JPH09292187A - Method of cooling fluid, method of dehumidification and cooling of gas and device - Google Patents

Method of cooling fluid, method of dehumidification and cooling of gas and device

Info

Publication number
JPH09292187A
JPH09292187A JP8311376A JP31137696A JPH09292187A JP H09292187 A JPH09292187 A JP H09292187A JP 8311376 A JP8311376 A JP 8311376A JP 31137696 A JP31137696 A JP 31137696A JP H09292187 A JPH09292187 A JP H09292187A
Authority
JP
Japan
Prior art keywords
flow
gas flow
gas
heat exchanger
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8311376A
Other languages
Japanese (ja)
Other versions
JP3540107B2 (en
Inventor
Toshimi Kuma
利実 隈
Tsutomu Hirose
勉 広瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seibu Giken Co Ltd
Original Assignee
Seibu Giken Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seibu Giken Co Ltd filed Critical Seibu Giken Co Ltd
Priority to JP31137696A priority Critical patent/JP3540107B2/en
Publication of JPH09292187A publication Critical patent/JPH09292187A/en
Application granted granted Critical
Publication of JP3540107B2 publication Critical patent/JP3540107B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To be able to supply a large quantity of low-cost cold blast by using water as the suspended fine particles of volatile liquid in gas flow and to be able to lower cooling temperature by using low boiling point liquid such as methanol as the fine particles of the volatile liquid. SOLUTION: Gas flow Aa that is saturated with the steam of water or other liquid and suspended with the large quantity of the fine particles of water or other liquid is blown into a group of small through holes 4 on a side of a cross-flow type or a counter-flow type heat exchanger 3, gas flow B that is to be cooled is blown through the other group of small through holes 5, sensible heat is exchanged between the gas flow Aa and the gas flow B, the fine particles of the volatile liquid suspended in the gas flow Aa is evaporated and the gas flow B is cooled by the evaporation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は流体たとえば空気と空気
または液体と気体との熱交換による流体の冷却方法およ
び装置ならびにその応用としての気体たとえば空気の除
湿冷却の方法および装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for cooling a fluid such as air and air or a liquid and a gas by heat exchange, and a method and apparatus for dehumidifying and cooling a gas such as air.

【0002】[0002]

【従来の技術】空気その他の気体または液体を冷却する
のに従来から、フロン等の揮発性の冷媒をコンプレッサ
で圧縮液化し液化したフロンの気化熱によって冷却する
ようにした冷凍機が一般的である。またこのような冷凍
機はフロンの圧縮熱を放出させるために、フロンを蛇管
に通しその蛇管に水を流下させるとともに空気をカウン
タ方向に流し、その水の気化熱によって冷却するクーリ
ングタワーが使用されている。
2. Description of the Related Art Conventionally, refrigerators are generally used for cooling air or other gases or liquids, in which a volatile refrigerant such as Freon is compressed and liquefied by a compressor and cooled by the heat of vaporization of liquefied Freon. is there. Further, in such a refrigerator, in order to release the heat of compression of CFCs, a cooling tower is used, in which CFCs are passed through a flexible pipe, water is made to flow down in the flexible pipe, and air is caused to flow in the counter direction, and cooled by the heat of vaporization of the water. There is.

【0003】[0003]

【発明が解決しようとする課題】一般の空気調和におい
ては快適な温度および湿度の空気を得ることが求められ
ており、高温多湿の外気を処理する場合には温度および
湿度をともに低下させることが必要である。このような
空気調和を行う場合には、フロンをコンプレッサで圧縮
するようにしているため、消費エネルギーが大きく、ま
たフロンによる大気のオゾン層の破壊が問題になってい
る。さらにクーリングタワーでも大きくエネルギーが消
費されている。
In general air conditioning, it is required to obtain air of comfortable temperature and humidity, and when treating hot and humid outside air, both temperature and humidity can be lowered. is necessary. In the case of performing such air conditioning, chlorofluorocarbon is compressed by a compressor, which consumes a large amount of energy and poses a problem of depleting the ozone layer of the atmosphere due to chlorofluorocarbon. In addition, the cooling tower consumes a lot of energy.

【0004】本発明は熱交換器を利用して流体たとえば
空気その他の気体または液体を冷却する方法および装置
ならびにその応用として気体たとえば空気を除湿し冷却
して快適な温度および湿度を有する空気、その他低温・
低湿の気体を少ないエネルギーでフロンを用いることな
く連続的に供給しようとするものである。
The present invention is a method and apparatus for cooling a fluid such as air or other gas or liquid using a heat exchanger and its application to dehumidify and cool the gas such as air having a comfortable temperature and humidity, etc. low temperature·
It is intended to continuously supply a low-humidity gas with a small amount of energy without using Freon.

【0005】[0005]

【課題を解決するための手段】本発明は直交流型熱交換
器その他温度が異なる2種類の流体が互いに直接接触し
ない熱交換器を使用して低温の気体Aと高温の流体Bと
の顕熱交換により高温の流体Bを冷却するにあたり、低
温の気体Aを水蒸気その他の揮発性液体の蒸気で飽和し
た状態とし更にこれに微細な水滴その他の揮発性液体の
滴を多量に均一に分散した状態すなわち、気体中に多量
の微細な液滴が浮遊した状態の気体流Aaとし、これを
熱交換器の一方の流路に送入し、高温の流体Bを他方の
流路に送入し、流体Bの顕熱によって熱交換器を介して
上記気体Aa内の微細な液滴Mを蒸発させ、その蒸発熱
によって気体Aaを冷却し、この冷却された気体流Aa
と流体Bとの熱交換により高効率で流体Bを冷却するも
のである。
The present invention uses a cross-flow type heat exchanger or other heat exchangers in which two kinds of fluids having different temperatures do not come into direct contact with each other, to reveal a low temperature gas A and a high temperature fluid B. When the high temperature fluid B is cooled by heat exchange, the low temperature gas A is saturated with water vapor or other volatile liquid vapor, and a large amount of fine water droplets or other volatile liquid droplets are uniformly dispersed therein. State, that is, a gas flow Aa in a state where a large amount of fine droplets are suspended in the gas, which is fed into one flow path of the heat exchanger, and the hot fluid B is fed into the other flow path. , The sensible heat of the fluid B evaporates the fine droplets M in the gas Aa through the heat exchanger, the heat of vaporization cools the gas Aa, and the cooled gas flow Aa
The fluid B is cooled with high efficiency by heat exchange between the fluid B and the fluid B.

【0006】[0006]

【発明の実施の形態】本発明の請求項1に記載の発明
は、気体流Aに揮発性液体の霧を加えて飽和状態にし且
つ霧状の微細な液滴Mを大量に浮遊させた気体流Aaと
なし、複数の流路を有する熱交換器の一方の流路に該気
体流Aaを通し他方の流路に冷却すべき流体Bを通し、
気体流Aaが熱交換器の一方の流路を通過する間に流体
Bの顕熱を気体流Aaに与え気体流Aaの温度を上げそ
の気相部分の飽和度(揮発性液体が水の場合は相対湿
度)が下がるに伴い、気体流Aaに浮遊する大量の微細
な液滴Mを気化させその気化熱によって気体流Aaの温
度を連続的に下げることにより流体Bを連続的に冷却す
るものであり、微細な液滴Mが多量に浮遊する気体流A
aが熱交換器の流路内で流体Bと顕熱交換することによ
って気体流Aaが加熱され、微細な液滴Mが気化するこ
とによって気化熱が奪われ気体流Aaの温度が下がり、
流体Bを冷却するという作用を有する。
BEST MODE FOR CARRYING OUT THE INVENTION The invention according to claim 1 of the present invention is a gas in which a mist of a volatile liquid is added to a gas flow A to bring it into a saturated state and a large amount of fine mist-like droplets M are suspended. Flow Aa, the gas flow Aa is passed through one flow path of a heat exchanger having a plurality of flow paths, and the fluid B to be cooled is passed through the other flow path,
While the gas flow Aa passes through one flow path of the heat exchanger, the sensible heat of the fluid B is applied to the gas flow Aa to raise the temperature of the gas flow Aa and the saturation degree of the gas phase portion (when the volatile liquid is water). Is a relative humidity), a large amount of fine droplets M floating in the gas flow Aa are vaporized, and the heat of vaporization continuously lowers the temperature of the gas flow Aa to continuously cool the fluid B. And a gas flow A in which a large number of fine droplets M are suspended.
The gas flow Aa is heated by the sensible heat exchange with the fluid B in the flow path of the heat exchanger, and the vaporization heat is taken away by the vaporization of the fine droplets M, and the temperature of the gas flow Aa is lowered.
It has an effect of cooling the fluid B.

【0007】(実施例1)アルミニウムその他の金属の
シートまたはポリエステルその他の合成樹脂のシートよ
りなる平板1と波長3.0mm、波高1.6mmの波板2とを
交互に且つ波板2の波の方向が一段毎に直交するように
積重ね互に接着して図2に示す如き直交流型熱交換器3
を得る。また、シートの表面にブラスト等で小さな凹凸
を形成すると親水性が生じるとともに表面積が増加す
る。アルミニウムシートに親水性を与えるには燐酸ナト
リウム、次亜塩素酸ナトリウム、クロム酸、燐酸、シュ
ウ酸、水酸化ナトリウム等の水溶液にシートを浸漬した
り、沸騰水に浸漬する等の方法によりアルミニウムシー
ト表面に親水性の物質を生成させる。こうしてアルミニ
ウムシートに親水性を与えると、アルミニウムシートの
表面に水滴が付着しても水滴が平になり、流体抵抗を増
加させることはない。
(Example 1) A flat plate 1 made of a sheet of aluminum or other metal or a sheet of polyester or other synthetic resin and a corrugated plate 2 having a wavelength of 3.0 mm and a wave height of 1.6 mm are alternately and corrugated. Of the cross flow type heat exchanger 3 as shown in FIG.
Get. If small irregularities are formed on the surface of the sheet by blasting or the like, hydrophilicity is generated and the surface area is increased. To impart hydrophilicity to the aluminum sheet, the aluminum sheet is immersed in an aqueous solution of sodium phosphate, sodium hypochlorite, chromic acid, phosphoric acid, oxalic acid, sodium hydroxide, or the like, or immersed in boiling water. Generate a hydrophilic substance on the surface. When hydrophilicity is given to the aluminum sheet in this way, even if the water droplets adhere to the surface of the aluminum sheet, the water droplets become flat, and the fluid resistance does not increase.

【0008】直交流型熱交換器3として平板1と波板2
との組合せを例示したが、平板の一部分に細かな波を形
成すると、表面積がさらに増大し熱交換効率が増大す
る。また、平板1や波板2の表面を黒くすると輻射熱の
放射・吸収が増大し熱交換効率が向上する。
A flat plate 1 and a corrugated plate 2 as a cross flow type heat exchanger 3.
However, if a small wave is formed on a part of the flat plate, the surface area is further increased and the heat exchange efficiency is increased. Further, when the surface of the flat plate 1 or the corrugated plate 2 is made black, radiation and absorption of radiant heat increase, and heat exchange efficiency improves.

【0009】図2,図3に示す如くこの直交流型熱交換
器3の一方の小透孔群4をほぼ垂直に他の小透孔群5を
ほぼ水平になるように配置し、図3に示す如く小透孔群
4の流入口4aおよび流出口4bに夫々ダクト8a,8
bを取付け、ダクト8aに送風機Faおよび水噴霧器6
を取付け、小透孔群5(図2)の流入口5aおよび流出
口5bに夫々ダクト9a,9bを取付け、ダクト9aに
送風機Fを取付ける。尚図中Vaは水噴霧器6の噴霧量
を調節する弁である。
As shown in FIGS. 2 and 3, one small through hole group 4 of this cross flow type heat exchanger 3 is arranged substantially vertically and the other small through hole group 5 is arranged substantially horizontally, and FIG. As shown in FIG. 5, ducts 8a and 8 are provided at the inlet 4a and the outlet 4b of the small through hole group 4, respectively.
b, the blower Fa and the water atomizer 6 are attached to the duct 8a.
, The ducts 9a and 9b are attached to the inlet 5a and the outlet 5b of the small through hole group 5 (FIG. 2), and the blower F is attached to the duct 9a. In the figure, Va is a valve for adjusting the spray amount of the water sprayer 6.

【0010】水噴霧器6としてはできるだけ細かな水滴
を均一に分布させることができるものが望ましく、例え
ばエアミストノズル等が適する。また、水滴はできるだ
け細かな方が望ましく径が10μm程度がよいが、エア
ミストノズルを用いて噴霧した場合に水滴の最大径が2
80μm程度になるようにすると約70%の水滴の径は
100μm以下となり、本発明の効果は十分発揮され
る。
As the water sprayer 6, a water sprayer capable of uniformly distributing water droplets as small as possible is desirable. For example, an air mist nozzle or the like is suitable. Further, it is desirable that the water droplets be as small as possible, and the diameter is preferably about 10 μm, but when sprayed using an air mist nozzle, the maximum diameter of the water droplets is 2
When it is set to about 80 μm, the diameter of about 70% of water droplets becomes 100 μm or less, and the effect of the present invention is sufficiently exhibited.

【0011】なお、エアミストノズルは水と空気を用い
て噴霧するものであり、水及び空気とも加圧すると噴霧
水滴が小さくなる。特に、噴霧水滴の大きさは空気の圧
力の影響を受け易く3kgf/cm2以上の圧を加える
ことが望ましい。またエアミストノズル以外に液体のみ
を使用するノズルを用いてもよい。
The air mist nozzle sprays using water and air, and spraying water and air reduces the sprayed water droplets. In particular, the size of the spray water droplet is easily affected by the pressure of air, and it is desirable to apply a pressure of 3 kgf / cm 2 or more. In addition to the air mist nozzle, a nozzle that uses only liquid may be used.

【0012】次にこの冷却装置の作用を説明する。図3
に示す如く外気または室内空気流Aに上記水噴霧器6を
使用して、空気流Aに微細な水滴を多量に噴霧すること
によって水滴の気化熱によって温度を下げ、かつ相対湿
度を上げる。そして更に大量の微細な水滴Mを浮遊させ
た状態の空気流Aaとして送風機Faの吐出圧により熱
交換器3の一方の多数の流路入口4aに送入する。
Next, the operation of this cooling device will be described. FIG.
As shown in (1), a large amount of fine water droplets are sprayed on the air flow A using the water sprayer 6 on the outside air or the indoor air flow A, thereby lowering the temperature and increasing the relative humidity by the heat of vaporization of the water droplets. Further, a large amount of fine water droplets M are sent as air flows Aa in a floating state to one of the plurality of flow path inlets 4a of the heat exchanger 3 by the discharge pressure of the blower Fa.

【0013】他方送風機Fにより熱交換器3の流路入口
5aに高温の空気流Bを送入すれば、空気流Aaが熱交
換器3の流路を通過する間に流路の隔壁1(図2参照)
を介して高温空気流Bの顕熱を奪って空気流Aaの温度
が上がる。その結果空気流Aaの相対湿度が下がり、空
気流Aaに含まれた多量の微細な水滴Mが気化しその気
化熱によって空気流Aaの温度を下げることにより隔壁
1を介して高温空気流Bを冷却する。
On the other hand, if the hot air flow B is sent into the flow path inlet 5a of the heat exchanger 3 by the blower F, the partition wall 1 ( (See Figure 2)
, The sensible heat of the high-temperature air flow B is removed and the temperature of the air flow Aa rises. As a result, the relative humidity of the air flow Aa decreases, a large amount of fine water droplets M contained in the air flow Aa evaporate, and the temperature of the air flow Aa is reduced by the heat of vaporization, so that the high temperature air flow B passes through the partition wall 1. Cooling.

【0014】この冷却装置の冷却原理をさらに詳細に説
明する。液体の蒸気圧は、液体が水平表面を有する状態
より液滴状態の方が大きく、その液滴の径が小さい程大
きくなる。この現象はケルヴィンの式として次のように
表される。
The cooling principle of this cooling device will be described in more detail. The vapor pressure of a liquid is higher in a droplet state than in a state in which the liquid has a horizontal surface, and increases as the diameter of the droplet decreases. This phenomenon is expressed as Kelvin's equation as follows.

【0015】log(pr/p)=2δM/ρrRT ここでpは水平表面の蒸気圧、prは半径rの液滴の蒸
気圧、Mはモル質量、δは表面張力、ρは液体の密度、
Rは気体定数、Tは絶対温度である。
Log (p r / p) = 2δM / ρrRT where p is the vapor pressure of the horizontal surface, p r is the vapor pressure of the droplet of radius r, M is the molar mass, δ is the surface tension, and ρ is the liquid. density,
R is a gas constant and T is an absolute temperature.

【0016】従って、水滴の半径は小さいほど気化が速
く、冷却作用が強くなる。更に噴霧された水滴Mが熱交
換器3内で気化する過程において、水滴Mの直径は小さ
くなり、水滴Mの直径が小さくなるに従って蒸気圧が上
昇するため、熱交換器3内で加速度的に水滴Mの気化が
進む。つまり、微細な水滴Mは熱交換器3内で極めて短
時間で気化し、多量の気化熱を奪う。
Therefore, the smaller the radius of the water droplet, the faster the vaporization and the stronger the cooling action. Further, in the process of vaporizing the sprayed water droplet M in the heat exchanger 3, the diameter of the water droplet M becomes smaller, and the vapor pressure increases as the diameter of the water droplet M becomes smaller. The vaporization of the water droplet M proceeds. That is, the fine water droplets M are vaporized in the heat exchanger 3 in a very short time, and take up a large amount of vaporization heat.

【0017】上記の式に当てはめて計算すると18℃の
水の場合、水滴の半径が1μになると蒸気圧は水面が平
な状態の時と比較して0.1%上昇し、水滴の半径が1
0mμになると蒸気圧は約10%上昇する。さらに水滴
の半径が1mμになると蒸気圧はほぼ倍に上昇する。こ
のように微細な水滴Mが多量に浮遊した空気を熱交換器
3に送入すると、水滴Mは熱交換器3内で急激に気化す
るという現象を呈する。
Calculating by applying the above equation, in the case of water at 18 ° C., when the radius of the water droplet becomes 1 μ, the vapor pressure increases by 0.1% as compared with the case where the water surface is flat, and the radius of the water droplet becomes 1
At 0 μm, the vapor pressure increases by about 10%. Further, when the radius of the water droplet becomes 1 μm, the vapor pressure increases almost twice. When the air in which a large amount of the fine water droplets M floats is sent to the heat exchanger 3, the water droplets M suddenly vaporize in the heat exchanger 3.

【0018】この冷却装置を使用して試験を行った。図
4に示す如く温度25.9℃、絶対湿度8.05g/kg、相
対湿度39%の空気流Aを水噴霧器6に通して温度を1
7.5℃に下げるとともに、大量の微細な水滴Mを浮遊
させた相対湿度100%の空気流Aaとし、この空気流
Aaを熱交換器3のほぼ垂直に配置した小透孔群4の入
口4aに風速2m/秒で送入する。一方温度70.6
℃、絶対湿度10.44g/kg、相対湿度5.2%の高温空
気流Bを送風機Fにより熱交換器3のほぼ水平に配置し
た小透孔群の流入口5aに風速2m/秒で送入する。小
透孔群4は正確に垂直でなくても水滴が空気中に浮遊し
た状態で送通すればよい。図5はこの時の空気冷却を示
す空気線図、表1はその試験成績である。
Tests were carried out using this cooling device. As shown in FIG. 4, an air flow A having a temperature of 25.9 ° C., an absolute humidity of 8.05 g / kg, and a relative humidity of 39% is passed through the water sprayer 6 to adjust the temperature to 1
An air flow Aa having a relative humidity of 100% in which a large amount of fine water droplets M are suspended is set to 7.5 ° C., and this air flow Aa is the inlet of the small through hole group 4 arranged substantially vertically in the heat exchanger 3. It is fed into 4a at a wind speed of 2 m / sec. Meanwhile, the temperature is 70.6
C., high humidity 10.44 g / kg, relative humidity 5.2% of the high temperature air flow B is blown by the blower F to the inlet 5a of the group of small holes arranged almost horizontally in the heat exchanger 3 at a wind speed of 2 m / sec. To enter. The small through hole group 4 does not have to be exactly vertical, but water droplets may be sent in a state of being suspended in the air. FIG. 5 is an air diagram showing the air cooling at this time, and Table 1 shows the test results.

【0019】[0019]

【表1】 高温空気流Bと空気流Aaとの間で顕熱交換が行われ、
前述の如く空気流Aa中に浮遊した微細な水滴の気化に
より空気流Aaの温度を連続的に下げ、空気流Bを冷却
して空気流Bは絶対湿度を上げることなく温度は下が
り、温度18.6℃、絶対湿度10.44g/kg、相対湿度
78%の快適な空気となりこれを給気SAとして使用す
る。気体流Aaは熱交換器3を通ることにより温度3
0.7℃、相対湿度100%の空気流Abとなる。この
空気流Abは大気中に放出される。
[Table 1] Sensible heat exchange is performed between the hot air flow B and the air flow Aa,
As described above, the temperature of the air flow Aa is continuously decreased by vaporizing the fine water droplets suspended in the air flow Aa, and the air flow B is cooled to decrease the temperature of the air flow B without increasing the absolute humidity. Comfortable air with a temperature of 0.6 ° C, an absolute humidity of 10.44 g / kg and a relative humidity of 78% is used as the air supply SA. The gas flow Aa passes through the heat exchanger 3 to reach the temperature 3
An air flow Ab with a temperature of 0.7 ° C. and a relative humidity of 100% is obtained. This air flow Ab is released into the atmosphere.

【0020】この場合の顕熱交換効率η1は表1中の
(1)式に示す如く97.9%となり、熱交換効率が非
常に高いことを示す。(1)式中B,SA,Aaは各々
の空気の温度を示す。この場合水滴Mの噴霧量は凡そ1
時間当り8〜15リットルである。この場合の空気流A
およびBの流量は約180m3/時である。熱交換器の
寸法は0.25×0.25=0.0625m2 の広さであ
り、その入口4a, 5aの表面積は夫々0.0625
2、開孔率が約40%であるので小透孔の断面積は0.
0625m2 ×40%=0.025m2 であり、風速は
2m/秒であるので風量は0.025m2 ×2m/秒=
180m3 / 時となる。
The sensible heat exchange efficiency η 1 in this case is 97.9% as shown in the equation (1) in Table 1, showing that the heat exchange efficiency is very high. In the formula (1), B, SA and Aa represent the temperature of each air. In this case, the spray amount of the water droplet M is about 1
8-15 liters per hour. Air flow A in this case
The flow rates of and B are about 180 m 3 / hour. The size of the heat exchanger is 0.25 × 0.25 = 0.0625 m 2 , and the surface areas of its inlets 4a and 5a are 0.0625, respectively.
m 2 , the open area ratio is about 40%, so the cross-sectional area of the small through holes is 0.
0625m 2 × 40% = a 0.025 m 2, air volume since the wind velocity is at 2m / sec 0.025 m 2 × 2m / sec =
180m 3 / hour.

【0021】これと比較するために対照例として実施例
1で使用したのと同一の直交流型熱交換器を用い冷却用
空気流に水噴霧器を使用しない場合の試験成績を図6お
よび表2並びに図7の空気線図に示す。ここで(2)式
中B,Ba,Aは各々空気の温度を示す。
In order to compare with this, the test results in the case of using the same cross-flow heat exchanger as used in Example 1 as a control example and not using a water atomizer for the cooling air flow are shown in FIG. 6 and Table 2. And the psychrometric chart of FIG. 7. In the equation (2), B, Ba, and A each represent the temperature of air.

【0022】[0022]

【表2】 温度22.3℃の空気流Aは顕熱交換により温度62.0
℃の空気流Abとなり、温度67.2℃の高温空気流B
は顕熱交換により温度36.0℃の空気流Baとなる。
絶対湿度は空気流A, 空気流Bともに変わらない。この
ときの顕熱交換効率η1 は表2中の(2)式に示す如く
69.5%となる。 水を噴霧した場合には顕熱交換効率
は97.9%となり水を噴霧しない場合には顕熱交換効
率は69.5%となり、水の噴霧によって約30%熱交
換効率が上昇する。この場合他の条件は実施例1の水を
噴霧した場合と同じである。
[Table 2] Airflow A with a temperature of 22.3 ° C has a temperature of 62.0 due to sensible heat exchange.
℃ air flow Ab, high temperature air flow B 67.2 ℃ B
Becomes an air flow Ba having a temperature of 36.0 ° C. due to sensible heat exchange.
The absolute humidity is the same for both air flow A and air flow B. The sensible heat exchange efficiency η 1 at this time is 69.5% as shown in the equation (2) in Table 2. When water is sprayed, the sensible heat exchange efficiency is 97.9%, and when water is not sprayed, the sensible heat exchange efficiency is 69.5%, and spraying water increases the heat exchange efficiency by about 30%. In this case, other conditions are the same as in the case of spraying water in Example 1.

【0023】(実施例2)また同様にこの冷却装置を使
用して図8に示す如く温度25.7℃、絶対湿度12.2
0g/kg、相対湿度59.0%の空気を風速2m/秒の空
気流Aとし、これを水噴霧器6に通して温度20.2
℃、相対湿度が100%で且つ霧状の微細な水滴を大量
に均一に浮遊させた空気流Aaとし、この空気流Aaを
熱交換器の小透孔群4の入口4aに送入する。一方冷却
すべき空気として温度34.2℃、絶対湿度14.41g/
kg、相対湿度43%の高温空気を風速2m/秒の空気流
Bとして熱交換器の小透孔群5の入口5aに送入する。
高温空気流Bは空気流Aaとの間で顕熱交換が行われ、
空気流Bは温度20.6℃、絶対湿度14.41g/kg、相
対湿度95%の冷却空気SAとなった。気体流Aaは温
度25℃、相対湿度ほぼ100%の空気流Abとなり、
空気流Abは大気中に放出される。この時の空気線図を
図9に試験成績を表3に示す。
(Example 2) Similarly, using this cooling device, the temperature was 25.7 ° C. and the absolute humidity was 12.2 as shown in FIG.
Air of 0 g / kg and relative humidity of 59.0% was used as an air flow A with a wind speed of 2 m / sec, and this was passed through a water atomizer 6 to a temperature of 20.2.
An air flow Aa in which a large amount of fine mist-like water droplets having a temperature of 100 ° C. and a relative humidity of 100% is suspended uniformly is formed, and the air flow Aa is fed into the inlet 4a of the small through hole group 4 of the heat exchanger. On the other hand, the air to be cooled has a temperature of 34.2 ° C and an absolute humidity of 14.41 g /
High-temperature air having a relative humidity of 43% and kg is fed into the inlet 5a of the small through hole group 5 of the heat exchanger as an air flow B having a wind velocity of 2 m / sec.
The hot air flow B undergoes sensible heat exchange with the air flow Aa,
The air flow B became cooling air SA having a temperature of 20.6 ° C., an absolute humidity of 14.41 g / kg and a relative humidity of 95%. The gas flow Aa becomes an air flow Ab having a temperature of 25 ° C. and a relative humidity of almost 100%,
The air flow Ab is released into the atmosphere. The air diagram at this time is shown in FIG. 9, and the test results are shown in Table 3.

【0024】[0024]

【表3】 図示する如く気体流Bに気体流Aa中の水滴の気化熱が
隔壁を通して伝わり、空気線図に示すように気体流Bの
絶対湿度は変らず、空気線図の水平の線に沿って温度が
下りSA点(20.6℃)に達し、空気流AaはAb点
まで相対湿度100%の線を通って温度が上昇する。こ
の場合の顕熱交換効率は表3中(3)式に示す如く9
7.1%となり、実施例1の顕熱交換効率とほぼ同じで
ある。即ち流体Bの温度が降下し、給気SAの温度が2
0.6℃と空調用として適切になった場合には水の噴霧
量を減少しその温度を維持するようにすればよい。その
場合の水の噴霧量は約8リットル/時間である。
[Table 3] As shown in the figure, the heat of vaporization of the water droplets in the gas flow Aa is transferred to the gas flow B through the partition wall, the absolute humidity of the gas flow B does not change as shown in the air diagram, and the temperature along the horizontal line of the air diagram changes. After reaching the downward SA point (20.6 ° C.), the temperature of the air flow Aa rises up to the Ab point through the line of relative humidity of 100%. The sensible heat exchange efficiency in this case is 9 as shown in equation (3) in Table 3.
The value was 7.1%, which is almost the same as the sensible heat exchange efficiency of Example 1. That is, the temperature of the fluid B decreases and the temperature of the supply air SA increases by 2
When the temperature becomes 0.6 ° C., which is appropriate for air conditioning, the amount of water sprayed may be reduced to maintain the temperature. The amount of water sprayed in that case is about 8 liters / hour.

【0025】上記と比較するために対照例として実施例
1で使用したのと同一の直交流型熱交換器を用い冷却用
空気流に水噴霧器を使用しない場合の試験成績を図1
0、図11の空気線図および表4に示す。
In order to compare with the above, as a control example, the same cross flow type heat exchanger as used in Example 1 was used and the test results when the water atomizer is not used for the cooling air flow are shown in FIG.
0, shown in the psychrometric chart of FIG. 11 and Table 4.

【0026】[0026]

【表4】 21.8℃の空気流Aは32.7℃の空気流Abとなり、
34.4℃の高温空気流Bは空気流Aとの顕熱交換によ
り25.7℃の空気流SAとなる。 絶対湿度は空気流A,
空気流Bともに変わらない。このときの顕熱交換効率
は表4中(4)式に示す如く69.0%となる。
[Table 4] 21.8 ° C air flow A becomes 32.7 ° C air flow Ab,
The hot air flow B of 34.4 ° C. becomes the air flow SA of 25.7 ° C. by sensible heat exchange with the air flow A. Absolute humidity is airflow A,
The air flow B does not change. The sensible heat exchange efficiency at this time is 69.0% as shown in the equation (4) in Table 4.

【0027】(実施例3)図1に示す如く実施例1で説
明した図3の装置に空気流Abとともに排出された水滴
を受ける水槽D、該水槽Dに溜った水の還流装置すなわ
ちポンプP,導水管10,電動弁Vaおよび水位調節装
置即ち水位浮きVs,水位センサーSe,電動弁Vb、
並に水滴噴霧装置6の噴霧量調節装置即ちサーモカップ
ルTa,サーモカップルTb,電気信号増幅機C,電動
弁Vaを加えたものである。図中図3と同じ番号をつけ
た部品は実施例1において図3で説明した部品と同一で
あるのでその説明は省略する。
(Embodiment 3) As shown in FIG. 1, a water tank D for receiving water droplets discharged together with the air flow Ab in the apparatus of FIG. 3 explained in Embodiment 1, and a recirculation device for the water accumulated in the water tank D, that is, a pump P. , Water conduit 10, motor-operated valve Va and water level adjusting device or water level float Vs, water level sensor Se, motor valve Vb,
In addition, a spray amount adjusting device of the water droplet spraying device 6, that is, a thermocouple Ta, a thermocouple Tb, an electric signal amplifier C, and an electric valve Va are added. Parts in the figure that are assigned the same reference numerals as those in FIG. 3 are the same as the parts described in FIG.

【0028】水槽D内の水を水噴霧器6に還流する導水
管10を取付けその中途にポンプPおよび電動弁Vaを
設ける。また水槽Dには給水管11を取付け、水槽D内
の水面13には水位浮きVsを浮かべ、給水管11に設
けたオンオフ電磁弁Vbと水位センサーSeとを連結
し、図1のQ部拡大図に示す如く水位の変化を水位浮き
Vsおよび水位センサーSeでキャッチし水面が13L
まで下れば電磁弁Vbが開き水を補給し、水面が13H
まで上れば電磁弁Vbが閉じ水の補給を停止する。
A water conduit 10 for returning water in the water tank D to the water sprayer 6 is attached, and a pump P and a motor-operated valve Va are provided in the middle thereof. Further, a water supply pipe 11 is attached to the water tank D, a water level float Vs is floated on the water surface 13 in the water tank D, an on / off solenoid valve Vb provided in the water supply pipe 11 and a water level sensor Se are connected, and a part Q in FIG. 1 is enlarged. As shown in the figure, the change in water level is caught by the water level float Vs and the water level sensor Se, and the water surface reaches 13L.
Solenoid valve Vb opens and water is replenished when the temperature drops to 13H
If it goes up, the solenoid valve Vb is closed and the supply of water is stopped.

【0029】水噴霧器6の上流には気体流Aの温度セン
サーたとえばサーモカップルTa、流体Bの中に温度セ
ンサーたとえばサーモカップルTbを配置し、該サーモ
カップルTaおよびTbを電気信号増幅器Cを介在させ
連結する。この両サーモカップルTa,Tbの温度差を
キャッチして電気信号増幅器Cに入れ、温度差が大きく
なるに従い電動弁Vaを操作し水噴霧量を増大させ、温
度差が小さくなるに従い水噴霧量を減少させる。必要に
応じて水の噴霧量の増加とともに送風機Faの出力を増
加させて空気流Aaを加速させる。
Upstream of the water sprayer 6, a temperature sensor such as a thermocouple Ta of the gas flow A and a temperature sensor such as a thermocouple Tb in the fluid B are arranged, and the thermocouples Ta and Tb are interposed by an electric signal amplifier C. connect. The temperature difference between the two thermocouples Ta and Tb is caught and put in the electric signal amplifier C, the electric valve Va is operated to increase the water spray amount as the temperature difference increases, and the water spray amount decreases as the temperature difference decreases. Reduce. If necessary, the output of the blower Fa is increased as the amount of sprayed water is increased to accelerate the air flow Aa.

【0030】この場合水噴霧器6からの噴霧量が多過ぎ
ると微細な水滴が熱交換器3の小透孔群4内の内壁面に
集まり水流となるとともに十分な気化をせずに滴下して
しまう。その水流は微細な水滴と比べて表面積は極めて
小さくなり高温空気流Bから奪った熱量では水の気化が
少なく、冷却に寄与しない。したがって気体流Aaの温
度を充分低下させることはできず、よって高温空気流B
の温度を充分に下げることはできない。気体流Aa内の
微細な水滴Mが均一に必要量含まれるように噴霧すれば
冷却効率がよく、水も節約できる。
In this case, when the amount of water sprayed from the water sprayer 6 is too large, fine water droplets collect on the inner wall surface of the small through hole group 4 of the heat exchanger 3 to form a water flow and drop without sufficient vaporization. I will end up. The water flow has an extremely small surface area as compared with the fine water droplets, and the amount of heat taken from the high-temperature air flow B causes less water vaporization and does not contribute to cooling. Therefore, the temperature of the gas flow Aa cannot be lowered sufficiently, and therefore the hot air flow B
The temperature cannot be lowered sufficiently. If the fine water droplets M in the gas flow Aa are sprayed so as to be uniformly contained in the required amount, the cooling efficiency is good and water can be saved.

【0031】(実施例4)噴霧器6において使用する水
(沸点100℃)の代りにエタノール(沸点78.3
℃)、酢酸メチル(沸点56.3℃)、メタノール(沸
点64.7℃)等揮発性の有機質液体または揮発性有機
質液体と水との混合液体を使用することもできる。
Example 4 Instead of water (boiling point 100 ° C.) used in the sprayer 6, ethanol (boiling point 78.3) was used.
C.), methyl acetate (boiling point 56.3.degree. C.), methanol (boiling point 64.7.degree. C.), or a volatile organic liquid or a mixed liquid of volatile organic liquid and water can be used.

【0032】図2に示す如く厚さ25μのアルミニウム
シートよりなる隔壁1と、波長3.4mm、波高1.7mmの
アルミニウム波板2との両表面に吸湿剤シリカゲルの微
粒子を散布接着しこれを交互に積層して250mm×25
0mm×250mmのサイズの直交流型熱交換器3を得る。
この熱交換器3を使用して図12に示す冷却装置を組立
て、実施例1,2において噴霧器6に使用した水の代わ
りにメタノールの45%水溶液を使用した場合のデータ
を図12に示す。この場合水の代わりにメタノール水溶
液を使用したためその沸点が下り、温度25.9℃であ
った空気流Aはメタノール水溶液の噴霧後(空気流A
a)14.6℃へと下がった。
As shown in FIG. 2, fine particles of hygroscopic agent silica gel are sprinkled and adhered on both surfaces of the partition wall 1 made of an aluminum sheet having a thickness of 25 μ and the aluminum corrugated plate 2 having a wavelength of 3.4 mm and a wave height of 1.7 mm. 250mm x 25 by stacking alternately
A cross-flow heat exchanger 3 having a size of 0 mm × 250 mm is obtained.
FIG. 12 shows data when the cooling device shown in FIG. 12 was assembled using this heat exchanger 3 and a 45% aqueous solution of methanol was used in place of the water used for the sprayer 6 in Examples 1 and 2. In this case, since the aqueous methanol solution was used in place of water, the boiling point thereof decreased, and the temperature of the air stream A was 25.9 ° C. The air stream A was sprayed with the aqueous methanol solution (air stream A
a) The temperature dropped to 14.6 ° C.

【0033】この空気流Aaの14.6℃と高温空気流
Bの51.3℃との熱交換により17.2℃の低温空気S
Aが得られた。従って水のみの噴霧よりも低沸点の液体
を使用して噴霧すれば低温の空気SAが得られる。図1
1の空気線図は以上の空気流B→SAと、空気流A→A
a→Abとの状態変化を示す空気線図である。
By the heat exchange between the air flow Aa of 14.6 ° C. and the hot air flow B of 51.3 ° C., the low temperature air S of 17.2 ° C.
A was obtained. Therefore, low temperature air SA can be obtained by spraying using a liquid having a lower boiling point than spraying only water. FIG.
The air diagram of 1 is the above airflow B → SA and airflow A → A
It is a psychrometric chart which shows the state change of a-> Ab.

【0034】(実施例5)本実施例の装置は図14に示
す如く実施例1で説明した装置に熱交換器3の出口4b
から排出された気体流Abを高湿度の気体流Aaに還流
する装置を加え、水噴霧器6の上流側に加湿器7を設け
たものである。図14において熱交換器3の出口4bと
送風機Fcとをダクト8eで連結し、送風機Fcと高湿
度の気体流Aaの流路とをダクト8dで連結し、ダクト
8eの一部に外気OAを必要に応じて送入するための分
岐ダクトKを接続する。
(Embodiment 5) As shown in FIG. 14, the apparatus of this embodiment is the same as the apparatus described in Embodiment 1 except that the outlet 4b of the heat exchanger 3 is used.
A humidifier 7 is provided on the upstream side of the water atomizer 6 by adding a device for returning the gas flow Ab discharged from the device to the high-humidity gas flow Aa. In FIG. 14, the outlet 4b of the heat exchanger 3 and the blower Fc are connected by the duct 8e, the blower Fc and the flow path of the high-humidity gas flow Aa are connected by the duct 8d, and the outside air OA is partly connected to the duct 8e. A branch duct K for connection is connected if necessary.

【0035】加湿器7には給水管Wpの中途にバルブV
を取り付け加湿する必要が生じた場合に水を供給できる
ようにする。加湿器7としてはたとえば超音波型、水を
浸潤した多数の織布等を使用したものがある。
The humidifier 7 has a valve V in the middle of the water supply pipe Wp.
To be able to supply water should it need to be humidified. As the humidifier 7, for example, there is an ultrasonic type, a type using a large number of woven fabrics soaked with water, and the like.

【0036】気体流Aaを熱交換器3に通し出口4bか
ら排気Abを送風機Fcにより還流させ気体流Acとし
て使用する。この気体流Acは必要に応じて加湿器7に
通し更に噴霧器6により微細な水滴Mを大量に浮遊させ
た気体流Aaとして熱交換器3に循環して送入するもの
である。
The gas flow Aa is passed through the heat exchanger 3, and the exhaust gas Ab is returned from the outlet 4b by the blower Fc and used as the gas flow Ac. This gas flow Ac is passed through the humidifier 7 as needed, and is further circulated into the heat exchanger 3 as a gas flow Aa in which a large amount of fine water droplets M are suspended by the sprayer 6.

【0037】図12においてダクト8eの中間に冷却部
Coを設け、ダクト8eの外周に多数のフィンFeを取
付けこれにカバーを取り付けて送風機Fdを連結し、送
風機FdによりフィンFeを冷却することによりダクト
8e内の流体Abを冷却し高湿度流体Ab内の湿気を冷
却し結露させて結露水をタンクDa内に溜め、タンク内
の水を時々弁Vcにより排出し、噴霧器6に戻す。
In FIG. 12, a cooling unit Co is provided in the middle of the duct 8e, a large number of fins Fe are attached to the outer periphery of the duct 8e, a cover is attached to the cooling unit Co to connect the blower Fd, and the fins Fe are cooled by the blower Fd. The fluid Ab in the duct 8e is cooled, the moisture in the high humidity fluid Ab is cooled to cause dew condensation, and condensed water is stored in the tank Da, and the water in the tank is occasionally discharged by the valve Vc and returned to the sprayer 6.

【0038】以上本発明の流体の冷却方法を直交流型熱
交換器を使用する空気の冷却方法の例により説明した
が、空気以外の気体または水その他の液体の冷却におい
ても同様に実施し得ることは勿論である。
Although the fluid cooling method of the present invention has been described with reference to the example of the air cooling method using the cross-flow heat exchanger, it can be similarly applied to the cooling of gas other than air or liquid such as water. Of course.

【0039】使用する熱交換器は上記の直交流型に代え
て斜交流型、図15に示す対向流型、図16に示す対向
流と交差流とを組合わせた熱交換器を使用することもで
きる。図15に示す対向流型、図16に示す対向流と交
差流とを組合わせた熱交換器においてはともに微細な水
滴を浮遊させた気体流Aa、流体Bは夫々図中矢印方向
に小透孔内を通過し夫々気体流Ab,流体SAとして排
出され、両流体Aa,Bの間で顕熱交換を行う。また図
17に示す如く平板1,1…の間に多数のスペーサー1
2,12…を一段毎に直交する方向に多数挟んで組立て
た直交流型の熱交換器を使用することができ、また上記
ハニカム積層体と同様対向流型、対向流と交差流とを組
合わせた熱交換器を使用することもできる。
As the heat exchanger to be used, an oblique alternating current type, a counterflow type shown in FIG. 15, and a heat exchanger in which a counterflow and a crossflow shown in FIG. 16 are combined are used in place of the above-mentioned crossflow type. You can also In the counterflow type shown in FIG. 15 and in the heat exchanger in which the counterflow and the crossflow shown in FIG. 16 are combined, the gas flow Aa in which fine water droplets are suspended and the fluid B are respectively small in the direction of the arrow in the figure. After passing through the holes, they are discharged as a gas flow Ab and a fluid SA, respectively, and sensible heat exchange is performed between the fluids Aa and B. Also, as shown in FIG. 17, a large number of spacers 1 are provided between the flat plates 1, 1.
It is possible to use a cross-flow type heat exchanger assembled by sandwiching a large number of 2, 12, ... In each step in a direction orthogonal to each other. Also, as in the above honeycomb laminate, a counter-flow type, a counter-flow and a cross-flow are combined. A combined heat exchanger can also be used.

【0040】(実施例6)図18に示す如く250mm×
250mm×250mmの直交流型熱交換器3と噴霧加湿器
6を配置し除湿ロータ14を熱交換器3の前段に配置す
る。除湿ロータ14は、吸着剤又は吸湿剤を結合したハ
ニカム積層体を直径320mm、幅200mmの円筒状に形
成したものである。また、除湿ロータ14はセパレータ
15、15’により吸着ゾーン16と再生ゾーン17と
に分離され夫々ダクト(図示せず)により矢印B→HA
→SAに示す如く流路を構成されており、除湿ロータ1
4は図中矢印方向に16r.p.h.で連続的に回転駆動され
る。温度34.0℃、絶対湿度14.4g/kg、相対湿度4
3.1%の外気OAを送風機Fbにより空気流Bとし、
これを風速2m/秒で除湿ロータ14の吸着ゾーン16
に送入する。
(Embodiment 6) 250 mm × as shown in FIG.
A 250 mm × 250 mm cross-flow heat exchanger 3 and a spray humidifier 6 are arranged, and a dehumidifying rotor 14 is arranged in front of the heat exchanger 3. The dehumidifying rotor 14 is formed by forming a honeycomb laminated body having an adsorbent or a hygroscopic agent bonded thereto into a cylindrical shape having a diameter of 320 mm and a width of 200 mm. Further, the dehumidifying rotor 14 is separated into an adsorption zone 16 and a regeneration zone 17 by separators 15 and 15 ′, and an arrow B → HA is provided by a duct (not shown).
→ The dehumidifying rotor 1 has a flow path as shown by SA.
4 is continuously rotated at 16 r.ph in the direction of the arrow in the figure. Temperature 34.0 ℃, absolute humidity 14.4g / kg, relative humidity 4
3.1% of outside air OA is changed into air flow B by the blower Fb,
This is performed at a wind speed of 2 m / sec in the adsorption zone 16 of the dehumidifying rotor 14.
Send to

【0041】これにより空気流Bの湿気を吸着除去して
乾燥空気流HAを得る。ついで乾燥空気流HAを熱交換
器3の水平な小透孔群5の入口5aに送入する。除湿ロ
ータ14の再生ゾーン17にはヒータHにより外気OA
を80℃程度に加熱した再生空気RAとして図中矢印方
向に送入し、再生ゾーン17を通り除湿ロータ14を脱
湿再生し、多湿の排気EAとして外気中に放出する。
As a result, the moisture of the air stream B is adsorbed and removed to obtain the dry air stream HA. Next, the dry air flow HA is fed into the inlet 5a of the horizontal small through-hole group 5 of the heat exchanger 3. The regeneration zone 17 of the dehumidifying rotor 14 is heated by the heater H to the outside air OA.
Is fed in the direction of the arrow in the figure as regeneration air RA heated to about 80 ° C., passes through the regeneration zone 17 to dehumidify and regenerate the dehumidifying rotor 14, and is discharged into the outside air as humid exhaust air EA.

【0042】一方空気流Aの温度が26℃で相対湿度5
8%の時に噴霧加湿器6によって加湿し相対湿度100
%にすれば、空気流Aaの温度は17.0℃になった。
更にこの空気流Aaに水を噴霧し微細な水滴が無数浮遊
した状態にして熱交換器3の流入口4aに送通する。
On the other hand, the temperature of the air flow A is 26 ° C. and the relative humidity is 5
Humidification by spray humidifier 6 at 8% and relative humidity of 100
%, The temperature of the air stream Aa was 17.0 ° C.
Further, water is sprayed on the air flow Aa, and the water flow is sent to the inflow port 4a of the heat exchanger 3 in a state where countless fine water droplets float.

【0043】上述の乾燥空気流HAは熱交換器3を通る
ことによって、微細な水滴が無数浮遊した空気流Aaと
顕熱交換をし、第1実施例の説明と同様熱交換器3内部
で空気流Aaの微細な水滴の気化熱により冷却され温度
20.5℃、絶対湿度4.5g/kg、相対湿度30%の快適
な給気SAとなった。
By passing through the heat exchanger 3, the above-mentioned dry air flow HA exchanges sensible heat with the air flow Aa in which a myriad of fine water droplets float, and inside the heat exchanger 3 as in the description of the first embodiment. It was cooled by the heat of vaporization of fine water droplets of the air flow Aa, and became a comfortable air supply SA with a temperature of 20.5 ° C, an absolute humidity of 4.5 g / kg and a relative humidity of 30%.

【0044】この実施例から分かるように34℃、絶対
湿度14.4g/kg、相対湿度43.1%の外気を除湿し、
湿分の吸着熱により温度が上昇するとともに湿度の下が
った乾燥空気を熱交換器3に通すことによって温度2
0.5℃、絶対湿度4.5g/kg、相対湿度30%の冷却さ
れた乾燥空気を得る。この空気を空調に使用する場合に
は適宜加湿して快適な空気条件とすることができる。
As can be seen from this example, the outside air having a temperature of 34 ° C., an absolute humidity of 14.4 g / kg and a relative humidity of 43.1% was dehumidified,
The temperature rises due to the heat of adsorption of moisture and the dry air whose humidity has decreased is passed through the heat exchanger 3 so that the temperature 2
Chilled dry air is obtained at 0.5 ° C., an absolute humidity of 4.5 g / kg and a relative humidity of 30%. When this air is used for air conditioning, it can be appropriately humidified to provide comfortable air conditions.

【0045】除湿機としては本実施例で使用したロータ
リー式の他に吸湿剤を充填した2筒式、シリンダー式あ
るいはカサバー式(米国カサバー社製)等の除湿機も使
用できるのはもちろんである。
As the dehumidifier, of course, in addition to the rotary type dehumidifier used in this embodiment, a dehumidifier such as a two-cylinder type, a cylinder type or a cassava type (manufactured by Kasaba USA) filled with a hygroscopic agent can be used. .

【0046】(実施例7)本実施例では70.0℃の高
温空気を熱交換器により冷却したのち除湿ロータにより
除湿する過程について述べる。
(Embodiment 7) In this embodiment, a process in which high temperature air at 70.0 ° C. is cooled by a heat exchanger and then dehumidified by a dehumidifying rotor will be described.

【0047】図19に示す如く直交流型熱交換器3の上
部側に噴霧加湿器6を配置し除湿ロータ14を熱交換器
3の後段に配置する。送風機Faを通して温度26.0
℃、絶対湿度12.2g/kg、相対湿度58%の外気OA
に噴霧加湿器6で水を噴霧し相対湿度100%にすると
温度17.5℃になり、これにさらに水を噴霧し、多量
の水の微粒子を浮遊させた空気流Aaを熱交換器3の一
方の流路4aに通す。
As shown in FIG. 19, the spray humidifier 6 is arranged on the upper side of the cross-flow heat exchanger 3 and the dehumidifying rotor 14 is arranged in the latter stage of the heat exchanger 3. Temperature 26.0 through blower Fa
OA, absolute humidity 12.2g / kg, relative humidity 58% outside air OA
When water is sprayed with a spray humidifier 6 to a relative humidity of 100%, the temperature rises to 17.5 ° C., and further water is sprayed onto the air flow Aa in which a large amount of fine particles of water are suspended in the heat exchanger 3. It passes through one flow path 4a.

【0048】他方温度70.0℃、絶対湿度14.4g/k
g、相対湿度7%の空気流Bを送風機Fbにより風速2
m/秒で熱交換器3の入口5aに送入する。空気流Bは
熱交換器で顕熱交換し低温の空気流Baとなる。空気流
Baの絶対湿度は空気流Bのそれとほぼ同一である。空
気流Aaは熱交換器3を通過した後、熱交換器3の出口
では温度30.0℃、相対湿度約100%の空気流Ab
となり外気中に放出される。除湿ロータ14は図中矢印
方向に16r.p.h.で回転駆動される。
On the other hand, the temperature is 70.0 ° C. and the absolute humidity is 14.4 g / k.
Air velocity B with g and 7% relative humidity is blown by blower Fb at 2
It is fed into the inlet 5a of the heat exchanger 3 at m / sec. The air flow B exchanges sensible heat with a heat exchanger to become a low temperature air flow Ba. The absolute humidity of the air flow Ba is almost the same as that of the air flow B. After the air flow Aa has passed through the heat exchanger 3, the air flow Ab at the outlet of the heat exchanger 3 has a temperature of 30.0 ° C. and a relative humidity of about 100%.
Will be released into the open air. The dehumidifying rotor 14 is rotationally driven at 16 r.ph in the direction of the arrow in the figure.

【0049】上述の冷却された空気流Baをこの除湿ロ
ータ14の吸着ゾーン16に送入し、湿気を吸着除去し
て温度55℃、絶対湿度4.5g/kg、相対湿度5%の乾
燥空気流HAを得る。除湿ロータ14の操作は実施例5
で述べた通りである。高温空気からの吸着方式による除
湿は極めて困難であるが、この実施例に示す通り熱交換
器で冷却した後に除湿機を使用すれば簡単に効果的な除
湿ができ、冷却された乾燥空気が得られる。
The above-mentioned cooled air flow Ba is sent to the adsorption zone 16 of the dehumidifying rotor 14 to adsorb and remove the moisture to dry the air having a temperature of 55 ° C., an absolute humidity of 4.5 g / kg and a relative humidity of 5%. Get the flow HA. The operation of the dehumidifying rotor 14 is the fifth embodiment.
As described in the above. Dehumidification by adsorption method from high temperature air is extremely difficult, but effective dehumidification can be easily performed by using a dehumidifier after cooling with a heat exchanger as shown in this Example, and cooled dry air can be obtained. To be

【0050】(実施例8)実施例7で得られた空気流H
Aは温度が55.0℃、相対湿度5%で一般の空調用と
しては温度が高過ぎかつ相対湿度が低過ぎる。そこで本
実施例はこの空気流HAを更に熱交換器3bに通して空
調用に適した温度および湿度を有する給気SAを得よう
とするものである。
(Example 8) Air flow H obtained in Example 7
A has a temperature of 55.0 ° C. and a relative humidity of 5%, and the temperature is too high and the relative humidity is too low for general air conditioning. Therefore, in this embodiment, this air flow HA is further passed through the heat exchanger 3b to obtain the supply air SA having a temperature and humidity suitable for air conditioning.

【0051】図20に示す如く実施例7と同様に高温空
気流Bを直交流型熱交換器3aおよび除湿ロータ14に
通して空気流HAを得る。ここまでの操作は実施例7と
全く同一であるので繰返し説明するのを省略する。第2
の直交流型熱交換器3bを除湿ロータ14の後段即ち処
理空気の出口から流出する空気流HAの流路に設置し、
第2の熱交換器3bの一方の流路4の上流側にも上述の
実施例7と同様に噴霧加湿器6bを設ける。この第2の
熱交換器3bの作用は上述の実施例7の熱交換器3と同
一であるので説明を省略する。
As shown in FIG. 20, the high temperature air flow B is passed through the cross flow type heat exchanger 3a and the dehumidification rotor 14 to obtain the air flow HA as in the seventh embodiment. The operation up to this point is exactly the same as that of the seventh embodiment, and thus the repeated description is omitted. Second
The cross-flow heat exchanger 3b is installed in the subsequent stage of the dehumidifying rotor 14, that is, in the flow path of the air flow HA flowing out from the outlet of the treated air.
The spray humidifier 6b is provided on the upstream side of the one flow path 4 of the second heat exchanger 3b as in the case of the above-described seventh embodiment. The operation of the second heat exchanger 3b is the same as that of the heat exchanger 3 of the seventh embodiment described above, and thus the description thereof is omitted.

【0052】他方除湿ロータ14の吸着ゾーン16を通
った乾燥空気流HAを熱交換器3bの水平に設置した小
透孔群5の流路入口5aに送入し、多量の微細な水滴を
含み冷却された空気流Aaと顕熱交換を行わせ、温度2
0.5℃、絶対湿度4.5g/kg、相対湿度30%の快適な
給気SAを得る。給気SAの空気状態を調節する場合は
空気流Aaに噴霧する水の量を加減すれば給気SAの温
度を変化させることができ、一方給気SAの湿度が低過
ぎる場合には除湿ロータの再生温度を下げれば除湿ロー
タ14の除湿性能が下がるため給気Saの湿度を上げる
ことができ、自由に快適な空調を行うことができる。
On the other hand, the dry air flow HA passing through the adsorption zone 16 of the dehumidifying rotor 14 is fed to the flow path inlet 5a of the small through hole group 5 installed horizontally of the heat exchanger 3b, and contains a large amount of fine water droplets. Sensible heat exchange is performed with the cooled air flow Aa, and the temperature becomes 2
A comfortable air supply SA of 0.5 ° C, absolute humidity of 4.5 g / kg and relative humidity of 30% is obtained. When adjusting the air condition of the supply air SA, the temperature of the supply air SA can be changed by adjusting the amount of water sprayed in the air flow Aa, while when the humidity of the supply air SA is too low, the dehumidification rotor If the regeneration temperature is lowered, the dehumidifying performance of the dehumidifying rotor 14 is lowered, so that the humidity of the supply air Sa can be raised and free and comfortable air conditioning can be performed.

【0053】以上の実施例6〜8において噴霧加湿器で
使用する水の代わりに沸点の低い液体、例えばエタノー
ル、酢酸メチル、メタノールなどを空気流Aaに噴霧す
れば更に供給空気流SAの温度を下げることができる。
If a liquid having a low boiling point, such as ethanol, methyl acetate, or methanol, is sprayed onto the air stream Aa instead of the water used in the spray humidifier in the above Examples 6 to 8, the temperature of the supply air stream SA is further increased. Can be lowered.

【0054】さらに、全ての実施例において霧化手段と
して、超音波霧化装置を用いることができる。また、水
噴霧器としてエアミストノズル以外に、空気を用いない
一流体ノズルを用いることができる。なお、以上の実施
例では噴霧加湿器1段で相対湿度を100%にするとと
もに多量の水の微粒子を浮遊させるようにしたが、噴霧
加湿器を複数段設け、初段で相対湿度を100%になる
よう加湿し、次段で多量の水の微粒子を浮遊させるよう
にしてもよい。要は、相対湿度100%の空気中に直径
10μ程度の水の微粒子が多量に浮遊した状態の空気を
熱交換器に通すようにすればよい。
Furthermore, an ultrasonic atomizing device can be used as the atomizing means in all the examples. In addition to the air mist nozzle, a one-fluid nozzle that does not use air can be used as the water sprayer. In the above embodiment, the relative humidity is set to 100% in one stage of the spray humidifier and a large amount of fine particles of water are suspended. However, a plurality of stages of the spray humidifier are provided and the relative humidity is set to 100% in the first stage. It may be humidified so that a large amount of fine particles of water may be suspended in the next stage. The point is that the air in which a large amount of fine particles of water having a diameter of about 10 μ are suspended in the air having a relative humidity of 100% may be passed through the heat exchanger.

【0055】以上の実施例では熱交換器として波板と平
板を交互に積層したものを例示したが、本発明はこれに
限らず複数の流路を有し流路の表面積の大きなものであ
ればどのようなものでもよく、例えばヒートパイプの両
端に多数の熱交換フィンを有する流路を設けたものでも
よい。
In the above embodiments, as the heat exchanger, the one in which the corrugated plates and the flat plates are alternately laminated is illustrated, but the present invention is not limited to this, and the heat exchanger may have a plurality of flow paths and have a large surface area. Any material may be used, and for example, a heat pipe may be provided with flow paths having a large number of heat exchange fins at both ends.

【0056】[0056]

【発明の効果】本発明は上記の如く構成したので、複数
の流体通路を有する熱交換器の一方の流路に相対湿度1
00%の空気中に多量に均一に微細な水滴を浮遊させ霧
状とした気体流Aaを冷却用気体流として通し、他方の
流路に冷却すべき流体Bたとえば空気または水を通し
て、微細な水滴を浮遊させた気体流Aaと流体Bとが隔
壁を介して接し気体流Aaを加熱することにより気体流
Aaの相対湿度を下げ微細な水滴を蒸発させその蒸発熱
により気体流Aaを冷却するとともに隔壁を介して流体
Bを冷却する原理であり、その特徴は水噴霧器6におけ
る水噴霧量を加減することにより流体Bを冷却する度合
いを制御することができる。あるいは気体流Aaと高温
空気流Bとの温度差が大きくなればなる程水噴霧量を増
大すれば流体Aaは高温空気流Bとの温度差に比例して
高温空気流Bの冷却度を強め、ほぼ一定の快適な温度ま
で空気流Bを冷却することができる。更にこの冷却装置
と除湿機とを組合わせることにより乾燥した冷却空気を
容易に得ることができる。
Since the present invention is configured as described above, the relative humidity 1 is provided in one flow path of a heat exchanger having a plurality of fluid passages.
A large amount of fine water droplets are uniformly and uniformly suspended in 00% air, and the atomized gas flow Aa is passed as a cooling gas flow, and the fluid B to be cooled, such as air or water, is passed through the other flow passage to form fine water droplets. The gas flow Aa and the fluid B in which the air is suspended are in contact with each other via a partition wall to heat the gas flow Aa, thereby lowering the relative humidity of the gas flow Aa and evaporating fine water droplets to cool the gas flow Aa by the heat of evaporation. This is the principle of cooling the fluid B via the partition wall, and its feature is that the degree of cooling the fluid B can be controlled by adjusting the amount of water spray in the water sprayer 6. Alternatively, as the temperature difference between the gas flow Aa and the hot air flow B increases, the amount of water spray increases, so that the fluid Aa strengthens the cooling degree of the hot air flow B in proportion to the temperature difference between the hot air flow B and the hot air flow B. , The airflow B can be cooled to a substantially constant comfortable temperature. Furthermore, by combining this cooling device and a dehumidifier, dry cooling air can be easily obtained.

【0057】実施例1で述べた如く直交流型熱交換器3
に噴霧加湿器6を配置し、微細な水滴を大量に浮遊させ
た空気流Aaを冷却用空気流として高温空気流Bを冷却
したときの顕熱交換効率は約97%以上と非常に高い値
を示した。実施例1で使用したのと同一の直交流型熱交
換器を用いて冷却用空気流に噴霧器および加湿器を使用
しない場合においては実施例1で対照例として示したよ
うに顕熱交換効率は63%であり、本発明の流体の冷却
における熱交換の効率は著しく高いことがわかる。
Cross-flow heat exchanger 3 as described in Example 1
The sensible heat exchange efficiency is about 97% or more when the spray humidifier 6 is arranged in the air and the high temperature air flow B is cooled by using the air flow Aa in which a large amount of fine water droplets are suspended as the cooling air flow. showed that. When the same crossflow type heat exchanger as that used in Example 1 was used and a sprayer and a humidifier were not used for the cooling air flow, the sensible heat exchange efficiency was as shown in Comparative Example 1 in Example 1. It is 63%, which shows that the efficiency of heat exchange in cooling the fluid of the present invention is remarkably high.

【0058】尚この熱交換に要する消費エネルギーは送
風機の運転エネルギー約250Wであり、これに対して
流体Bの冷却に要した熱エネルギーはたとえば消費エネ
ルギーの1.5倍から数十倍になり、この値は流体Bの
温度が高い程上昇する。
The energy consumption required for this heat exchange is about 250 W of operating energy of the blower, whereas the heat energy required for cooling the fluid B is, for example, 1.5 times to several tens of times the energy consumption, This value increases as the temperature of the fluid B increases.

【0059】この流体の冷却装置を気体の冷却に使用
し、これに除湿機を加えて実施例6乃至実施例8に示し
たように気体の除湿冷却に使用することができ、空調装
置として用いることができる。この場合運転に要する経
費は上述の如く著しく低廉になるので、たとえば密閉室
内の除湿冷房に使用する場合には室内の空気を繰返し循
環して使用する必要なく絶えず新鮮な外気を取入れて除
湿冷房を続けることができる。従って室内空気中に二酸
化炭素その他の有害ガスの増加するのを抑えることがで
き、快適空間を提供することができる。
This fluid cooling device can be used for cooling a gas, and a dehumidifier can be added to this to be used for dehumidifying and cooling a gas as shown in Examples 6 to 8, and used as an air conditioner. be able to. In this case, the operating cost becomes extremely low as described above. For example, when used for dehumidifying and cooling in a closed room, it is not necessary to repeatedly circulate the indoor air to continuously use fresh outside air to perform dehumidifying and cooling. I can continue. Therefore, an increase in carbon dioxide and other harmful gases in the indoor air can be suppressed, and a comfortable space can be provided.

【0060】更に従来の冷房のようにフロンを使用する
ことがないため環境問題がなく、コンプレッサーを使用
する必要なく排熱の熱風により細菌類またはカビを発生
することがないので衛生的に見ても極めて優れた効果を
有する。
Furthermore, since there is no need to use CFC as in conventional cooling, there is no environmental problem, and there is no need to use a compressor to generate bacteria or mold due to the hot air of the exhaust heat. Also has an extremely excellent effect.

【0061】[0061]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の流体冷却の方法および装置の一例を示
す説明図およびその一部拡大図である。
FIG. 1 is an explanatory view showing an example of a fluid cooling method and apparatus of the present invention and a partially enlarged view thereof.

【図2】直交流型熱交換器の一例を示す斜視図およびそ
の一部拡大図である。
FIG. 2 is a perspective view showing an example of a cross flow heat exchanger and a partially enlarged view thereof.

【図3】本発明の流体の冷却方法および装置の他の例を
示す断面図である。
FIG. 3 is a cross-sectional view showing another example of the fluid cooling method and apparatus of the present invention.

【図4】本発明の流体の冷却方法および装置の更に他の
例を示す説明図である。
FIG. 4 is an explanatory view showing still another example of the fluid cooling method and device of the present invention.

【図5】図4に示す流体の冷却のデータを示す空気線図
である。
5 is a psychrometric chart showing data for cooling the fluid shown in FIG.

【図6】流体の冷却方法および装置の対照例を示す説明
図である。
FIG. 6 is an explanatory diagram showing a comparative example of a method and an apparatus for cooling a fluid.

【図7】図6に示す流体の冷却のデータを示す空気線図
である。
7 is a psychrometric chart showing data for cooling the fluid shown in FIG.

【図8】本発明の流体の冷却方法および装置の更に他の
例を示す説明図である。
FIG. 8 is an explanatory view showing still another example of the fluid cooling method and apparatus of the present invention.

【図9】図8に示す流体の冷却データを示す空気線図で
ある。
9 is a psychrometric chart showing cooling data for the fluid shown in FIG. 8. FIG.

【図10】対照例の熱交換のデータを示す説明図であ
る。
FIG. 10 is an explanatory diagram showing heat exchange data of a control example.

【図11】対照例の熱交換のデータを示す空気線図であ
る。
FIG. 11 is a psychrometric chart showing heat exchange data of a control example.

【図12】メタノール水溶液を用いた冷却のデータを示
す説明図である。
FIG. 12 is an explanatory diagram showing data of cooling using an aqueous methanol solution.

【図13】メタノール水溶液を用いた冷却のデータを示
す空気線図である。
FIG. 13 is a psychrometric chart showing data of cooling using an aqueous methanol solution.

【図14】本発明の流体の冷却方法および装置の更に他
の例を示す説明図である。
FIG. 14 is an explanatory diagram showing still another example of the fluid cooling method and apparatus of the present invention.

【図15】対向流型熱交換器の斜視図である。FIG. 15 is a perspective view of a counterflow heat exchanger.

【図16】対向流と交差流とを組合わせた熱交換器の例
を示す斜視図である。
FIG. 16 is a perspective view showing an example of a heat exchanger in which a counter flow and a cross flow are combined.

【図17】直交流型熱交換器の他の例を示す斜視図であ
る。
FIG. 17 is a perspective view showing another example of a cross-flow heat exchanger.

【図18】本発明の気体の除湿冷却の方法および装置の
他の例を示す説明図である。
FIG. 18 is an explanatory view showing another example of the method and apparatus for dehumidifying and cooling gas according to the present invention.

【図19】本発明の気体の除湿冷却の方法および装置の
他の例を示す説明図である。
FIG. 19 is an explanatory view showing another example of the method and apparatus for dehumidifying and cooling gas according to the present invention.

【図20】本発明の気体の除湿冷却の方法および装置の
更に他の例を示す説明図である。
FIG. 20 is an explanatory view showing still another example of the method and apparatus for dehumidifying and cooling gas according to the present invention.

【符号の説明】[Explanation of symbols]

1 平板 2 波板 3 直交流型熱交換器 6 噴霧器 7 加湿器 14 除湿ロータ Aa 過飽和気体流 B 冷却すべき流体 D 水槽 1 flat plate 2 corrugated plate 3 cross flow type heat exchanger 6 atomizer 7 humidifier 14 dehumidification rotor Aa supersaturated gas flow B fluid to be cooled D water tank

Claims (26)

【特許請求の範囲】[Claims] 【請求項1】気体流Aを揮発性液体の蒸気を飽和状態で
含み且つ霧状の微細な液滴Mを大量に浮遊させた気体流
Aaとなし、複数の流路を有する熱交換器の一方の流路
に該気体流Aaを通し他方の流路に冷却すべき流体Bを
通し、気体流Aaが熱交換器の一方の流路を通過する間
に気体流Aaに流体Bの顕熱を与え気体流Aaの温度を
上げ、気体流Aaに浮遊する大量の微細な液滴Mを気化
させその気化熱によって気体流Aaの温度を連続的に下
げ、気体流Aaと流体Bとの顕熱交換により流体Bを連
続的に冷却することを特徴とする流体の冷却方法。
1. A heat exchanger having a plurality of flow paths, wherein the gas flow A is a gas flow Aa containing a vapor of a volatile liquid in a saturated state and a large amount of atomized fine droplets M are suspended. The sensible heat of the fluid B is added to the gas flow Aa while passing the gas flow Aa through one flow path and the fluid B to be cooled through the other flow path, and passing the gas flow Aa through one flow path of the heat exchanger. To raise the temperature of the gas flow Aa, vaporize a large amount of fine droplets M suspended in the gas flow Aa, and continuously lower the temperature of the gas flow Aa by the heat of vaporization of the droplets Aa and the fluid B. A method of cooling a fluid, characterized in that the fluid B is continuously cooled by heat exchange.
【請求項2】気体流Aaの温度と流体Bの温度との差の
変化に応じて気体流Aaにおける微細な液滴Mの浮遊量
を変化させるようにした請求項1記載の流体の冷却方
法。
2. The method of cooling a fluid according to claim 1, wherein the floating amount of the fine droplets M in the gas flow Aa is changed according to the change in the difference between the temperature of the gas flow Aa and the temperature of the fluid B. .
【請求項3】気体流Aaの温度と流体Bの温度との差の
変化に応じて微細な液滴Mが浮遊する気体流Aaの流速
を変化させるようにした請求項1記載の流体の冷却方
法。
3. The cooling of the fluid according to claim 1, wherein the flow velocity of the gas flow Aa in which the fine droplets M are suspended is changed according to the change in the difference between the temperature of the gas flow Aa and the temperature of the fluid B. Method.
【請求項4】気体流Aを揮発性液体の蒸気で飽和した状
態の気体流となし、さらに該気体流に揮発性液体の霧を
加えて微細な液滴Mを大量に浮遊させた気体流Aaとな
す請求項1乃至請求項3記載の流体の冷却方法。
4. A gas flow in which a gas flow A is a gas flow saturated with a vapor of a volatile liquid, and a mist of the volatile liquid is added to the gas flow to suspend a large amount of fine droplets M. The fluid cooling method according to claim 1, wherein the fluid cooling method is Aa.
【請求項5】熱交換器の一方の通路の出口から排出され
た揮発性液体蒸気を含む気体流Abを熱交換器の一方の
通路の入口側に帰し、これに揮発性液体の霧を加えて微
細な液滴Mを浮遊させた気体流Aaとし、循環しながら
使用する請求項1乃至請求項4記載の流体の冷却方法。
5. The gas flow Ab containing the volatile liquid vapor discharged from the outlet of one passage of the heat exchanger is returned to the inlet side of the one passage of the heat exchanger, and a mist of the volatile liquid is added thereto. 5. The method of cooling a fluid according to claim 1, wherein the fine liquid droplets M are suspended in a gas flow Aa and are used while being circulated.
【請求項6】揮発性液体が水、揮発性の有機質液体また
は揮発性の有機質液体と水との混合液体である請求項1
乃至請求項5記載の流体の冷却方法。
6. The volatile liquid is water, a volatile organic liquid or a mixed liquid of a volatile organic liquid and water.
To the fluid cooling method according to claim 5.
【請求項7】揮発性液体を気液混合型ノズルによって噴
霧するようにした請求項1乃至請求項6記載の流体の冷
却方法。
7. The method for cooling a fluid according to claim 1, wherein the volatile liquid is sprayed by a gas-liquid mixing type nozzle.
【請求項8】噴霧粒滴の径を280μm以下とした請求
項1乃至請求項7記載の流体の冷却方法。
8. The method for cooling a fluid according to claim 1, wherein the diameter of the sprayed droplets is 280 μm or less.
【請求項9】気体流Aに揮発性液体の霧を加えて飽和状
態にしかつ霧状の微細な液滴Mを大量に浮遊させた気体
流Aaとなし、複数の流路を有する熱交換器の一方の流
路に該気体流Aaを通し他方の流路にあらかじめ除湿機
によって除湿された乾燥気体流Bを通し、気体流Aaが
熱交換器の一方の流路を通過する間に気体流Aaに気体
流Bの顕熱を与え気体流Aaの温度を上げ、該気体流A
aに浮遊する微細な液滴Mを気化しその気化熱によって
該気体流Aaの温度を連続的に下げ、気体流Aaと気体
流Bとの熱交換により気体流Bを冷却し、冷却した乾燥
気体を連続的に供給することを特徴とする気体の除湿冷
却方法。
9. A heat exchanger having a plurality of flow paths, which is a gas flow Aa in which a mist of a volatile liquid is added to a gas flow A to make it saturated and in which a large amount of fine mist-like droplets M are suspended. The gas flow Aa is passed through one of the flow paths, and the dry gas flow B that has been dehumidified by a dehumidifier is passed through the other flow path, while the gas flow Aa passes through one flow path of the heat exchanger. A sensible heat of the gas flow B is applied to Aa to raise the temperature of the gas flow Aa,
The fine droplets M floating in a are vaporized, and the temperature of the gas flow Aa is continuously lowered by the heat of vaporization thereof, and the gas flow B is cooled by heat exchange between the gas flow Aa and the gas flow B, and the dried A method for dehumidifying and cooling a gas, which comprises continuously supplying the gas.
【請求項10】気体流Aに揮発性液体の霧を加えて飽和
状態とし且つ霧状の微細な液滴Mを大量に浮遊させた気
体流Aaとなし、複数の流路を有する熱交換器の一方の
流路に該気体流Aaを通し他方の流路に気体流Bを通
し、該気体流Aaが熱交換器の流路を通過する間に気体
流Aaに気体流Bの顕熱を与え該気体流Aaの温度を上
げ、該気体流Aaに浮遊する微細な液滴Mを気化しその
気化熱によってその温度を連続的に下げ、気体流Aaと
気体流Bとの熱交換により気体流Bを冷却し、その後冷
却された気体流Baを除湿機に通して除湿して冷却した
乾燥気体を連続的に供給することを特徴とする気体の除
湿冷却方法。
10. A heat exchanger having a plurality of flow paths, which is a gas flow Aa in which a mist of a volatile liquid is added to the gas flow A to make it saturated and a large amount of fine mist-like droplets M are suspended. The gas flow Aa is passed through one flow path and the gas flow B is passed through the other flow path, and sensible heat of the gas flow B is applied to the gas flow Aa while the gas flow Aa passes through the flow path of the heat exchanger. The temperature of the gas flow Aa is raised, the fine liquid droplets M suspended in the gas flow Aa are vaporized, and the temperature is continuously lowered by the heat of vaporization thereof, and the gas is exchanged by the heat exchange between the gas flow Aa and the gas flow B. A method for dehumidifying and cooling gas, characterized in that the stream B is cooled, and then the cooled gas stream Ba is passed through a dehumidifier to dehumidify and continuously supply the cooled dry gas.
【請求項11】複数の流路を有する熱交換器2台と除湿
手段を使用し、2台の熱交換器に通す気体流Aに揮発性
液体の霧を加えて飽和状態で且つ霧状の微細な液滴Mを
大量に浮遊させた気体流Aaとなし、2台の熱交換器の
夫々の一方の流路に該気体流Aaを送入し、第1の熱交
換器の他方の流路、除湿手段、第2の熱交換器の他方の
流路に気体流Bを順次通し、該気体流Aaが第1,第2
の熱交換器の第1の流路を通過する間に該気体流Aaに
気体流Bおよび除湿手段で除湿した後の高温乾燥気体流
HAの顕熱を与え該気体流Aaの温度を上げ、該気体流
Aaに浮遊する微細な液滴Mを高温気体流BおよびHA
の顕熱により気化しその気化熱によって該気体流Aaの
温度を連続的に下げるようにし、低温度の乾燥気体SA
を連続的に供給することを特徴とする気体の除湿冷却方
法。
11. A heat exchanger having two or more heat exchangers having a plurality of flow paths and a dehumidifying means are used, and a mist of a volatile liquid is added to a gas flow A passing through the two heat exchangers to form a saturated state and a mist state. A gas flow Aa in which a large amount of fine droplets M are suspended is formed, and the gas flow Aa is fed into one flow path of each of the two heat exchangers, and the other flow of the first heat exchanger is supplied. The gas flow B is sequentially passed through the passage, the dehumidifying means, and the other flow path of the second heat exchanger, and the gas flow Aa is
While passing through the first flow path of the heat exchanger, the sensible heat of the gas stream B and the high temperature dry gas stream HA after dehumidifying by the dehumidifying means is given to the gas stream Aa to raise the temperature of the gas stream Aa, Fine droplets M suspended in the gas flow Aa are converted into high temperature gas flows B and HA.
Is vaporized by the sensible heat of the dry gas SA at a low temperature to continuously lower the temperature of the gas flow Aa.
A method for dehumidifying and cooling a gas, characterized in that the gas is continuously supplied.
【請求項12】揮発性液体の霧化手段によって気体流A
に揮発性液体の霧を加え、飽和状態で且つ霧状の微細な
液滴Mを大量に浮遊させた気体流Aaとなし、複数の流
路を有する熱交換器の一方の流路に該気体流Aaを通し
他方の流路に冷却すべき流体Bを通し、気体流Aaが熱
交換器の一方の流路を通過する間に気体流Aaが流体B
の顕熱を奪い、気体流Aaに浮遊する大量の微細な液滴
Mが気化しその気化熱によって気体流Aaの温度を連続
的に下げることにより流体Bを連続的に冷却するように
したことを特徴とする流体の冷却装置。
12. A gas flow A by means of atomizing a volatile liquid.
A mist of a volatile liquid is added to form a gas flow Aa in which a large amount of fine mist-like droplets M in a saturated state are suspended, and the gas is supplied to one flow path of a heat exchanger having a plurality of flow paths. The fluid B to be cooled is passed through the flow passage Aa and the other flow passage, and while the gas flow Aa passes through one flow passage of the heat exchanger, the gas flow Aa is changed to the fluid B.
The sensible heat of the fluid B is taken away, and a large amount of fine droplets M floating in the gas flow Aa are vaporized, and the heat of vaporization continuously lowers the temperature of the gas flow Aa to continuously cool the fluid B. A fluid cooling device characterized by:
【請求項13】揮発性液体の霧化手段の上流側に揮発性
液体蒸気を導入する手段を設けた請求項12記載の流体
の冷却装置。
13. A fluid cooling apparatus according to claim 12, further comprising means for introducing volatile liquid vapor upstream of the volatile liquid atomizing means.
【請求項14】熱交換器の一方の出口から排出された気
体流Abを熱交換器の一方の入口側に導くダクトおよび
送風機を設け冷却用気体流Aaを循環するようにした請
求項12記載の流体の冷却装置。
14. The cooling gas flow Aa is circulated by providing a duct and a blower for guiding the gas flow Ab discharged from one outlet of the heat exchanger to one inlet side of the heat exchanger. Fluid cooling system.
【請求項15】熱交換器が平板と波板とを交互に積み重
ねたハニカム積層体よりなる直交流型、斜向流型または
対向流型の熱交換器または対向流と交差流とを組合わせ
た熱交換器である請求項12乃至請求項14記載の流体
の冷却装置。
15. A cross flow type, diagonal flow type or counter flow type heat exchanger comprising a honeycomb laminate in which flat plates and corrugated plates are alternately stacked, or a combination of counter flow and cross flow. 15. The fluid cooling device according to claim 12, which is a heat exchanger.
【請求項16】熱交換器が多数のスペーサを介してシー
トを積み重ねてなる直交流型、斜向流型または対向流型
の熱交換器または対向流と交差流とを組合わせた熱交換
器である請求項12乃至請求項14記載の流体の冷却装
置。
16. A cross-flow type, a diagonal flow type or a counter-flow type heat exchanger in which sheets are stacked through a large number of spacers, or a heat exchanger in which a counter flow and a cross flow are combined. 15. The cooling device for fluid according to claim 12, wherein
【請求項17】熱交換素子の表面が親水性をもった請求
項12乃至請求項16記載の流体の冷却装置。
17. The fluid cooling device according to claim 12, wherein the surface of the heat exchange element has hydrophilicity.
【請求項18】熱交換器の流路壁面に微粒子を固着して
なる請求項15または請求項16記載の流体の冷却装
置。
18. The fluid cooling device according to claim 15 or 16, wherein fine particles are fixed to the wall surface of the flow path of the heat exchanger.
【請求項19】微粒子が吸着剤の微粒子である請求項1
8記載の流体の冷却装置。
19. The fine particles are fine particles of an adsorbent.
8. The cooling device for a fluid according to item 8.
【請求項20】揮発性液体の霧化手段によって気体流A
に揮発性液体の霧を加え、飽和状態で且つ霧状の微細な
液滴Mを大量に浮遊させた気体流Aaとなし、複数の流
路を有する熱交換器の一方の流路に該気体流Aaを通し
他方の流路に冷却すべき高温の気体流Bを通し、気体流
Aaが熱交換器の一方の流路を通過する間に気体流Aa
が気体流Bの顕熱を奪い、気体流Aaに浮遊する大量の
微細な液滴Mが気化しその気化熱によって気体流Aaの
温度を連続的に下げることにより高温気体流Bを連続的
に冷却するようにし、前記高温気体流の熱交換器より上
流側に除湿手段を設けたことを特徴とする気体の除湿冷
却装置。
20. A gas flow A by means of atomizing a volatile liquid.
A mist of a volatile liquid is added to form a gas flow Aa in which a large amount of fine mist-like droplets M in a saturated state are suspended, and the gas is supplied to one flow path of a heat exchanger having a plurality of flow paths. A high temperature gas flow B to be cooled is passed through the flow passage Aa and the other flow passage, and the gas flow Aa is passed while the gas flow Aa passes through one flow passage of the heat exchanger.
Removes the sensible heat of the gas flow B, vaporizes a large amount of fine droplets M floating in the gas flow Aa, and the heat of vaporization continuously lowers the temperature of the gas flow Aa to continuously cool the high temperature gas flow B. A dehumidifying and cooling device for gas, characterized in that a dehumidifying means is provided upstream of the heat exchanger for the high temperature gas flow so as to be cooled.
【請求項21】揮発性液体の霧化手段によって気体流A
に揮発性液体の霧を加え、飽和状態で且つ霧状の微細な
液滴Mを大量に浮遊させた気体流Aaとなし、複数の流
路を有する熱交換器の一方の流路に該気体流Aaを通し
他方の流路に冷却すべき高温の気体流Bを通し、気体流
Aaが熱交換器の一方の流路を通過する間に気体流Aa
が高温気体流Bの顕熱を奪い、気体流Aaに浮遊する大
量の微細な液滴Mが気化しその気化熱によって気体流A
aの温度を連続的に下げることにより高温気体流Bを連
続的に冷却するようにし、前記高温気体流の熱交換器よ
り下流側に除湿手段を設けたことを特徴とする気体の除
湿冷却装置。
21. A gas flow A by means of atomizing a volatile liquid.
A mist of a volatile liquid is added to form a gas flow Aa in which a large amount of fine mist-like droplets M in a saturated state are suspended, and the gas is supplied to one flow path of a heat exchanger having a plurality of flow paths. A high temperature gas flow B to be cooled is passed through the flow passage Aa and the other flow passage, and the gas flow Aa is passed while the gas flow Aa passes through one flow passage of the heat exchanger.
Deprives the sensible heat of the high temperature gas flow B, and a large amount of fine droplets M floating in the gas flow Aa are vaporized and the heat of vaporization causes the gas flow A to flow.
A device for dehumidifying and cooling gas, characterized in that the temperature of a is continuously lowered to continuously cool the hot gas flow B, and a dehumidifying means is provided downstream of the heat exchanger for the hot gas flow. .
【請求項22】揮発性液体の霧化手段によって気体流A
に揮発性液体の霧を加え、飽和状態で且つ霧状の微細な
液滴Mを大量に浮遊させた気体流Aaとなし、複数の流
路を有する熱交換器の一方の流路に該気体流Aaを通し
他方の流路に冷却すべき高温の気体流Bを通し、気体流
Aaが熱交換器の一方の流路を通過する間に気体流Aa
が高温気体流Bの顕熱を奪い、気体流Aaに浮遊する大
量の微細な液滴Mが気化しその気化熱によって気体流A
aの温度を連続的に下げることにより高温気体流Bを連
続的に冷却する気体の冷却手段を2つ設け、前記両冷却
手段の間における被冷却気体流Bの流れに除湿手段を設
けたことを特徴とする気体の除湿冷却装置。
22. A gas flow A by means of atomizing a volatile liquid.
A mist of a volatile liquid is added to form a gas flow Aa in which a large amount of fine mist-like droplets M in a saturated state are suspended, and the gas is supplied to one flow path of a heat exchanger having a plurality of flow paths. A high temperature gas flow B to be cooled is passed through the flow passage Aa and the other flow passage, and the gas flow Aa is passed while the gas flow Aa passes through one flow passage of the heat exchanger.
Deprives the sensible heat of the high temperature gas flow B, and a large amount of fine droplets M floating in the gas flow Aa are vaporized and the heat of vaporization causes the gas flow A to flow.
Two gas cooling means for continuously cooling the high temperature gas flow B by continuously lowering the temperature of a are provided, and a dehumidifying means is provided in the flow of the cooled gas flow B between the both cooling means. A gas dehumidifying and cooling device.
【請求項23】揮発性液体噴霧器の上流側に揮発性液体
蒸気の導入手段を設けた請求項20乃至請求項22記載
の気体の除湿冷却装置。
23. The dehumidifying and cooling device for a gas according to claim 20, wherein a means for introducing the volatile liquid vapor is provided on the upstream side of the volatile liquid atomizer.
【請求項24】熱交換器の一方の出口から排出された気
体流Abを熱交換器の一方の入口側に導くダクトおよび
送風機を設け冷却用気体流Aaを循環するようにした請
求項20乃至請求項22記載の気体の除湿冷却装置。
24. A cooling gas flow Aa is circulated by providing a duct and a blower for guiding the gas flow Ab discharged from one outlet of the heat exchanger to one inlet side of the heat exchanger. The gas dehumidifying and cooling device according to claim 22.
【請求項25】熱交換器が平板と波板とを交互に積み重
ねたハニカム積層体よりなる直交流型、斜向流型または
対向流型の熱交換器または対向流と交差流とを組合わせ
た熱交換器である請求項20乃至請求項24記載の気体
の除湿冷却装置。
25. A heat exchanger of a cross flow type, a diagonal flow type or a counter flow type comprising a honeycomb laminated body in which flat plates and corrugated plates are alternately stacked, or a combination of a counter flow and a cross flow. 25. The gas dehumidifying and cooling device according to claim 20, which is a heat exchanger.
【請求項26】熱交換器が多数のスペーサを介してシー
トを積み重ねてなる直交流型、斜向流型また対向流型の
熱交換器または対向流と交差流とを組合わせた熱交換器
である請求項20乃至請求項24記載の気体の除湿冷却
装置。
26. A cross-flow type, diagonal flow type or counter-flow type heat exchanger in which sheets are stacked through a large number of spacers, or a heat exchanger in which a counter flow and a cross flow are combined. The dehumidifying and cooling device for gas according to any one of claims 20 to 24.
JP31137696A 1995-11-07 1996-11-06 Method and apparatus for fluid cooling and gas dehumidification cooling Expired - Fee Related JP3540107B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31137696A JP3540107B2 (en) 1995-11-07 1996-11-06 Method and apparatus for fluid cooling and gas dehumidification cooling

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP32348695 1995-11-07
JP7-323486 1995-11-07
JP8-71183 1996-03-01
JP7118396 1996-03-01
JP31137696A JP3540107B2 (en) 1995-11-07 1996-11-06 Method and apparatus for fluid cooling and gas dehumidification cooling

Publications (2)

Publication Number Publication Date
JPH09292187A true JPH09292187A (en) 1997-11-11
JP3540107B2 JP3540107B2 (en) 2004-07-07

Family

ID=27300580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31137696A Expired - Fee Related JP3540107B2 (en) 1995-11-07 1996-11-06 Method and apparatus for fluid cooling and gas dehumidification cooling

Country Status (1)

Country Link
JP (1) JP3540107B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11128649A (en) * 1997-10-15 1999-05-18 Seibu Giken Co Ltd Gas adsorber
JP2003042485A (en) * 2001-07-31 2003-02-13 Seibu Giken Co Ltd Dehumidified air conditioner
JP2003202174A (en) * 2002-01-09 2003-07-18 Tadahiro Omi Air cooling device
JP2003202191A (en) * 2002-01-09 2003-07-18 Tadahiro Omi Air cooling method
JP2006511786A (en) * 2002-10-31 2006-04-06 オキシセル・ホールディング・ビーブイ Heat exchanger and manufacturing method thereof
JP2019190780A (en) * 2018-04-27 2019-10-31 Mdi株式会社 Air conditioner and management server of air conditioner
WO2020158561A1 (en) * 2019-01-30 2020-08-06 ブラザー工業株式会社 Air conditioner
JP2021076369A (en) * 2019-01-30 2021-05-20 ブラザー工業株式会社 air conditioner

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54181052U (en) * 1978-06-12 1979-12-21
JPS553289U (en) * 1978-06-22 1980-01-10
JPS56110883A (en) * 1980-02-06 1981-09-02 Kawamoto Kogyo Kk Cooling method
JPS58194368U (en) * 1982-06-21 1983-12-24 横田 實 Heat exchange device using humid air
JPS62107288U (en) * 1985-12-23 1987-07-09
JPH0328694A (en) * 1989-06-26 1991-02-06 Mitsui Petrochem Ind Ltd Regulating method for temperature of cooling tower
JPH04148196A (en) * 1990-10-09 1992-05-21 Nippon Parkerizing Co Ltd Surface treating method of heat exchanger made of aluminum
JPH06221618A (en) * 1993-01-21 1994-08-12 Shimizu Corp Dehumidifying type air conditioning device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54181052U (en) * 1978-06-12 1979-12-21
JPS553289U (en) * 1978-06-22 1980-01-10
JPS56110883A (en) * 1980-02-06 1981-09-02 Kawamoto Kogyo Kk Cooling method
JPS58194368U (en) * 1982-06-21 1983-12-24 横田 實 Heat exchange device using humid air
JPS62107288U (en) * 1985-12-23 1987-07-09
JPH0328694A (en) * 1989-06-26 1991-02-06 Mitsui Petrochem Ind Ltd Regulating method for temperature of cooling tower
JPH04148196A (en) * 1990-10-09 1992-05-21 Nippon Parkerizing Co Ltd Surface treating method of heat exchanger made of aluminum
JPH06221618A (en) * 1993-01-21 1994-08-12 Shimizu Corp Dehumidifying type air conditioning device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11128649A (en) * 1997-10-15 1999-05-18 Seibu Giken Co Ltd Gas adsorber
JP2003042485A (en) * 2001-07-31 2003-02-13 Seibu Giken Co Ltd Dehumidified air conditioner
JP2003202174A (en) * 2002-01-09 2003-07-18 Tadahiro Omi Air cooling device
JP2003202191A (en) * 2002-01-09 2003-07-18 Tadahiro Omi Air cooling method
KR100963343B1 (en) * 2002-01-09 2010-06-14 오오미타다히로 Air cooling apparatus and air cooling method
JP2006511786A (en) * 2002-10-31 2006-04-06 オキシセル・ホールディング・ビーブイ Heat exchanger and manufacturing method thereof
JP2019190780A (en) * 2018-04-27 2019-10-31 Mdi株式会社 Air conditioner and management server of air conditioner
WO2020158561A1 (en) * 2019-01-30 2020-08-06 ブラザー工業株式会社 Air conditioner
JP2020122614A (en) * 2019-01-30 2020-08-13 ブラザー工業株式会社 air conditioner
JP2021076369A (en) * 2019-01-30 2021-05-20 ブラザー工業株式会社 air conditioner

Also Published As

Publication number Publication date
JP3540107B2 (en) 2004-07-07

Similar Documents

Publication Publication Date Title
US5775121A (en) Method and device for refrigerating a fluid
KR102396679B1 (en) An air conditioning method using a staged process using a liquid desiccant
JP3594463B2 (en) Gas adsorption device
US6497107B2 (en) Method and apparatus of indirect-evaporation cooling
US8302425B2 (en) Regenerative adsorption system with a spray nozzle for producing adsorbate vapor and condensing desorbed vapor
JP2014503782A (en) Method and apparatus for regulating air
KR100461934B1 (en) Fluid cooling and gas dehumidification cooling method and apparatus
JPH0684822B2 (en) Indirect air conditioner
CN109475807B (en) Device for continuously absorbing water and air cooler
JP3635295B2 (en) Air conditioner
JP2009115335A (en) Air conditioner and air-conditioning method
JP3540107B2 (en) Method and apparatus for fluid cooling and gas dehumidification cooling
JP2002147794A (en) Dehumidifying air conditioner
JPH10176842A (en) Air conditioner
JP2011106717A (en) Air conditioning device
JP3411958B2 (en) Air conditioner
JP2012127649A (en) Air conditioning device
WO2004081462A1 (en) Air conditioning method using liquid desiccant
JP2008256255A (en) Air conditioning device
JPH10311691A (en) Gas cooling method and apparatus
JP2004190907A (en) Desiccant air-conditioner with multistage indirect heat exchanging device
JP2002333161A (en) Dehumidifying air conditioning system
JPS61164621A (en) Apparatus for removing moisture or condensible gas
TW202314167A (en) Air treatment system
JP2004116856A (en) Multistage indirect heat exchanger and desiccant air conditioner provided therewith

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040203

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040316

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040324

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110402

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110402

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120402

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees