WO2007141901A1 - Humidity controller - Google Patents

Humidity controller Download PDF

Info

Publication number
WO2007141901A1
WO2007141901A1 PCT/JP2007/000431 JP2007000431W WO2007141901A1 WO 2007141901 A1 WO2007141901 A1 WO 2007141901A1 JP 2007000431 W JP2007000431 W JP 2007000431W WO 2007141901 A1 WO2007141901 A1 WO 2007141901A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
moisture
air path
humidity control
evaporator
Prior art date
Application number
PCT/JP2007/000431
Other languages
French (fr)
Japanese (ja)
Inventor
Hideo Inaba
Kensaku Maeda
Ryosuke Nishida
Original Assignee
Japan Exlan Company Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Exlan Company Limited filed Critical Japan Exlan Company Limited
Publication of WO2007141901A1 publication Critical patent/WO2007141901A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1423Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant with a moving bed of solid desiccants, e.g. a rotary wheel supporting solid desiccants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1016Rotary wheel combined with another type of cooling principle, e.g. compression cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1068Rotary wheel comprising one rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1084Rotary wheel comprising two flow rotor segments

Definitions

  • the present invention relates to a humidity control apparatus, and more particularly to a humidity control apparatus capable of switching between humidification and dehumidification.
  • Patent Document 1 describes a humidity control apparatus for both summer and winter.
  • different devices used in summer and winter are installed in the outside air intake route and the indoor air exhaust route, respectively, which is essentially the same as two devices installed. There were few advantages such as cost reduction and no storage required, and water supply was also necessary.
  • Patent Document 1 Special Table 2 0 0 3— 5 3 1 3 5 4
  • the present invention has been made in view of the above circumstances, and one object is to provide a humidity control device that does not require water supply. Another object is to provide a humidity control device that does not require drainage. Still another object is to provide a humidity control device that can switch between humidification and dehumidification.
  • the humidity control apparatus of the present invention is a honeycomb-shaped desiccant rotor carrying a desiccant that adsorbs moisture in the air and that can desorb moisture in the air, It is divided into an adsorption zone that adsorbs moisture and a regeneration zone that desorbs moisture, and a desiccant rotor in which the air flowing through the adsorption zone and the air flowing through the regeneration zone are almost counterflowing, a compressor and an evaporator
  • the refrigeration cycle consisting of a condenser and the air introduced into the system are flowed to the evaporator of the refrigeration cycle to cool and dehumidify to collect moisture from the air, and then flow to the adsorption zone of the desiccant rotor for adsorption and dehumidification
  • the first air path and the air introduced into the system flow to the condenser of the refrigeration cycle to be heated, and then flow to the regeneration zone of the desiccant rotor for
  • moisture in the air flowing in the first air path is recovered in the evaporator of the refrigeration cycle and used for humidifying the air flowing in the second air path.
  • efficient dehumidification and humidification are performed by combining the refrigeration cycle and the desiccant rotor.
  • exhaust from the room is guided to the first air path during the humidification operation.
  • exhaust from the room is guided to the first air path, and after moisture is collected, it is used for humidifying the air introduced from the second air path. This eliminates the need to replenish water regularly.
  • exhaust from the room is guided to the second air path during the dehumidifying operation.
  • the air introduced from the first air path is dehumidified
  • the exhaust from the room is guided to the second air path, and the water removed is evaporated and discharged.
  • desiccant adsorption dehumidification is performed after cooling dehumidification, the cooling temperature in the evaporator is higher than in the past, and frost does not grow in the evaporator, so that continuous dehumidification can be achieved even at low temperatures.
  • the first air path and the second air path are switched by switching the refrigerant flow direction of the refrigeration cycle.
  • the air path is changed without using mechanical / structural change means. be able to.
  • heat that causes heat exchange between the air immediately before the inflow of the evaporator in the first air path and the air immediately before the inflow of the condenser in the second air path Install an exchanger.
  • the recovered heat is effectively used by heat exchange between the air immediately before the inflow of the evaporator in the first air path and the air immediately before the inflow of the condenser in the second air path by the heat exchanger.
  • a humidifier that does not require water supply or a dehumidifier that does not require drainage, and can provide a humidity control device that reduces labor during operation. Further, it is possible to provide a humidity control device that can switch between humidification and dehumidification by switching between the first air path and the second air path.
  • FIG. 1 is a diagram showing a configuration of a main body portion of a humidity control apparatus according to a first embodiment of the present invention.
  • FIG. 2 is a diagram showing a configuration of a duct connection portion according to the first embodiment of the present invention.
  • FIG. 3 is a diagram showing one operation mode of the humidity control apparatus of the first embodiment.
  • FIG. 4 is a wet air diagram illustrating the operation of the humidity control apparatus of FIG.
  • FIG. 5 is a diagram showing another operation mode of the humidity control apparatus according to the first embodiment.
  • FIG. 6 is a wet air diagram illustrating the operation of the humidity control apparatus of FIG.
  • FIG. 7 is a diagram showing a configuration of a humidity control apparatus according to another embodiment of the present invention.
  • FIG. 8 is a moist air diagram illustrating the operation of the humidity control apparatus of FIG.
  • FIG. 9 is a diagram showing a configuration of a humidity control apparatus according to another embodiment of the present invention.
  • FIG. 10 is a diagram showing another operation mode of the humidity control apparatus of FIG.
  • FIG. 11 is a diagram showing a configuration of a humidity control apparatus according to still another embodiment of the present invention.
  • FIG. 12 is a diagram showing another operation mode of the humidity control apparatus of FIG.
  • FIG. 13 is a diagram showing a configuration of a humidity control apparatus according to still another embodiment of the present invention.
  • FIG. 1 and FIG. 2 show a humidity control apparatus according to one embodiment of the present invention, which is adopted as a ventilated system that air-conditions fresh outside air and introduces it into the room.
  • the main body section 10 shown in detail in FIG. 1 is removed from the air in the first air path 16 and the first air path 16 that cools and dehumidifies the introduced air to be treated in the frame 14
  • a second air path 18 is constructed to humidify the air to be treated using the moisture.
  • These air paths 1 6 and 1 8 are at least partially adjacent and arranged in parallel, and fans (blowers) 2 0 are provided at predetermined locations in the air paths 1 6 and 1 8 so that the air flows oppositely. Is provided.
  • a desiccant rotor 2 2 as a first means for moving moisture
  • a refrigeration cycle apparatus 2 4 as a second means.
  • the first air path 16 is installed above the second air path 18.
  • These air paths 16 and 18 are provided with filters (not shown) as necessary.
  • the accommodating portion of the desiccant rotor 2 2 includes the first air path 16 and the second air path.
  • Each of the eighteen cross-sections is semicircular and adjacent to each other, and is generally circular.
  • the partition wall 28 between them is cut out in a size corresponding to the cross section of the desiccant rotor 2 2, and the desiccant rotor 2 2 is disposed so as to block the two air paths 1 6 and 1 8. ing.
  • the desiccant rotor 22 is a honeycomb-like rotor carrying a desiccant capable of adsorbing moisture in the air and desorbing moisture in the air, and each part has two air paths 16, by a rotary drive mechanism (not shown). 1 8 Rotated around axis X at a predetermined speed so as to move alternately.
  • the desiccant rotor 2 2 in the first air path 1 6 forms an adsorption zone 2 2 a that adsorbs moisture from the air, and the desiccant port 2 2 in the second air path 1 8 is the desiccant.
  • a regeneration zone 2 2 b for desorbing moisture from the rotor 2 2 is formed.
  • the refrigeration cycle apparatus 24 is a vapor compression refrigeration cycle comprising a compressor 30, a condenser 3 2, an expansion valve 3 4, an evaporator 3 6, and a refrigerant flow path 3 8 connecting them. is there.
  • Evaporator as air cooler 3 6 and condenser as heater 3 2 are arranged upstream of the desiccant port 2 2 of the first air path 16 and the second air path 18, respectively.
  • a water storage container 40 is provided below the evaporator 36 to receive moisture condensed from the cooled air.
  • the vaporizing humidifier 26 is disposed on the downstream side of the desiccant rotor 2 2 in the second air path 18, and is located substantially below the evaporator 36.
  • Vaporizing humidifier 26 is a device that guides the water stored in water storage container 40 of evaporator 36 to water-flowing member 42 installed in second air path 18 via water supply pipe 41. It evaporates the water and humidifies it.
  • linear members are aggregated in a flat plate shape or a bulk shape, or a porous material is used.
  • a water storage container 4 4 that receives un-evaporated water is also provided below the flowing water member 4 2 .
  • a water sensor is installed in this container, and the amount of water supplied to it is adjusted by an alarm. can do.
  • the flowing water member 42 may be brought into contact with the bottom of the water storage container 40 so as to continuously maintain the humidifying action while water is stored in the water storage container 40 by capillary action.
  • the room wall 46 constituting the air-conditioned space is provided with two vents 48, 50, one of which is an air intake and the other is an exhaust. Mouth.
  • the main body 10 is arranged so that the two air paths 16 and 18 are parallel to the wall, and the air paths 16 and 18 are provided.
  • the entrances and exits 16a, 16b, 18a and 18b are open to the side.
  • the two vents 48, 52 which serve as air intakes or exhausts, are connected to the inlet 16a, the outlet 18b and the duct ⁇ 12.
  • Ducks should be flexible so that connections can be changed between summer and winter. Instead of the method of changing the connection of the duct 12, a damper may be provided in the fixed duct 12 and the path connection may be switched by opening and closing the damper.
  • Fig. 3 shows the state where the duct ⁇ 12 is connected to perform indoor humidification operation mainly during winter heating, and is the same as the case shown in Fig. 2. That is, the inlet 16a of the first air passage 16 opens into the room, and the outlet 16b passes through the duct 1 2 and the room It opens to the outside through the mouth 48. On the other hand, the inlet 18 a of the second air path 18 opens to the outside through the duct 12 and the other vent 50 in the room, and the outlet 18 b opens to the room.
  • the indoor air is heated and humidified, and is in a state A of relatively high temperature and high humidity.
  • This is introduced into the first air path 1 6, cooled at the sensible heat ratio (SHF) in the evaporator 3 6 of the refrigeration cycle device 2 4, and releases water during the state B, which is Recovered in storage container 40 under 6.
  • SHF sensible heat ratio
  • This air is further adsorbed by the desiccant in the adsorption zone 22a of the desiccant rotor 22 and dehumidified until it reaches the state C substantially along the isenthalpy line.
  • the dehumidified air is exhausted to the outdoor space through the duct 1 2 and the vent 4 8. Since the absolute humidity is lower than the outside air in this state, the situation where moisture in the air (humidity) is discharged from the room to the outdoor space is avoided.
  • the outdoor air introduced into the second air path 18 via the vent 50 and duct 12 is in the low temperature and low humidity state D, and the condenser 3 2 of the refrigeration cycle apparatus 2 4 Is heated to high temperature and low humidity regenerated air (state E) and introduced into the desiccant regeneration zone 2 2 b, almost dehumidifying the desiccant until it reaches the state “
  • the air in state F is further introduced into the vaporizing humidifier 26 and becomes air in the state G, which is humidified using the water collected in the evaporator 36, and is supplied to the indoor space.
  • water collected from the exhausted indoor air is used for humidification of the introduced processing air, so that it is not necessary to supply water for humidification. Maintenance work can be saved.
  • the duct 1 2 connection in this figure is the reverse of Figure 2 (a), and the inlet 16 of the first air path 16 is opened to the outside through the duct 2 1 2 and the air vent 48 of the room.
  • the outlet 1 6 b is opened indoors and the second air path 1
  • the eight inlets 18 a are opened to the room, and the outlet 18 b is opened to the outside through the duct 12 and the other vent 50 in the room.
  • Hot and humid external air (state A) is introduced into the first air path 16 and cooled in the evaporator 36 of the refrigeration cycle device 24, releasing moisture (state B).
  • the water is collected in a storage container 40 below the evaporator 36.
  • the air in state B is further adsorbed by the desiccant in the adsorption zone 2 2a of the desiccant rotor 2 2 and becomes air of low temperature and low humidity almost along the isenthalpy line (state C), via the outlet 16b. Supplied to the indoor space.
  • the indoor air introduced through the second air path 1 8a is in a low-temperature and low-humidity state D, and is heated in the condenser 3 2 of the refrigeration cycle device 2 4 to be high-temperature and low-humidity.
  • Regenerated air (state E) is introduced into the desiccant regeneration zone 2 2 b and dehumidifies the desiccant until it reaches state F almost along the isenthalpy line.
  • the air in state F is further introduced into the vaporizing humidifier 26, where the water collected in the evaporator 36 is evaporated and the humidity rises to become air in state G, which is exhausted to the outdoor space.
  • the water collected by dehumidifying the supplied processing air is absorbed by the indoor air to be exhausted and discharged to the outside, so that it is time and effort to drain the dehumidified water. Can be omitted.
  • the device dew point temperature required for the state B can be high. In other words, the cooling temperature in the evaporator is higher than in the past, and frost does not grow in the evaporator, so continuous dehumidification can be achieved even at low temperatures.
  • FIG. 1 shows a humidity control apparatus according to another embodiment of the present invention.
  • An additional air path 5 4 for heat exchange with the air immediately before inflow and a heat exchanger 5 6 are provided.
  • the amount of cooling heat generated by the refrigeration cycle device 24 can be reduced, so the compressor 30 can be reduced in size and power consumption can be reduced.
  • Equipment cost, luck The rolling cost can be reduced.
  • the configuration of the heat exchanger 5 6 may be a stationary type using a cross flow heat exchange element in addition to the type in which the heat storage material rotates as shown in the figure.
  • FIG. 9 and FIG. 10 show a humidity control apparatus according to another embodiment of the present invention.
  • the difference of the apparatus of this embodiment from the embodiment of FIGS. 1 to 6 is as follows.
  • the evaporator 3 6 and the condenser 3 2 constituting the refrigeration cycle apparatus 2 4 are of the same type (evaporation Z condenser).
  • a four-way switching valve 58 is provided for selecting to which refrigerant the compressor 30 is supplied. That is, the evaporation Z condenser to which the refrigerant from the compressor 30 is supplied becomes the condenser 32, and the air path in which it is the second air path 18 is the refrigerant from the compressor 30. Vaporization is not supplied.
  • the Z condenser is the evaporator 36, and the air path it is in is the first air path 16.
  • two vaporizing humidifiers 26 are provided on the downstream side of the desiccant rotor 22 in each of the air paths 16 and 18, and only the one in the second air path 18 is used. Will pause. Therefore, the humidification operation in winter and the dehumidification operation in summer can be switched by operating the four-way switching valve 58 provided in the refrigerant flow path 38, and the connection change of the duct 12 is not necessary.
  • the condensed water collected by the evaporator 36 is filtered, filtered for sterilizing, the sterilizing device 60, and the water pipe 6 2 and pump for guiding the condensed water to this
  • a water circulation path 6 6 having 6 4 is provided.
  • this is used in the humidifying operation state, and the condensed water collected by the evaporator 36 is filtered and sterilized by the filtration sterilizer 60, and the water circulation is performed. Water is supplied to the vaporizing humidifier 26 through the ring path 66. Further, in the dehumidifying operation, as shown in FIG. 10, neither the filtration / sterilization device 60 nor the water circulation path 6 6 is used, and the vaporizing humidifier 26 is connected to the condensed water from the evaporator 36 located above. Is fed by gravity.
  • the air intake port 1 8a of the second air path 18 during humidification operation the air intake 16 6a of the first air path 16 may be opened indoors instead of outdoors.
  • an amount of dry outside air corresponding to the amount exhausted from the first air path 16 a flows into the room from the ventilation port (not shown), but the inlet of the second air path 18 Since the air humidity of 1 8 a is high, the absolute humidity of the supply air is also high, and humidification is performed in the room in a form that enhances the humidification effect, thus supplementing the drying action due to the draft.
  • the air humidity at the inlet 16a of the first air path 16 is low, so the absolute humidity of the air supply is low, and the room is dehumidified with a high dehumidifying effect. It compensates for the inflow of moisture by the draft. This method requires only one vent and is economical and convenient.
  • FIG. 11 and FIG. 12 show a humidity control apparatus according to a modification of FIG. 9 and FIG.
  • the water circulation path 6 6 is provided with a water tank 6 8 for storing the collected condensed water.
  • the water tank 68 is provided with a normal water supply pipe 70 a for supplying water overflowed from the top and a start water supply pipe 70 b for supplying water from the bottom via the on-off valve 72. Yes.
  • this water tank 6 8 is used during heating and humidifying operation in winter.
  • the water stored by opening the on-off valve 72 is supplied to the humidifier 26 from the bottom of the tank.
  • the water overflowed from the water tank 68 is supplied to the humidifier 26.
  • FIG. 13 shows a humidity control apparatus according to a modification of FIG. 9 and FIG.
  • the apparatus of this embodiment includes hot gas for guiding refrigerant gas from the outlet of the refrigerant flow path 3 8 of the refrigeration cycle apparatus 2 4 to the path connecting the expansion valve 3 4 and the evaporator 3 6 from the compressor 3 0 outlet.
  • a bypass path 74 and a hot gas bypass valve 76 are provided. And in the heating and humidification operation in winter, opening the hot gas bypass valve 76 at the start when the room temperature and humidity are low can alleviate the temperature drop of the evaporator 36 and prevent freezing and condensation. Can maintain the heat dissipation by the desiccant and maintain the humidifying effect of the desiccant.

Abstract

A humidity controller rendering water supply and drainage unnecessary. The humidity controller is characterized by including a desiccant rotor of honeycomb form carrying a desiccant capable of adsorbing moisture of air and desorbing the moisture into the air, the desiccant rotor partitioned into an adsorption zone for moisture adsorption and a regeneration zone for moisture desorption, the air flowing through the adsorption zone and the air flowing through the regeneration zone being in substantially countercurrent relationship; a refrigeration cycle consisting of a compressor, an evaporator and a condenser; a first air channel for causing the air introduced in system to flow to the evaporator of the refrigeration cycle so as to perform cooling and dehumidification and thus recover moisture from the air and subsequently flow to the adsorption zone of the desiccant rotor so as to perform adsorption and dehumidification; and a second air channel for causing the air introduced in system to flow to the condenser of the refrigeration cycle so as to heat the same and subsequently flow to the regeneration zone of the desiccant rotor so as to perform desorption and humidification, the resultant air loaded with the moisture recovered in the first air channel to thereby perform further humidification.

Description

明 細 書  Specification
湿度調節装置  Humidity control device
技術分野  Technical field
[0001 ] 本発明は、 湿度調節装置に係り、 特に加湿と除湿が切替可能な湿度調節装 置に関する。  [0001] The present invention relates to a humidity control apparatus, and more particularly to a humidity control apparatus capable of switching between humidification and dehumidification.
背景技術  Background art
[0002] 空調を行う場合、 空気が乾燥する冬には、 処理空気 (室内空気や外気) に 水分を加えて蒸発させ加湿する加湿器が使われ、 空気湿度が高くなる夏の雨 季ゃ冬の豪雪時には、 処理空気を蒸発器で冷却除湿し、 凝縮器で再熱して空 調空間に供給する除湿機が使われる。 これらは、 通常、 それぞれ別々の装置 が使用されていた。  [0002] When air conditioning is performed, in the winter when the air is dry, humidifiers are used to add moisture to the treated air (indoor air or outside air) to evaporate and humidify the summer. During heavy snowfall, a dehumidifier is used that cools and dehumidifies the processing air with an evaporator, reheats it with a condenser, and supplies it to the air conditioning space. Each of these usually used separate equipment.
[0003] しかしながら、 このような加湿器は水の補給が必要であり、 多くの部屋毎 に設置されている場合などは、 給水作業に大きな手間が掛かっていた。 また 、 水分の蒸発に電気ヒーターが使われ、 エネルギー効率が悪かった。 さらに 、 夏になると収納する必要があった。  [0003] However, such a humidifier needs to be replenished with water, and when it is installed in many rooms, it takes a lot of work to supply water. In addition, the electric heater was used to evaporate the water, and the energy efficiency was poor. In addition, it was necessary to store in the summer.
[0004] 一方、 除湿機については、 除湿した水を定期的に排水する必要があり、 排 水作業に手間が掛かっていた。 さらに、 豪雪地以外では冬になると収納する 必要があった。 また、 夏季以外で室温が低い時、 蒸発器に霜が成長し、 霜取 りが必要になるため、 連続運転が不可能であった。  [0004] On the other hand, with respect to the dehumidifier, it was necessary to drain the dehumidified water periodically, and it took time and effort to drain the water. In addition, it was necessary to store in winter except in heavy snowy areas. In addition, when the room temperature is low except in summer, frost grows in the evaporator and defrosting is necessary, so continuous operation is impossible.
[0005] これに対して、 特許文献 1には、 夏冬兼用の湿度調節装置が記載されてい る。 しかしながら、 この装置では、 取り入れる外気の導入経路と室内空気の 排気経路に、 夏冬でそれぞれ使用される異なる装置が設置されており、 実質 的に 2つの装置が設置されているのと変わらず、 コス卜低下や収納不要であ る等の利点は少なく、 水の補給も必要であった。  [0005] On the other hand, Patent Document 1 describes a humidity control apparatus for both summer and winter. However, in this device, different devices used in summer and winter are installed in the outside air intake route and the indoor air exhaust route, respectively, which is essentially the same as two devices installed. There were few advantages such as cost reduction and no storage required, and water supply was also necessary.
[0006] 特許文献 1 :特表 2 0 0 3— 5 3 1 3 5 4号公報  [0006] Patent Document 1: Special Table 2 0 0 3— 5 3 1 3 5 4
発明の開示  Disclosure of the invention
発明が解決しょうとする課題 [0007] 本発明は、 前記事情に鑑みて為されたもので、 1つの目的は、 給水が不要 な湿度調節装置を提供することである。 また、 他の目的は、 排水が不要な湿 度調節装置を提供することである。 さらに他の目的は、 加湿と除湿が切替可 能な湿度調節装置を提供することである。 Problems to be solved by the invention [0007] The present invention has been made in view of the above circumstances, and one object is to provide a humidity control device that does not require water supply. Another object is to provide a humidity control device that does not require drainage. Still another object is to provide a humidity control device that can switch between humidification and dehumidification.
課題を解決するための手段  Means for solving the problem
[0008] 前記目的を達成するために、 本発明の湿度調節装置は、 空気中の水分を吸 着し、 かつ空気中に水分を脱着できるデシカントが担持されたハニカム状の デシカントロータであって、 水分を吸着する吸着ゾーンと水分を脱着する再 生ゾーンとに仕切られており、 吸着ゾーンを流れる空気と再生ゾーンを流れ る空気とがほぼ対向流をなすデシカントロータと、 圧縮機と蒸発器と凝縮器 とからなる冷凍サイクルと、 システムに導入した空気を、 冷凍サイクルの蒸 発器に流して冷却除湿して空気中から水分を回収し、 次いで前記デシカント ロータの吸着ゾーンに流して吸着除湿させる第 1の空気経路と、 システムに 導入した空気を、 冷凍サイクルの凝縮器に流して加熱し、 次いでデシカント ロータの再生ゾーンに流して脱着加湿させた後、 第 1の空気経路で回収した 水分を加えてさらに加湿する第 2の空気経路とを備えたことを特徴とする。  [0008] In order to achieve the above object, the humidity control apparatus of the present invention is a honeycomb-shaped desiccant rotor carrying a desiccant that adsorbs moisture in the air and that can desorb moisture in the air, It is divided into an adsorption zone that adsorbs moisture and a regeneration zone that desorbs moisture, and a desiccant rotor in which the air flowing through the adsorption zone and the air flowing through the regeneration zone are almost counterflowing, a compressor and an evaporator The refrigeration cycle consisting of a condenser and the air introduced into the system are flowed to the evaporator of the refrigeration cycle to cool and dehumidify to collect moisture from the air, and then flow to the adsorption zone of the desiccant rotor for adsorption and dehumidification The first air path and the air introduced into the system flow to the condenser of the refrigeration cycle to be heated, and then flow to the regeneration zone of the desiccant rotor for desorption and humidification. After, characterized in that a second air path for further humidified by addition of water recovered in the first air path.
[0009] この発明においては、 第 1の空気経路中を流れる空気中の水分が、 冷凍サ ィクルの蒸発器において回収され、 第 2の空気経路を流れる空気の加湿に用 いられる。 それぞれの空気経路においては、 冷凍サイクルとデシカントロー タの組合せによリ、 効率の良い除湿および加湿が行われる。  [0009] In the present invention, moisture in the air flowing in the first air path is recovered in the evaporator of the refrigeration cycle and used for humidifying the air flowing in the second air path. In each air path, efficient dehumidification and humidification are performed by combining the refrigeration cycle and the desiccant rotor.
[0010] 本発明の湿度調節装置の一つの好ましい実施態様では、 加湿運転時に第 1 の空気経路に室内からの排気を導く。  In one preferred embodiment of the humidity control apparatus of the present invention, exhaust from the room is guided to the first air path during the humidification operation.
この実施態様においては、 第 1の空気経路に室内からの排気を導き、 水分 を回収した後、 第 2の空気経路から導入される空気の加湿に用いる。 これに より定期的に水を補給する必要がなくなる。  In this embodiment, exhaust from the room is guided to the first air path, and after moisture is collected, it is used for humidifying the air introduced from the second air path. This eliminates the need to replenish water regularly.
[0011 ] 本発明の湿度調節装置の別の好ましい実施態様では、 除湿運転時に第 2の 空気経路に室内からの排気を導く。  In another preferred embodiment of the humidity control apparatus of the present invention, exhaust from the room is guided to the second air path during the dehumidifying operation.
この実施態様においては、 第 1の空気経路から導入される空気を除湿し、 第 2の空気経路に室内からの排気を導いて、 その中に除去した水分を蒸発さ せて排出する。 これにより、 定期的に結露水を排水したり、 排水溝まで排水 配管を設置したりする必要がなくなる。 また冷却除湿の後にデシカントによ る吸着除湿を行うため、 従来に比べて蒸発器における冷却温度が高くて済み 、 蒸発器に霜が成長することがなくなるので、 低温でも連続除湿できる。 In this embodiment, the air introduced from the first air path is dehumidified, The exhaust from the room is guided to the second air path, and the water removed is evaporated and discharged. This eliminates the need for regular drainage of dew condensation water and installation of drainage pipes to the drainage channel. In addition, since desiccant adsorption dehumidification is performed after cooling dehumidification, the cooling temperature in the evaporator is higher than in the past, and frost does not grow in the evaporator, so that continuous dehumidification can be achieved even at low temperatures.
[0012] 本発明の湿度調節装置の他の好ましい実施態様では、 冷凍サイクルの冷媒 流動方向の切替によって、 第 1の空気経路と第 2の空気経路を入れ替える。 この実施態様においては、 冷凍サイクルの冷媒流動方向の切替によって第 1の空気経路と第 2の空気経路が入れ替えられるため、 機械的■構造的な変 更手段によらずに空気経路の変更を行うことができる。  In another preferred embodiment of the humidity control apparatus of the present invention, the first air path and the second air path are switched by switching the refrigerant flow direction of the refrigeration cycle. In this embodiment, since the first air path and the second air path are switched by switching the refrigerant flow direction in the refrigeration cycle, the air path is changed without using mechanical / structural change means. be able to.
[0013] 本発明の湿度調節装置の他の好ましい実施態様では、 第 1の空気経路の蒸 発器流入直前の空気と第 2の空気経路の凝縮器流入直前の空気とを熱交換さ せる熱交換器を設ける。  [0013] In another preferred embodiment of the humidity control apparatus of the present invention, heat that causes heat exchange between the air immediately before the inflow of the evaporator in the first air path and the air immediately before the inflow of the condenser in the second air path. Install an exchanger.
この実施態様においては、 熱交換器によって第 1の空気経路の蒸発器流入 直前の空気と第 2の空気経路の凝縮器流入直前の空気とを熱交換させること により、 回収熱を有効利用して、 エネルギー効率を向上させることができる 発明の効果  In this embodiment, the recovered heat is effectively used by heat exchange between the air immediately before the inflow of the evaporator in the first air path and the air immediately before the inflow of the condenser in the second air path by the heat exchanger. The effect of the invention that can improve the energy efficiency
[0014] 本発明によれば、 給水が不要な加湿器や、 排水が不要な除湿機を提供する ことができ、 運転時の手間が軽減した湿度調節装置を提供することができる 。 また、 第 1の空気経路と第 2の空気経路の切替により、 加湿と除湿が切替 可能な湿度調節装置を提供することができる。  [0014] According to the present invention, it is possible to provide a humidifier that does not require water supply or a dehumidifier that does not require drainage, and can provide a humidity control device that reduces labor during operation. Further, it is possible to provide a humidity control device that can switch between humidification and dehumidification by switching between the first air path and the second air path.
図面の簡単な説明  Brief Description of Drawings
[0015] [図 1 ]本発明の第 1の実施の形態の湿度調節装置の本体部の構成を示す図であ る。  FIG. 1 is a diagram showing a configuration of a main body portion of a humidity control apparatus according to a first embodiment of the present invention.
[図 2]本発明の第 1の実施の形態のダク卜接続部の構成を示す図である。  [Fig. 2] Fig. 2 is a diagram showing a configuration of a duct connection portion according to the first embodiment of the present invention.
[図 3]第 1の実施の形態の湿度調節装置の 1つの動作態様を示す図である。  FIG. 3 is a diagram showing one operation mode of the humidity control apparatus of the first embodiment.
[図 4]図 3の湿度調節装置の動作を説明する湿リ空気線図である。 [図 5]第 1の実施の形態の湿度調節装置の他の動作態様を示す図である。 FIG. 4 is a wet air diagram illustrating the operation of the humidity control apparatus of FIG. FIG. 5 is a diagram showing another operation mode of the humidity control apparatus according to the first embodiment.
[図 6]図 5の湿度調節装置の動作を説明する湿リ空気線図である。  FIG. 6 is a wet air diagram illustrating the operation of the humidity control apparatus of FIG.
[図 7]本発明の他の実施の形態の湿度調節装置の構成を示す図である。  FIG. 7 is a diagram showing a configuration of a humidity control apparatus according to another embodiment of the present invention.
[図 8]図 7の湿度調節装置の動作を説明する湿り空気線図である。  8 is a moist air diagram illustrating the operation of the humidity control apparatus of FIG.
[図 9]本発明の他の実施の形態の湿度調節装置の構成を示す図である。  FIG. 9 is a diagram showing a configuration of a humidity control apparatus according to another embodiment of the present invention.
[図 10]図 7の湿度調節装置の他の動作態様を示す図である。  FIG. 10 is a diagram showing another operation mode of the humidity control apparatus of FIG.
[図 11 ]本発明のさらに他の実施の形態の湿度調節装置の構成を示す図である  FIG. 11 is a diagram showing a configuration of a humidity control apparatus according to still another embodiment of the present invention.
[図 12]図 1 1の湿度調節装置の他の動作態様を示す図である。 FIG. 12 is a diagram showing another operation mode of the humidity control apparatus of FIG.
[図 13]本発明のさらに他の実施の形態の湿度調節装置の構成を示す図である 符号の説明  FIG. 13 is a diagram showing a configuration of a humidity control apparatus according to still another embodiment of the present invention.
1 0 本体部  1 0 Main unit
1 2 ダク卜  1 2 Duc
1 4 フレーム  1 4 frames
1 6 第 1の空気経路  1 6 First air path
1 8 第 2の空気経路  1 8 Second air path
1 6 , 1 8 空気経路  1 6, 1 8 Air path
1 6 a , 1 8 a λ Ρ  1 6 a, 1 8 a λ Ρ
1 6 b , 1 8 b 出口  1 6 b, 1 8 b Exit
2 0 ファン (送風機)  2 0 Fan (Blower)
2 2 デシカントロータ  2 2 Desiccant rotor
2 2 a 吸着ゾーン  2 2 a Adsorption zone
2 2 b 再生ゾーン  2 2 b Playback zone
2 4 冷凍サイクル装置  2 4 Refrigeration cycle equipment
2 6 気化式加湿器  2 6 Vaporizing humidifier
2 8 仕切壁  2 8 Partition wall
3 0 圧縮機 3 2 凝縮器 3 0 Compressor 3 2 Condenser
3 4 膨張弁  3 4 Expansion valve
3 6 蒸発器  3 6 Evaporator
3 8 冷媒流路  3 8 Refrigerant flow path
4 0 貯水容器  4 0 Water storage container
4 1 給水管 4 1 Water supply pipe
4 2 流水部材  4 2 Flowing material
4 4 貯水容器 4 4 Water storage container
4 6 壁 4 6 Wall
4 8, 5 0 通気口  4 8, 5 0 Vent
5 2 通気口  5 2 Vent
5 4 追加空気経路  5 4 Additional air path
5 6 熱交換器 5 6 Heat exchanger
5 8 切替弁  5 8 Switching valve
6 0 濾過 '殺菌装置  6 0 Filtration 'Sterilizer
6 2 水配管  6 2 Water piping
6 4 ポンプ 6 4 Pump
6 6 水循環経路  6 6 Water cycle
6 8 水タンク 6 8 Water tank
7 0 a 通常給水配管 7 0 a Normal water supply piping
7 0 b 始動給水配管  7 0 b Start water supply piping
7 2 開閉弁 7 2 On-off valve
7 4 ホットガスバイパス経路  7 4 Hot gas bypass route
7 6 ホットガスバイパス弁  7 6 Hot gas bypass valve
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
以下、 図面を参照して本発明の実施の形態を説明する。  Hereinafter, embodiments of the present invention will be described with reference to the drawings.
図 1および図 2は、 本発明の 1つの実施の形態の湿度調節装置を示すもの で、 新鮮な外気を空調処理して室内に導入する換気型システムとして採用さ れ、 湿度調節装置の本体部 1 0と、 その空気経路を室内空間又は室外空間と 切替可能に連絡するダク卜 1 2とを有している。 FIG. 1 and FIG. 2 show a humidity control apparatus according to one embodiment of the present invention, which is adopted as a ventilated system that air-conditions fresh outside air and introduces it into the room. The main body 10 of the humidity controller and a duct 12 that communicates the air path with the indoor space or the outdoor space in a switchable manner.
[0018] 図 1に詳細に示す本体部 1 0は、 フレーム 1 4内に、 導入した被処理空気 を冷却除湿する第 1の空気経路 1 6と、 第 1の空気経路 1 6の空気から除去 した水分を用いて被処理空気を加湿する第 2の空気経路 1 8とが構築されて いる。 これらの空気経路 1 6, 1 8は少なくとも一部が隣接して平行配置さ れ、 空気が対向して流れるように、 各空気経路 1 6, 1 8の所定箇所にファ ン (送風機) 2 0が設けられている。 これらの第 1の空気経路 1 6と第 2の 空気経路 1 8の間には、 水分を移動させる第 1の手段であるデシカントロー タ 2 2と、 第 2の手段である冷凍サイクル装置 2 4および気化式加湿器 2 6 とが設けられている。 この実施の形態では、 第 1の空気経路 1 6が第 2の空 気経路 1 8の上側に設置されている。 これらの空気経路 1 6, 1 8には、 必 要に応じてフィルタ (図示略) が設けられている。  [0018] The main body section 10 shown in detail in FIG. 1 is removed from the air in the first air path 16 and the first air path 16 that cools and dehumidifies the introduced air to be treated in the frame 14 A second air path 18 is constructed to humidify the air to be treated using the moisture. These air paths 1 6 and 1 8 are at least partially adjacent and arranged in parallel, and fans (blowers) 2 0 are provided at predetermined locations in the air paths 1 6 and 1 8 so that the air flows oppositely. Is provided. Between the first air path 16 and the second air path 18, a desiccant rotor 2 2 as a first means for moving moisture, and a refrigeration cycle apparatus 2 4 as a second means. And a vaporizing humidifier 2 6. In this embodiment, the first air path 16 is installed above the second air path 18. These air paths 16 and 18 are provided with filters (not shown) as necessary.
[0019] デシカントロータ 2 2の収容部は、 第 1の空気経路 1 6と第 2の空気経路  [0019] The accommodating portion of the desiccant rotor 2 2 includes the first air path 16 and the second air path.
1 8の断面がそれぞれ半円形で隣接し、 全体として円形となっている。 そし て、 その間の仕切壁 2 8がデシカントロータ 2 2の断面に相当する大きさで 切り欠かれており、 ここにデシカントロータ 2 2が 2つの空気経路 1 6, 1 8を遮るように配置されている。 デシカントロータ 2 2は、 空気中の水分を 吸着し、 かつ空気中に水分を脱着できるデシカントが担持されたハニカム状 のロータであって、 図示しない回転駆動機構によって各部が 2つの空気経路 1 6, 1 8を交互に移動するように軸線 Xの周りに所定速度で回転させられ る。 第 1の空気経路 1 6中のデシカントロータ 2 2の部分が空気から水分を 吸着する吸着ゾーン 2 2 aを構成し、 第 2の空気経路 1 8中のデシカント口 ータ 2 2の部分がデシカントロータ 2 2から水分を脱着する再生ゾーン 2 2 bを構成する。  Each of the eighteen cross-sections is semicircular and adjacent to each other, and is generally circular. The partition wall 28 between them is cut out in a size corresponding to the cross section of the desiccant rotor 2 2, and the desiccant rotor 2 2 is disposed so as to block the two air paths 1 6 and 1 8. ing. The desiccant rotor 22 is a honeycomb-like rotor carrying a desiccant capable of adsorbing moisture in the air and desorbing moisture in the air, and each part has two air paths 16, by a rotary drive mechanism (not shown). 1 8 Rotated around axis X at a predetermined speed so as to move alternately. The desiccant rotor 2 2 in the first air path 1 6 forms an adsorption zone 2 2 a that adsorbs moisture from the air, and the desiccant port 2 2 in the second air path 1 8 is the desiccant. A regeneration zone 2 2 b for desorbing moisture from the rotor 2 2 is formed.
[0020] 冷凍サイクル装置 2 4は、 この例では圧縮機 3 0、 凝縮器 3 2、 膨張弁 3 4および蒸発器 3 6とこれらを結ぶ冷媒流路 3 8とからなる蒸気圧縮式冷凍 サイクルである。 空気の冷却器となる蒸発器 3 6と加熱器となる凝縮器 3 2 は、 それぞれ第 1の空気経路 1 6および第 2の空気経路 1 8のデシカント口 ータ 2 2より上流側に配置されている。 蒸発器 3 6の下側には冷却された空 気から結露した水分を受けるための貯水容器 4 0が設けられている。 In this example, the refrigeration cycle apparatus 24 is a vapor compression refrigeration cycle comprising a compressor 30, a condenser 3 2, an expansion valve 3 4, an evaporator 3 6, and a refrigerant flow path 3 8 connecting them. is there. Evaporator as air cooler 3 6 and condenser as heater 3 2 Are arranged upstream of the desiccant port 2 2 of the first air path 16 and the second air path 18, respectively. A water storage container 40 is provided below the evaporator 36 to receive moisture condensed from the cooled air.
[0021 ] 気化式加湿器 2 6は、 第 2の空気経路 1 8のデシカントロータ 2 2より下 流側に配置されており、 ほぼ蒸発器 3 6の下に位置している。 気化式加湿器 2 6は、 蒸発器 3 6の貯水容器 4 0に溜められた水を給水管 4 1を介して第 2の空気経路 1 8中に設置した流水部材 4 2に導いて、 気流中に水を蒸発さ せて加湿するものである。 流水部材 4 2は、 水を比表面積が大きい状態で流 すために、 線状材を平板状あるいはバルク状に集合させたり、 多孔質体を用 いたりしている。 流水部材 4 2の下側にも、 未蒸発の水分を受ける貯水容器 4 4が設けられており、 例えば、 これに水センサが設置されて、 その警報に よってこれへの給水量を調整したりすることができる。 また流水部材 4 2は 貯水容器 4 0の底部に接触させて、 毛細管現象により貯水容器 4 0に水が貯 まっている間、 継続的に加湿作用を維持するように構成してもよい。  The vaporizing humidifier 26 is disposed on the downstream side of the desiccant rotor 2 2 in the second air path 18, and is located substantially below the evaporator 36. Vaporizing humidifier 26 is a device that guides the water stored in water storage container 40 of evaporator 36 to water-flowing member 42 installed in second air path 18 via water supply pipe 41. It evaporates the water and humidifies it. In the flowing water member 42, in order to flow water in a state where the specific surface area is large, linear members are aggregated in a flat plate shape or a bulk shape, or a porous material is used. A water storage container 4 4 that receives un-evaporated water is also provided below the flowing water member 4 2 .For example, a water sensor is installed in this container, and the amount of water supplied to it is adjusted by an alarm. can do. Further, the flowing water member 42 may be brought into contact with the bottom of the water storage container 40 so as to continuously maintain the humidifying action while water is stored in the water storage container 40 by capillary action.
[0022] 被空調空間を構成する部屋の壁 4 6には、 図 2 ( b ) に示すように 2つの 通気口 4 8, 5 0が設けられており、 一方が空気取入口、 他方が排気口とな る。 この実施の形態では、 図 2 ( a ) に示すように、 本体部 1 0は 2つの空 気経路 1 6, 1 8が壁に平行になるように配置され、 各空気経路 1 6, 1 8 の出入口 1 6 a, 1 6 b , 1 8 a , 1 8 bは、 側面に開口している。 そして 、 空気取入口又は排気口となる 2つの通気口 4 8, 5 2は、 入口 1 6 a, 出 口 1 8 bとダク卜 1 2を介して接続するようになっている。 ダク卜は夏と冬 で接続を変えられるように、 フレキシブルなものが好ましい。 なお、 ダクト 1 2の接続を変える方式の替わりに、 固定したダク卜 1 2内にダンバを設け てこれの開閉で経路接続を切り替えるようにしてもよい。  [0022] As shown in Fig. 2 (b), the room wall 46 constituting the air-conditioned space is provided with two vents 48, 50, one of which is an air intake and the other is an exhaust. Mouth. In this embodiment, as shown in FIG. 2 (a), the main body 10 is arranged so that the two air paths 16 and 18 are parallel to the wall, and the air paths 16 and 18 are provided. The entrances and exits 16a, 16b, 18a and 18b are open to the side. The two vents 48, 52, which serve as air intakes or exhausts, are connected to the inlet 16a, the outlet 18b and the duct 卜 12. Ducks should be flexible so that connections can be changed between summer and winter. Instead of the method of changing the connection of the duct 12, a damper may be provided in the fixed duct 12 and the path connection may be switched by opening and closing the damper.
[0023] 上記のように構成した湿度調節装置の動作を説明する。 図 3は、 おもに冬 季暖房時に室内の加湿運転を行うためにダク卜 1 2を接続した状態を示すも ので、 図 2において示した場合と同じである。 すなわち、 第 1の空気経路 1 6の入口 1 6 aは室内に開口し、 出口 1 6 bはダク卜 1 2および部屋の通気 口 4 8を介して室外に開口している。 一方、 第 2の空気経路 1 8の入口 1 8 aはダクト 1 2および部屋の他の通気口 5 0を介して室外に開口し、 出口 1 8 bは室内に開口している。 [0023] The operation of the humidity control apparatus configured as described above will be described. Fig. 3 shows the state where the duct 卜 12 is connected to perform indoor humidification operation mainly during winter heating, and is the same as the case shown in Fig. 2. That is, the inlet 16a of the first air passage 16 opens into the room, and the outlet 16b passes through the duct 1 2 and the room It opens to the outside through the mouth 48. On the other hand, the inlet 18 a of the second air path 18 opens to the outside through the duct 12 and the other vent 50 in the room, and the outlet 18 b opens to the room.
[0024] このように室内加湿運転用に接続された湿度調節装置の作用を、 図 4の湿 リ空気線図を参照しつつ説明する。 図 4において、 室内空気は暖房かつ加湿 されており、 比較的高温高湿度の状態 Aにある。 これが第 1の空気経路 1 6 に導入されて、 冷凍サイクル装置 2 4の蒸発器 3 6において顕熱比 (S H F ) で冷却され、 状態 Bに至る間に水分を放出し、 これは蒸発器 3 6の下の貯 水容器 4 0に回収される。 この空気はさらにデシカントロータ 2 2の吸着ゾ ーン 2 2 aにおいてデシカントに水分を吸着され、 ほぼ等ェンタルピー線に 沿って状態 Cに至るまで除湿される。 除湿された空気はダク卜 1 2、 通気口 4 8を介して室外空間に排気される。 この状態で絶対湿度が外気よりも低下 しているので、 室内から室外空間に空気中の水分 (湿気) が排出される事態 が回避される。 [0024] The operation of the humidity control apparatus connected for indoor humidification operation will be described with reference to the humid air diagram of FIG. In Fig. 4, the indoor air is heated and humidified, and is in a state A of relatively high temperature and high humidity. This is introduced into the first air path 1 6, cooled at the sensible heat ratio (SHF) in the evaporator 3 6 of the refrigeration cycle device 2 4, and releases water during the state B, which is Recovered in storage container 40 under 6. This air is further adsorbed by the desiccant in the adsorption zone 22a of the desiccant rotor 22 and dehumidified until it reaches the state C substantially along the isenthalpy line. The dehumidified air is exhausted to the outdoor space through the duct 1 2 and the vent 4 8. Since the absolute humidity is lower than the outside air in this state, the situation where moisture in the air (humidity) is discharged from the room to the outdoor space is avoided.
[0025] 一方、 第 2の空気経路 1 8に通気口 5 0、 ダクト 1 2を介して導入された 室外空気は、 低温低湿度の状態 Dにあり、 冷凍サイクル装置 2 4の凝縮器 3 2において加熱されて高温低湿度の再生空気 (状態 E ) となり、 デシカント の再生ゾーン 2 2 bに導入されて、 ほぼ等ェンタルピー線に沿って状態「に 至るまでデシカントの水分を脱着し、 自らは加湿される。 状態 Fの空気はさ らに気化式加湿器 2 6に導入されて、 蒸発器 3 6で回収された水を用いて加 湿された状態 Gの空気となり、 室内空間に供給される。 このように、 この実 施の形態の湿度調節装置では、 排気される室内空気から回収した水を、 導入 される処理空気の加湿に用いるので、 加湿のための水の補給が不要であり、 メンテナンスの手間を省くことができる。  [0025] On the other hand, the outdoor air introduced into the second air path 18 via the vent 50 and duct 12 is in the low temperature and low humidity state D, and the condenser 3 2 of the refrigeration cycle apparatus 2 4 Is heated to high temperature and low humidity regenerated air (state E) and introduced into the desiccant regeneration zone 2 2 b, almost dehumidifying the desiccant until it reaches the state “ The air in state F is further introduced into the vaporizing humidifier 26 and becomes air in the state G, which is humidified using the water collected in the evaporator 36, and is supplied to the indoor space. As described above, in the humidity control apparatus of this embodiment, water collected from the exhausted indoor air is used for humidification of the introduced processing air, so that it is not necessary to supply water for humidification. Maintenance work can be saved.
[0026] 次に、 おもに夏季冷房時に行う除湿運転の場合の動作を、 図 5を参照して 説明する。 この図のダクト 1 2接続は、 図 2 ( a ) と逆であり、 第 1の空気 経路 1 6の入口 1 6 aをダク卜 1 2および部屋の通気口 4 8を介して室外に 開口させ、 出口 1 6 bを室内に開口させているとともに、 第 2の空気経路 1 8の入口 1 8 aを室内に開口させ、 出口 1 8 bをダク卜 1 2および部屋の他 の通気口 5 0を介して室外に開口させている。 Next, the operation in the dehumidifying operation performed mainly during the summer cooling will be described with reference to FIG. The duct 1 2 connection in this figure is the reverse of Figure 2 (a), and the inlet 16 of the first air path 16 is opened to the outside through the duct 2 1 2 and the air vent 48 of the room. The outlet 1 6 b is opened indoors and the second air path 1 The eight inlets 18 a are opened to the room, and the outlet 18 b is opened to the outside through the duct 12 and the other vent 50 in the room.
[0027] このように室内除湿運転用に接続された湿度調節装置の動作を図 6を参照 して説明する。 高温多湿の外部空気 (状態 A) は第 1の空気経路 1 6に導入 されて、 冷凍サイクル装置 2 4の蒸発器 3 6において冷却され、 水分を放出 し (状態 B ) 、 放出された水分は、 蒸発器 3 6の下の貯水容器 4 0に回収さ れる。 状態 Bの空気はさらにデシカントロータ 2 2の吸着ゾーン 2 2 aにお いてデシカントに水分を吸着され、 ほぼ等ェンタルピー線に沿って低温低湿 度の空気となり (状態 C) 、 出口 1 6 bを介して室内空間に供給される。  [0027] The operation of the humidity control apparatus thus connected for indoor dehumidification operation will be described with reference to FIG. Hot and humid external air (state A) is introduced into the first air path 16 and cooled in the evaporator 36 of the refrigeration cycle device 24, releasing moisture (state B). The water is collected in a storage container 40 below the evaporator 36. The air in state B is further adsorbed by the desiccant in the adsorption zone 2 2a of the desiccant rotor 2 2 and becomes air of low temperature and low humidity almost along the isenthalpy line (state C), via the outlet 16b. Supplied to the indoor space.
[0028] 一方、 第 2の空気経路 1 8 aを介して導入された室内空気は、 低温低湿度 の状態 Dにあり、 冷凍サイクル装置 2 4の凝縮器 3 2において加熱されて高 温低湿度の再生空気 (状態 E ) となり、 デシカントの再生ゾーン 2 2 bに導 入されて、 ほぼ等ェンタルピー線に沿って状態 Fに至るまでデシカントの水 分を脱着し、 自らは加湿される。 状態 Fの空気はさらに気化式加湿器 2 6に 導入されて、 蒸発器 3 6で回収された水を蒸発して湿度が上昇し、 状態 Gの 空気となり、 室外空間に排気される。 このように、 この実施の形態の湿度調 節装置では、 供給される処理空気を除湿して回収した水を、 排気する室内空 気に吸収させて室外に排出するので、 除湿水を排水する手間を省くことがで きる。 また第 1の空気経路の空気は、 冷却除湿後の状態 Bからデシカントに より吸着除湿されるため、 状態 Bに必要な装置露点温度が高くて済む。 すな わち、 従来に比べて蒸発器における冷却温度が高くて済み、 蒸発器に霜が成 長することがなくなるので、 低温でも連続除湿できる。  [0028] On the other hand, the indoor air introduced through the second air path 1 8a is in a low-temperature and low-humidity state D, and is heated in the condenser 3 2 of the refrigeration cycle device 2 4 to be high-temperature and low-humidity. Regenerated air (state E) is introduced into the desiccant regeneration zone 2 2 b and dehumidifies the desiccant until it reaches state F almost along the isenthalpy line. The air in state F is further introduced into the vaporizing humidifier 26, where the water collected in the evaporator 36 is evaporated and the humidity rises to become air in state G, which is exhausted to the outdoor space. As described above, in the humidity control apparatus of this embodiment, the water collected by dehumidifying the supplied processing air is absorbed by the indoor air to be exhausted and discharged to the outside, so that it is time and effort to drain the dehumidified water. Can be omitted. In addition, since the air in the first air path is adsorbed and dehumidified by the desiccant from the state B after cooling and dehumidification, the device dew point temperature required for the state B can be high. In other words, the cooling temperature in the evaporator is higher than in the past, and frost does not grow in the evaporator, so continuous dehumidification can be achieved even at low temperatures.
[0029] 図 1は、 本発明の他の実施の形態の湿度調節装置を示すもので、 第 1の空 気経路 1 6の蒸発器 3 6流入直前の空気と第 2の空気経路 1 8の凝縮器 3 2 流入直前の空気とを熱交換させるための追加空気経路 5 4と、 熱交換器 5 6 とを設けたものである。 このように構成することにより、 図 8の湿り空気線 図で示すように、 冷凍サイクル装置 2 4による冷却熱量が少なくて済むため 、 圧縮機 3 0を小型化でき、 消費電力も少なくて済むので、 装置コスト、 運 転コストを低下させることができる。 熱交換器 5 6の構成は、 図のような蓄 熱材が回転するタイプの他、 直交流熱交換素子を用いた静止タイプでもよい [0029] FIG. 1 shows a humidity control apparatus according to another embodiment of the present invention. The evaporator 3 in the first air path 16 and the air just before the inflow 6 and the air in the second air path 18 Condenser 3 2 An additional air path 5 4 for heat exchange with the air immediately before inflow and a heat exchanger 5 6 are provided. With this configuration, as shown in the wet air line diagram of FIG. 8, the amount of cooling heat generated by the refrigeration cycle device 24 can be reduced, so the compressor 30 can be reduced in size and power consumption can be reduced. Equipment cost, luck The rolling cost can be reduced. The configuration of the heat exchanger 5 6 may be a stationary type using a cross flow heat exchange element in addition to the type in which the heat storage material rotates as shown in the figure.
[0030] 図 9および図 1 0は、 本発明の他の実施の形態の湿度調節装置を示すもの である。 この実施の形態の装置が図 1ないし図 6の実施の形態と異なる点は 、 以下のとおりである。 FIG. 9 and FIG. 10 show a humidity control apparatus according to another embodiment of the present invention. The difference of the apparatus of this embodiment from the embodiment of FIGS. 1 to 6 is as follows.
( 1 ) 冷凍サイクル装置 2 4を構成する蒸発器 3 6と凝縮器 3 2は構成が同 じ共用タイプ (蒸発 Z凝縮器) であり、 これらに冷媒を供給する冷媒流路 3 8には、 圧縮機 3 0からの冷媒をいずれに供給するか選択する 4方切替弁 5 8が設けられている。 すなわち、 圧縮機 3 0からの冷媒が供給される蒸発 Z 凝縮器が凝縮器 3 2となって、 それが有る空気経路が第 2の空気経路 1 8と なリ、 圧縮機 3 0からの冷媒が供給されない蒸発 Z凝縮器が蒸発器 3 6とな つて、 それが有る空気経路が第 1の空気経路 1 6となる。 また、 気化式加湿 器 2 6は各空気経路 1 6, 1 8のデシカントロータ 2 2の下流側に 2つが設 けられており、 第 2の空気経路 1 8にある方のみが使用され、 他方は休止す る。 従って、 冬季加湿動作と夏季除湿動作は、 冷媒流路 3 8に設けた 4方切 替弁 5 8の操作によって切り替えることができ、 ダクト 1 2の接続変更は不 要である。  (1) The evaporator 3 6 and the condenser 3 2 constituting the refrigeration cycle apparatus 2 4 are of the same type (evaporation Z condenser). A four-way switching valve 58 is provided for selecting to which refrigerant the compressor 30 is supplied. That is, the evaporation Z condenser to which the refrigerant from the compressor 30 is supplied becomes the condenser 32, and the air path in which it is the second air path 18 is the refrigerant from the compressor 30. Vaporization is not supplied. The Z condenser is the evaporator 36, and the air path it is in is the first air path 16. In addition, two vaporizing humidifiers 26 are provided on the downstream side of the desiccant rotor 22 in each of the air paths 16 and 18, and only the one in the second air path 18 is used. Will pause. Therefore, the humidification operation in winter and the dehumidification operation in summer can be switched by operating the four-way switching valve 58 provided in the refrigerant flow path 38, and the connection change of the duct 12 is not necessary.
[0031] ( 2 ) 加湿運転時において、 蒸発器 3 6で回収された結露水を濾過■殺菌 するための濾過■殺菌装置 6 0、 およびこれに結露水を導くための水配管 6 2とポンプ 6 4を有する水循環経路 6 6が設けられている。 図示例では、 図 9に示すように、 加湿動作状態でこれが用いられるようになつており、 蒸発 器 3 6で回収された結露水は、 濾過■殺菌装置 6 0で濾過,殺菌され、 水循 環経路 6 6を介して気化式加湿器 2 6に給水される。 また、 除湿動作では、 図 1 0に示すように、 濾過■殺菌装置 6 0も水循環経路 6 6も使用せず、 気 化式加湿器 2 6には上方に位置する蒸発器 3 6から結露水が重力で給水され る。  [0031] (2) During humidification operation, the condensed water collected by the evaporator 36 is filtered, filtered for sterilizing, the sterilizing device 60, and the water pipe 6 2 and pump for guiding the condensed water to this A water circulation path 6 6 having 6 4 is provided. In the illustrated example, as shown in FIG. 9, this is used in the humidifying operation state, and the condensed water collected by the evaporator 36 is filtered and sterilized by the filtration sterilizer 60, and the water circulation is performed. Water is supplied to the vaporizing humidifier 26 through the ring path 66. Further, in the dehumidifying operation, as shown in FIG. 10, neither the filtration / sterilization device 60 nor the water circulation path 6 6 is used, and the vaporizing humidifier 26 is connected to the condensed water from the evaporator 36 located above. Is fed by gravity.
[0032] なお、 加湿運転時における第 2の空気経路 1 8の空気取入れ口 1 8 a、 お よび除湿運転時における第 1の空気経路 1 6の空気取入れ口 1 6 aは、 室外 ではなく室内に開口していても差支えない。 この場合、 加湿運転においては 、 第 1の空気経路 1 6 aから排気された量に見合う量の乾燥外気が換気口 ( 図示なし) から室内に流入するが、 第 2の空気経路 1 8の入口 1 8 aの空気 湿度が高くなるため、 給気の絶対湿度も高くなリ、 加湿効果が高まる形で室 内への加湿が行われ、 隙間風による乾燥作用を補う。 また除湿運転時におい ては、 第 1の空気経路 1 6の入口 1 6 aの空気湿度が低くなるため、 給気の 絶対湿度も低くなリ、 除湿効果が高まる形で室内の除湿が行われ、 隙間風に よる湿気流入作用を補う。 この方式は通気口が 1箇所で済むため、 経済性、 利便性に優れる。 [0032] It should be noted that the air intake port 1 8a of the second air path 18 during humidification operation During the dehumidifying operation, the air intake 16 6a of the first air path 16 may be opened indoors instead of outdoors. In this case, in the humidification operation, an amount of dry outside air corresponding to the amount exhausted from the first air path 16 a flows into the room from the ventilation port (not shown), but the inlet of the second air path 18 Since the air humidity of 1 8 a is high, the absolute humidity of the supply air is also high, and humidification is performed in the room in a form that enhances the humidification effect, thus supplementing the drying action due to the draft. During dehumidifying operation, the air humidity at the inlet 16a of the first air path 16 is low, so the absolute humidity of the air supply is low, and the room is dehumidified with a high dehumidifying effect. It compensates for the inflow of moisture by the draft. This method requires only one vent and is economical and convenient.
[0033] 図 1 1および図 1 2は、 図 9および図 1 0の変形例の湿度調節装置を示す ものである。 この実施の形態の装置には、 水循環経路 6 6に、 回収した結露 水を蓄える水タンク 6 8が設けられている。 そして、 水タンク 6 8には、 上 部からオーバーフローさせた水を給水する通常給水配管 7 0 aと、 底部から 開閉弁 7 2を経由して給水する始動給水配管 7 0 bとが設けられている。  FIG. 11 and FIG. 12 show a humidity control apparatus according to a modification of FIG. 9 and FIG. In the apparatus of this embodiment, the water circulation path 6 6 is provided with a water tank 6 8 for storing the collected condensed water. The water tank 68 is provided with a normal water supply pipe 70 a for supplying water overflowed from the top and a start water supply pipe 70 b for supplying water from the bottom via the on-off valve 72. Yes.
[0034] この水タンク 6 8は、 図示するように冬季の暖房加湿運転時に用いるもの であって、 始動時には開閉弁 7 2を開いて蓄えていた水をタンクの底部から 加湿器 2 6に給水する。 一方、 通常運転時には水タンク 6 8からオーバーフ ローさせた水を加湿器 2 6に給水する。 これにより、 始動時に室内温度 -湿 度が低い場合でも、 加湿水源を確保して湿度の調整が早期に達成される。  [0034] As shown in the figure, this water tank 6 8 is used during heating and humidifying operation in winter. At the start, the water stored by opening the on-off valve 72 is supplied to the humidifier 26 from the bottom of the tank. To do. On the other hand, during normal operation, the water overflowed from the water tank 68 is supplied to the humidifier 26. As a result, even when the room temperature and humidity are low at the time of start-up, the humidification water source is secured and the humidity adjustment is achieved early.
[0035] 図 1 3は、 図 9および図 1 0の変形例の湿度調節装置を示すものである。  FIG. 13 shows a humidity control apparatus according to a modification of FIG. 9 and FIG.
この実施の形態の装置には、 冷凍サイクル装置 2 4の冷媒流路 3 8の圧縮機 3 0出口から膨張弁 3 4と蒸発器 3 6を結ぶ経路に冷媒ガスを導くための、 ホッ卜ガスバイパス経路 7 4とホッ卜ガスバイパス弁 7 6とが設けられてい る。 そして、 冬季の暖房加湿運転において、 室内温度,湿度が低い場合の始 動時にホッ卜ガスバイパス弁 7 6を開くことにより、 蒸発器 3 6の温度低下 を緩和して凍結を防止できるとともに、 凝縮器 3 2での放熱を維持し、 デシ カントの再生を促進してデシカントによる加湿作用を維持することができる The apparatus of this embodiment includes hot gas for guiding refrigerant gas from the outlet of the refrigerant flow path 3 8 of the refrigeration cycle apparatus 2 4 to the path connecting the expansion valve 3 4 and the evaporator 3 6 from the compressor 3 0 outlet. A bypass path 74 and a hot gas bypass valve 76 are provided. And in the heating and humidification operation in winter, opening the hot gas bypass valve 76 at the start when the room temperature and humidity are low can alleviate the temperature drop of the evaporator 36 and prevent freezing and condensation. Can maintain the heat dissipation by the desiccant and maintain the humidifying effect of the desiccant.
UtOOO/LOOZdT/lJd Zl 106 動0 OAV UtOOO / LOOZdT / lJd Zl 106 dynamic 0 OAV

Claims

請求の範囲 The scope of the claims
[1] 空気中の水分を吸着し、 かつ空気中に水分を脱着できるデシカントが担持 されたハニカム状のデシカントロータであって、 水分を吸着する吸着ゾーン と水分を脱着する再生ゾーンとに仕切られており、 吸着ゾーンを流れる空気 と再生ゾーンを流れる空気とがほぼ対向流をなすデシカントロータと、 圧縮機と蒸発器と凝縮器とからなる冷凍サイクルと、  [1] A honeycomb-shaped desiccant rotor carrying a desiccant that adsorbs moisture in the air and can desorb moisture in the air, and is divided into an adsorption zone that adsorbs moisture and a regeneration zone that desorbs moisture. A desiccant rotor in which the air flowing through the adsorption zone and the air flowing through the regeneration zone form a counterflow, a refrigeration cycle including a compressor, an evaporator, and a condenser,
システムに導入した空気を、 冷凍サイクルの蒸発器に流して冷却除湿して 空気中から水分を回収し、 次いで前記デシカントロータの吸着ゾーンに流し て吸着除湿させる第 1の空気経路と、  The air introduced into the system flows into the evaporator of the refrigeration cycle, is cooled and dehumidified to collect moisture from the air, and then flows into the adsorption zone of the desiccant rotor to be adsorbed and dehumidified,
システムに導入した空気を、 冷凍サイクルの凝縮器に流して加熱し、 次い でデシカントロータの再生ゾーンに流して脱着加湿させた後、 第 1の空気経 路で回収した水分を加えてさらに加湿する第 2の空気経路と  The air introduced into the system flows through the condenser of the refrigeration cycle, heats it, then flows into the regeneration zone of the desiccant rotor, dehumidifies and humidifies, and then adds moisture recovered in the first air path to further humidify With a second air path to
を備えたことを特徴とする湿度調節装置。  A humidity control device comprising:
[2] 加湿運転時に第 1の空気経路に室内からの排気を導くことを特徴とする請 求項 1に記載の湿度調節装置。 [2] The humidity control apparatus according to claim 1, wherein exhaust from the room is guided to the first air path during the humidification operation.
[3] 除湿運転時に第 2の空気経路に室内からの排気を導くことを特徴とする請 求項 1に記載の湿度調節装置。 [3] The humidity control apparatus according to claim 1, wherein exhaust from the room is guided to the second air path during the dehumidifying operation.
[4] 冷凍サイクルの冷媒流動方向の切替によって、 第 1の空気経路と第 2の空 気経路を入れ替えることを特徴とする請求項 1乃至請求項 3のいずれかに記 載の湿度調節装置。 [4] The humidity control device according to any one of claims 1 to 3, wherein the first air path and the second air path are switched by switching the refrigerant flow direction of the refrigeration cycle.
[5] 第 1の空気経路の蒸発器流入直前の空気と第 2の空気経路の凝縮器流入直 前の空気とを熱交換させる熱交換器を設けたことを特徴とする請求項 1乃至 請求項 4のいずれかに記載の湿度調節装置。  [5] The heat exchanger for exchanging heat between the air immediately before the inflow of the evaporator in the first air path and the air immediately before the inflow of the condenser in the second air path is provided. Item 5. The humidity control device according to any one of Items 4 to 6.
PCT/JP2007/000431 2006-06-09 2007-04-20 Humidity controller WO2007141901A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006160551A JP4816267B2 (en) 2006-06-09 2006-06-09 Humidity control device
JP2006-160551 2006-06-09

Publications (1)

Publication Number Publication Date
WO2007141901A1 true WO2007141901A1 (en) 2007-12-13

Family

ID=38801170

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/000431 WO2007141901A1 (en) 2006-06-09 2007-04-20 Humidity controller

Country Status (2)

Country Link
JP (1) JP4816267B2 (en)
WO (1) WO2007141901A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009078141A1 (en) * 2007-12-18 2009-06-25 Daikin Industries, Ltd. Humidity control device
JP2009168434A (en) * 2007-12-18 2009-07-30 Sasakura Engineering Co Ltd Air conditioning equipment
CH699192A1 (en) * 2008-07-18 2010-01-29 Mentus Holding Ag Method and apparatus for the preparation of a room air to be supplied to a desired temperature and a desired humidity.
WO2011078757A1 (en) * 2009-12-21 2011-06-30 Climate Recovery Ind Ab A method and an apparatus in a ventilation system
WO2014098724A1 (en) * 2012-12-21 2014-06-26 Fläkt Woods AB Method and apparatus for defrosting of an evaporator in connection with an air handling unit
CN108151363A (en) * 2018-02-05 2018-06-12 徐生恒 Round-the-clock air energy thermal pump air conditioner system
IT202000000439A1 (en) * 2020-01-13 2021-07-13 Milano Politecnico Air humidification system
EP4022226A4 (en) * 2019-08-26 2023-06-07 Reddo Floor Solutions AB Dehumidifier apparatus

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100947616B1 (en) 2008-05-22 2010-03-15 엘지전자 주식회사 Dehumidifying air conditioner
JP5219624B2 (en) * 2008-05-26 2013-06-26 三菱電機株式会社 Heat recovery equipment
JP5258619B2 (en) * 2009-02-25 2013-08-07 三菱電機株式会社 Air conditioner
KR100943285B1 (en) 2009-06-01 2010-02-23 (주)에이티이엔지 Hybrid desiccant dehumidification apparatus and threrof control method
JP5530754B2 (en) * 2009-06-08 2014-06-25 株式会社長府製作所 Floor-mounted heat exchange type exhaust fan
JP2011043295A (en) * 2009-08-21 2011-03-03 Mitsubishi Electric Corp Air conditioner and air conditioning system
JP5068293B2 (en) * 2009-09-17 2012-11-07 三菱電機株式会社 Air conditioner
JP2011106717A (en) * 2009-11-16 2011-06-02 Mitsubishi Electric Corp Air conditioning device
CN101726058B (en) * 2009-11-20 2011-12-14 青岛海科节能工程技术有限公司 Integrated solution type dehumidifying air-conditioning device
KR101061944B1 (en) * 2010-09-17 2011-09-05 (주)에이티이엔지 Hybrid air conditioning system and control method thereof
JP5213938B2 (en) * 2010-11-15 2013-06-19 三菱電機株式会社 Humidity control apparatus and humidity control method
JP5285734B2 (en) * 2011-03-30 2013-09-11 大阪瓦斯株式会社 Air conditioning system
JP5496238B2 (en) * 2012-03-29 2014-05-21 三菱電機株式会社 Air conditioner
CN103373002A (en) * 2012-04-16 2013-10-30 深圳门德科技有限公司 Modified wet curtain paper, air purification assembly and air conditioner
KR101507140B1 (en) 2013-11-11 2015-03-31 (주) 태진금속 Hybrid dehumidifier having heat recovery system using waste heat from compressor
JP6377933B2 (en) * 2014-03-31 2018-08-22 高砂熱学工業株式会社 Outside air treatment device
JP7161650B2 (en) * 2016-08-15 2022-10-27 義夫 伊藤 Dehumidification air conditioner
JP6881578B2 (en) 2017-06-14 2021-06-02 ダイキン工業株式会社 Humidity control unit
JP7274195B2 (en) 2018-10-04 2023-05-16 国立研究開発法人産業技術総合研究所 Power transmission mechanism with overload protection mechanism
JPWO2022224384A1 (en) * 2021-04-21 2022-10-27
EP4119858A4 (en) * 2021-06-01 2023-08-30 Puresci Environmental Technology Co., Ltd Fresh air conditioning system
JP2022187736A (en) * 2021-06-08 2022-12-20 パナソニックIpマネジメント株式会社 Humidity control device
CN114383224A (en) * 2022-02-22 2022-04-22 安康泰(烟台)生命科学研究院有限公司 Intelligent life cabin indoor environment humidity control system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10176842A (en) * 1996-12-03 1998-06-30 Seibu Giken:Kk Air conditioner
JP2002081688A (en) * 2000-09-05 2002-03-22 Matsushita Electric Ind Co Ltd Ventilator
WO2003067158A1 (en) * 2002-02-06 2003-08-14 Daikin Industries, Ltd. Humidity controller

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3242527B2 (en) * 1994-05-13 2001-12-25 株式会社東洋製作所 Air conditioner
JP2005201624A (en) * 2003-12-17 2005-07-28 Mitsubishi Chemicals Corp Dehumidifying method and dehumidifier
JP2006336999A (en) * 2005-06-06 2006-12-14 Toyo Eng Works Ltd Heat pump type air conditioner

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10176842A (en) * 1996-12-03 1998-06-30 Seibu Giken:Kk Air conditioner
JP2002081688A (en) * 2000-09-05 2002-03-22 Matsushita Electric Ind Co Ltd Ventilator
WO2003067158A1 (en) * 2002-02-06 2003-08-14 Daikin Industries, Ltd. Humidity controller

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009078141A1 (en) * 2007-12-18 2009-06-25 Daikin Industries, Ltd. Humidity control device
JP2009145022A (en) * 2007-12-18 2009-07-02 Daikin Ind Ltd Humidity controller
JP2009168434A (en) * 2007-12-18 2009-07-30 Sasakura Engineering Co Ltd Air conditioning equipment
CH699192A1 (en) * 2008-07-18 2010-01-29 Mentus Holding Ag Method and apparatus for the preparation of a room air to be supplied to a desired temperature and a desired humidity.
WO2011078757A1 (en) * 2009-12-21 2011-06-30 Climate Recovery Ind Ab A method and an apparatus in a ventilation system
WO2014098724A1 (en) * 2012-12-21 2014-06-26 Fläkt Woods AB Method and apparatus for defrosting of an evaporator in connection with an air handling unit
US9423164B2 (en) 2012-12-21 2016-08-23 Fläkt Woods AB Method and apparatus for the defrosting of an evaporator in connection with an air handling unit
RU2638704C2 (en) * 2012-12-21 2017-12-15 Флакт Вудс Аб Method and device for defrosting evaporator relating to for air conditioning unit
CN108151363A (en) * 2018-02-05 2018-06-12 徐生恒 Round-the-clock air energy thermal pump air conditioner system
EP4022226A4 (en) * 2019-08-26 2023-06-07 Reddo Floor Solutions AB Dehumidifier apparatus
IT202000000439A1 (en) * 2020-01-13 2021-07-13 Milano Politecnico Air humidification system

Also Published As

Publication number Publication date
JP2007327712A (en) 2007-12-20
JP4816267B2 (en) 2011-11-16

Similar Documents

Publication Publication Date Title
JP4816267B2 (en) Humidity control device
KR101749194B1 (en) Air-conditioner capable of heating and humidity control and the method thereof
KR101782839B1 (en) Air-conditioner capable of cooling and humidity control and the method thereof
US7305849B2 (en) Sorptive heat exchanger and related cooled sorption process
JP5417213B2 (en) Indirect evaporative cooling type external air conditioning system
KR101664791B1 (en) Air-conditioner capable of ventilation and humidity control and the method thereof
JP4857901B2 (en) Desiccant air conditioning system
WO1999022182A1 (en) Dehumidifying air-conditioning system and method of operating the same
JP3992051B2 (en) Air conditioning system
CN110709643B (en) Ventilation system
BR0316773B1 (en) METHOD AND CONDITIONING SYSTEM AND DEVICE FOR SELECTING AIR HEATING, COOLING AND DEHUMIDIFICATION IN A CLOSED INSIDE
KR101061944B1 (en) Hybrid air conditioning system and control method thereof
US9303885B1 (en) Desiccant dehumidification system and method
JP5862266B2 (en) Ventilation system
CN102149976B (en) Air conditioner
JP2011089665A (en) Humidity conditioner
JP6018938B2 (en) Air conditioning system for outside air treatment
KR20190024396A (en) Air conditioner and the method thereof
KR100607108B1 (en) Air conditioning system of outer-air induction type for full season, and air conditioning method
KR20190024394A (en) Air conditioner and the method thereof
WO2004081462A1 (en) Air conditioning method using liquid desiccant
JP3933264B2 (en) Dehumidification air conditioning system
JP2005127544A (en) Air conditioning system
KR20190024395A (en) Air conditioner and the method thereof
JP2001182967A (en) Dehumidifier/air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07737088

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07737088

Country of ref document: EP

Kind code of ref document: A1