JP7161650B2 - Dehumidification air conditioner - Google Patents

Dehumidification air conditioner Download PDF

Info

Publication number
JP7161650B2
JP7161650B2 JP2016177104A JP2016177104A JP7161650B2 JP 7161650 B2 JP7161650 B2 JP 7161650B2 JP 2016177104 A JP2016177104 A JP 2016177104A JP 2016177104 A JP2016177104 A JP 2016177104A JP 7161650 B2 JP7161650 B2 JP 7161650B2
Authority
JP
Japan
Prior art keywords
temperature
air
water
cooling
heat pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016177104A
Other languages
Japanese (ja)
Other versions
JP2018028424A (en
Inventor
義夫 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2016177104A priority Critical patent/JP7161650B2/en
Publication of JP2018028424A publication Critical patent/JP2018028424A/en
Application granted granted Critical
Publication of JP7161650B2 publication Critical patent/JP7161650B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

住居、オフィス、工場、畜舎等を除加湿空調する。
除湿して、夏季の空調を行い、快適な環境を作ることが望まれているが除湿すると、従来の除湿装置では、消費電力が増加する。本件は除加湿して消費電力を減少する空調装置に関する。
Dehumidify and air-condition houses, offices, factories, livestock barns, etc.
It is desired to create a comfortable environment by dehumidifying and air-conditioning in summer, but dehumidification increases power consumption in conventional dehumidifiers. The present invention relates to an air conditioner that dehumidifies and reduces power consumption.

除湿方法の主な種類は1.冷却除湿方法 2.乾式除湿方法、3.噴霧除湿方法 4湿式除湿方法等である。The main types of dehumidification methods are 1. Cooling and dehumidifying method 2 . dry dehumidification method;3. Spray dehumidification method 4 . Wet dehumidification methods and the like.

冷却除湿方法はエアコンと称していて、夏期に25℃で運転すると、冷房と同時に同時に除湿も作動する様に工夫されており、相対湿度が60%RHになるようになっている。空気を一旦露点温度以下まで下げなければ除湿しないので、吹き出し温度を空調温度より、10℃以上に下げているため、大きなエネルギーを必要している。
又、除湿モードで、運転すると、熱交換フィンの速度が遅くするため、室温は25℃以上に上昇する。また、25℃の冷房温度運転時より、冷凍機がフル回転になるために消費電力が増大する。
一般的に使用しているエアコンは冷却除湿方式であり、25℃に設定運転をすると相対湿度が、60%RH前後又は以下になるように設計されており、快適環境になる。最近は環境庁より、省エネするために、夏季の空調温度を28℃に上げる様に要請があるが、28℃で運転すると、空気中の絶対水分量が上がり、快適環境にならないから、実行されていない場合が多い。
The cooling and dehumidification method is called an air conditioner, and when it is operated at 25°C in the summer, it is devised so that the dehumidification is operated simultaneously with the cooling, and the relative humidity is 60% RH. Since the air cannot be dehumidified unless it is once lowered to below the dew point temperature, the blowing temperature is lowered to 10° C. or higher than the air conditioning temperature, which requires a large amount of energy.
Also, when operating in the dehumidifying mode, the speed of the heat exchange fins slows down, so the room temperature rises above 25°C. In addition, power consumption increases since the refrigerator rotates at full speed from the cooling temperature operation of 25°C.
Generally used air conditioners are of the cooling and dehumidifying type, and are designed to keep the relative humidity around or below 60% RH when set to 25°C, creating a comfortable environment. Recently, the Environment Agency has requested that the air conditioning temperature be raised to 28°C in the summer in order to save energy. often not.

乾式除湿方法はシリカゲルに空気を接触させて、除湿する方法である。
この方法はシリカゲルに付着した水分を除く作業が不可欠であり、120℃以上の熱風でシリカゲルを再生しなければならない。
このためにシリカゲルへの加熱電力と、シリカゲルと接触した空気が加熱されるので、余熱を冷却するための冷却電力が必要となる。
最近、稚内の珪藻土を利用し低温度での再生が報じられているが、除湿量が少ないので、未だ実用化されていない。
The dry dehumidification method is a method of dehumidifying silica gel by contacting it with air.
In this method, it is essential to remove the water adhering to the silica gel, and the silica gel must be regenerated with hot air of 120° C. or higher.
For this reason, heating power for the silica gel and cooling power for cooling the residual heat are required because the air in contact with the silica gel is heated.
Recently, it has been reported that diatomaceous earth from Wakkanai can be used for regeneration at low temperatures, but it has not yet been put to practical use because the amount of dehumidification is small.

噴霧除湿方法は露点室の中で露点温度に冷却し水を霧状に噴霧して空気気を冷却する方法であるが、この方法は必ず再熱する必要になるので、環境試験機などの小型環境試験機などの小型空調では有効であるが、住宅などの一般空調には不向きである。 The spray dehumidification method is a method of cooling the air to the dew point temperature in the dew point chamber and spraying water in the form of a mist to cool the air. It is effective for small air conditioners such as environmental test machines, but it is not suitable for general air conditioners such as houses.

湿式除加湿方法にて、塩化リチュームや塩化カルシューム溶液を利用した湿式除加湿であり、25℃~30℃の範囲であれば大量の除湿効果ある省エネが可能あるが、塩化リチュームや塩化カルシューム溶液等の再生装置が必要なため、装置が大型化し高価であり、廃液となった、塩化リチュームや塩化カルシュームの廃液処理が必要であるので、あまり普及していない。 In the wet dehumidification method, it is a wet dehumidification method using lithium chloride or calcium chloride solution, and if it is in the range of 25 ° C to 30 ° C, it is possible to save energy with a large amount of dehumidification effect, but lithium chloride, calcium chloride solution, etc. Since a regenerating device is required, the device is large and expensive, and it is necessary to treat the waste liquid of lithium chloride and calcium chloride, so it is not widely used.

特開2009-127929 公報Japanese Patent Application Laid-Open No. 2009-127929 特開 平11-141855 公報Japanese Patent Application Laid-Open No. 11-141855 特開 平9-159253 公報Japanese Patent Application Laid-Open No. 9-159253 特開 2006-004674 公報Japanese Patent Application Laid-Open No. 2006-004674 特開 2007-225154 公報Japanese Patent Application Laid-Open No. 2007-225154

住居、オフィス、工場、畜舎等を空調する(以後一般空調と称する。)場合には温度調節はおこなわれているが湿度調節はほとんど行われていない。
その訳は消費電力が増加するからである。本発明は湿度調節をして空調の省エネを行なう。
When air-conditioning houses, offices, factories, livestock barns, etc. (hereinafter referred to as general air-conditioning), temperature control is performed, but humidity control is hardly performed.
The reason is that power consumption increases. The present invention regulates humidity to save energy in air conditioning.

外国の乾燥地帯では、気温30℃でも、相対湿度が低いので、快適に感じる。恒温恒湿室にて体感試験して真意を確認する実験を行った。エアコンの最適冷却温度は25℃運転時と、室温30℃で相対湿度が40%の比較ではエアコン25℃運転とほとんど同じであった。
20年程前に、体感温度が50人中45人は同じであると千葉大学工学部都市環境部の試験結果(論文これからの空調)がある。この時の除湿方法は乾式除湿方法で記載されていた。
In arid regions of foreign countries, even with a temperature of 30°C, the relative humidity is low and one feels comfortable. An experiment was conducted to confirm the real intention by performing a sensory test in a constant temperature and humidity room. The optimum cooling temperature of the air conditioner was almost the same as the air conditioner operating at 25°C when the room temperature was 30°C and the relative humidity was 40%.
About 20 years ago, according to the results of a test conducted by the Department of Urban Environment, Faculty of Engineering, Chiba University, 45 out of 50 people had the same sensible temperature. The dehumidification method at this time was described as a dry dehumidification method.

課題を解決する手段Means to solve problems

誰でも水で加湿することは知っていますが、水で除湿することはあまり知られていません。その実験を図3の恒温恒湿を使用して、実験をします。
密閉した恒温恒湿室に水槽を作り、水を張りみずを冷却出来る様に冷却コイルを設置して、水の温度が調節冷却出来る様にします。
「実験 1」室温30℃水温30℃(成り行き制御)にすると、相対湿度100%になる
「実験 2」室温30℃水温25℃(冷却制御)にすると、相対湿度65%になる
「実験 3」室温30℃水温20℃(冷却制御)にすると、相対湿度40%になる
以上の実験から、冷却した水が除湿したことになる。また水温が湿球温度と同じであることをも発見した。
Everyone knows about humidifying with water, but not many people know about dehumidifying with water. The experiment will be conducted using the constant temperature and humidity shown in Figure 3.
A water tank is created in a sealed constant temperature and humidity chamber, and a cooling coil is installed so that the water can be cooled and the temperature of the water can be adjusted and cooled.
"Experiment 1" When the room temperature is 30°C and the water temperature is 30°C (result control), the relative humidity becomes 100%. When the room temperature is 30° C. and the water temperature is 20° C. (cooling control), the relative humidity becomes 40%. From the above experiments, the cooled water is dehumidified. They also found that the water temperature is the same as the wet-bulb temperature.

本発明の立体水面の説明をします。冷房時はヒートポンプ8を冷房運転に選択し、ヒートポンプフィン6で室内空気冷房すると同時、プレート熱交換器5にも冷媒を送り、水温を室内温度の湿球温度より低い温度以下に冷却水を不織布2の上部から流し、室内空気と接触させて除湿を行い、煖房時はヒートポンプ8を煖房運転に選択し、ヒートポンプフィン6で室内空気を煖房すると同時に、プレート熱交換器5にも冷媒を送り、水温を室内空気の湿球温度より高い温度に加熱した水を不織布2の上部から流し、室内空気と接触させて加湿を行う空調機である。 I will explain the three-dimensional water surface of the present invention. At the time of cooling, the heat pump 8 is selected for cooling operation, and the indoor air is cooled by the heat pump fins 6. At the same time, the refrigerant is also sent to the plate heat exchanger 5 to lower the water temperature to a temperature lower than the wet bulb temperature of the room temperature. 2 to dehumidify by contacting the indoor air, select the heat pump 8 for heating operation during heating, heat the indoor air with the heat pump fins 6, and at the same time, the refrigerant is also supplied to the plate heat exchanger 5 and the water heated to a temperature higher than the wet-bulb temperature of the indoor air is supplied from above the nonwoven fabric 2 to bring it into contact with the indoor air for humidification.

発明の効果Effect of the invention

従来のエアコンでは室温25℃運転の室内相対湿度制御すると、相対湿度が60%になる様設計されているので、相対湿度が60%になる。従って室内空気のエンタルピーは(hb57)となり、吹き出し空気温度は15℃なる、従って、吹き出しエンタルピーは(hc42.7)になる、空調機の負荷はエンタルピー差は13.3である。
本発明の立体水面よる空調負荷は、室内の湿度で30℃、室内の相対湿度40%、であり、室内のエンタルピーは(RM57.9)であり、吹き出し空気の温度23.4相対湿度57%であるが、吹き出しエンタルピーは(RM52.0)であるので、本願のエンタルピー差5.9であるから。
従来のエアコンとの、エンタルピー差は13.3に対して、本願の立体水面によるエンタルピー差は5.9であるので、55.4%の省エネになる。その計算は従来方式の本発明の立体水面よる空調負荷(hb57)-(hc42.7)=13.3であり、
本発明の立体水面よる空調負荷の本発明の立体水面よる空調負荷エンタルピー差は(RM57.9)-(RC52.0)=5.9であるから、
消費エンタルピー差比較は44.6%になり、省エネ率の比較では、55.4%である吹き出し温度は立体水面温度以上(23.4℃)であっても、露点温度15℃に除湿されるので、大幅な省エネが明白である。
A conventional air conditioner is designed to have a relative humidity of 60% when the indoor relative humidity is controlled at a room temperature of 25° C., so the relative humidity is 60%. Therefore, the enthalpy of the indoor air is (hb57) , the blowing air temperature is 15°C, the blowing enthalpy is (hc42.7) , and the enthalpy difference of the load of the air conditioner is 13.3.
The air conditioning load due to the three-dimensional water surface of the present invention is an indoor humidity of 30 ° C., an indoor relative humidity of 40%, an indoor enthalpy of (RM57.9) , and a blown air temperature of 23.4 and a relative humidity of 57%. However, since the blowing enthalpy is (RM52.0) , the enthalpy difference in this application is 5.9.
Compared with the conventional air conditioner, the enthalpy difference is 13.3, and the enthalpy difference due to the three-dimensional water surface of the present application is 5.9, resulting in an energy saving of 55.4%. The calculation is the air conditioning load (hb57) - (hc42.7) = 13.3 due to the three-dimensional water surface of the present invention in the conventional method,
Since the enthalpy difference between the air conditioning load due to the three-dimensional water surface of the present invention and the air conditioning load due to the three-dimensional water surface of the present invention is (RM57.9) - (RC52.0) = 5.9 ,
The consumption enthalpy difference is 44.6%, and the energy saving ratio is 55.4%. Even if the blowing temperature is above the water surface temperature (23.4°C), the dew point is dehumidified to 15°C. So significant energy savings are evident .

本発明の実施形態に関わる一般空調に関する温湿度制御の構成を示す図である。It is a figure which shows the structure of the temperature/humidity control regarding general air conditioning in connection with embodiment of this invention. 本発明の立体水面の詳細図。Detail view of the three-dimensional water surface of the present invention. 冷却した水面で除湿が出来る事を説明するための恒温温湿器の概略図。A schematic diagram of a constant temperature/humidifier for explaining that dehumidification can be performed on the cooled water surface. 従来の一般空調に使用されている冷房装置の夏期1日の平均の湿り線図であるIt is a summer day average humidity diagram of a cooling device used for conventional general air conditioning. 本発明の立体水面で一般空調に使用された場合の冷房時の夏期1日の平均負荷の湿り線図であるFig. 2 is a wetness diagram of the average load for one day in summer during cooling when the three-dimensional water surface of the present invention is used for general air conditioning.

以下、本発明の実施形態を図1~図5を用いて説明する。
(図1)は本発明の実施形態に関る一般空調に関する温湿度制御の構成する概略的に示す図であり、本発明の立体水面の構造を示すものである。
1.水槽 2.不織布(立体水面) 3.水中ポンプ 4.送水管 5.プレート熱交換器
6.空調ファン 7.循環ファン 8.ヒートポンプ 等で構成する空調機である。
(図2)の冷房時はヒートポンプ8を冷房運転に選択し、ヒートポンプフィン6で室内空気冷房すると同時に、プレート熱交換器5にも冷媒を送り、水温を室内温度の湿球温度より低い温度以下に冷却水を不織布2の上部から流し、室内空気と接触させて除湿を行い、煖房時はヒートポンプ8を煖房運転に選択し、ヒートポンプフィン6で室内空気を煖を煖房すると同時に、プレート熱交換器5にも冷媒を送り、水温を室内空気の湿球温度より高い温度に加熱した水を不織布2の上部から流し、室内空気と接触させて加湿を行う空調機である。
(図3)は従来の技術の恒温恒湿である。水面が除加湿できることを説明するための参考図である。
1.水槽 4.冷却用ガス管 6.空調用フィン 12.循環ファン。
(図4)は従来のエアコンの空気湿り線図であり省エネを比較する為の参考図である。
(図5)は本発明の立体水面による空調を空気湿り線図で説明したものである。省エネを比較するための図である。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 5. FIG.
(FIG. 1) is a diagram schematically showing the configuration of temperature and humidity control for general air conditioning according to an embodiment of the present invention, showing the structure of a three-dimensional water surface of the present invention.
1. Water tank 2. Non-woven fabric (three-dimensional water surface) 3. Submersible pump 4 . Water pipe 5 . plate heat exchanger6. Air conditioning fan 7 . circulation fan 8 . It is an air conditioner composed of a heat pump or the like.
During cooling (FIG. 2), the heat pump 8 is selected for cooling operation, and the indoor air is cooled by the heat pump fins 6. At the same time, the refrigerant is also sent to the plate heat exchanger 5, and the water temperature is lower than the wet bulb temperature of the indoor temperature. Cooling water is flowed from the top of the nonwoven fabric 2 to dehumidify by contacting it with the indoor air, and when heating, the heat pump 8 is selected for heating operation, and the indoor air is heated by the heat pump fins 6. At the same time, the plate In this air conditioner, the refrigerant is also sent to the heat exchanger 5, and water heated to a temperature higher than the wet-bulb temperature of the indoor air is supplied from above the non-woven fabric 2 to bring it into contact with the indoor air for humidification .
(FIG. 3) is a conventional technology of constant temperature and humidity. It is a reference diagram for explaining that the water surface can be dehumidified.
1. Water tank 4. Cooling gas pipe 6 . air conditioning fins 12 . circulation fan.
(Fig. 4) is an air moisture diagram of a conventional air conditioner and is a reference diagram for comparing energy saving.
FIG. 5 is an air moisture diagram illustrating air conditioning using a three-dimensional water surface according to the present invention. It is a figure for comparing energy saving.

産業業上の利用可能性Industrial applicability

空気湿り線図[図4]に関する
夏期において、外気温度が32℃で、相対湿度50%の時、従来の空調をして室内温度25℃で相対湿度60%の快適な快適環境に制御した場合の消費エネルギーを調べるにはエンタルピー差に風量を乗じる
空気のエンタルピーは空調機入口のエンタルピーは(hb 56.0)空調機出口のエンタルピーは(hc42.7)=エンタルピー差(12.3)×風量を乗じる。
In the summer with respect to the air humidity diagram [Fig. 4], when the outside air temperature is 32°C and the relative humidity is 50%, conventional air conditioning is used to control the comfortable environment with the indoor temperature of 25°C and the relative humidity of 60%. The enthalpy of the air is the enthalpy at the air conditioner inlet (hb 56.0), and the enthalpy at the air conditioner outlet is (hc 42.7) = enthalpy difference (12.3) x air volume Multiply by

空気湿り線図[図5]に関する。
夏期において、外気温度が32℃で相対湿度50%RHの時、外気温度が32℃で相対湿度50%RHの時、本発明の立体体水面と付属した空調機で室内温度30℃で相対湿度40%の快適環境で制御した場合の消費エネルギーを調べるにはエンタルピーの差に風量を乗じる。
循環空気のエンタルピー(RM57.9空調機出口温度のエンタルピー(RC52.0)であり、エンタルピー差(5.9)×風量となる。
It relates to the air wetness diagram [Fig. 5].
In summer, when the outside temperature is 32°C and the relative humidity is 50% RH, when the outside temperature is 32°C and the relative humidity is 50% RH, the three-dimensional water surface of the present invention and the attached air conditioner are used at the indoor temperature of 30°C and the relative humidity. In order to investigate the energy consumption when controlling in a comfortable environment of 40%, the difference in enthalpy is multiplied by the air volume.
The enthalpy of the circulating air (RM57.9 ) is the enthalpy of the air conditioner outlet temperature (RC52.0), and the enthalpy difference (5.9) x air volume.

[図1]の符号
1.水槽 2.不織布(立体水面) 3.水中ポンプ 4.送水管
5.プレート熱交換器 6. ヒートポンプフィン 8.ヒートポンプ
[図2]の符号
1.水槽 2.不織布(立体水面) 4.送水管 9.不織布(立体水面)用の固定器具
[図3]の符号
1 水槽 10. 冷暖コイル 11.ヒーター 12.循環ファン
[図4]の符号
A.外気空気 M.室内空気 C.冷却器出口空気
hM.室内エンタルピー hC.冷却器出口エンタルピー
[図5]の符号
A.外気空気 M.室内空気 C.空調機出口空気
RM.室内エンタルピー RC.空調機出口エンタルピー
Symbols in FIG. 1 1. Water tank 2 . Non-woven fabric (three-dimensional water surface) 3. Submersible pump 4 . water pipe5. Plate heat exchanger 6 . 8. heat pump fins; Symbols of the heat pump [Fig. 2] 1. Water tank 2 . Non-woven fabric (three-dimensional water surface) 4. Water pipe 9 . Fixture for non-woven fabric (three-dimensional water surface)
Reference numeral 1 in FIG. 3 Water tank 10 . Cooling/heating coil 11 . heater 12 . circulation fan
Symbol A. in FIG. Ambient air M.I. Indoor air C. Chiller outlet air hM. Room enthalpy hC. The cooler exit enthalpy [Fig. 5] is labeled A. Ambient air M.I. Indoor air C. air conditioner outlet air
RM. Room enthalpy RC. Air conditioner outlet enthalpy

Claims (1)

水槽1、不織布2、水中ポンプ3、送水管4、プレート熱交換器5で構成した立体水面であって、水を連続して循環し、除加湿が出来る装置であって、立体水面は縦方向に配置した除加湿器であって、冷房時はヒートポンプ8を冷房運転に選択し、ヒートポンプフィン6で室内空気を冷房すると同時に、プレート熱交換器5にも冷媒を送り、水温を室内温度の湿球温度より低い温度以下にした冷却水を不織布2の上部から流し、室内空気と接触させて除湿を行い、
煖房時はヒートポンプ8を煖房運転に選択し、ヒートポンプフィン6で室内空気を煖房すると同時に、プレート熱交換器5にも冷媒を送り、水温を室内空気の湿球温度より高い温度以上に加熱した水を不織布2の上部から流し、室内空気と接触させて加湿を行う空調機。
A three-dimensional water surface composed of a water tank 1, a nonwoven fabric 2, a submersible pump 3, a water pipe 4, and a plate heat exchanger 5, and is a device capable of continuously circulating water and dehumidifying, and the three-dimensional water surface is vertical. At the time of cooling, the heat pump 8 is selected for cooling operation, and the heat pump fins 6 cool the indoor air, and at the same time, the refrigerant is also sent to the plate heat exchanger 5 to reduce the water temperature to the humidity of the indoor temperature. Cooling water made to a temperature lower than the ball temperature is flowed from the upper part of the nonwoven fabric 2, and the nonwoven fabric 2 is brought into contact with the room air to dehumidify,
At the time of heating, the heat pump 8 is selected for heating operation, the indoor air is heated by the heat pump fins 6, and at the same time, the refrigerant is also sent to the plate heat exchanger 5 to raise the water temperature to a temperature higher than the wet bulb temperature of the indoor air. An air conditioner that humidifies by flowing heated water from above the nonwoven fabric 2 and bringing it into contact with room air.
JP2016177104A 2016-08-15 2016-08-15 Dehumidification air conditioner Active JP7161650B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016177104A JP7161650B2 (en) 2016-08-15 2016-08-15 Dehumidification air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016177104A JP7161650B2 (en) 2016-08-15 2016-08-15 Dehumidification air conditioner

Publications (2)

Publication Number Publication Date
JP2018028424A JP2018028424A (en) 2018-02-22
JP7161650B2 true JP7161650B2 (en) 2022-10-27

Family

ID=61248988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016177104A Active JP7161650B2 (en) 2016-08-15 2016-08-15 Dehumidification air conditioner

Country Status (1)

Country Link
JP (1) JP7161650B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111023344A (en) * 2019-12-18 2020-04-17 彭香莲 Constant-humidity purifying equipment for air plant
CN114110831B (en) * 2021-11-18 2023-07-21 惠瑞净化科技(江苏)有限公司 Energy-saving full fresh air conditioning unit control system for lithium battery clean room
CN114484609B (en) * 2021-12-24 2024-03-19 青岛海尔空调器有限总公司 Method and device for controlling movable humidifier and movable humidifier

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002286250A (en) 2001-03-26 2002-10-03 Matsushita Seiko Co Ltd Desiccant air conditioning system
JP2007327712A (en) 2006-06-09 2007-12-20 Japan Exlan Co Ltd Humidity control system
JP2011163705A (en) 2010-02-12 2011-08-25 Tokyo Electric Power Co Inc:The Method and device for air humidification
JP2012154548A (en) 2011-01-25 2012-08-16 Zojirushi Corp Humidifier
JP2014206358A (en) 2013-04-16 2014-10-30 三菱電機株式会社 Air conditioner

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51111763U (en) * 1975-03-07 1976-09-09
JP3124078B2 (en) * 1991-10-04 2001-01-15 株式会社荏原シンワ Air humidifier or cooler
JP4471394B2 (en) * 2007-11-22 2010-06-02 津福工業株式会社 Air conditioner
JP2015073982A (en) * 2013-10-04 2015-04-20 ノリ・トレーディング有限会社 Direct adsorption and removal method of carbon dioxide gas and the like in air using characteristics of superfine water and natural mechanism, eliminating method and eliminated device of outdoor unit by recovering condenser exhaust heat from refrigerator and method and device capable of preventing updraft by the device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002286250A (en) 2001-03-26 2002-10-03 Matsushita Seiko Co Ltd Desiccant air conditioning system
JP2007327712A (en) 2006-06-09 2007-12-20 Japan Exlan Co Ltd Humidity control system
JP2011163705A (en) 2010-02-12 2011-08-25 Tokyo Electric Power Co Inc:The Method and device for air humidification
JP2012154548A (en) 2011-01-25 2012-08-16 Zojirushi Corp Humidifier
JP2014206358A (en) 2013-04-16 2014-10-30 三菱電機株式会社 Air conditioner

Also Published As

Publication number Publication date
JP2018028424A (en) 2018-02-22

Similar Documents

Publication Publication Date Title
JP5417213B2 (en) Indirect evaporative cooling type external air conditioning system
JP2017537293A5 (en)
JP3992051B2 (en) Air conditioning system
JPH0684822B2 (en) Indirect air conditioner
JP2007127400A (en) Desiccant air-conditioning system
CN103791592B (en) For the cool-down dehumidification method of warm and humid autonomous control system
JP2009275955A (en) Desiccant air-conditioning device
CN103090484B (en) A kind of humiture independence control air conditioner system and using method thereof
CN104676782B (en) A kind of solution humidifying air processor of multistage distributary
KR20130142259A (en) Desiccant air conditioner
CN107003078A (en) Dehumidification system and dehumanization method
CN106907809B (en) Air conditioning system combining hollow fiber membrane liquid dehumidification and evaporative cooling
JP7161650B2 (en) Dehumidification air conditioner
JP4651377B2 (en) Air conditioning system
JP6178174B2 (en) Desiccant air conditioner and desiccant air conditioner
KR101363864B1 (en) Energy-saving air conditioner
CN103140273B (en) Moisture trap and dehumanization method
CN104089341B (en) Room conditioning
JP6898138B2 (en) Desiccant type humidity control device and its control method
JP2009287911A (en) Switching type liquid desiccant apparatus
JP2011058676A (en) Air conditioning system
JP6321212B2 (en) Dehumidifying and cooling device
CN205065969U (en) Integral dehumidifier structure that adjusts temperature
CN204693891U (en) A kind of self-operated type dehumidifying humidifying air-conditioner fresh air treatment system
CN206496450U (en) Temperature control dehumidifying air-conditioning system

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161014

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190716

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20191022

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200330

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200923

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20200923

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20201106

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20201111

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20201127

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20201203

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210104

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20210608

C19 Decision taken to dismiss amendment

Free format text: JAPANESE INTERMEDIATE CODE: C19

Effective date: 20210618

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20210624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210730

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20211005

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20211013

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211101

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20220111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220127

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20220412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220502

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20220621

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20220729

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20220808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220808

R150 Certificate of patent or registration of utility model

Ref document number: 7161650

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150