JP3635295B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP3635295B2
JP3635295B2 JP34709897A JP34709897A JP3635295B2 JP 3635295 B2 JP3635295 B2 JP 3635295B2 JP 34709897 A JP34709897 A JP 34709897A JP 34709897 A JP34709897 A JP 34709897A JP 3635295 B2 JP3635295 B2 JP 3635295B2
Authority
JP
Japan
Prior art keywords
air
heat exchanger
passage
sensible heat
passed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34709897A
Other languages
Japanese (ja)
Other versions
JPH11173618A (en
Inventor
隆二 倉光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seibu Giken Co Ltd
Original Assignee
Seibu Giken Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seibu Giken Co Ltd filed Critical Seibu Giken Co Ltd
Priority to JP34709897A priority Critical patent/JP3635295B2/en
Publication of JPH11173618A publication Critical patent/JPH11173618A/en
Application granted granted Critical
Publication of JP3635295B2 publication Critical patent/JP3635295B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1423Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant with a moving bed of solid desiccants, e.g. a rotary wheel supporting solid desiccants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1032Desiccant wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1056Rotary wheel comprising a reheater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1068Rotary wheel comprising one rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1088Rotary wheel comprising three flow rotor segments

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Central Air Conditioning (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、家庭や事務所などの空気調和あるいは食品等の冷蔵に用いられる空気調和装置に関するものであり、特に水の気化熱によって冷却を行う空気調和装置に関する。
【0002】
【従来の技術】
従来より空気調和装置には圧縮式の冷凍機が広く用いられており、その主な冷媒のフロンガスが大気のオゾン層を破壊するということで、代替フロンが用いられるようになった。しかし、その代替フロンも大気の温室効果を高めるという問題点が指摘され、冷媒を用いない除湿冷房装置等の冷房装置が注目されている。
【0003】
しかしながら、設備の大きさやエネルギー効率の見地からなかなか実用的なものが開発されていない。この中で、例えば国際公開番号WO97/17586に見られるような熱交換器の中で霧状の水の微粒子を気化させるようにしたものは簡単な装置で消費エネルギーも少なく、また大きな冷却効果が得られるものである。
【0004】
【発明が解決しようとする課題】
しかしながら、上記の国際公開公報に開示されたものは空気の供給温度がほぼ20℃程度であり、供給空気量を多くすれば十分に冷房に適するものであるが、冷蔵には不適である。
【0005】
本発明は上記の問題点を解決するものであり、上記国際公開公報に見られるような熱交換器の中で霧状の水の微粒子を気化させるようにしたものに除湿機能を付加したものを、さらに供給空気の温度が低くなるようにし冷蔵にも応用できる空気調和装置を提供しようとするものである。
【0006】
【課題を解決するための手段】
本発明は、吸着ゾーンと再生ゾーンの設けられた吸着式の除湿手段と、複数の気体流の間で熱交換を行う第1、第2及び第3の熱交換器を備え、さらに第1及び第2の熱交換器それぞれの一方の通路には気体中に霧状の揮発性液体の微細な液滴が浮遊した状態となるまで噴霧して霧状気体流とした空気を流すようにし、第1の熱交換器の他方の通路を通って冷却された空気を除湿手段の吸着ゾーンに通し、吸着ゾーンを出た乾燥空気を第2及び第3の熱交換器それぞれの他方の通路に通すとともに、第3の熱交換器の他方の通路を出た空気を第2の熱交換器の一方の通路に通し、第2の熱交換器の一方の通路を出た空気を第3の熱交換器の一方の通路に通すようにした。
【0007】
【発明の実施の形態】
本発明の請求項1に記載の発明は、湿気の吸着剤を担持した除湿ロータおよびヒータを有し吸着ゾーンと再生ゾーンの設けられた除湿手段と、複数の気体流の間で熱交換を行う第1、第2及び第3の熱交換器を備え、さらに第1及び第2の熱交換器それぞれの一方の通路には気体中に霧状の揮発性液体の微細な液滴が浮遊した状態となるまで噴霧して霧状気体流とした空気を流すようにし、被冷却空気を第1の熱交換器の他方の通路に通し、そこを出た空気を除湿手段の吸着ゾーンに通し、吸着ゾーンを出た空気を第2及び第3の熱交換器それぞれの他方の通路に通すとともに、第3の熱交換器の他方の通路を出た空気を第2の熱交換器の一方の通路に通し、第2の熱交換器の一方の通路を出た空気を第3の熱交換器の一方の通路に通すようにしたものであり、第1の熱交換器によって冷却された空気が除湿手段によって吸着除湿されるため、除湿効果が高く除湿された乾燥空気に噴霧することによって気化冷却を行うため、供給空気の温度が低くなるという作用を有する。
【0008】
【実施例】
図1は本発明の実施例1に於けるフローパターン図である。図1に於て、1は除湿手段であり、2,3,4はそれぞれ第1,第2,第3の顕熱交換器である。そして第1の顕熱交換器2および第2の顕熱交換器3はそれぞれ噴霧ノズル5,6を有しており、上記各部の詳細は以下説明する。
【0009】
図2は除湿手段1の要部断面斜視図である。7は除湿ロータであり、例えばセラミックシートをコルゲート状に形成し平面シートと積層巻してハニカム状にしたものにシリカゲル等の吸湿剤を担持させたものである。
【0010】
8はケーシングであり、この中に除湿ロータ7が回転自在に収納されており、ベルト9を介しモータ10によって回転駆動される。また、除湿ロータ7の流通路を1:0.5:2.5の面積比で分割するよう仕切り11がケーシング8に設けられている。そして面積比1の部分が再生ゾーン12であり、面積比0.5の部分がパージゾーン13であり、面積比2.5の部分が吸着ゾーン14である。
【0011】
15はヒータで、その内部を通過する空気を例えば80℃まで加熱するものであり、ヒータ15によって加熱された空気は再生ゾーン12へ送られるようにダクト(図示せず)によって連通されている。
【0012】
図3は第1,第2,第3の顕熱交換器2,3,4の斜視図である。顕熱交換器2,3,4は例えば直交流型熱交換器であり、アルミニウムその他の金属のシ−トまたはポリエステルその他の合成樹脂のシ−トよりなる隔壁16と波長3.0mm、波高1.6mmの波板17とを交互に且つ波板17の波の方向が一段毎に直交するように積重ね互に接着したものである。これによって顕熱交換器2,3,4には互いに直交する方向に小透孔群18および小透孔群19が形成される。
【0013】
図4は第1,第2の顕熱交換器2,3および噴霧ノズル5,6よりなる冷却手段の斜視図である。20はチャンバー21の流入口であり、チャンバー21の下端は熱交換器2,3の垂直の流路の入口と連通している。そして、熱交換器2,3の垂直の流路の出口は大気に開放されている。
【0014】
チャンバー21の中には噴霧ノズル5,6が取り付けられており、チャンバー21内の空気の相対湿度を100%にするとともに、さらに多量の微細な水滴が浮遊した状態即ち霧状とする。噴霧ノズル5,6としては例えば空気噴霧ノズルすなわち、圧縮空気で水を微細粒子にして噴霧するものを用いており、水ポンプおよび空気コンプレッサ(図示せず)が連通されている。
【0015】
22は第1,第2の顕熱交換器2,3の水平の通路の流入側チャンバーで、導入管23と連通されている。24は顕熱交換器2,3の水平の通路の流出側チャンバーで、導出管25と連通されている。26は顕熱交換器2,3の垂直の通路の流出側チャンバーで、導出管27と連通されている。
【0016】
図1に戻って28はブロアであり、その吸い込み側は大気に開放され吐き出し側は第1の顕熱交換器2の垂直の通路及び水平の通路に連通されている。
【0017】
第1の顕熱交換器2の水平の通路の出口は除湿手段1の吸着ゾーン14に連通され、吸着ゾーン14の出口は第2の顕熱交換器3の水平の通路および第3の顕熱交換器4の水平の通路と連通されている。
【0018】
第2の顕熱交換器3の水平の通路の出口は加湿器29を通って室内に開放されている。また、第3の顕熱交換器4の垂直の通路の出口は第2の顕熱交換器3のチャンバー21の流入口20に連通されている。そして第2の顕熱交換器3の垂直の通路の流出側チャンバー26の導出管27は、第3の顕熱交換器4の垂直の通路の入口に連通され、第3の顕熱交換器4の垂直の通路の出口は大気に開放されている。
【0019】
30はブロアであり、その吐出側は大気に開放され、入口は除湿手段1の再生ゾーン12の出口に連通されている。またヒータ15はパージゾーン13から再生ゾーン12に至る通路に設けられている。
【0020】
以上の説明の本発明の実施例1の空気調和装置は次の動作を行う。先ず、電源の投入に伴ってブロア28、30およびモータ10が起動する。これによって、外気はブロア28によって第1の顕熱交換器2の垂直および水平の通路に供給される。また噴霧ノズル5にポンプ(図示せず)によって水と空気が送られ、チャンバー21内に霧状の空気流が発生する。
【0021】
出願人の実験では、外気の温度33.0℃、絶対湿度10g/Kgであった場合、チャンバー21内の噴霧後の温度は20.4℃、相対湿度100%となり、第1の顕熱交換器2の垂直の通路の出口では温度は25.0℃、相対湿度100%となり、水平の通路では温度は20.5℃、絶対湿度10g/Kgとなった。
【0022】
つまり、ブロア28によってチャンバ21内に空気流ができる。これに噴霧ノズル5より水を噴霧し霧状気体流をつくる。噴霧する水の量は、噴霧によって気化する量以上とする。
【0023】
すると、噴霧された水の一部が気化し、気化によって気化熱が奪われ、チャンバ21内に送られた霧状気体流の温度が20.4℃まで低下する。また、チャンバ21内の空気は相対湿度が100%となり、その空気の中に多量の水の微粒子が浮遊した状態即ち霧状となる。
【0024】
そして、この微細な水滴が多量に浮遊した状態の霧状気体流が第1の顕熱交換器2の垂直の小透孔群18に入る。これによって、垂直の小透孔群18と水平の小透孔群19の間で、隔壁16を介して顕熱交換が行われる。つまり、水平の小透孔群19を通過する空気は垂直の小透孔群18を通過する霧状気体流によって冷却され、同時に垂直の小透孔群18を通過する霧状気体流は加熱される。
【0025】
すると、垂直の小透孔群18を通過する気体流の相対湿度は100%以下となり、その中に含まれる多量の水の微粒子が気化し、気化熱が奪われ霧状気体流が冷却される。
【0026】
この作用によって、垂直の小透孔群18を通過する霧状気体流の温度は低温のままほぼ一定に保たれるため、水平の小透孔群19を通過する気体流は第1の顕熱交換器2の垂直の小透孔群18の全域・全長にわたり連続的に冷却され、その温度もほぼ一定に保たれる。
【0027】
この場合噴霧ノズル5からの水の噴霧量が多過ぎると微細な水滴が第1の顕熱交換器2の垂直の小透孔群18内の隔壁に集まり凝集して大きな水滴や水流となりその水滴や水流は微細な水滴と比べて表面積は極めて小さくなり小透孔群19を通過する気体流から奪った熱量では霧状気体流の温度を充分低下させることはできず、従って小透孔群19を通過する気体流の温度を充分に下げることはできない。
【0028】
従って、霧状気体流内の微細な水滴が均一に必要最小限よりやや多めに含まれるように噴霧すれば冷却効率がよく、水も節約できる。そして、顕熱交換器2の小透孔群18内で気化しなかった水滴は、顕熱交換器2の外部へ排出される。
【0029】
第1の顕熱交換器2の水平の小透孔群19を出た冷却空気は、ブロア28の吐出圧で除湿ユニット1の吸着ゾーン14に流され、除湿ロータ7を通過する間に冷却空気中の湿気は吸着されて除湿され乾燥空気となる。この時、吸着熱によって乾燥空気の温度は大気の温度より高くなる。
【0030】
出願人の実験では除湿ユニット1の吸着ゾーン14を出た空気の温度は50.0℃、絶対湿度は0.2g/Kgとなった。この高温乾燥空気は第2の顕熱交換器3及び第3の顕熱交換器4それぞれの水平の通路の入口に送られる。
【0031】
第3の顕熱交換器4の垂直の通路には第2の顕熱交換器3の垂直の通路より出た冷気が送入されており、上記の高温乾燥空気を冷却する。第3の顕熱交換器4の水平の通路の出口を出た空気の温度は30.0℃、絶対湿度は0.2g/Kgとなった。
【0032】
第2の顕熱交換器3のチャンバ21内の空気流に噴霧ノズル6より水を噴霧し霧状気体流をつくる。すると第2の顕熱交換器3の内部では、上記の第1の顕熱交換器2の内部で発生する現象と同様の現象が発生し、その垂直の小透孔群18内で霧状気体流の中に浮遊する水の微粒子が気化し、水平の小透孔群19を通過する空気が冷却される。
【0033】
出願人の実験では、第2の顕熱交換器3のチャンバ21に入る前の空気の温度は30.0℃、絶対湿度は0.2g/Kgであった。これに噴霧ノズル6より水を噴霧すると水の微粒子が気化し、空気の温度は10.7℃、相対湿度は100%となった。この霧状気体流を垂直の小透孔群18に通すと、上記の第1の顕熱交換器2の中で発生した現象と同様の現象が発生し、第2の顕熱交換器3の中で霧状気体流に含まれる水の微粒子が気化する。
【0034】
この結果、第2の顕熱交換器3の垂直の小透孔群18を通過した空気の温度は26.0℃となり、水平の小透孔群19を通過した空気の温度は11.0℃、絶対湿度は0.2g/Kgとなった。
【0035】
上記の説明の通り、第3の顕熱交換器4の垂直の通路には第2の顕熱交換器3の垂直の小透孔群18を通過した空気が送入されており、この空気の温度は26.0℃、相対湿度は100%であったが、第3の顕熱交換器4の垂直の通路の出口ではこの空気の温度は46.0℃、相対湿度は33%となった。
【0036】
垂直、ブロア30によって外気は吸引されパージゾーン13からヒータ15を通り、再生ゾーン12に入る。パージゾーン13を通過し加熱された空気の温度は90.0℃、絶対湿度は0.15g/Kgとなった。
【0037】
そしてヒータ15によってさらに温度が上昇し、空気の温度は155.0℃、絶対湿度は0.15g/Kgとなった。この再生空気が再生ゾーン12に入り除湿ロータ7に吸着された湿気を脱着する。脱着後の空気の温度は44.0℃、絶対湿度は29.0g/Kgとなった。
【0038】
以上説明した本発明の実施例のものは、外気が除湿手段1に入る前に第1の顕熱交換器2によって冷却されるようにしているため、多少外気の温度が高くても除湿ロータ7による湿気の吸着効果が高く、除湿手段1は低露点の乾燥空気を発生することができる。
【0039】
さらに、除湿手段1より出た乾燥空気の温度を第3の顕熱交換器4によって一旦冷却した後、水の気化冷却に使用しているため、第2の顕熱交換器3内部での冷却効果が高く、供給空気の温度を低くすることができる。
【0040】
また外気の空気条件によっては、あるいは目的とする供給空気の条件によっては第2の顕熱交換器3の水平の小透孔群19を通過した空気の温度が高すぎる場合がある。このような場合には第2の顕熱交換器3の水平の小透孔群19を通過した温度11.0℃、絶対湿度0.2g/Kgの空気を加湿器29を通過させることによって、温度2.0℃、絶対湿度3.8g/Kgの空気を得ることができる。
【0041】
以上の実施例では第2の顕熱交換器3と第3の顕熱交換器4とを別体にし、それぞれの垂直の通路を連通させたが、第2の顕熱交換器3と第3の顕熱交換器4とを一体に形成し、水平の通路を第2の顕熱交換器3に相当する部分即ち上半分と第3の顕熱交換器4に相当する部分即ち下半分とに分割することもできる。
【0042】
【発明の効果】
本発明の空気調和装置は上記の如く構成したので、外気の条件にかかわらず所望の冷気を供給することができるものである。また、必要に応じて供給空気に加湿冷却を行えばさらに供給空気の温度を下げることができる。
【0043】
さらに本発明のものは、フロンを用いる冷却装置を使うことなく乾燥・冷却空気を供給することができ、地球環境の維持に貢献できる。
【図面の簡単な説明】
【図1】本発明の空気調和装置の実施例を示すフローパターン図である。
【図2】本発明の空気調和装置に用いられる除湿手段の一例を示す斜視図である。
【図3】本発明の空気調和装置に用いられる顕熱交換器の一例を示す斜視図である。
【図4】本発明の空気調和装置に用いられる冷却ユニットの一例を示す斜視図である。
【符号の説明】
1 除湿手段
2 第1の顕熱交換器
3 第2の顕熱交換器
4 第3の顕熱交換器
5,6 噴霧ノズル
8 除湿ロータ
5 ケーシング
12 再生ゾーン
13 パージゾーン
14 吸着ゾーン
15 ヒータ
27 加湿器
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an air conditioner used for air conditioning in homes or offices or refrigeration of food or the like, and more particularly to an air conditioner that cools by the heat of vaporization of water.
[0002]
[Prior art]
Conventionally, compression-type refrigerators have been widely used in air conditioners, and alternative chlorofluorocarbons have been used because the main refrigerant, chlorofluorocarbon gas, destroys the ozone layer in the atmosphere. However, it is pointed out that the alternative chlorofluorocarbon also raises the greenhouse effect of the atmosphere, and a cooling device such as a dehumidifying cooling device that does not use a refrigerant has attracted attention.
[0003]
However, a practical one has not been developed from the viewpoint of the size of equipment and energy efficiency. Among them, for example, a heat exchanger such as that shown in International Publication No. WO 97/17586, which vaporizes mist-like water particles, is a simple device that consumes less energy and has a large cooling effect. It is obtained.
[0004]
[Problems to be solved by the invention]
However, what is disclosed in the above-mentioned International Publication has an air supply temperature of about 20 ° C. and is adequate for cooling if the amount of supplied air is increased, but is unsuitable for refrigeration.
[0005]
The present invention solves the above-mentioned problems, and in the heat exchanger as seen in the above-mentioned International Publication, a dehumidifying function is added to the one that vaporizes mist-like water particles. Furthermore, an object of the present invention is to provide an air conditioner that can be applied to refrigeration by lowering the temperature of supplied air.
[0006]
[Means for Solving the Problems]
The present invention includes an adsorption-type dehumidifying means provided with an adsorption zone and a regeneration zone, and first, second and third heat exchangers for exchanging heat between a plurality of gas flows, In one passage of each of the second heat exchangers, the atomized volatile liquid is sprayed until fine droplets are suspended in the gas, so that the air in the form of a mist gas flows. The air cooled through the other passage of one heat exchanger is passed through the adsorption zone of the dehumidifying means, and the dry air exiting the adsorption zone is passed through the other passage of each of the second and third heat exchangers. The air that has exited the other passage of the third heat exchanger passes through one passage of the second heat exchanger, and the air that has exited one passage of the second heat exchanger passes through the third heat exchanger. I was allowed to pass through one of the passages.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The invention according to claim 1 of the present invention performs heat exchange between a plurality of gas flows and a dehumidifying means having a dehumidification rotor and a heater carrying a moisture adsorbent and provided with an adsorption zone and a regeneration zone. The first, second, and third heat exchangers are provided, and in each of the first and second heat exchangers, a fine droplet of a mist-like volatile liquid is suspended in the gas. The air to be sprayed is made to flow as a mist gas flow until the air becomes, and the air to be cooled is passed through the other passage of the first heat exchanger, and the air that exits is passed through the adsorption zone of the dehumidifying means, The air leaving the zone is passed through the other passage of each of the second and third heat exchangers, and the air leaving the other passage of the third heat exchanger is passed through one passage of the second heat exchanger. And let air that has exited one passage of the second heat exchanger to pass through one passage of the third heat exchanger. Since the air cooled by the first heat exchanger is adsorbed and dehumidified by the dehumidifying means, evaporative cooling is performed by spraying on the dehumidified dry air having a high dehumidifying effect. Has the effect of lowering.
[0008]
【Example】
FIG. 1 is a flow pattern diagram according to the first embodiment of the present invention. In FIG. 1, 1 is a dehumidifying means, and 2, 3 and 4 are first, second and third sensible heat exchangers, respectively. The first sensible heat exchanger 2 and the second sensible heat exchanger 3 have spray nozzles 5 and 6, respectively, and the details of each of the above parts will be described below.
[0009]
FIG. 2 is a cross-sectional perspective view of the main part of the dehumidifying means 1. Reference numeral 7 denotes a dehumidification rotor, for example, in which a ceramic sheet is formed in a corrugated shape and laminated and wound with a flat sheet to form a honeycomb shape, and a moisture absorbent such as silica gel is supported.
[0010]
Reference numeral 8 denotes a casing, in which the dehumidifying rotor 7 is rotatably housed, and is rotationally driven by a motor 10 via a belt 9. A partition 11 is provided in the casing 8 so as to divide the flow path of the dehumidifying rotor 7 at an area ratio of 1: 0.5: 2.5. A portion having an area ratio of 1 is a regeneration zone 12, a portion having an area ratio of 0.5 is a purge zone 13, and a portion having an area ratio of 2.5 is an adsorption zone.
[0011]
A heater 15 heats the air passing through the heater to, for example, 80 ° C., and the air heated by the heater 15 is communicated by a duct (not shown) so as to be sent to the regeneration zone 12.
[0012]
FIG. 3 is a perspective view of the first, second and third sensible heat exchangers 2, 3 and 4. The sensible heat exchangers 2, 3 and 4 are, for example, cross-flow type heat exchangers, and have a partition wall 16 made of a sheet of aluminum or other metal or a sheet of polyester or other synthetic resin, a wavelength of 3.0 mm, and a wave height of 1. .6 mm corrugated plates 17 are alternately stacked and bonded to each other so that the wave directions of the corrugated plates 17 are orthogonal to each other. As a result, small through hole groups 18 and small through hole groups 19 are formed in the sensible heat exchangers 2, 3 and 4 in directions orthogonal to each other.
[0013]
FIG. 4 is a perspective view of the cooling means comprising the first and second sensible heat exchangers 2 and 3 and the spray nozzles 5 and 6. Reference numeral 20 denotes an inlet of the chamber 21, and the lower end of the chamber 21 communicates with the inlet of the vertical flow path of the heat exchangers 2 and 3. And the exit of the vertical flow path of the heat exchangers 2 and 3 is open | released by air | atmosphere.
[0014]
Spray nozzles 5 and 6 are mounted in the chamber 21, and the relative humidity of the air in the chamber 21 is set to 100%, and a larger amount of fine water droplets are suspended, that is, in a mist state. As the spray nozzles 5 and 6, for example, air spray nozzles, that is, nozzles that spray compressed water into fine particles are used, and a water pump and an air compressor (not shown) are communicated.
[0015]
Reference numeral 22 denotes an inflow side chamber in a horizontal passage of the first and second sensible heat exchangers 2 and 3, which communicates with the introduction pipe 23. Reference numeral 24 denotes an outflow side chamber in a horizontal passage of the sensible heat exchangers 2 and 3, which communicates with the outlet pipe 25. 26 is an outflow side chamber in a vertical passage of the sensible heat exchangers 2 and 3, and communicates with the outlet pipe 27.
[0016]
Returning to FIG. 1, reference numeral 28 denotes a blower, the suction side of which is opened to the atmosphere, and the discharge side is communicated with the vertical passage and the horizontal passage of the first sensible heat exchanger 2.
[0017]
The outlet of the horizontal passage of the first sensible heat exchanger 2 is communicated with the adsorption zone 14 of the dehumidifying means 1, and the outlet of the adsorption zone 14 is the horizontal passage of the second sensible heat exchanger 3 and the third sensible heat. It communicates with the horizontal passage of the exchanger 4.
[0018]
The outlet of the horizontal passage of the second sensible heat exchanger 3 is opened to the room through the humidifier 29. The outlet of the vertical passage of the third sensible heat exchanger 4 communicates with the inlet 20 of the chamber 21 of the second sensible heat exchanger 3. The outlet pipe 27 of the outflow side chamber 26 in the vertical passage of the second sensible heat exchanger 3 is communicated with the inlet of the vertical passage of the third sensible heat exchanger 4, and the third sensible heat exchanger 4. The exit of the vertical passage is open to the atmosphere.
[0019]
Reference numeral 30 denotes a blower, the discharge side of which is open to the atmosphere, and the inlet communicates with the outlet of the regeneration zone 12 of the dehumidifying means 1. The heater 15 is provided in a passage from the purge zone 13 to the regeneration zone 12.
[0020]
The air conditioning apparatus according to the first embodiment of the present invention described above performs the following operation. First, the blowers 28 and 30 and the motor 10 are activated as the power is turned on. As a result, the outside air is supplied to the vertical and horizontal passages of the first sensible heat exchanger 2 by the blower 28. Further, water and air are sent to the spray nozzle 5 by a pump (not shown), and a mist-like air flow is generated in the chamber 21.
[0021]
In the applicant's experiment, when the temperature of the outside air is 33.0 ° C. and the absolute humidity is 10 g / Kg, the temperature after spraying in the chamber 21 is 20.4 ° C. and the relative humidity is 100%. At the outlet of the vertical passage of the vessel 2, the temperature was 25.0 ° C. and the relative humidity was 100%, and in the horizontal passage, the temperature was 20.5 ° C. and the absolute humidity was 10 g / Kg.
[0022]
That is, an air flow is generated in the chamber 21 by the blower 28. Water is sprayed from the spray nozzle 5 to create a mist-like gas flow. The amount of water to be sprayed is not less than the amount that is vaporized by spraying.
[0023]
Then, a part of the sprayed water is vaporized, the heat of vaporization is taken away by vaporization, and the temperature of the mist-like gas flow sent into the chamber 21 is lowered to 20.4 ° C. Further, the air in the chamber 21 has a relative humidity of 100%, and a large amount of water fine particles are suspended in the air, that is, in a mist state.
[0024]
Then, the mist-like gas flow in which a large amount of fine water droplets floats enters the vertical small hole group 18 of the first sensible heat exchanger 2. Thus, sensible heat exchange is performed between the vertical small hole group 18 and the horizontal small hole group 19 via the partition wall 16. That is, the air passing through the horizontal small-hole group 19 is cooled by the mist-like gas flow passing through the vertical small-hole group 18, and at the same time, the mist-like gas flow passing through the vertical small-hole group 18 is heated. The
[0025]
Then, the relative humidity of the gas flow passing through the vertical small hole group 18 becomes 100% or less, and a large amount of fine water particles contained therein are vaporized, the heat of vaporization is taken away, and the atomized gas flow is cooled. .
[0026]
By this action, the temperature of the mist-like gas flow passing through the vertical small hole group 18 is kept substantially constant at a low temperature, so that the gas flow passing through the horizontal small hole group 19 is subjected to the first sensible heat. The vertical small through hole group 18 of the exchanger 2 is continuously cooled over the entire area and the entire length thereof, and the temperature thereof is kept substantially constant.
[0027]
In this case, if the amount of water sprayed from the spray nozzle 5 is too large, fine water droplets collect and aggregate in the partition walls in the vertical small hole group 18 of the first sensible heat exchanger 2 to form large water droplets or water streams. The surface area of the water flow is extremely small compared to the fine water droplets, and the amount of heat taken from the gas flow passing through the small perforated hole group 19 cannot sufficiently lower the temperature of the mist-like gas flow. The temperature of the gas stream passing through can not be lowered sufficiently.
[0028]
Therefore, if spraying is performed so that fine water droplets in the mist-like gas flow are uniformly included in a slightly larger amount than necessary, cooling efficiency is good and water can be saved. Then, water droplets that have not been vaporized in the small through hole group 18 of the sensible heat exchanger 2 are discharged to the outside of the sensible heat exchanger 2.
[0029]
The cooling air that has exited the horizontal small hole group 19 of the first sensible heat exchanger 2 is caused to flow into the adsorption zone 14 of the dehumidifying unit 1 by the discharge pressure of the blower 28, and is cooled while passing through the dehumidifying rotor 7. The moisture inside is adsorbed and dehumidified to dry air. At this time, the temperature of the dry air becomes higher than the temperature of the atmosphere due to the heat of adsorption.
[0030]
In the applicant's experiment, the temperature of the air exiting the adsorption zone 14 of the dehumidifying unit 1 was 50.0 ° C., and the absolute humidity was 0.2 g / Kg. This high temperature dry air is sent to the entrance of the horizontal passage of each of the second sensible heat exchanger 3 and the third sensible heat exchanger 4.
[0031]
Cold air from the vertical passage of the second sensible heat exchanger 3 is fed into the vertical passage of the third sensible heat exchanger 4 to cool the high-temperature dry air. The temperature of the air exiting from the outlet of the horizontal passage of the third sensible heat exchanger 4 was 30.0 ° C., and the absolute humidity was 0.2 g / Kg.
[0032]
Water is sprayed from the spray nozzle 6 onto the air flow in the chamber 21 of the second sensible heat exchanger 3 to create a mist-like gas flow. Then, a phenomenon similar to the phenomenon occurring inside the first sensible heat exchanger 2 occurs inside the second sensible heat exchanger 3, and the atomized gas is generated in the vertical small hole group 18. Fine particles of water floating in the flow are vaporized, and the air passing through the horizontal small hole group 19 is cooled.
[0033]
In the applicant's experiment, the temperature of the air before entering the chamber 21 of the second sensible heat exchanger 3 was 30.0 ° C., and the absolute humidity was 0.2 g / Kg. When water was sprayed from the spray nozzle 6, fine particles of water were vaporized, and the air temperature was 10.7 ° C. and the relative humidity was 100%. When this mist-like gas flow is passed through the vertical small hole group 18, a phenomenon similar to the phenomenon generated in the first sensible heat exchanger 2 occurs, and the second sensible heat exchanger 3 The water fine particles contained in the mist-like gas stream are vaporized.
[0034]
As a result, the temperature of the air passing through the vertical small hole group 18 of the second sensible heat exchanger 3 is 26.0 ° C., and the temperature of the air passing through the horizontal small hole group 19 is 11.0 ° C. The absolute humidity was 0.2 g / Kg.
[0035]
As described above, the air that has passed through the vertical small hole group 18 of the second sensible heat exchanger 3 is fed into the vertical passage of the third sensible heat exchanger 4. Although the temperature was 26.0 ° C. and the relative humidity was 100%, the temperature of this air was 46.0 ° C. and the relative humidity was 33% at the exit of the vertical passage of the third sensible heat exchanger 4. .
[0036]
Outside air is sucked vertically by the blower 30, passes through the heater 15 from the purge zone 13, and enters the regeneration zone 12. The temperature of the air heated through the purge zone 13 was 90.0 ° C., and the absolute humidity was 0.15 g / Kg.
[0037]
The temperature was further increased by the heater 15, the air temperature was 155.0 ° C., and the absolute humidity was 0.15 g / Kg. This regeneration air enters the regeneration zone 12 and desorbs the moisture adsorbed by the dehumidifying rotor 7. The temperature of the air after desorption was 44.0 ° C., and the absolute humidity was 29.0 g / Kg.
[0038]
In the embodiment of the present invention described above, since the outside air is cooled by the first sensible heat exchanger 2 before entering the dehumidifying means 1, the dehumidifying rotor 7 can be used even if the temperature of the outside air is somewhat high. Therefore, the dehumidifying means 1 can generate dry air having a low dew point.
[0039]
Furthermore, since the temperature of the dry air that has come out of the dehumidifying means 1 is once cooled by the third sensible heat exchanger 4 and then used for evaporative cooling of water, the cooling inside the second sensible heat exchanger 3 is performed. The effect is high and the temperature of the supply air can be lowered.
[0040]
Depending on the air condition of the outside air or the condition of the target supply air, the temperature of the air that has passed through the horizontal small hole group 19 of the second sensible heat exchanger 3 may be too high. In such a case, air having a temperature of 11.0 ° C. and an absolute humidity of 0.2 g / Kg that has passed through the horizontal small-hole group 19 of the second sensible heat exchanger 3 is passed through the humidifier 29, Air having a temperature of 2.0 ° C. and an absolute humidity of 3.8 g / Kg can be obtained.
[0041]
In the above embodiment, the second sensible heat exchanger 3 and the third sensible heat exchanger 4 are separated and the respective vertical passages are communicated with each other. However, the second sensible heat exchanger 3 and the third sensible heat exchanger 3 are connected to each other. The sensible heat exchanger 4 is integrally formed, and a horizontal passage is formed in a portion corresponding to the second sensible heat exchanger 3, that is, the upper half and in a portion corresponding to the third sensible heat exchanger 4, that is, the lower half. It can also be divided.
[0042]
【The invention's effect】
Since the air conditioner of the present invention is configured as described above, it can supply desired cold air regardless of the conditions of the outside air. Further, if the supply air is humidified and cooled as required, the temperature of the supply air can be further lowered.
[0043]
Furthermore, the thing of this invention can supply dry and cooling air, without using the cooling device which uses CFC, and can contribute to maintenance of a global environment.
[Brief description of the drawings]
FIG. 1 is a flow pattern diagram showing an embodiment of an air conditioner of the present invention.
FIG. 2 is a perspective view showing an example of dehumidifying means used in the air conditioner of the present invention.
FIG. 3 is a perspective view showing an example of a sensible heat exchanger used in the air conditioner of the present invention.
FIG. 4 is a perspective view showing an example of a cooling unit used in the air conditioner of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Dehumidification means 2 1st sensible heat exchanger 3 2nd sensible heat exchanger 4 3rd sensible heat exchangers 5 and 6 Spray nozzle 8 Dehumidification rotor 5 Casing 12 Regeneration zone 13 Purge zone 14 Adsorption zone 15 Heater 27 Humidification vessel

Claims (2)

湿気の吸着剤を担持した除湿ロータおよびヒータを有し吸着ゾーンと再生ゾーンの設けられた除湿手段と、複数の気体流の間で熱交換を行う第1、第2及び第3の熱交換器を備え、さらに前記第1、第2及び第3の熱交換器それぞれの一方の通路には気体中に霧状のの微細な液滴が浮遊した状態となるまで噴霧して霧状気体流とした空気を流すようにし、被冷却空気を前記第1の熱交換器の他方の通路に通し、前記第1の熱交換器の他方の通路を出た空気を前記除湿手段の吸着ゾーンに通し、前記吸着ゾーンを出た空気を前記第2及び第3の熱交換器それぞれの他方の通路に通すとともに、前記第3の熱交換器の他方の通路を出た空気を前記第2の熱交換器の一方の通路に通し、前記第2の熱交換器の一方の通路を出た空気を前記第3の熱交換器の一方の通路に通すようにした空気調和装置。A dehumidifying rotor carrying a moisture adsorbent and a heater, a dehumidifying means provided with an adsorption zone and a regeneration zone, and first, second and third heat exchangers for exchanging heat between a plurality of gas flows In addition, each of the first, second, and third heat exchangers is sprayed until a fine droplet of mist-like water is suspended in the gas in each passage. The air to be cooled is passed through the other passage of the first heat exchanger, and the air exiting the other passage of the first heat exchanger is passed through the adsorption zone of the dehumidifying means. The air exiting the adsorption zone is passed through the other passages of the second and third heat exchangers, and the air exiting the other passage of the third heat exchanger is passed through the second heat exchange. Air passing through one passage of the second heat exchanger and passing through one passage of the second heat exchanger is passed through the third heat. Air conditioning apparatus that passed through one of the passages of the exchanger. 第2の熱交換器の他方の通路を出た空気を加湿冷却する加湿手段を設けた請求項1記載の空気調和装置。The air conditioner according to claim 1, further comprising humidifying means for humidifying and cooling the air that has exited the other passage of the second heat exchanger.
JP34709897A 1997-12-01 1997-12-01 Air conditioner Expired - Fee Related JP3635295B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34709897A JP3635295B2 (en) 1997-12-01 1997-12-01 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34709897A JP3635295B2 (en) 1997-12-01 1997-12-01 Air conditioner

Publications (2)

Publication Number Publication Date
JPH11173618A JPH11173618A (en) 1999-07-02
JP3635295B2 true JP3635295B2 (en) 2005-04-06

Family

ID=18387902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34709897A Expired - Fee Related JP3635295B2 (en) 1997-12-01 1997-12-01 Air conditioner

Country Status (1)

Country Link
JP (1) JP3635295B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4607356B2 (en) * 2000-09-04 2011-01-05 株式会社西部技研 Dehumidifying air conditioner
LU90799B1 (en) * 2001-06-29 2003-06-18 Wurth Paul Sa Air conditioning method involves passing main flow to absorption rotor wholly or partially via bypass with flow regulating element; secondary flow is regulated by second regulating element
JP4698901B2 (en) * 2001-08-31 2011-06-08 株式会社西部技研 Dehumidifying air conditioner
WO2006035826A1 (en) * 2004-09-30 2006-04-06 Max Co., Ltd Ventilator, air conditioner system, ventilation system, and building
JP4466306B2 (en) * 2004-09-30 2010-05-26 マックス株式会社 Ventilator and building
JP2006105426A (en) * 2004-09-30 2006-04-20 Max Co Ltd Ventilating device and building
JP2006145092A (en) * 2004-11-17 2006-06-08 Max Co Ltd Air conditioning system and building
JP2006214694A (en) * 2005-02-07 2006-08-17 Fujita Corp Air conditioning system, air conditioning method and air conditioning unit
TW200732609A (en) * 2005-11-18 2007-09-01 Max Co Ltd Ventilator and ventilating system
JP5227228B2 (en) * 2009-03-19 2013-07-03 大阪瓦斯株式会社 Cold water supply system and cold / hot water supply system
JP5417213B2 (en) * 2010-02-10 2014-02-12 株式会社朝日工業社 Indirect evaporative cooling type external air conditioning system
JP5932439B2 (en) * 2012-03-30 2016-06-08 大阪瓦斯株式会社 Dehumidification system
JP5932438B2 (en) * 2012-03-30 2016-06-08 大阪瓦斯株式会社 Cooling system

Also Published As

Publication number Publication date
JPH11173618A (en) 1999-07-02

Similar Documents

Publication Publication Date Title
JP3594463B2 (en) Gas adsorption device
US5775121A (en) Method and device for refrigerating a fluid
EP2250446B1 (en) Indirect evaporative cooler
US20130340449A1 (en) Indirect evaporative cooler using membrane-contained liquid desiccant for dehumidification and flocked surfaces to provide coolant flow
JP3635295B2 (en) Air conditioner
CN109475807B (en) Device for continuously absorbing water and air cooler
JPH0684822B2 (en) Indirect air conditioner
WO2007141901A1 (en) Humidity controller
JP2009115335A (en) Air conditioner and air-conditioning method
KR100461934B1 (en) Fluid cooling and gas dehumidification cooling method and apparatus
JPH10176842A (en) Air conditioner
JP2002147794A (en) Dehumidifying air conditioner
JP2002022291A (en) Air conditioner
JP3411958B2 (en) Air conditioner
JP3559255B2 (en) Desiccant air conditioner with indirect heat exchanger
US20090293526A1 (en) Water mist cooling system
JPH09292187A (en) Method of cooling fluid, method of dehumidification and cooling of gas and device
WO2004081462A1 (en) Air conditioning method using liquid desiccant
JP2004190907A (en) Desiccant air-conditioner with multistage indirect heat exchanging device
JP2980603B1 (en) Dehumidifying air conditioner and dehumidifying method
WO2009148435A1 (en) Water mist cooling system
KR100350714B1 (en) Air conditioning method and apparatus
JPH10311691A (en) Gas cooling method and apparatus
JPS61164621A (en) Apparatus for removing moisture or condensible gas
JP2003166731A (en) Dehumidifying air conditioner

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041126

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees