニット5を
複数用いる空気冷却装置を使用する空気冷却方法を第2
の実施の形態例として図2及び図3を参照して説明す
る。図2は本例で使用する空気冷却装置の概略図、図3
は本例で使用する空気冷却装置の被冷却空気の流れ方向
に直交する側から見た概略図である。なお、図3におい
て、被冷却空気の流れ方向の互いに隣接する斜行ハニカ
ム間に隙間が見られるが、これは図面を理解し易くする
ためのものであり、実際は前方の斜行ハニカムの後面開
口部102とその後方の斜行ハニカムの前面開口部10
3とは当接又は近接している。
The air cooling device used in the present invention can use a plurality of cooling units 5. Examples of the arrangement of the cooling units 5 in this case include a plurality of arrangements in the vertical direction of the oblique honeycomb 3 (multistage arrangement) and a plurality of arrangements in the flow direction of the cooled air (multirow arrangement). ,
A plurality of oblique honeycombs 3 are arranged in the width direction, and
An aspect of a composite arrangement in which one or more of these arrangements are combined is included. The vertical direction of the oblique honeycomb 3 is a direction connecting the upper surface opening and the lower surface opening of the oblique honeycomb 3, and the flow direction of the air to be cooled is the front surface opening and the rear surface opening of the oblique honeycomb 3. It is the direction of tying, and the diagonal honeycomb 3
The width direction is a direction substantially orthogonal to the vertical direction and the flow direction of the cooled air. Therefore, an air cooling method using an air cooling device using a plurality of cooling units 5
An example of the embodiment will be described with reference to FIGS. 2 and 3. 2 is a schematic view of an air cooling device used in this example, FIG.
FIG. 3 is a schematic view of the air cooling device used in this example as seen from the side orthogonal to the flow direction of cooled air. In FIG. 3, a gap is seen between the oblique honeycombs adjacent to each other in the flow direction of the air to be cooled, but this is for easier understanding of the drawing. Portion 102 and front opening 10 of the oblique honeycomb behind the portion 102
3 is in contact with or close to.

【0025】第2の実施の形態における空気冷却方法で
使用する空気冷却装置において、図2及び図3中、図1
と同一構成要素には同一符号を付してその説明を省略
し、異なる点についてのみ主に説明する。図2及び図3
において、図1と異なる点は、冷却ユニット5を12個
使用し、上下方向に3段配置、且つ被冷却空気の流れ方
向に4列配置した点、及び冷却水系及び排水系を循環系
とした点にある。すなわち、第2の実施の形態例におい
て、空気冷却装置1Aは、被冷却空気の流れ方向の前方
から第1列が、上下方向に上から冷却ユニット5a1
5a2、5a3を配置し、次いで、同方向の第2列が、上
下方向に上から冷却ユニット5b1、5b2、5b3を配
置し、次いで、同方向の第3列が、上下方向に上から冷
却ユニット5c1、5c2、5c3を配置し、次いで、同
方向の第4列が、上下方向に上から冷却ユニット5
1、5d2、5d3を配置する。更に、水循環系は、受
水部4から排出管15を通して排出される排出水を、送
水管10を通して冷却水供給手段2に供給する水循環手
段6と排出水を冷却する冷却手段7とを備える。
In the air cooling device used in the air cooling method in the second embodiment, FIG. 1 in FIG. 2 and FIG.
The same components as those of 1 are denoted by the same reference numerals and the description thereof is omitted, and only different points will be mainly described. 2 and 3
1 differs from FIG. 1 in that 12 cooling units 5 are used, they are arranged in three stages in the vertical direction, and four rows are arranged in the flow direction of the air to be cooled, and the cooling water system and the drainage system are circulation systems. In point. That is, in the second embodiment, in the air cooling device 1A, the first row from the front in the flow direction of the air to be cooled, the cooling unit 5a 1 from the top in the vertical direction,
5a 2 and 5a 3 are arranged, then the second row in the same direction is arranged in the vertical direction from above, and the cooling units 5b 1 , 5b 2 , 5b 3 are arranged, and then the third row in the same direction is arranged in the vertical direction. Cooling units 5c 1 , 5c 2 and 5c 3 are arranged from the top to the bottom, and then the fourth row in the same direction is vertically arranged from above in the cooling unit 5
placing the d 1, 5d 2, 5d 3 . Further, the water circulation system includes a water circulation means 6 for supplying the discharge water discharged from the water receiving part 4 through the discharge pipe 15 to the cooling water supply means 2 through the water supply pipe 10 and a cooling means 7 for cooling the discharge water.

【0026】送水管10から分岐し、各段毎に一括送水
する分岐送水管111、112及び113は、上段の冷
却ユニット5a1、5b1、5c1、5d1の冷却水供給手
段2、2、2、2、中段の冷却ユニット5a2、5b2
5c2、5d2の冷却水供給手段2、2、2、2及び下段
の冷却ユニット5a3、5b3、5c3、5d3の冷却水供
給手段2、2、2、2にそれぞれ接続されている。一
方、上段の冷却ユニット5a1、5b1、5c1、5d1
受水部4、4、4、4、中段の冷却ユニット5a 2、5
2、5c2、5d2の受水部4、4、4、4及び下段の
冷却ユニット5a3、5b3、5c3、5d3の受水部4、
4、4、4と排水管15の分岐排水管151、152、
153とがそれぞれ接続され、各段毎に排水を一括回収
している。
Branch from the water supply pipe 10 and supply water collectively for each stage
The branch water pipes 111, 112, and 113 are
Rejection unit 5a15b15c15d1Cooling water supply hand
Stage 2, 2, 2, 2, middle stage cooling unit 5a25b2,
5c25d2Cooling water supply means 2, 2, 2, 2 and lower stage
Cooling unit 5a35b35c35d3Supply of cooling water
They are respectively connected to the feeding means 2, 2, 2, 2. one
, Upper cooling unit 5a15b15c15d1of
Water receiving unit 4, 4, 4, 4, middle stage cooling unit 5a 25,
b25c25d2Water receiving part 4, 4, 4, 4 and lower
Cooling unit 5a35b35c35d3Water receiving part 4,
4, 4, 4 and branch drain pipes 151, 152 of the drain pipe 15,
153 and 153 are connected respectively, and the wastewater is collected collectively for each stage.
is doing.

【0027】個々の冷却ユニット5において、斜行ハニ
カム3は幅方向に複数個配置してもよい。すなわち、斜
行ハニカム3は分割された斜行ハニカムの横並び形態で
あってもよい。また、空気冷却装置1Aにおける個々の
冷却ユニット5の設置形態としては、特に制限されず、
第1の実施の形態における冷却ユニット5を、例えば上
下方向に積み重ね、前後方向に並べて枠体上に固定する
方法が挙げられる。この場合、受水部4の前後方向幅は
斜行ハニカム3の厚みと同程度とし、前後方向の組み付
けの際、前方の斜行ハニカムの後面開口部102とその
後方の斜行ハニカムの前面開口部103とが当接又は近
接するように行うことが、省スペース化の点で好まし
い。
In each cooling unit 5, a plurality of oblique honeycombs 3 may be arranged in the width direction. That is, the oblique honeycomb 3 may be a laterally arranged form of divided oblique honeycombs. Further, the installation form of each cooling unit 5 in the air cooling device 1A is not particularly limited,
A method of stacking the cooling units 5 in the first embodiment in the up-down direction, arranging them in the front-rear direction, and fixing them on the frame body can be mentioned. In this case, the width in the front-rear direction of the water receiving portion 4 is set to be approximately the same as the thickness of the oblique honeycomb 3, and when assembled in the front-rear direction, the rear opening 102 of the front oblique honeycomb and the front opening of the rear oblique honeycomb are opened. It is preferable to perform the contact with or close to the portion 103 in terms of space saving.

【0028】なお、空気冷却装置1Aは、前記空気冷却
装置1と同様に、循環ポンプや熱交換器を設けずに受水
部4の排出水13を廃棄してもよいし、また、冷却水中
の不純物を除去する純水化装置を組込んでもよい。ま
た、冷却ユニット5は、例えば、図2及び図3に示すよ
うな左右両側及び上下両面が壁部の筐体14に収納し
て、被冷却空気が斜行ハニカム3の前面開口部のみを通
過するようにすることが好ましい。筐体14の形態とし
ては特に限定されるものでないが、冷却ユニットと筐体
との間の隙間が全くないか又は実質的に存在しないもの
であると熱効率が高いため好ましい。また、送風機の吐
出口と筐体14の前面開口部をダクトで接続し、該ダク
トを通して被冷却空気を供給することが、送風効率の点
で好ましい。
The air cooling device 1A may discard the discharged water 13 of the water receiving portion 4 without providing a circulation pump or a heat exchanger, as in the case of the air cooling device 1, or in the cooling water. A pure water purifying device for removing the impurities may be incorporated. Further, the cooling unit 5 is housed in a housing 14 having wall portions on both left and right sides and upper and lower sides as shown in FIGS. 2 and 3, and the air to be cooled passes through only the front opening portion of the oblique honeycomb 3. It is preferable to do so. The form of the housing 14 is not particularly limited, but it is preferable that there is no or substantially no gap between the cooling unit and the housing because the thermal efficiency is high. In addition, it is preferable in terms of ventilation efficiency to connect the discharge port of the blower to the front opening of the housing 14 by a duct and supply the cooled air through the duct.

【0029】次に、第2の実施の形態の空気冷却方法に
ついて図2及び図3を参照して説明する。まず、上段の
4個、中段の4個及び下段の4個の斜行ハニカム3のそ
れぞれの上面開口部101に冷却水12を同時に流下す
る。この際、冷却水12の供給水量や散水方法を適宜調
整して、12個の斜行ハニカム3全体を濡れた状態とす
る。次に、図示しない送風手段等により被冷却空気を前
方の3個の斜行ハニカム3の全面開口部103から図2
中の矢印の方向に導入する。12個の斜行ハニカム3内
のセルでは、流下される冷却水12と導入される被冷却
空気とが直接気液接触して、被冷却空気が冷却されると
共に、被冷却空気中に化学汚染物質等が存在する場合は
該化学汚染物質等が冷却水12に取り込まれる。熱交換
して温まり且つ場合により化学汚染物質を取り込んだ冷
却水12は、それぞれの斜行ハニカム3を流下し切った
ところで排出水となり、受水部4に移動する。受水部4
中の排出水は、各段毎に配設される分岐排水管151、
152、153及び排水管15を通って循環ポンプ6で
熱交換器7に供給されて所定温度まで冷却され、冷却さ
れた排出水13は、再び冷却水供給手段2に供給され、
冷却水12として再利用される。一方、最後列の斜行ハ
ニカム5d1、5d2、5d3の後面開口部102からは
冷却された冷却空気が得られる。
Next, an air cooling method according to the second embodiment will be described with reference to FIGS. First, the cooling water 12 is simultaneously flown down to the respective upper surface openings 101 of the upper four, the middle four and the lower four oblique honeycombs 3. At this time, the supply amount of the cooling water 12 and the water sprinkling method are appropriately adjusted so that the entire 12 oblique honeycombs 3 are in a wet state. Next, the air to be cooled is supplied from the front surface opening portions 103 of the three oblique honeycombs 3 in the front by a blower means (not shown) or the like.
Introduce in the direction of the arrow inside. In the cells in the twelve oblique honeycombs 3, the cooling water 12 flowing down and the cooling air to be introduced come into direct gas-liquid contact with each other to cool the cooling air and also to chemically pollute the cooling air. When a substance or the like is present, the chemical contaminant or the like is taken into the cooling water 12. The cooling water 12 which has been warmed by heat exchange and which has taken in chemical pollutants in some cases becomes discharged water when flowing down the respective oblique honeycombs 3 and moves to the water receiving part 4. Water receiving part 4
The drainage water inside is the branch drain pipe 151 arranged at each stage,
The discharged water 13 which is supplied to the heat exchanger 7 by the circulation pump 6 through 152 and 153 and the drain pipe 15 and is cooled to a predetermined temperature is supplied again to the cooling water supply means 2.
It is reused as the cooling water 12. On the other hand, cooled cooling air is obtained from the rear opening 102 of the oblique honeycombs 5d 1 , 5d 2 , 5d 3 in the last row.

【0030】第2の実施の形態における空気冷却方法に
よれば、第1の実施の形態における空気冷却方法と同様
の効果を奏する他、上下方向に複数段としたことによ
り、1個の斜行ハニカムの高さを短くとれ、斜行ハニカ
ムの下方においても冷却水の温度が低いままであり、熱
効率が向上する。更に、被冷却空気の流れ方向に複数列
としたことにより、被冷却空気の流速を高めることがで
きる。従って、省スペース且つ省エネルギーとすること
ができる。
According to the air cooling method of the second embodiment, the same effect as that of the air cooling method of the first embodiment can be obtained, and in addition, since there are a plurality of stages in the vertical direction, one skew is provided. The height of the honeycomb can be shortened, and the temperature of the cooling water remains low even below the diagonal honeycomb, which improves the thermal efficiency. Furthermore, the flow velocity of the air to be cooled can be increased by providing a plurality of rows in the flow direction of the air to be cooled. Therefore, it is possible to save space and save energy.

【0031】本発明において、被冷却空気としては、特
に限定されないが、清浄な空気に加え、高性能(ULP
A)フィルターの編み目を通過するような微細な化学汚
染物質を含んだ空気も用いることができる。ここで化学
汚染物質としては、例えば、ナトリウム、カリウム、カ
ルシウム、ホウ素等の無機質の金属元素、フッ素イオ
ン、塩化物イオン、硝酸イオン、亜硝酸イオン、硫酸イ
オン、亜硫酸イオン等のアニオン類や、アンモニウムイ
オン等のカチオン類等が挙げられる。
In the present invention, the air to be cooled is not particularly limited, but in addition to clean air, high performance (ULP
A) It is also possible to use air containing fine chemical contaminants that pass through the filter mesh. Here, examples of the chemical contaminants include inorganic metal elements such as sodium, potassium, calcium, and boron, anions such as fluorine ion, chloride ion, nitrate ion, nitrite ion, sulfate ion, and sulfite ion, and ammonium. Examples thereof include cations such as ions.

【0032】本発明で使用する空気冷却装置は被冷却空
気と冷却水とが直接に接触するため、これらの化学汚染
物質を冷却水に取り込んで清浄な冷却空気を得ることが
できる。なお、被冷却空気中の化学汚染物質量が多い場
合等には、必要により、受水部4と冷却水供給手段2と
の間に、排出水中の化学汚染物質を除去可能な手段とし
て、例えば、イオン交換樹脂等を組込んだ純水化装置を
介するようにすると、冷却水を清浄に保つことができる
ため好ましい。
In the air cooling device used in the present invention, since the air to be cooled and the cooling water are in direct contact with each other, these chemical contaminants can be taken into the cooling water to obtain clean cooling air. When the amount of chemical pollutants in the cooled air is large, as a means for removing the chemical pollutants in the discharge water between the water receiving part 4 and the cooling water supply means 2, if necessary, for example, It is preferable to use a water purifying device incorporating an ion exchange resin or the like because the cooling water can be kept clean.

【0033】本発明に係る空気冷却方法において、被処
理空気の温度としては、特に限定されないが、例えば、
20℃以上、好ましくは25℃以上、さらに好ましくは
30℃以上である。被冷却空気の温度が高いほど一般的
に熱効率が向上するため好ましい。また、冷却ユニット
5に供給する斜行ハニカムの上面開口部101における
冷却水の水温は通常7〜10℃であり、且つ、第1列目
に配置した斜行ハニカムの下面開口部104における排
出水の水温水温より通常2.5℃以上、好ましくは5.
0℃以上低くする。このような条件で装置を稼動させる
と、熱効率が高くなるため好ましい。
In the air cooling method according to the present invention, the temperature of the air to be treated is not particularly limited.
The temperature is 20 ° C or higher, preferably 25 ° C or higher, more preferably 30 ° C or higher. The higher the temperature of the cooled air is, the more the thermal efficiency is generally improved, which is preferable. The water temperature of the cooling water supplied to the cooling unit 5 at the upper opening 101 of the oblique honeycomb is usually 7 to 10 ° C., and the discharged water at the lower opening 104 of the oblique honeycomb arranged in the first row. The water temperature is usually 2.5 ° C. or higher, preferably 5.
Lower by 0 ° C or more. It is preferable to operate the apparatus under such conditions because the thermal efficiency is increased.

【0034】また、本発明において、冷却ユニット1個
当りの冷却水の供給量と被冷却空気の供給量との液ガス
比L/G400-200は、通常0.1〜0.5kg/kg、好まし
くは0.2〜0.4kg/kgである。ここで、L/G
400-200とは、冷却ユニット中の前記斜行ハニカム1個
当りの高さ400mm、厚さ200mmの場合における単位
時間当りの供給空気量に対する供給水量の重量比であ
る。なお、斜行ハニカム1個当りの大きさが高さ400
mm、厚さ200mmでない場合における斜行ハニカム1個
当りの単位時間当りの供給空気量に対する供給水量の重
量比L/Gは、L/G40 0-200の値に対して、斜行ハニ
カム1個当りの高さの増加に反比例して減少し、厚さの
増加に比例して増加する。例えば、L/G400-200
0.3のときに、斜行ハニカム1個の大きさを高さ80
0mm、厚さ200mmとすると該斜行ハニカムのL/Gは
0.15となり、また高さ400mm、厚さ600mmとす
るとL/Gは0.9となる。本発明では、熱効率がよい
ため、上記範囲内程度のように液ガス比が小さくても十
分に空気を冷却できる。
Further, in the present invention, the liquid gas ratio L / G 400-200 of the cooling water supply amount and the cooling air supply amount per one cooling unit is usually 0.1 to 0.5 kg / kg. , Preferably 0.2 to 0.4 kg / kg. Where L / G
400-200 is a weight ratio of the amount of supplied water to the amount of supplied air per unit time in the case where the height of each oblique honeycomb in the cooling unit is 400 mm and the thickness is 200 mm. The size of one diagonal honeycomb is 400
mm, the weight ratio L / G of the supply water for the amount of air supplied per unit of time per oblique honeycomb when not thick 200mm, relative to the value of L / G 40 0-200, oblique honeycomb 1 It decreases in inverse proportion to the increase in height per piece, and increases in proportion to the increase in thickness. For example, when L / G 400-200 is 0.3, the size of one diagonal honeycomb is 80
When the thickness is 0 mm and the thickness is 200 mm, the oblique honeycomb has an L / G of 0.15, and when the height is 400 mm and the thickness is 600 mm, the L / G is 0.9. In the present invention, since the thermal efficiency is good, the air can be sufficiently cooled even if the liquid-gas ratio is small as in the above range.

【0035】冷却ユニットを複数個使用する場合、冷却
ユニットの数は、上記実施の形態例に限定されず、適宜
定めればよいが、例えば、ファン動力と斜行ハニカムを
通過する被冷却空気の空間速度とから必要な開口面積
(Ao)を求め、Aoを満たす数にすればよい。この際の被
冷却空気の空間速度は、例えば、1.5〜3.0m/secで
ある。また、冷却水供給手段や受水部は各冷却ユニット
に各々独立して設けられていてもいなくてもどちらでも
よい。すなわち、幅方向に複数個配置した冷却ユニット
が、各段で冷却水供給手段又は受水部を共用していても
よい。例えば、冷却ユニットが斜行ハニカムの前面開口
部の幅方向に2列、且つ高さ方向に3段形成される場合
は、各段の冷却水供給手段や受水部を幅方向の2列の冷
却ユニットで共用してもよい。このように、各段で冷却
水供給手段等を共用すると、低コスト化できるため好ま
しい。
When a plurality of cooling units are used, the number of cooling units is not limited to the above-mentioned embodiment, and may be set as appropriate. For example, the power of the fan and the air to be cooled passing through the oblique honeycomb may be changed. Required opening area based on space velocity
(Ao) is calculated and set to a number that satisfies Ao. The space velocity of the cooled air at this time is, for example, 1.5 to 3.0 m / sec. Further, the cooling water supply means and the water receiving portion may or may not be independently provided in each cooling unit. That is, a plurality of cooling units arranged in the width direction may share the cooling water supply means or the water receiving portion in each stage. For example, when the cooling unit is formed in two rows in the width direction of the front opening of the oblique honeycomb and three stages in the height direction, the cooling water supply means and the water receiving portion of each stage are arranged in two rows in the width direction. It may be shared by the cooling units. In this way, it is preferable to share the cooling water supply means and the like in each stage because the cost can be reduced.

【0036】本発明に係る空気冷却方法は、オフィスビ
ル、病院、生産工場の空気の空気冷却方法に使用でき
る。
The air cooling method according to the present invention can be used as an air cooling method for air in office buildings, hospitals, and production plants.

【0037】[0037]

【実施例】次に、実施例を挙げて本発明をさらに具体的
に説明するが、本発明はこれに限定されるものではな
い。 実施例1 Eガラス繊維と有機バインダで形成したガラス不織布
を、充填材であるアルミナ水和物と結合材であるアルミ
ナゾルとを含むスラリに浸漬した後に乾燥し、波付け加
工して波形状物を得た。該波形状物を、波の伝播方向が
交差するように交互に重ね合わせた後に500℃で熱処
理して、アルミナとアルミナゾル硬化物との合計量80
重量%及びEガラス繊維20重量%からなり、空隙率が
65%であり、山高が4.8mm、ピッチ10mmの斜行ハ
ニカムを作製した。この斜行ハニカムは空気の通気方向
に対して幅1000mm、高さ400mm、奥行き200mm
となるものであり、コルゲート状シートの一層おきの波
の伝播方向が互いに交差する角度(図1中、符号Y)が
60度、斜め方向に延設されるセルの前後両面からみた
場合の空気の流入、流出方向(水平方向)に対する斜め
角度(図1中、符号X)は30度である。次にこの斜行
ハニカムを保持可能な大きさで、且つ前面、後面、上面
及び下面が通気可能なケースに組み込み、この上部に冷
却水をハニカムに供給するノズルを取り付けた給水パン
と、この下部にハニカムを通過した冷却水を受ける排水
パンとを付設し、1個の冷却ユニットとした。この冷却
ユニットは、高さが給水パン及び排水パンを含め500
mmであり、幅1000mm、奥行き200mmである。次
に、この冷却ユニットを幅1000mm、高さ1500m
m、奥行き200mmで前面及び後面が開口した筐体に、
上下3段に組み込んだ(冷却ユニットの3段1列配置。
合計3ユニット。)。また、排水パンで受けた温度の上
昇した冷却水は送水ポンプを経て、水冷却用熱交換器に
送られ、冷却され、ハニカム上部の給水パンに循環供給
されるようにした。冷却ユニット等の条件について表1
及び表2に示す。
EXAMPLES Next, the present invention will be described more specifically by way of examples, but the present invention is not limited thereto. Example 1 A glass nonwoven fabric formed of E glass fiber and an organic binder was dipped in a slurry containing alumina hydrate as a filler and alumina sol as a binder, dried, and corrugated to form a corrugated product. Obtained. The corrugated products were alternately stacked so that the propagation directions of the waves intersect with each other and then heat-treated at 500 ° C. to obtain a total amount of alumina and a cured product of alumina sol of 80.
A diagonal honeycomb having a porosity of 65%, a mountain height of 4.8 mm, and a pitch of 10 mm was prepared, which was composed of 20% by weight of E glass fiber and 20% by weight of E glass fiber. This diagonal honeycomb has a width of 1000 mm, a height of 400 mm, and a depth of 200 mm with respect to the air ventilation direction.
The angle at which the wave propagation directions of alternate layers of the corrugated sheet intersect with each other (reference numeral Y in FIG. 1) is 60 degrees, and air when viewed from both the front and rear surfaces of the cell extending diagonally. The oblique angle (X in FIG. 1) with respect to the inflow and outflow directions (horizontal direction) is 30 degrees. Next, this oblique honeycomb was installed in a case that was large enough to hold the front surface, rear surface, upper surface, and lower surface, and a water supply pan with a nozzle for supplying cooling water to the honeycomb was attached to the upper part, and this lower part. And a drain pan for receiving the cooling water that has passed through the honeycomb are attached to form one cooling unit. This cooling unit has a height of 500 including the water supply pan and drain pan.
mm, width 1000 mm, depth 200 mm. Next, this cooling unit is 1000 mm wide and 1500 m high.
m, with a depth of 200 mm in a housing with front and rear openings,
It was built in three stages (upper and lower stages).
3 units in total. ). Further, the cooling water whose temperature has been raised in the drain pan is sent to the water-cooling heat exchanger via the water pump, cooled, and circulated and supplied to the water pan above the honeycomb. Conditions of cooling unit etc. Table 1
And shown in Table 2.

【0038】上記装置に、夏場と同等の空気条件である
32℃、70rh%の空気を流量7200m3/時間で通
風するとともに、給水部から7℃の冷水を1ユニット当
たり水量21L/分(液ガス比L/G=0.29kg/k
g)、3ユニットで計63L/分供給し、出口空気の温
度、湿度及び空気冷却装置の圧損を測定した。結果を表
3に示す。
The above device is ventilated with air at 32 ° C. and 70 rh% at a flow rate of 7200 m 3 / hour, which is the same air condition as in summer, and the cold water at 7 ° C. is supplied from the water supply unit to a unit of 21 L / min (liquid Gas ratio L / G = 0.29kg / k
g) A total of 63 L / min was supplied by 3 units, and the temperature, humidity and pressure loss of the air cooling device of the outlet air were measured. The results are shown in Table 3.

【0039】参考例1 冷却ユニットを、幅1000mm、高さ1200mm、厚さ
200mmの斜行ハニカムを用い、給水パン及び排水パン
を含めて幅1000mm、高さ1300mm、奥行き200
mm冷却ユニットを1段配置したもの(冷却ユニットの1
段1列配置。合計1ユニット。)とし、さらに同様の形
状で該冷却ユニットを収容可能な大きさの筐体を用いた
以外は実施例1と同様にして、出口空気の温度、湿度及
び空気冷却装置の圧損を測定した。冷却ユニット等の条
件及び測定結果を表1〜表3に示す。なお、本例では、
運転中にかなりの量の冷却水が風とともにハニカムの風
下側に飛散するキャリーオーバー現象が発生した。これ
は、L/Gが実施例1と同じであるものの、L/G
400-200が実施例1より大きくて斜行ハニカムの奥行き
方向の冷却水量が多すぎたために起きたものと考えられ
る。
Reference Example 1 As a cooling unit, a diagonal honeycomb having a width of 1000 mm, a height of 1200 mm and a thickness of 200 mm was used, and a width of 1000 mm including a water supply pan and a drain pan, a height of 1300 mm and a depth of 200.
mm Cooling unit arranged in one stage (cooling unit 1
Arranged in 1 column. 1 unit in total. ), And the temperature and humidity of the outlet air and the pressure loss of the air cooling device were measured in the same manner as in Example 1 except that a casing having a similar shape and capable of accommodating the cooling unit was used. The conditions of the cooling unit and the measurement results are shown in Tables 1 to 3. In this example,
During operation, a carry-over phenomenon occurred in which a considerable amount of cooling water was scattered with the wind to the leeward side of the honeycomb. Although the L / G is the same as that of the first embodiment, the L / G
It is probable that 400-200 was larger than that of Example 1 and the amount of cooling water in the depth direction of the oblique honeycomb was too large, and this occurred.

【0040】比較例1 実施例1で用いた空気冷却装置に代えて、表2に示す条
件のフィンコイル式熱交換器(境川工業株式会社製)を
用いた以外は、実施例1と同様にして出口空気の温度、
湿度及び空気冷却装置の圧損を測定した。フィンコイル
式熱交換器等の条件及び測定結果を表1〜表3に示す。
Comparative Example 1 In the same manner as in Example 1 except that the air cooling device used in Example 1 was replaced by a fin coil type heat exchanger (manufactured by Sakaigawa Industry Co., Ltd.) under the conditions shown in Table 2. Outlet air temperature,
The humidity and the pressure loss of the air cooling device were measured. Tables 1 to 3 show conditions and measurement results of the fin coil heat exchanger and the like.

【0041】実施例2 斜行ハニカムの山高を3.5mm、ピッチ7.5mmとした
以外は、実施例1と同様にして出口空気の温度、湿度及
び空気冷却装置の圧損を測定した。冷却ユニット等の条
件及び測定結果を表1〜表3に示す。
Example 2 The temperature and humidity of the outlet air and the pressure loss of the air cooling device were measured in the same manner as in Example 1 except that the height of the oblique honeycomb was 3.5 mm and the pitch was 7.5 mm. The conditions of the cooling unit and the measurement results are shown in Tables 1 to 3.

【0042】実施例3 実施例1で作製した冷却ユニットを、幅1000mm、高
さ1500mm、奥行き600mmで前面及び後面が開口し
た筐体に、上下方向に3段且つ前後方向に3列組み込ん
だ(冷却ユニットの3段3列配置。合計9ユニット。)
以外は、実施例1と同様の装置構成とし、測定条件を表
3及び表4のようにして出口空気の温度、湿度及び空気
冷却装置の圧損を測定した。また、本実施例は半導体工
場のクリーンルーム用の外気取り入れ口の冷却を想定し
たものであるため、さらに、該取り入れ口の空気におけ
る不純物イオンの含有量と冷却後の空気中における不純
物イオンの除去率も測定した。不純物イオン濃度は、空
気取り入れ口の空気と冷却後の空気とをそれぞれ超純水
を入れたインピンジャーで吸収捕集し、この捕集液をイ
オンクロマトグラフで分析して求めた。冷却ユニット等
の条件及び測定結果を表1〜表4に示す。
Example 3 The cooling unit produced in Example 1 was assembled in a housing having a width of 1000 mm, a height of 1500 mm, a depth of 600 mm and an opening on the front surface and the rear surface in three rows in the vertical direction and three rows in the front-back direction ( (3 cooling units arranged in 3 rows and 3 columns. 9 units in total)
Except for this, the apparatus configuration was the same as in Example 1, and the measurement conditions were as shown in Tables 3 and 4, and the outlet air temperature, humidity, and pressure loss of the air cooling device were measured. In addition, since the present embodiment is intended to cool the outside air intake for a clean room of a semiconductor factory, the content of impurity ions in the air at the intake and the removal rate of impurity ions in the air after cooling are further considered. Also measured. The impurity ion concentration was determined by absorbing and collecting air at the air intake port and air after cooling with an impinger containing ultrapure water, and analyzing the collected liquid with an ion chromatograph. The conditions of the cooling unit and the measurement results are shown in Tables 1 to 4.

【0043】[0043]

【表1】 [Table 1]

【0044】[0044]

【表2】 [Table 2]

【0045】[0045]

【表3】 [Table 3]

【0046】[0046]

【表4】 [Table 4]

【0047】表1〜表4より、以下のことが分る。すな
わち、参考例1は実施例1と同一水量では出口空気の温
度が高くなる。比較例1は空気圧損が大きく、冷却水量
が多く必要であり、またフィンコイルの設置スペースの
奥行きが同等の冷却性能にした実施例1の3倍必要にな
った。実施例2は、ハニカムセルの大きさを小さくする
ことにより実施例1よりも設置スペースの奥行きを小さ
くでき、冷却水量も減少した。実施例3は、出口空気と
して、加熱によりクリーンルーム内空気条件(23℃、
45RH%)に適合する10.5℃、100RH%の冷
却空気が得られた。また、NH4 +、SO4 2-、NO2 -
90%以上除去できていることが分った。
From Tables 1 to 4, the following can be understood. That is, in the reference example 1, the temperature of the outlet air becomes higher with the same amount of water as the example 1. In Comparative Example 1, the air pressure loss was large, a large amount of cooling water was required, and the depth of the fin coil installation space was required to be three times that of Example 1 in which the cooling performance was equivalent. In Example 2, by reducing the size of the honeycomb cell, the depth of the installation space could be made smaller than in Example 1, and the amount of cooling water was also reduced. In Example 3, as the outlet air, the air condition in the clean room (23 ° C.,
A cooling air of 10.5 ° C. and 100 RH% compatible with 45 RH% was obtained. Further, it was found that 90% or more of NH 4 + , SO 4 2− and NO 2 could be removed.

【0048】[0048]

【発明の効果】本発明に係る空気冷却方法を用いると、
例えばオフィスビルや工場の取り入れ空気や循環空気に
対し、斜行ハニカムという簡易な構成で、熱効率がよ
く、液ガス比が小さく、圧損が小さく、省スペース及び
省エネルギーを図れ、さらに、コストを低減できる。
When the air cooling method according to the present invention is used,
For example, with respect to the intake air and circulating air in office buildings and factories, a simple structure called a diagonal honeycomb has good thermal efficiency, a small liquid-gas ratio, a small pressure loss, space and energy saving, and further cost reduction. .

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明で使用する空気冷却装置の一部を切り欠
いて示す模式図である。
FIG. 1 is a schematic view showing a part of an air cooling device used in the present invention by cutting out.

【図2】本発明で使用する他の空気冷却装置の概略図で
ある。
FIG. 2 is a schematic view of another air cooling device used in the present invention.

【図3】本発明で使用する他の空気冷却装置の被冷却空
気の流れ方向に直交する側から見た概略図である。
FIG. 3 is a schematic view of another air cooling device used in the present invention viewed from a side orthogonal to the flow direction of cooled air.

【符号の説明】[Explanation of symbols]

1 空気冷却装置 2 水分散装置(冷却水供給手段) 3 斜交ハニカム 4 受水パン(受水部) 5、5a1、5a2、5a3、5b1、5b2、5b3、5c
1、5c2、5c3、5d1、5d2、5d35 冷却ユ
ニット 6 循環ポンプ(水循環手段) 7 熱交換器 8 排出水冷却用の冷却水 9 空気の流れ方向を示す矢印 10 送水管 11 補給水を示す矢印 12 冷却水 13 排出水 14 筐体 15 排水管 21、22 互いに隣接するコルゲート状シート 23 給水ダクト 101 斜行ハニカム上面開口部 102 斜行ハニカム後面開口部 103 斜行ハニカム前面開口部 104 斜行ハニカム下面開口部 111、112、113 分岐送水管 151、152、153 分岐排水管
1 Air Cooling Device 2 Water Dispersing Device (Cooling Water Supply Means) 3 Oblique Honeycomb 4 Water Receiving Pan (Water Receiving Part) 5, 5a 1 , 5a 2 , 5a 3 , 5b 1 , 5b 2 , 5b 3 , 5c
1 , 5c 2 , 5c 3 , 5d 1 , 5d 2 , 5d 3 5 Cooling unit 6 Circulation pump (water circulation means) 7 Heat exchanger 8 Cooling water for cooling discharged water 9 Arrows showing the flow direction of air 10 Water pipe 11 Make-up water arrow 12 Cooling water 13 Discharged water 14 Housing 15 Drain pipes 21, 22 Corrugated sheets 23 adjacent to each other Water supply duct 101 Oblique honeycomb top opening 102 Oblique honeycomb rear opening 103 Oblique honeycomb front opening 104 Diagonal Honeycomb Lower Surface Openings 111, 112, 113 Branch Water Pipes 151, 152, 153 Branch Drain Pipes

フロントページの続き (71)出願人 000206211 大成建設株式会社 東京都新宿区西新宿一丁目25番1号 (71)出願人 000169499 高砂熱学工業株式会社 東京都千代田区神田駿河台4丁目2番地8 (71)出願人 000005452 日立プラント建設株式会社 東京都千代田区内神田1丁目1番14号 (72)発明者 大見 忠弘 宮城県仙台市青葉区米ヶ袋2−1−17− 301 (72)発明者 白井 泰雪 宮城県仙台市太白区八木山香澄町33の3チ サンマンション八木山香澄町803 (72)発明者 小林 貞雄 神奈川県横浜市栄区本郷台4−13−11 (72)発明者 寺田 功 神奈川県横浜市鶴見区大黒町1−70 ニチ アス株式会社鶴見研究所内 (72)発明者 岡部 稔久 神奈川県横浜市鶴見区大黒町1−70 ニチ アス株式会社鶴見研究所内 (72)発明者 谷口 隆志 神奈川県横浜市鶴見区大黒町1−70 ニチ アス株式会社鶴見研究所内 (72)発明者 森 直樹 東京都新宿区西新宿一丁目25番1号 大成 建設株式会社内 (72)発明者 伊藤 宏 東京都新宿区西新宿一丁目25番1号 大成 建設株式会社内 (72)発明者 若山 恵英 東京都新宿区西新宿一丁目25番1号 大成 建設株式会社内 (72)発明者 稲葉 仁 東京都千代田区神田駿河台4丁目2番地8 高砂熱学工業株式会社内 (72)発明者 斎藤 一夫 東京都千代田区神田駿河台4丁目2番地8 高砂熱学工業株式会社内 (72)発明者 小林 菊治 東京都千代田区内神田1丁目1番14号 日 立プラント建設株式会社内 (72)発明者 花岡 秀夫 東京都千代田区内神田1丁目1番14号 日 立プラント建設株式会社内 Fターム(参考) 3L053 BB05 Continued front page    (71) Applicant 000206211             Taisei Corporation             1-25-1, Nishi-Shinjuku, Shinjuku-ku, Tokyo (71) Applicant 000169499             Takasago Thermal Engineering Co., Ltd.             8-2 Kanda Surugadai, Chiyoda-ku, Tokyo (71) Applicant 000005452             Hitachi Plant Construction Co., Ltd.             1-1-14 Kanda, Uchikanda, Chiyoda-ku, Tokyo (72) Inventor Tadahiro Omi             2-1-17 Yonegabukuro, Aoba-ku, Sendai City, Miyagi Prefecture             301 (72) Inventor Yasuyuki Shirai             3 Chi, 33, Yagiyama Kasumi-cho, Taishiro-ku, Sendai City, Miyagi Prefecture             Sun apartment Yagiyama Kasumicho 803 (72) Inventor Sadao Kobayashi             4-13-11 Hongodai, Sakae Ward, Yokohama City, Kanagawa Prefecture (72) Inventor Isao Terada             1-70 Nichi, Daikokucho, Tsurumi-ku, Yokohama-shi, Kanagawa             Assur Inc. Tsurumi Research Center (72) Inventor Toshihisa Okabe             1-70 Nichi, Daikokucho, Tsurumi-ku, Yokohama-shi, Kanagawa             Assur Inc. Tsurumi Research Center (72) Inventor Takashi Taniguchi             1-70 Nichi, Daikokucho, Tsurumi-ku, Yokohama-shi, Kanagawa             Assur Inc. Tsurumi Research Center (72) Inventor Naoki Mori             1-25-1 Nishi-Shinjuku, Shinjuku-ku, Tokyo Taisei             Construction Co., Ltd. (72) Inventor Hiroshi Ito             1-25-1 Nishi-Shinjuku, Shinjuku-ku, Tokyo Taisei             Construction Co., Ltd. (72) Inventor Kei Wakayama             1-25-1 Nishi-Shinjuku, Shinjuku-ku, Tokyo Taisei             Construction Co., Ltd. (72) Inventor Hitoshi Inaba             8-2 Kanda Surugadai, Chiyoda-ku, Tokyo               Takasago Thermal Engineering Co., Ltd. (72) Inventor Kazuo Saito             8-2 Kanda Surugadai, Chiyoda-ku, Tokyo               Takasago Thermal Engineering Co., Ltd. (72) Inventor Kikuji Kobayashi             1-14-1 Uchikanda, Chiyoda-ku, Tokyo             Stand Plant Construction Co., Ltd. (72) Inventor Hideo Hanaoka             1-14-1 Uchikanda, Chiyoda-ku, Tokyo             Stand Plant Construction Co., Ltd. F-term (reference) 3L053 BB05

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 前後両面と上下両面とが開口し、前面開
口部から被冷却空気が導入されると共に後面開口部から
冷却空気が排出されるように配置される斜行ハニカム、
該斜行ハニカムの上面開口部へ冷却水を供給する冷却水
供給手段、及び該斜行ハニカムの下面開口部から排出さ
れる排出水を受ける受水部を有する冷却ユニットを用
い、該冷却ユニットの前記斜行ハニカムの前面開口部に
被冷却空気を導入し該斜行ハニカムの後面開口部から冷
却空気を排出する空気冷却方法であって、前記冷却ユニ
ットを少なくとも1個用いると共に、該冷却ユニット中
の前記斜行ハニカム1個当りの高さが200〜800mm
であることを特徴とする空気冷却方法。
1. A diagonal honeycomb, which is open on both front and rear surfaces and upper and lower surfaces, and is arranged such that cooled air is introduced from a front opening and cooling air is discharged from a rear opening,
Using a cooling unit having cooling water supply means for supplying cooling water to the upper opening of the oblique honeycomb, and a water receiving part for receiving discharged water discharged from the lower opening of the oblique honeycomb, An air cooling method of introducing cooling air into a front opening of the oblique honeycomb and discharging cooling air from a rear opening of the oblique honeycomb, wherein at least one cooling unit is used and The height of each of the diagonal honeycombs is 200 to 800 mm
An air cooling method characterized by:
【請求項2】 前記排出水を冷却する冷却手段及び該排
出水を前記冷却水供給手段に供給する水循環手段を有す
ることを特徴とする請求項1記載の空気冷却方法。
2. The air cooling method according to claim 1, further comprising cooling means for cooling the discharge water and water circulation means for supplying the discharge water to the cooling water supply means.
【請求項3】 前記冷却ユニットを、上下方向に複数個
配置することを特徴とする請求項1又は2記載の空気冷
却方法。
3. The air cooling method according to claim 1, wherein a plurality of the cooling units are arranged vertically.
【請求項4】 前記冷却ユニットを、被冷却空気の流れ
方向に複数個配置することを特徴とする請求項1〜3の
いずれか1項記載の空気冷却方法。
4. The air cooling method according to claim 1, wherein a plurality of the cooling units are arranged in the flow direction of the air to be cooled.
【請求項5】 前記冷却ユニットを、幅方向に複数個配
置することを特徴とする請求項1〜4のいずれか1項記
載の空気冷却方法。
5. The air cooling method according to claim 1, wherein a plurality of the cooling units are arranged in the width direction.
【請求項6】 幅方向に複数個配置した前記冷却ユニッ
トが、各段で冷却水供給手段又は受水部を共用すること
を特徴とする請求項5記載の空気冷却方法。
6. The air cooling method according to claim 5, wherein a plurality of the cooling units arranged in the width direction share the cooling water supply means or the water receiving portion in each stage.
【請求項7】 前記斜行ハニカムを構成するシート状部
材が、アルミナ、シリカ及びチタニアからなる群より選
択される1又は2以上の充填材又は結合材と、ガラス繊
維、セラミック繊維又はアルミナ繊維とからなるもので
あることを特徴とする請求項1〜6のいずれか1項記載
の空気冷却方法。
7. The sheet-like member constituting the oblique honeycomb is one or more fillers or binders selected from the group consisting of alumina, silica and titania, and glass fibers, ceramic fibers or alumina fibers. The air cooling method according to any one of claims 1 to 6, wherein the air cooling method comprises:
【請求項8】 前記斜行ハニカムは、空隙率が50〜8
0%であることを特徴とする請求項1〜7のいずれか1
項記載の空気冷却方法。
8. The oblique honeycomb has a porosity of 50 to 8
It is 0%, Any one of Claims 1-7 characterized by the above-mentioned.
The method for cooling air according to the item.
【請求項9】 前記斜行ハニカムは、セルの山高が2.
5〜8.0mmであることを特徴とする請求項1〜8のい
ずれか1項記載の空気冷却方法。
9. The oblique honeycomb has a cell mountain height of 2.
The air-cooling method according to claim 1, wherein the air-cooling method is 5 to 8.0 mm.
【請求項10】 第1列目に配置した前記斜行ハニカム
の上面開口部における前記冷却水の水温が、前記斜行ハ
ニカムの下面開口部における前記排出水の水温より2.
5℃以上低いことを特徴とする請求項1〜9のいずれか
1項記載の空気冷却方法。
10. The water temperature of the cooling water in the upper opening of the oblique honeycomb arranged in the first row is higher than that of the discharged water in the lower opening of the oblique honeycomb by 2.
It is lower by 5 ° C. or more, and any one of claims 1 to 9 is characterized.
The air cooling method according to item 1.
【請求項11】 冷却ユニット1個当りの前記冷却水の
供給量と前記被冷却空気の供給量との液ガス比L/G
400-200が0.1〜0.5kg/kgであることを特徴とする
請求項1〜10のいずれか1項記載の空気冷却方法。
11. A liquid gas ratio L / G of the supply amount of the cooling water and the supply amount of the cooled air per cooling unit.
The air cooling method according to any one of claims 1 to 10, wherein 400-200 is 0.1 to 0.5 kg / kg.
JP2002002204A 2002-01-09 2002-01-09 Air cooling method Expired - Lifetime JP4033677B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002002204A JP4033677B2 (en) 2002-01-09 2002-01-09 Air cooling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002002204A JP4033677B2 (en) 2002-01-09 2002-01-09 Air cooling method

Publications (2)

Publication Number Publication Date
JP2003202191A true JP2003202191A (en) 2003-07-18
JP4033677B2 JP4033677B2 (en) 2008-01-16

Family

ID=27642134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002002204A Expired - Lifetime JP4033677B2 (en) 2002-01-09 2002-01-09 Air cooling method

Country Status (1)

Country Link
JP (1) JP4033677B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009136806A (en) * 2007-12-07 2009-06-25 Dai-Dan Co Ltd Gas impurity removing method and apparatus
JP2009180433A (en) * 2008-01-31 2009-08-13 Tohoku Univ Wet desiccant air conditioner
JP2009530097A (en) * 2006-03-21 2009-08-27 トランスバック・システムズ・リミテッド Matrix structure
JP6046294B1 (en) * 2016-04-15 2016-12-14 ダイナエアー株式会社 Processor and regenerator
JP6427648B1 (en) * 2017-09-28 2018-11-21 ニチアス株式会社 Air-liquid contactor
JP2019190780A (en) * 2018-04-27 2019-10-31 Mdi株式会社 Air conditioner and management server of air conditioner

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53131552A (en) * 1977-04-21 1978-11-16 Mitsubishi Electric Corp Gas cooler
JPS55155186A (en) * 1979-05-18 1980-12-03 Toshiba Corp Air cooling device
JPS56105297A (en) * 1980-01-23 1981-08-21 Shinwa Sangyo Kk Multistage sprinkler
JPS57144829A (en) * 1981-03-05 1982-09-07 Toyobo Co Ltd Dehumidifying cooling system
JPS63282496A (en) * 1987-05-15 1988-11-18 Nichias Corp Heat exchange element for gas and manufacture thereof
JPH057724A (en) * 1991-07-08 1993-01-19 Hitachi Zosen Corp Gas-liquid contact apparatus
JPH06502909A (en) * 1991-09-23 1994-03-31 マンターズ コーポレイション Laminated sheet evaporative cooling pad
JPH09292187A (en) * 1995-11-07 1997-11-11 Seibu Giken:Kk Method of cooling fluid, method of dehumidification and cooling of gas and device
JP2000317248A (en) * 1999-05-14 2000-11-21 Yamaha Corp System for removing gas impurity
JP2001179112A (en) * 1999-12-24 2001-07-03 Tsuneo Sugito Method of sticking/fixing titanium dioxide to three- dimensional and two-dimensional structures and contact method
JP2001215027A (en) * 2000-01-31 2001-08-10 Niihara Sangyo:Kk Air conditioning system for building for stable and plantation room
JP2001321635A (en) * 2000-05-15 2001-11-20 Fujikasui Engineering Co Ltd Method for treating exhaust gas containing organic malodorous component
JP2003202174A (en) * 2002-01-09 2003-07-18 Tadahiro Omi Air cooling device

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53131552A (en) * 1977-04-21 1978-11-16 Mitsubishi Electric Corp Gas cooler
JPS55155186A (en) * 1979-05-18 1980-12-03 Toshiba Corp Air cooling device
JPS56105297A (en) * 1980-01-23 1981-08-21 Shinwa Sangyo Kk Multistage sprinkler
JPS57144829A (en) * 1981-03-05 1982-09-07 Toyobo Co Ltd Dehumidifying cooling system
JPS63282496A (en) * 1987-05-15 1988-11-18 Nichias Corp Heat exchange element for gas and manufacture thereof
JPH057724A (en) * 1991-07-08 1993-01-19 Hitachi Zosen Corp Gas-liquid contact apparatus
JPH06502909A (en) * 1991-09-23 1994-03-31 マンターズ コーポレイション Laminated sheet evaporative cooling pad
JPH09292187A (en) * 1995-11-07 1997-11-11 Seibu Giken:Kk Method of cooling fluid, method of dehumidification and cooling of gas and device
JP2000317248A (en) * 1999-05-14 2000-11-21 Yamaha Corp System for removing gas impurity
JP2001179112A (en) * 1999-12-24 2001-07-03 Tsuneo Sugito Method of sticking/fixing titanium dioxide to three- dimensional and two-dimensional structures and contact method
JP2001215027A (en) * 2000-01-31 2001-08-10 Niihara Sangyo:Kk Air conditioning system for building for stable and plantation room
JP2001321635A (en) * 2000-05-15 2001-11-20 Fujikasui Engineering Co Ltd Method for treating exhaust gas containing organic malodorous component
JP2003202174A (en) * 2002-01-09 2003-07-18 Tadahiro Omi Air cooling device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009530097A (en) * 2006-03-21 2009-08-27 トランスバック・システムズ・リミテッド Matrix structure
KR101424241B1 (en) * 2006-03-21 2014-07-28 콜드하버 마린 리미티드 Matrix arrangement
US8827248B2 (en) 2006-03-21 2014-09-09 Coldharbour Marine Limited Matrix arrangement
JP2009136806A (en) * 2007-12-07 2009-06-25 Dai-Dan Co Ltd Gas impurity removing method and apparatus
JP2009180433A (en) * 2008-01-31 2009-08-13 Tohoku Univ Wet desiccant air conditioner
JP6046294B1 (en) * 2016-04-15 2016-12-14 ダイナエアー株式会社 Processor and regenerator
JP6427648B1 (en) * 2017-09-28 2018-11-21 ニチアス株式会社 Air-liquid contactor
KR20190037178A (en) * 2017-09-28 2019-04-05 니찌아스 카부시키카이샤 Gas-liquid contact member
JP2019058888A (en) * 2017-09-28 2019-04-18 ニチアス株式会社 Gas-liquid contact body
KR102082375B1 (en) 2017-09-28 2020-02-27 니찌아스 카부시키카이샤 Gas-liquid contact member
JP2019190780A (en) * 2018-04-27 2019-10-31 Mdi株式会社 Air conditioner and management server of air conditioner

Also Published As

Publication number Publication date
JP4033677B2 (en) 2008-01-16

Similar Documents

Publication Publication Date Title
JP2003202174A (en) Air cooling device
JPWO2003001122A1 (en) Air cleaning method and air cleaning device used for the same
JP4330843B2 (en) Gas-liquid contact device
US20200386421A1 (en) Liquid desiccant air conditioning systems and methods
JP5294191B2 (en) Wet desiccant air conditioner
KR20160033573A (en) Heat exchange matrix
JP2003202191A (en) Air cooling method
JP3750800B2 (en) Air purifier
KR20050072697A (en) Air cooling device and air cooling method
US11493289B1 (en) Wettable media and method of making the same
CN109569198B (en) Gas-liquid contact body
JP2004245428A (en) Air cooling device and its method
JP3716926B2 (en) Air cleaning method
JP2005195231A (en) Air cooling device and its method
JP2004245429A (en) Air cooling device and its method
JP2005274075A (en) Air cooling device and its method
JP2005195230A (en) Air cooling device and its method
JP4710741B2 (en) Ventilation equipment
JP2019063786A (en) Gas-liquid contact body
CN114570134A (en) Air filtering equipment
KR20200102664A (en) Heat Exchange Element Having Hole In Spacers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041224

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070410

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071016

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071023

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4033677

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term