JP6898138B2 - Desiccant type humidity control device and its control method - Google Patents

Desiccant type humidity control device and its control method Download PDF

Info

Publication number
JP6898138B2
JP6898138B2 JP2017073128A JP2017073128A JP6898138B2 JP 6898138 B2 JP6898138 B2 JP 6898138B2 JP 2017073128 A JP2017073128 A JP 2017073128A JP 2017073128 A JP2017073128 A JP 2017073128A JP 6898138 B2 JP6898138 B2 JP 6898138B2
Authority
JP
Japan
Prior art keywords
air
flow path
desiccant
outside air
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017073128A
Other languages
Japanese (ja)
Other versions
JP2018173255A (en
Inventor
一樹 和田
一樹 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Corp
Original Assignee
Takenaka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Corp filed Critical Takenaka Corp
Priority to JP2017073128A priority Critical patent/JP6898138B2/en
Publication of JP2018173255A publication Critical patent/JP2018173255A/en
Application granted granted Critical
Publication of JP6898138B2 publication Critical patent/JP6898138B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Central Air Conditioning (AREA)
  • Air Conditioning Control Device (AREA)

Description

本発明は、デシカント式調湿装置及びその制御方法に関するものであり、より詳細には、室内空間に給送すべき外気を乾燥剤によって除湿し且つ還気によって乾燥剤を再生する外気導入運転と、乾燥剤によって還気を除湿し且つ外気によって乾燥剤を再生する還気循環運転とを選択的に実行するデシカント式調湿装置及びその制御方法に関するものである。 The present invention relates to a desiccant type humidity control device and a control method thereof, and more specifically, an outside air introduction operation in which the outside air to be supplied to the indoor space is dehumidified by a desiccant and the desiccant is regenerated by returning air. The present invention relates to a desiccant type humidity control device that selectively executes a return air circulation operation that dehumidifies the return air with a desiccant and regenerates the desiccant with the outside air, and a control method thereof.

空調システムの新鮮外気導入系を構成する調湿装置、除湿装置又は減湿装置(以下、「調湿装置」という。)として、外気を過冷却して外気中の水分を凝縮する冷却除湿方式の調湿装置と、塩化リチウム、シリカゲル、ゼオライト、高分子収着剤等の乾燥剤(デシカント剤)によって外気中の水分を吸着又は収着(以下、「吸着」という。)するデシカント方式の調湿装置(以下、「デシカント式調湿装置」という。)とが知られている。いずれの方式の調湿装置も、外気を除湿又は減湿する外調機又は外気処理装置として機能する。 As a humidity control device, dehumidification device or dehumidification device (hereinafter referred to as "humidity control device") that constitutes a fresh outside air introduction system of an air conditioning system, a cooling dehumidification method that overcools the outside air and condenses the moisture in the outside air. A desiccant type humidity control device that adsorbs or collects moisture in the outside air (hereinafter referred to as "adsorption") with a humidity control device and a desiccant (desiccant agent) such as lithium chloride, silica gel, zeolite, or polymer sorbent. A device (hereinafter referred to as a "desiccant type humidity control device") is known. Both types of humidity control devices function as external control devices or outside air treatment devices that dehumidify or dehumidify the outside air.

一般に、冷却除湿方式の調湿装置は、外気を過冷却して顕熱及び潜熱を一体処理又は同時処理することにより、外気を除湿又は減湿(以下、「除湿」という。)する。他方、デシカント式調湿装置は、外気中の水分を乾燥剤で吸着して外気を除湿した後、外気の温度を顕熱交換器、冷温水コイル等により調温し、従って、外気の顕熱及び潜熱を分離処理又は個別処理する。このように、冷却除湿方式及びデシカント方式は、顕熱及び潜熱を一体処理するか、分離処理するかという点において基本的に相違するが、外気の顕熱及び潜熱を分離処理するデシカント式調湿装置は、熱エネルギーの効率的利用や、室内環境制御の制御性等の観点において冷却除湿方式の調湿装置よりも有利であると考えられている。 In general, a cooling / dehumidifying type humidity control device dehumidifies or dehumidifies the outside air (hereinafter referred to as "dehumidification") by supercooling the outside air and integrally treating or simultaneously treating sensible heat and latent heat. On the other hand, the desiccant type humidity control device adsorbs the moisture in the outside air with a desiccant to dehumidify the outside air, and then adjusts the temperature of the outside air with a sensible heat exchanger, a cold / hot water coil, etc. And latent heat is separated or treated individually. As described above, the cooling dehumidification method and the desiccant method are basically different in that the sensible heat and the latent heat are integrally treated or separated, but the desiccant type humidity control that separates the sensible heat and the latent heat of the outside air. The device is considered to be more advantageous than the cooling / dehumidifying type humidity control device in terms of efficient use of heat energy and controllability of indoor environment control.

デシカント式調湿装置として、空気流の方向と平行な回転中心軸線を中心に連続的又は間欠的に回転して給気及び排気に交互に接触する回転式のデシカントロータと、空気流の方向と直交する回転中心軸線を中心に回動して乾燥剤を給気及び排気に交互に接触せしめる交互切換式又は交番切換式のデシカントブロック(以下、「交互切換式デシカントブロック」という。)とが知られている。回転式のデシカントロータを備えたデシカント式調湿装置は、例えば、特許文献1(特開2003-74906号公報)に記載されており、交互切換式のデシカントブロックを備えたデシカント式調湿装置は、例えば、特許文献2(特開2001-46830号公報)に記載されている。 As a desiccant type humidity control device, a rotary desiccant rotor that rotates continuously or intermittently around a rotation center axis parallel to the direction of the air flow and alternately contacts air supply and exhaust, and an air flow direction. It is known as an alternating switching type or alternating switching type desiccant block (hereinafter referred to as "alternate switching desiccant block") that rotates around an orthogonal rotation center axis to alternately contact air supply and exhaust with a desiccant. Has been done. A desiccant type humidity control device provided with a rotary desiccant rotor is described in, for example, Patent Document 1 (Japanese Patent Laid-Open No. 2003-74906). For example, it is described in Patent Document 2 (Japanese Unexamined Patent Publication No. 2001-46830).

一般に、デシカントロータ及びデシカントブロックは、乾燥剤を担持したハニカムコアを有し、空気を流通可能な多数の狭小流路(以下、「ハニカム流路」という。)がハニカムコアによって形成される。冷房除湿時には、除湿側空気(外気)に接触して空気中の水分を吸着する乾燥剤の吸湿作用と、再生側空気(室内空気の還気)に接触して水分を脱着(放湿)する乾燥剤の放湿作用とが、交互に生じる。除湿量は、除湿側空気及び再生側空気の相対温度差が拡大するほど増大するので、普通は、空調熱源、建物又は施設の排熱、或いは、太陽熱等を利用した温水コイル等の再生用加熱器又は再生用ヒータ(以下、「再生用加熱器」という。)が再生側空気の流路に配置される。再生用加熱器は、再生側空気を予熱し、予熱後の空気は、デシカントロータ又は交互切換式デシカントブロックに供給される。 Generally, a desiccant rotor and a desiccant block have a honeycomb core carrying a desiccant, and a large number of narrow flow paths (hereinafter, referred to as “honeycomb flow paths”) capable of flowing air are formed by the honeycomb core. During cooling and dehumidification, the desiccant absorbs moisture in the air by contacting the dehumidifying side air (outside air) and desorbs (releases) moisture by contacting the regeneration side air (return air of indoor air). The dehumidifying action of the desiccant occurs alternately. Since the amount of dehumidification increases as the relative temperature difference between the dehumidifying side air and the regenerating side air increases, it is usually the heating for regeneration of a hot water coil or the like using an air conditioning heat source, exhaust heat of a building or facility, or solar heat. A vessel or a regeneration heater (hereinafter referred to as a "regeneration heater") is arranged in the flow path of the regeneration side air. The regeneration heater preheats the regeneration side air, and the preheated air is supplied to the desiccant rotor or the alternating switchable desiccant block.

図17(A)及び図17(B)は、デシカントロータを有するデシカント式調湿装置の基本構成を概念的に示すシステム構成図及び部分断面図である。デシカントロータを備えた従来のデシカント式調湿装置の基本構成について、図17(A)及び図17(B)を参照して説明する。 17 (A) and 17 (B) are a system configuration diagram and a partial cross-sectional view conceptually showing a basic configuration of a desiccant type humidity control device having a desiccant rotor. The basic configuration of the conventional desiccant type humidity control device including the desiccant rotor will be described with reference to FIGS. 17 (A) and 17 (B).

図17(A)及び図17(B)に示すデシカント式調湿装置は、デシカントロータDR、排気ファンEF及び給気ファンSFを備えるとともに、隔壁Wによって分離・区画された給気流路SP及び排気流路EPを有する。デシカントロータDRは、乾燥剤を担持したハニカム構造の除湿ロータからなり、給気流路SP及び排気流路EPに跨がって配置される。大気条件の外気OAが、給気ファンSFの給気圧力下にデシカントロータDRの下半部ハニカム流路を流通又は通過する。デシカントロータDRの乾燥剤は外気中の水分を吸着し、外気OAを除湿する。除湿後の外気OAは、給気SAとして室内空間RMに給送される。他方、室内空間RMの空気は、還気RAとして排気ファンEFの吸引圧力下に再生用加熱器HEに伝熱接触して加熱(予熱)された後、デシカントロータDRの上半部ハニカム流路を流通又は通過する。デシカントロータDRの乾燥剤は、比較的高温且つ低湿の還気RAに接触して放湿し、湿度上昇した還気RAは、排気EAとして系外(屋外環境等)に排気される。デシカントロータDRは、流路方向と平行な回転中心軸線X−Xを中心に一定方向に回転し、除湿後の外気OAを給気SAとして持続的又は継続的に室内空間RMに供給する。なお、通常は、給気温度(室内吹出し温度)を調節する冷温水コイル等(図示せず)が給気流路SPに配設されるとともに、室内負荷を処理する冷却コイルやファンコイルユニット等の個別冷房手段(図示せず)が、給気系ダクトや、室内空間等の適所に配設される。また、多くのデシカント式調湿装置は、このような夏期の除湿運転を実行し得るだけではなく、適当な設計変更や付加的機器の配設等により、冬季の加湿運転を実行することができるが、加湿運転についての説明は、省略する。 The desiccant type humidity control device shown in FIGS. 17A and 17B includes a desiccant rotor DR, an exhaust fan EF, and an air supply fan SF, and also has an air supply flow path SP and exhaust separated and partitioned by a partition wall W. It has a flow path EP. The desiccant rotor DR is composed of a honeycomb-structured dehumidifying rotor carrying a desiccant, and is arranged so as to straddle the air supply flow path SP and the exhaust flow path EP. The outside air OA under atmospheric conditions circulates or passes through the lower half honeycomb flow path of the desiccant rotor DR under the supply pressure of the air supply fan SF. The desiccant of Desiccant Rotor DR adsorbs the moisture in the outside air and dehumidifies the outside air OA. The dehumidified outside air OA is supplied to the indoor space RM as an air supply SA. On the other hand, the air in the indoor space RM is heated (preheated) by heat transfer contact with the regeneration heater HE under the suction pressure of the exhaust fan EF as the return air RA, and then the upper half honeycomb flow path of the desiccant rotor DR. Is distributed or passed through. The desiccant of the desiccant rotor DR comes into contact with the return air RA having a relatively high temperature and low humidity to release the moisture, and the return air RA whose humidity has risen is exhausted to the outside of the system (outdoor environment or the like) as an exhaust EA. The desiccant rotor DR rotates in a certain direction around the rotation center axis XX parallel to the flow path direction, and continuously or continuously supplies the dehumidified outside air OA as an air supply SA to the indoor space RM. Normally, a cold / hot water coil or the like (not shown) for adjusting the supply air temperature (indoor blowout temperature) is arranged in the air supply flow path SP, and a cooling coil or fan coil unit or the like for processing the indoor load is provided. Individual cooling means (not shown) are arranged at appropriate locations such as an air supply system duct and an indoor space. In addition, many desiccant type humidity control devices can not only perform such dehumidification operation in summer, but also perform humidification operation in winter by appropriate design changes and arrangement of additional equipment. However, the description of the humidification operation will be omitted.

このようなデシカント式調湿装置は、前述のとおり、室内空間RMに供給すべき外気OAを除湿する外調機又は外気処理装置として機能するが、外界環境が極めて高温多湿の状態である場合や、急激な外気環境の変化(外乱)によって外気OAの湿度が急激に上昇した場合等には、室内空間RMの湿度を所望の如く制御し難く、例えば、室内空間RMの湿度が大きく変動し、或いは、目標湿度を超えて大きく上昇する状態が過渡的に生じ得る。 As described above, such a desiccant type humidity control device functions as an outside air conditioner or an outside air treatment device for dehumidifying the outside air OA to be supplied to the indoor space RM, but when the outside environment is extremely hot and humid. When the humidity of the outside air OA rises sharply due to a sudden change in the outside air environment (disturbance), it is difficult to control the humidity of the indoor space RM as desired. For example, the humidity of the indoor space RM fluctuates greatly. Alternatively, a state in which the humidity greatly rises beyond the target humidity may occur transiently.

特許文献3及び4(特開2005-315545号公報及び特開2006-317076号公報)には、外気導入を遮断して還気を室内に再循環する方式のデシカント式調湿装置が記載されている。特許文献3及び4に記載されたデシカント調湿装置の還気循環形態が図17(C)に示されている。 Patent Documents 3 and 4 (Japanese Patent Laid-Open Nos. 2005-315545 and 2006-317076) describe a desiccant type humidity control device in which the introduction of outside air is blocked and the returned air is recirculated indoors. There is. The return air circulation form of the desiccant humidity control device described in Patent Documents 3 and 4 is shown in FIG. 17 (C).

図17(C)に示す如く、デシカントロータDRは、その回転中心軸線を鉛直方向に向けた水平姿勢に位置決めされる。還気RAの流路は給気SAの流路に連通し、外気OAの流路は排気EAの流路に連通する。このような流路構成においては、外気OAを加熱する再生用加熱器HE’(破線で示す)が外気導入路に付加的に配設される。デシカントロータDRは、還気RA中の水分を吸着して還気RAを除湿するとともに、加熱後の外気OAに放湿して再生する。除湿後の還気RAは、給気SAとして室内空間RMに給送されるので、デシカント式調湿装置は、外気導入を完全に遮断した還気循環形態で運転される。 As shown in FIG. 17C, the desiccant rotor DR is positioned in a horizontal posture with its rotation center axis oriented in the vertical direction. The flow path of the return air RA communicates with the flow path of the supply air SA, and the flow path of the outside air OA communicates with the flow path of the exhaust EA. In such a flow path configuration, a regeneration heater HE'(indicated by a broken line) for heating the outside air OA is additionally arranged in the outside air introduction path. The desiccant rotor DR adsorbs the moisture in the return air RA to dehumidify the return air RA, and releases the moisture to the heated outside air OA for regeneration. Since the dehumidified return air RA is supplied to the indoor space RM as an air supply SA, the desiccant type humidity control device is operated in a return air circulation mode in which the introduction of outside air is completely blocked.

他方、交互切換式デシカントブロックを備えた前述のデシカント式調湿装置においては、調湿装置は、特許文献2に記載される如く、第1及び第2デシカントブロックを備えたデシカントユニットを有し、各デシカントブロックは、空気流の方向と直交する水平な回転中心軸線廻りに90度の位相差を有する。第1及び第2デシカントブロックは、交互に給気流路又は排気流路に連通する。デシカントユニットは、第1デシカントブロックのハニカム流路が給気流路に連通し且つ第2デシカントブロックのハニカム流路が排気流路に連通する第1位置と、第2デシカントブロックのハニカム流路が給気流路に連通し且つ第1デシカントブロックのハニカム流路が排気流路に連通する第2位置とに交互に切り換えられる。この形式のデシカント式調湿装置は、本出願人等の出願に係る特開2016-40506号公報(特許文献5)にも記載されている。なお、この形式のデシカント式調湿装置の構成については、後述する本発明の実施形態(図10〜図12)において詳細に説明する。 On the other hand, in the above-mentioned desiccant type humidity control device provided with the alternating switching type desiccant block, the humidity control device has a desiccant unit including the first and second desiccant blocks as described in Patent Document 2. Each desiccant block has a 90 degree phase difference around a horizontal center of rotation axis orthogonal to the direction of airflow. The first and second desiccant blocks alternately communicate with the air supply flow path or the exhaust flow path. In the desiccant unit, the first position where the honeycomb flow path of the first desiccant block communicates with the air supply flow path and the honeycomb flow path of the second desiccant block communicates with the exhaust flow path, and the honeycomb flow path of the second desiccant block are supplied. The honeycomb flow path of the first desiccant block communicating with the air flow path is alternately switched to the second position communicating with the exhaust flow path. This type of desiccant type humidity control device is also described in Japanese Patent Application Laid-Open No. 2016-40506 (Patent Document 5) according to the application of the applicant and others. The configuration of this type of desiccant type humidity control device will be described in detail in the embodiment of the present invention (FIGS. 10 to 12) described later.

特開2003-74906号公報Japanese Unexamined Patent Publication No. 2003-74906 特開2001-46830号公報Japanese Unexamined Patent Publication No. 2001-46830 特開2005-315545号公報Japanese Patent Application Laid-Open No. 2005-315545 特開2006-317076号公報Japanese Unexamined Patent Publication No. 2006-317076 特開2016-40506号公報Japanese Unexamined Patent Publication No. 2016-40506

外界環境が極めて高温多湿の状態である場合や、急激な外気環境の変化(外乱)によって外気の湿度が急激に上昇した場合等には、デシカント式調湿装置の外気負荷が大きく変動するので、外気導入を遮断した還気循環の形態で過渡的にデシカント式調湿装置を運転することが望ましいと考えられる。前述の特許文献3及び4に記載されたデシカント式調湿装置は、前述の如く、外気導入を遮断した還気循環の形態で運転することができるので、外界環境の影響を受けない安定した湿度制御を実行し得ると考えられる。しかしながら、特許文献3及び4のデシカント式調湿装置は、乾燥剤によって外気を除湿し且つ予熱後の還気によって乾燥剤を再生する外気導入運転と、乾燥剤によって還気を除湿し且つ予熱後の外気によって乾燥剤を再生する還気循環運転とを容易に切換え可能な構成を備えていない。 When the outside environment is extremely hot and humid, or when the humidity of the outside air rises sharply due to a sudden change in the outside air environment (disturbance), the outside air load of the desiccant type humidity control device fluctuates greatly. It is considered desirable to transiently operate the desiccant type humidity control device in the form of return air circulation that shuts off the introduction of outside air. As described above, the desiccant type humidity control device described in Patent Documents 3 and 4 can be operated in the form of return air circulation in which the introduction of outside air is blocked, so that the humidity is stable and is not affected by the external environment. It is believed that control can be performed. However, the desiccant type humidity control devices of Patent Documents 3 and 4 have an outside air introduction operation in which the outside air is dehumidified by a desiccant and the desiccant is regenerated by the return air after preheating, and the return air is dehumidified by the desiccant and after preheating. It does not have a configuration that can be easily switched between the return air circulation operation in which the desiccant is regenerated by the outside air.

また、特許文献3及び4に記載されたデシカント式調湿装置は、デシカントロータを垂直位置及び水平位置に全体的に回動する機構又は構造を有し、しかも、デシカントロータの位置の切替に相応した流路方向及び流路構成等の変更を要するので、調湿装置の機構、配管系及び制御系の構造又は構成が複雑化するばかりでなく、初期費及び維持管理費等が高額化するという問題が生じる。 Further, the desiccant type humidity control device described in Patent Documents 3 and 4 has a mechanism or structure for rotating the desiccant rotor to a vertical position and a horizontal position as a whole, and is suitable for switching the position of the desiccant rotor. Since it is necessary to change the flow path direction and flow path configuration, etc., not only the structure or configuration of the humidity control device mechanism, piping system and control system becomes complicated, but also the initial cost and maintenance cost become high. Problems arise.

他方、前述の交互切換式デシカントブロックを備えたデシカント式調湿装置(特許文献2及び5)は、室内空気を再生用空気として排気し且つ除湿後の外気を室内空間に給送する外気導入運転において、外界環境の湿度上昇時や外乱時等に外気導入を過渡的に遮断した状態で室内環境の湿度制御を実行可能な構成及び機能を備えていない。 On the other hand, the desiccant type humidity control device (Patent Documents 2 and 5) provided with the above-mentioned alternating switching type desiccant block exhausts the indoor air as regeneration air and supplies the dehumidified outside air to the indoor space. It does not have a configuration and a function capable of controlling the humidity of the indoor environment in a state where the introduction of outside air is transiently cut off when the humidity of the outside environment rises or when there is a disturbance.

また、デシカント式調湿装置を外調機又は外気処理装置として用いた従来の空調システムでは、空調立上げ時又は空調システム起動時のウォームアップ運転の時間帯、在室人数が比較的少ない時間帯、或いは、比較的少量の新鮮外気を室内に供給すれば良い条件の時間帯等においても、デシカント式調湿装置は、定常運転時の条件に従って比較的多量の調湿・調温外気を室内空間に給気するので、外気負荷処理のために熱エネルギーが過剰に消費される。 In addition, in a conventional air conditioning system that uses a desiccant type humidity control device as an external air conditioner or an outside air treatment device, the warm-up operation time zone when the air conditioner is started up or when the air conditioning system is started, and the time zone when the number of people in the room is relatively small. Alternatively, the desiccant type humidity control device provides a relatively large amount of humidity control / temperature control outside air to the indoor space according to the conditions during steady operation even during a time period in which a relatively small amount of fresh outside air needs to be supplied indoors. Since the air is supplied to the air, excessive heat energy is consumed for processing the outside air load.

本発明は、このような課題に鑑みてなされたものであり、その目的とするところは、室内空間に給送すべき外気を乾燥剤によって除湿し且つ予熱後の還気によって乾燥剤を再生する外気導入運転と、乾燥剤によって還気を除湿し且つ予熱後の外気によって乾燥剤を再生する還気循環運転とを選択的に実行することができ、しかも、外気導入運転と還気循環運転とを比較的容易に切換えることができるデシカント式調湿装置及びその制御方法を提供することにある。 The present invention has been made in view of such a problem, and an object of the present invention is to dehumidify the outside air to be supplied to the indoor space with a desiccant and to regenerate the desiccant by returning air after preheating. The outside air introduction operation and the return air circulation operation in which the desiccant is used to dehumidify the return air and the desiccant is regenerated by the preheated outside air can be selectively executed. It is an object of the present invention to provide a desiccant type humidity control device and a control method thereof, which can be switched relatively easily.

本発明は又、このようなデシカント式調湿装置を備えた空調システム及びその制御方法又は運転方法において、空調システムの運転形態又は運転時期や、室内空間の空気質と関連してデシカント式調湿装置の運転形態を変更し、これにより、空調システムの外気負荷を軽減することを目的とする。 The present invention also relates to an air conditioning system provided with such a desiccant type humidity control device and a control method or operation method thereof, the desiccant type humidity control in relation to the operation mode or operation time of the air conditioning system and the air quality of the indoor space. The purpose is to change the operation mode of the device and thereby reduce the load on the outside air of the air conditioning system.

本発明は、上記目的を達成すべく、外気導入路によって取込んだ外気を室内空間に供給するための給気流路と、室内空気導出路によって室内空間から導出した還気を排気するための排気流路と、前記給気流路の外気に接触して外気中の水分を吸着し且つ前記排気流路の還気に放湿して再生する乾燥剤を備えたデシカントロータ又はデシカントユニットと、前記乾燥剤に接触する還気を予熱する再生用加熱器とを有するデシカント式調湿装置において、
前記外気導入路及び室内空気導出路に設け又は介装された流路切換装置であって、前記外気を除湿して室内空間に供給し且つ予熱後の前記還気で前記乾燥剤を再生する外気導入運転と、前記還気を除湿して室内空間に供給し且つ予熱後の前記外気で前記乾燥剤を再生する還気循環運転とを選択的に切換えるために、前記給気流路に前記外気を導入し且つ前記還気を前記排気流路に導入する第1位置と、前記給気流路に前記還気を導入し且つ前記外気を前記排気流路に導入する第2位置とに選択的に切換可能な流路切換装置と、
前記デシカントロータ又はデシカントユニットの給気方向上流側に配置され、前記還気及び前記外気の間で全熱交換又は顕熱交換する全熱交換器又は顕熱交換器と、
該全熱交換器又は顕熱交換器と前記デシカントロータ又はデシカントユニットとの間の前記給気流路に配置され、前記流路切換装置の第1位置において前記外気を冷却し、前記流路切換装置の第2位置において前記還気を冷却する冷却器と、
前記流路切換装置の第2位置において全熱交換器又は顕熱交換器の熱交換作用を実質的に無効にするためのパイパス流路、或いは、全熱交換器又は顕熱交換器の回転制御手段とを有することを特徴とするデシカント式調湿装置を提供する。
In the present invention, in order to achieve the above object, an air supply flow path for supplying the outside air taken in by the outside air introduction path to the indoor space and an exhaust gas for exhausting the return air derived from the indoor space by the indoor air lead-out path. A desiccant rotor or desiccant unit provided with a desiccant that comes into contact with the outside air of the air flow path, adsorbs moisture in the outside air, and releases moisture to the return air of the exhaust flow path to regenerate the air flow path, and the drying. In a desiccant type humidity control device having a regenerative heater that preheats the return air that comes into contact with the agent.
An outside air that is provided or interposed in the outside air introduction path and the indoor air outlet path, dehumidifies the outside air and supplies it to the indoor space, and regenerates the desiccant by the return air after preheating. In order to selectively switch between the introduction operation and the return air circulation operation in which the return air is dehumidified and supplied to the indoor space and the desiccant is regenerated by the outside air after preheating, the outside air is supplied to the air supply flow path. Selectively switch between a first position for introducing and introducing the return air into the exhaust flow path and a second position for introducing the return air into the air supply flow path and introducing the outside air into the exhaust flow path. Possible flow path switching device and
A total heat exchanger or sensible heat exchanger arranged on the upstream side of the desiccant rotor or desiccant unit in the air supply direction and exchanging total heat or sensible heat between the return air and the outside air.
The outside air is arranged in the air supply flow path between the total heat exchanger or the velvety heat exchanger and the desiccant rotor or the desiccant unit, and the outside air is cooled at the first position of the flow path switching device, and the flow path switching device is used. A cooler that cools the return air at the second position of
Rotation control of the bypass flow path or the total heat exchanger or the sensible heat exchanger for substantially disabling the heat exchange action of the total heat exchanger or the sensible heat exchanger at the second position of the flow path switching device. Provided is a desiccant type humidity control device characterized by having means.

本発明の上記構成によれば、デシカント式調湿装置は、流路切換装置を第1位置に保持することにより、除湿後の外気を室内空間に供給して室内空間を調湿する外気導入形態で稼働し、流路切換装置を第2位置に切換えることにより、外気の室内供給を遮断し、除湿後の還気を室内空間に再循環して室内空間を調湿する還気循環形態で稼働する。デシカントロータ又はデシカントユニットは、外気導入形態の運転において外気を除湿し且つ予熱後の還気によって再生され、還気循環運転において還気を除湿し且つ予熱後の外気によって再生される。従って、デシカント式調湿装置は、流路切換装置の切換制御によって外気導入運転及び還気循環運転を容易に切換えることができる。また、本発明のデシカント式調湿装置は、流路切換装置の第2位置(還気循環形態)において全熱交換器又は顕熱交換器の熱交換作用を実質的に無効にすることができるバイパス流路又は回転制御手段を備えるので、必要に応じて、還気循環運転時に還気の冷熱が外気との熱交換により損失するのを防止することができる。更に、本発明のデシカント式調湿装置は、全熱交換器又は顕熱交換器とデシカントロータ又はデシカントユニットとの間の給気流路に配置された冷却器を備えるので、流路切換装置の第1位置(外気導入形態)において、デシカントロータ又はデシカントユニットに導入すべき外気を冷却し得るだけではなく、流路切換装置の第2位置(還気循環形態)において、デシカントロータ又はデシカントユニットに導入すべき還気を冷却することができる。 According to the above configuration of the present invention, the desiccant type humidity control device is an outside air introduction mode in which the dehumidified outside air is supplied to the indoor space to control the humidity of the indoor space by holding the flow path switching device at the first position. By switching the flow path switching device to the second position, the indoor supply of outside air is cut off, and the returned air after dehumidification is recirculated to the indoor space to control the humidity in the indoor space. To do. The desiccant rotor or desiccant unit dehumidifies the outside air and is regenerated by the return air after preheating in the operation of the outside air introduction mode, and dehumidifies the return air and is regenerated by the outside air after the preheating in the return air circulation operation. Therefore, the desiccant type humidity control device can easily switch between the outside air introduction operation and the return air circulation operation by the switching control of the flow path switching device. Further, the desiccant type humidity control device of the present invention can substantially invalidate the heat exchange action of the total heat exchanger or the sensible heat exchanger at the second position (return air circulation form) of the flow path switching device. Since the bypass flow path or the rotation control means is provided, it is possible to prevent the cold heat of the return air from being lost due to heat exchange with the outside air during the return air circulation operation, if necessary. Further, the desiccant type humidity control device of the present invention includes a cooler arranged in the air supply flow path between the total heat exchanger or the velvety heat exchanger and the desiccant rotor or the desiccant unit. Not only can the outside air to be introduced into the desiccant rotor or desiccant unit be cooled in one position (outside air introduction form), but it is also introduced into the desiccant rotor or desiccant unit in the second position (return air circulation form) of the flow path switching device. The return air that should be cooled can be cooled.

本発明は又、このような構成を有するデシカント式調湿装置の制御方法であって、
空調立上げ時又は空調システム起動時のウォームアップ運転の時間帯、在室人数が比較的少ない時間帯、或いは、比較的少量の新鮮外気を室内に供給すれば良い条件の時間帯を建物の中央監視システムの情報より判定し、室内環境検出器より取得した情報で室内空間の二酸化炭素濃度を判定し、或いは、外界雰囲気の温度及び/又は湿度を示す外気検出器の情報より、外気導入を遮断すべき運転条件を判定し、
この判定結果に基づいて前記流路切換装置の位置を制御することを特徴とするデシカント式調湿装置の制御方法を提供する。
The present invention is also a control method for a desiccant type humidity control device having such a configuration.
The center of the building is the time of warm-up operation when the air-conditioning is started up or when the air-conditioning system is started, the time when the number of people in the room is relatively small, or the time when a relatively small amount of fresh outside air should be supplied to the room. Judgment is made from the information of the monitoring system, the carbon dioxide concentration in the indoor space is judged from the information acquired from the indoor environment detector, or the introduction of outside air is blocked from the information of the outside air detector indicating the temperature and / or humidity of the outside atmosphere. Determine the operating conditions to be done and
Provided is a control method of a desiccant type humidity control device, which controls the position of the flow path switching device based on the determination result.

本発明の上記構成によれば、デシカント式調湿装置は、室内の空気質維持のための換気(新鮮外気の取込み)を要しない運転時期に外気導入を遮断し、或いは、外界の気象条件の変化に起因した極端な外気負荷増大を回避すべく外気導入を遮断し、これにより、外気負荷処理のための熱エネルギー消費量を削減することができる。 According to the above configuration of the present invention, the desiccant type humidity control device shuts off the introduction of outside air during the operation period when ventilation (intake of fresh outside air) for maintaining the indoor air quality is not required, or the external weather conditions. In order to avoid an extreme increase in the outside air load due to the change, the introduction of the outside air can be blocked, whereby the heat energy consumption for the outside air load treatment can be reduced.

好適には、上記流路切換装置は、単数の四方弁又は四方弁形式のダンパ(以下、「四方弁」という。)、少なくとも2体の三方弁又は三方弁形式のダンパ(以下、「三方弁」という。)、或いは、少なくとも4体の開閉弁又は開閉弁形式のダンパ(以下、「開閉弁」という。)と、室内環境を制御する制御系の制御下に各弁の弁体位置を切換える弁体駆動装置とを備える。流路切換装置は、外気導入路を排気流路又は給気流路のいずれか一方に選択的に連通させる弁装置内流路と、室内空気導出路を排気流路又は給気流路のいずれか一方に選択的に連通させる弁装置内流路とを有する。 Preferably, the flow path switching device is a single four-way valve or four-way valve type damper (hereinafter referred to as "four-way valve"), and at least two three-way valve or three-way valve type dampers (hereinafter referred to as "three-way valve"). (), Or at least four on-off valves or on-off valve type dampers (hereinafter referred to as "on-off valves"), and the valve body position of each valve is switched under the control of the control system that controls the indoor environment. It is equipped with a valve body drive device. The flow path switching device is a valve device internal flow path that selectively communicates the outside air introduction path with either the exhaust flow path or the supply air flow path, and the indoor air lead-out path is either the exhaust flow path or the supply air flow path. It has a flow path in the valve device that selectively communicates with the valve gear.

好ましくは、デシカント式調湿装置は、流路切換装置の切換位置を判定すべく、空調システムの運転状態又は建物の運用状態の情報を建物の中央監視システムより取得し、室内空気の二酸化炭素濃度を室内環境検出器より取得し、或いは、外界雰囲気の温度及び/又は湿度を示す外気検出器の情報を取得する制御装置を有する。制御装置は、これらの情報に基づいて所定の条件で流路切換装置を切換え制御し、外気導入運転を還気循環運転に切換えるが、室内空間の二酸化炭素濃度が所定値を超える場合、流路切換装置を第1位置に保持して外気導入運転を維持し、或いは、還気循環運転時に二酸化炭素濃度が所定値を超えると、流路切換装置を強制的に第1位置に切換え、外気導入運転に移行する。これにより、還気循環運転に起因した室内環境の悪化を防止することができる。 Preferably, the desiccant type humidity control device acquires information on the operating state of the air conditioning system or the operating state of the building from the central monitoring system of the building in order to determine the switching position of the flow path switching device, and the carbon dioxide concentration in the indoor air. Is obtained from the indoor environment detector, or has a control device for acquiring the information of the outside air detector indicating the temperature and / or humidity of the outside atmosphere. The control device switches and controls the flow path switching device under predetermined conditions based on this information, and switches the outside air introduction operation to the return air circulation operation. However, when the carbon dioxide concentration in the indoor space exceeds the predetermined value, the flow path When the switching device is held in the first position to maintain the outside air introduction operation, or when the carbon dioxide concentration exceeds a predetermined value during the return air circulation operation, the flow path switching device is forcibly switched to the first position and the outside air is introduced. Move to operation. This makes it possible to prevent deterioration of the indoor environment due to the return air circulation operation.

更に好ましくは、デシカントロータ又はデシカントユニットの給気方向下流側の前記給気流路には、外気を加湿する加湿器が配置され、デシカントロータ又はデシカントユニットによって除湿された外気又は還気を冷却する熱交換器が、デシカントロータ又はデシカントユニットの給気方向下流側の給気流路に配置され、還気又は外気を予熱する上記再生用加熱器が、全熱交換器又は顕熱交換器とデシカントロータ又はデシカントユニットとの間において排気流路に配置される
More preferably, the said inlet channel of the air supply direction downstream side of the de Shikantorota or desiccant unit, a humidifier for humidifying the outside air is arranged to cool the outside air or return air dehumidified by the desiccant rotor or desiccant unit heat The exchanger is arranged in the air supply flow path on the downstream side in the air supply direction of the desiccant rotor or the desiccant unit, and the above-mentioned regenerative heater for preheating the return air or the outside air is a total heat exchanger or a sensational heat exchanger and a desiccant rotor or. It is arranged in the exhaust flow path between the desiccant unit and the desiccant unit .

他の観点より、本発明は、上記構成のデシカント式調湿装置を有する空調システムであって、
前記調湿装置によって調温・調湿した外気を室内空間に吹出す給気口と、室内空間の二酸化炭素濃度を検知する室内環境検出器と、外界雰囲気の温度及び/又は湿度を検知する外気検出器と、室内空気の温度を調節する個別空調設備又は個別空調装置と、空調システムの運転形態及び運転時間を制御する中央監視システムとを有することを特徴とする空調システムを提供する。
From another point of view, the present invention is an air conditioning system having a desiccant type humidity control device having the above configuration.
An air supply port that blows out the outside air that has been conditioned and conditioned by the humidity control device to the indoor space, an indoor environment detector that detects the carbon dioxide concentration in the indoor space, and an outside air that detects the temperature and / or humidity of the outside atmosphere. Provided is an air-conditioning system characterized by having a detector, individual air-conditioning equipment or individual air-conditioning equipment for adjusting the temperature of indoor air, and a central monitoring system for controlling the operation mode and operation time of the air-conditioning system.

本発明は又、上記構成の制御方法を適用した空調システムの制御方法又は運転方法であって、
前記調湿装置によって調温・調湿した外気を室内空間に供給し且つ室内空気の温度を個別空調設備又は個別空調装置によって調節する外気導入運転と、外気の室内導入を遮断し且つ室内空気の温度を個別空調設備又は個別空調装置によって調節する還気循環運転とを前記流路切換装置の切換制御に相応して選択的に実行することを特徴とする空調システムの制御方法又は運転方法を提供する。
The present invention is also a control method or an operation method of an air conditioning system to which the control method of the above configuration is applied.
The outside air introduction operation in which the temperature and humidity controlled outside air is supplied to the indoor space by the humidity control device and the temperature of the room air is adjusted by the individual air conditioner or the individual air conditioner, and the outside air introduction to the room is blocked and the room air is introduced. Provided is a control method or operation method of an air conditioning system, characterized in that a return air circulation operation in which a temperature is adjusted by an individual air conditioning facility or an individual air conditioning device is selectively executed in accordance with switching control of the flow path switching device. To do.

このような空調システム、或いは、その制御方法又は運転方法によれば、空調立上げ時又は空調システム起動時のウォームアップ運転の時間帯、在室人数が比較的少ない時間帯、或いは、比較的少量の新鮮外気を室内に供給すれば良い条件の時間帯等には、還気循環運転により外気負荷を軽減し、外気負荷処理のための熱エネルギーの損失を抑制することができる。 According to such an air-conditioning system, or a control method or operation method thereof, a warm-up operation time zone when the air-conditioning system is started up or when the air-conditioning system is started, a time zone when the number of people in the room is relatively small, or a relatively small amount. The outside air load can be reduced by the return air circulation operation and the loss of heat energy for processing the outside air load can be suppressed during the time period when the fresh outside air can be supplied indoors.

好ましくは、空調システムは、室内空間の二酸化炭素濃度が所定値を超える場合、流路切換装置を第1位置に保持して外気導入運転を維持し、或いは、還気循環運転時に二酸化炭素濃度が所定値を超えると、流路切換装置を強制的に第1位置に切換え、外気導入運転に移行する。これにより、還気循環運転に起因した室内環境の悪化を防止することができる。 Preferably, when the carbon dioxide concentration in the indoor space exceeds a predetermined value, the air conditioning system holds the flow path switching device in the first position to maintain the outside air introduction operation, or the carbon dioxide concentration becomes high during the return air circulation operation. When the predetermined value is exceeded, the flow path switching device is forcibly switched to the first position, and the operation shifts to the outside air introduction operation. This makes it possible to prevent deterioration of the indoor environment due to the return air circulation operation.

本発明のデシカント式調湿装置及びその制御方法によれば、室内空間に給送すべき外気を乾燥剤によって除湿し且つ予熱後の還気によって乾燥剤を再生する外気導入運転と、乾燥剤によって還気を除湿し且つ予熱後の外気によって乾燥剤を再生する還気循環運転とを選択的に実行することができ、しかも、外気導入運転と還気循環運転とを比較的容易に切換えることができる。 According to the desiccant type humidity control device and the control method thereof of the present invention, the outside air to be supplied to the indoor space is dehumidified by the desiccant and the desiccant is regenerated by the return air after preheating, and the desiccant is used. It is possible to selectively execute a return air circulation operation that dehumidifies the return air and regenerates the desiccant by the outside air after preheating, and moreover, it is relatively easy to switch between the outside air introduction operation and the return air circulation operation. it can.

また、本発明の空調システム及びその制御方法又は運転方法によれば、このようなデシカント式調湿装置を備えた空調システム及びその制御方法において、空調システムの運転形態又は運転時期や、室内空間の空気質と関連してデシカント式調湿装置の運転形態を変更し、これにより、空調システムの外気負荷を軽減することができる。 Further, according to the air-conditioning system of the present invention and its control method or operation method, in the air-conditioning system provided with such a desiccant type humidity control device and its control method, the operation mode or operation time of the air-conditioning system and the indoor space The operation mode of the desiccant type humidity control device can be changed in relation to the air quality, thereby reducing the outside air load of the air conditioning system.

図1(A)は、本発明の構成を部分的に含むデシカント式調湿装置の構成を参考例として概念的に示すシステム構成図であり、図1(B)は、デシカントロータ部分の縦断面図であり、図1(C)及び図1(D)は、図1(A)に示す流路切換装置の変形例を示す流路構成図である。図1には、外気導入運転時のデシカント式調湿装置の状態が示されている。 FIG. 1A is a system configuration diagram conceptually showing the configuration of a desiccant type humidity control device partially including the configuration of the present invention as a reference example , and FIG. 1B is a vertical cross section of a desiccant rotor portion. 1 (C) and 1 (D) are flow path configuration diagrams showing a modified example of the flow path switching device shown in FIG. 1 (A). FIG. 1 shows the state of the desiccant type humidity control device during the outside air introduction operation. 図2(A)は、図1に示すデシカント式調湿装置を還気循環運転時の状態で示すシステム構成図であり、図2(B)は、デシカントロータ部分の縦断面図であり、図2(C)及び図2(D)は、図2(A)に示す流路切換装置の変形例を示す流路構成図である。FIG. 2A is a system configuration diagram showing the desiccant type humidity control device shown in FIG. 1 in a state during return air circulation operation, and FIG. 2B is a vertical cross-sectional view of the desiccant rotor portion. 2 (C) and FIG. 2 (D) are flow path configuration diagrams showing a modified example of the flow path switching device shown in FIG. 2 (A). 図3は、デシカント式調湿装置の制御ユニットによる流路切換装置の制御態様を概略的に示すフローチャートである。FIG. 3 is a flowchart schematically showing a control mode of the flow path switching device by the control unit of the desiccant type humidity control device. 図4は、本発明の構成を部分的に含むデシカント式調湿装置の構成を参考例として概念的に示すシステム構成図であり、図4には、外気導入運転時のデシカント式調湿装置の状態が示されている。FIG. 4 is a system configuration diagram conceptually showing the configuration of the desiccant type humidity control device partially including the configuration of the present invention as a reference example , and FIG. 4 shows the desiccant type humidity control device during the outside air introduction operation. The state is shown. 図5は、図4に示すデシカント式調湿装置を還気循環運転時の状態で示すシステム構成図である。FIG. 5 is a system configuration diagram showing the desiccant type humidity control device shown in FIG. 4 in a state during the return air circulation operation. 図6は、図4及び図5に示すデシカント式調湿装置の変形例に係るデシカント式調湿装置の構成を概念的に示すシステム構成図であり、図6には、外気導入運転時のデシカント式調湿装置の状態が示されている。FIG. 6 is a system configuration diagram conceptually showing the configuration of the desiccant type humidity control device according to the modified example of the desiccant type humidity control device shown in FIGS. 4 and 5, and FIG. 6 shows the desiccant during the outside air introduction operation. The state of the type humidity control device is shown. 図7は、図6に示すデシカント式調湿装置を還気循環運転時の状態で示すシステム構成図である。FIG. 7 is a system configuration diagram showing the desiccant type humidity control device shown in FIG. 6 in a state during the return air circulation operation. 図8は、本発明の実施形態に係るデシカント式調湿装置の構成を示すシステム構成図である。図8には、外気導入運転時のデシカント式調湿装置の状態が示されている。FIG. 8 is a system configuration diagram showing a configuration of a desiccant type humidity control device according to an embodiment of the present invention. FIG. 8 shows the state of the desiccant type humidity control device during the outside air introduction operation. 図9は、図8に示すデシカント式調湿装置を還気循環運転時の状態で示すシステム構成図である。FIG. 9 is a system configuration diagram showing the desiccant type humidity control device shown in FIG. 8 in a state during the return air circulation operation. 図10は、本発明好適な実施形態に係るデシカント式調湿装置の基本構成を概念的に示すシステム構成図である。図8には、デシカント式調湿装置の外気導入運転の形態が示されている。FIG. 10 is a system configuration diagram conceptually showing the basic configuration of the desiccant type humidity control device according to the preferred embodiment of the present invention. FIG. 8 shows a mode of outside air introduction operation of the desiccant type humidity control device. 図11は、図10に示すデシカント式調湿装置の還気循環形態を示すシステム構成図である。FIG. 11 is a system configuration diagram showing a return air circulation mode of the desiccant type humidity control device shown in FIG. 図12は、図10及び図11に示すデシカント式調湿装置の構造を示す部分斜視図である。FIG. 12 is a partial perspective view showing the structure of the desiccant type humidity control device shown in FIGS. 10 and 11. 図13は、夏期冷房時における外気導入形態のデシカント式調湿装置の作用を示す空気線図である。FIG. 13 is an air diagram showing the operation of the desiccant type humidity control device in the form of introducing outside air during summer cooling. 図14は、夏期冷房時における還気循環形態のデシカント式調湿装置の作用を示す空気線図である。FIG. 14 is an air diagram showing the operation of the desiccant type humidity control device in the return air circulation mode during summer cooling. 図15は、冬季暖房時における外気導入形態のデシカント式調湿装置の作用を示す空気線図である。FIG. 15 is an air diagram showing the operation of the desiccant type humidity control device in the form of introducing outside air during winter heating. 図16は、冬季暖房時における還気循環形態のデシカント式調湿装置の作用を示す空気線図である。FIG. 16 is an air diagram showing the operation of the desiccant type humidity control device in the return air circulation mode during winter heating. 図17(A)及び図17(B)は、デシカントロータを有する従来のデシカント式調湿装置の基本構成を概念的に示すシステム構成図及び部分断面図であり、図17(C)は、回転中心軸線を鉛直方向に向けた水平姿勢にデシカントロータを位置決めした状態を示す従来のデシカント式調湿装置の部分断面図である。17 (A) and 17 (B) are system configuration diagrams and partial cross-sectional views conceptually showing the basic configuration of a conventional desiccant type humidity control device having a desiccant rotor, and FIG. 17 (C) is a rotary It is a partial cross-sectional view of the conventional desiccant type humidity control apparatus which shows the state which the desiccant rotor is positioned in the horizontal posture with the central axis in the vertical direction.

以下、添付図面を参照して本発明の好適な実施形態について詳細に説明する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

図1(A)及び図2(A)は、本発明の構成を部分的に含むデシカント式調湿装置の構成を参考例として概念的に示すシステム構成図であり、図1(B)及び図2(B)は、デシカントロータ部分の縦断面図である。また、図1(C)、図1(D)、図2(C)及び図2(D)は、図1(A)及び図2(A)に示す流路切換装置の変形例を示す流路構成図である。図1には、外気導入運転時のデシカント式調湿装置の状態が示されており、図2には、還気循環運転時のデシカント式調湿装置の状態が示されている。 1 (A) and 2 (A) are system configuration diagrams conceptually showing the configuration of a desiccant type humidity control device partially including the configuration of the present invention as a reference example , and FIGS. 1 (B) and 2 (A). 2 (B) is a vertical cross-sectional view of the desiccant rotor portion. Further, FIGS. 1 (C), 1 (D), 2 (C) and 2 (D) show a modified example of the flow path switching device shown in FIGS. 1 (A) and 2 (A). It is a road block diagram. FIG. 1 shows the state of the desiccant type humidity control device during the outside air introduction operation, and FIG. 2 shows the state of the desiccant type humidity control device during the return air circulation operation.

本発明の構成を部分的に含むデシカント式調湿装置の基本構成について、図1及び図2を参照して説明する。 The basic configuration of the desiccant type humidity control device partially including the configuration of the present invention will be described with reference to FIGS. 1 and 2.

建物の空調システムを構成するデシカント式調湿装置1(以下、「調湿装置1という。)は、ハウジング1a内に配設されたデシカントロータ2、排気ファン3及び給気ファン4を備える。ハウジング1a内には、逆方向に給気流及び排気流が流通する給気流路6及び排気流路7が画成され、給気流路6及び排気流路7は、水平な隔壁5によって上下に分離している。デシカントロータ2は、乾燥剤を担持したハニカム構造の除湿ロータからなり、給気流路6及び排気流路7に跨がって配置される。調湿装置1は、四方弁構造の流路切換装置10を備える。流路切換装置10の各ポートは夫々、外気導入路OD、第1給送路D1、室内空気導出路RD、第2給送路D2に接続される。 The desiccant type humidity control device 1 (hereinafter, referred to as “humidity control device 1”) constituting the air conditioning system of the building includes a desiccant rotor 2, an exhaust fan 3, and an air supply fan 4 arranged in the housing 1a. In 1a, an air supply flow path 6 and an exhaust flow path 7 through which the supply air flow and the exhaust flow flow in opposite directions are defined, and the air supply flow path 6 and the exhaust flow path 7 are separated vertically by a horizontal partition wall 5. The desiccant rotor 2 is composed of a dehumidifying rotor having a honeycomb structure carrying a desiccant, and is arranged so as to straddle the air supply flow path 6 and the exhaust flow path 7. The humidity control device 1 has a four-way valve structure flow. Each port of the flow path switching device 10 is connected to an outside air introduction path OD, a first supply path D1, an indoor air lead-out path RD, and a second supply path D2, respectively.

図1には、流路切換装置10の第1位置が示されており、流路切換装置10の弁装置内流路は、外気導入路ODを第1給送路D1に接続し、室内空気導出路RDを第2給送路D2に接続する。第1給送路D1は、外気導入路ODの一部として機能し、第2給送路D2は、室内空気導出路RDの一部として機能する。大気条件の外気OAが、外気導入路OD及び第1給送路D1を介して給気ファン4に誘引され、給気ファン4の給気圧力下に給気流路6に送出され、デシカントロータ2の下半部ハニカム流路を流通又は通過し、給気流路SDを介して室内空間RMに供給される。デシカントロータ2の乾燥剤は外気OA中の水分を吸着し、外気OAを除湿する。除湿後の外気OAは、給気SAとして室内空間RMに給送され、室内空間RMの壁面又は天井面に配置された給気口(図示せず)から室内空間RMに吹出す。 FIG. 1 shows the first position of the flow path switching device 10, and the flow path in the valve device of the flow path switching device 10 connects the outside air introduction path OD to the first supply path D1 and is used for indoor air. The lead-out path RD is connected to the second supply path D2. The first supply path D1 functions as a part of the outside air introduction path OD, and the second supply path D2 functions as a part of the indoor air lead-out path RD. The outside air OA under atmospheric conditions is attracted to the supply air fan 4 via the outside air introduction path OD and the first supply path D1, and is sent to the supply air flow path 6 under the supply pressure of the supply air fan 4, and is sent to the desiccant rotor 2 It flows or passes through the lower half honeycomb flow path and is supplied to the indoor space RM via the air supply flow path SD. The desiccant of the desiccant rotor 2 adsorbs the moisture in the outside air OA and dehumidifies the outside air OA. The dehumidified outside air OA is supplied to the interior space RM as an air supply SA, and is blown out to the interior space RM from an air supply port (not shown) arranged on the wall surface or the ceiling surface of the interior space RM.

他方、室内空間RMの空気は、還気RAとして排気ファン3の吸引圧力下に室内空気導出路RD及び第2給送路D2を介して再生用加熱器8を流通又は通過し、再生用加熱器8の放熱部に伝熱接触して加熱(予熱)された後、デシカントロータ2の上半部ハニカム流路を流通又は通過する。デシカントロータ2の乾燥剤は、相対的に高温且つ低湿の還気RAに接触して放湿し、湿度上昇し且つ温度降下した還気RAは、排気EAとして排気ファン3の吐出圧力下に排気系流路に送出され、系外(屋外環境等)に排気される。 On the other hand, the air in the indoor space RM flows or passes through the regeneration heater 8 via the indoor air lead-out path RD and the second supply passage D2 under the suction pressure of the exhaust fan 3 as the return air RA, and heats for regeneration. After being heated (preheated) by heat transfer contact with the heat radiation portion of the vessel 8, it flows or passes through the upper half honeycomb flow path of the desiccant rotor 2. The desiccant of the desiccant rotor 2 comes into contact with the relatively high temperature and low humidity return air RA to release moisture, and the return air RA whose humidity rises and temperature drops is exhausted as exhaust EA under the discharge pressure of the exhaust fan 3. It is sent to the system flow path and exhausted to the outside of the system (outdoor environment, etc.).

デシカントロータ2は、所定方向にデシカントロータ2を回転させる回転駆動機構(図示せず)を備えており、給気流路6及び排気流路7に矢印で示す空気流(外気OA、給気SA、還気RA及び排気EAの各気流)の方向と平行な回転中心軸線X−Xを中心に矢印で示す方向に所定速度で連続的又は間欠的に回転する。デシカントロータ2は、外気OAを持続的又は継続的に除湿し、給気SAとして室内空間RMに供給するとともに、乾燥剤が吸着した水分を持続的又は継続的に還気RAに放湿して再生される。 The desiccant rotor 2 is provided with a rotary drive mechanism (not shown) that rotates the desiccant rotor 2 in a predetermined direction, and the air flow (outside air OA, air supply SA, etc.) indicated by arrows in the air supply flow path 6 and the exhaust flow path 7 It rotates continuously or intermittently at a predetermined speed in the direction indicated by the arrow about the rotation center axis XX parallel to the direction of the return air RA and the exhaust EA. The desiccant rotor 2 continuously or continuously dehumidifies the outside air OA and supplies it to the indoor space RM as an air supply SA, and continuously or continuously dehumidifies the moisture adsorbed by the desiccant to the return air RA. Will be played.

従って、調湿装置1は、流路切換装置10の第1位置において、外気OAを除湿して室内空間RMに供給するとともに、室内空間RMの還気RAを予熱し且つデシカントロータ2を介して排気することにより、デシカントロータ2の乾燥剤を再生する外気導入形態で運転される。 Therefore, the humidity control device 1 dehumidifies the outside air OA and supplies it to the indoor space RM at the first position of the flow path switching device 10, and preheats the return air RA of the indoor space RM and via the desiccant rotor 2. By exhausting the gas, the desiccant rotor 2 is operated in an outside air introduction mode that regenerates the desiccant.

図2には、流路切換装置10の第2位置が示されている。流路切換装置10の弁装置内流路は、第2位置において、外気導入路ODを第2給送路D2に接続し、室内空気導出路RDを第1給送路D1に接続する。第2給送路D2は、外気導入路ODの一部として機能し、第1給送路D1は、室内空気導出路RDの一部として機能する。室内空間RMの還気RAは、給気ファン4の吸引圧力下に室内空間RMから導出され、室内空気導出路RD及び第1給送路D1を介して給気ファン4に誘引され、給気ファン4の給気圧力下に給気流路6に送出され、デシカントロータ2の下半部ハニカム流路を流通又は通過し、給気流路SDを介して室内空間RMに再循環される。デシカントロータ2の乾燥剤は還気RA中の水分を吸着し、還気RAを除湿する。従って、除湿後の還気RAが給気SAとして室内空間RMに給送され、室内空間RMの壁面又は天井面に配置された給気口(図示せず)から室内空間RMに吹出す。他方、大気条件の外気OAは、排気ファン3の吸引圧力下に外気導入路OD及び第2給送路D2を介して再生用加熱器8を流通又は通過し、再生用加熱器8の放熱部に伝熱接触して加熱(予熱)された後、デシカントロータ2の上半部ハニカム流路を流通又は通過する。デシカントロータ2の乾燥剤は、相対的に高温且つ低湿の外気OAに接触して放湿し、湿度上昇し且つ温度降下した外気OAは、排気EAとして排気ファン3の吐出圧力下に排気系流路に送出され、系外(屋外環境等)に排気される。 FIG. 2 shows the second position of the flow path switching device 10. At the second position, the flow path in the valve device of the flow path switching device 10 connects the outside air introduction path OD to the second supply path D2 and the indoor air lead-out path RD to the first supply path D1. The second supply path D2 functions as a part of the outside air introduction path OD, and the first supply path D1 functions as a part of the indoor air lead-out path RD. The return air RA of the indoor space RM is led out from the indoor space RM under the suction pressure of the air supply fan 4, and is attracted to the air supply fan 4 via the indoor air lead-out path RD and the first supply path D1 to supply air. It is sent to the air supply flow path 6 under the supply air pressure of the fan 4, flows or passes through the lower half honeycomb flow path of the desiccant rotor 2, and is recirculated to the indoor space RM via the air supply flow path SD. The desiccant of desiccant rotor 2 adsorbs the moisture in the return air RA and dehumidifies the return air RA. Therefore, the dehumidified return air RA is supplied to the interior space RM as the air supply SA, and is blown out to the interior space RM from the air supply port (not shown) arranged on the wall surface or the ceiling surface of the interior space RM. On the other hand, the outside air OA under atmospheric conditions flows or passes through the regeneration heater 8 via the outside air introduction path OD and the second supply path D2 under the suction pressure of the exhaust fan 3, and the heat radiating part of the regeneration heater 8 After being heated (preheated) by heat transfer contact with, it flows or passes through the upper half honeycomb flow path of the desiccant rotor 2. The desiccant of the desiccant rotor 2 comes into contact with the relatively high temperature and low humidity outside air OA to release moisture, and the outside air OA whose humidity has risen and whose temperature has dropped is exhaust system flow under the discharge pressure of the exhaust fan 3 as exhaust EA. It is sent to the road and exhausted to the outside of the system (outdoor environment, etc.).

従って、調湿装置1は、流路切換装置10の第2位置において、還気RAを除湿して室内空間RMに再循環するとともに、外気OAを再生用空気として使用した還気循環形態で運転される。外気OAは、再生用加熱器8で予熱された後、デシカントロータ2を介して排気され、デシカントロータ2の乾燥剤は、加熱後の外気OAに接触して脱着(放湿)し、再生される。 Therefore, the humidity control device 1 operates in the return air circulation mode in which the return air RA is dehumidified and recirculated to the indoor space RM at the second position of the flow path switching device 10 and the outside air OA is used as the regeneration air. Will be done. The outside air OA is preheated by the regeneration heater 8 and then exhausted via the desiccant rotor 2. The desiccant of the desiccant rotor 2 comes into contact with the heated outside air OA to be desorbed (dehumidified) and regenerated. To.

なお、通常は、給気温度(室内吹出し温度)を調節する冷温水コイル、室内負荷を処理する冷却コイル、或いは、ファンコイルユニット等の冷房機器又は冷房設備等が、給気流路6、給気SAの給気系、或いは、室内空間RMに配設される。所望により、空気搬送用ブースターファン等の補助的加圧手段が空気循環系又は空気搬送系の適所に配置される。このような調温手段、冷房設備や補助的加圧手段については、各図において図示を省略されている。また、調湿装置1は、上述した夏期の除湿運転を実行し得るだけではなく、冬季運転用の加熱器及び/又は加湿器等を備えることにより、冬季の加湿運転を実行し得る構成のものであるが、加湿運転用の加湿器等の機器又は設備等についても、各図において図示を省略されている。 Normally, a cooling / hot water coil that adjusts the supply air temperature (indoor blowout temperature), a cooling coil that processes an indoor load, or a cooling device such as a fan coil unit or a cooling facility is used to supply air to the air supply flow path 6. It is arranged in the air supply system of SA or in the indoor space RM. If desired, an auxiliary pressurizing means, such as an air transport booster fan, is placed in place in the air circulation system or air transport system. Such temperature control means, cooling equipment, and auxiliary pressurizing means are not shown in each figure. Further, the humidity control device 1 is configured not only to be able to perform the dehumidifying operation in the summer described above, but also to be able to perform the humidifying operation in the winter by providing a heater and / or a humidifier for the winter operation. However, equipment or equipment such as a humidifier for humidifying operation is also omitted in each figure.

図1(C)、図1(D)、図2(C)及び図2(D)には、流路切換装置10の変形例が示されている。図1(C)、図1(D)、図2(C)及び図2(D)に示す三方弁11、12の組合せ、或いは、開閉弁11〜14の組合せによれば、図1(C)及び図1(D)に示す各弁の位置において、上記流路切換装置10の第1位置で形成される流路(図1(A))と実質的に同じ形態の流路が形成され、図2(C)及び図2(D)に示す各弁の位置において、上記流路切換装置10の第2位置で形成される流路(図2(A))と実質的に同じ形態の流路が形成される。なお、図1(C)、図1(D)、図2(C)及び図2(D)において実線の矢印で示す各流路は、外気OA又は還気RAが流通する状態の流路であり、各図において破線の矢印で示す各流路は、外気OA又は還気RAの流通が遮断された状態の流路である。 1 (C), 1 (D), 2 (C), and 2 (D) show a modified example of the flow path switching device 10. According to the combination of the three-way valves 11 and 12 shown in FIGS. 1 (C), 1 (D), 2 (C) and 2 (D), or the combination of the on-off valves 11 to 14, FIG. 1 (C) ) And at the positions of the valves shown in FIG. 1 (D), a flow path having substantially the same shape as the flow path (FIG. 1 (A)) formed at the first position of the flow path switching device 10 is formed. , At the positions of the valves shown in FIGS. 2 (C) and 2 (D), substantially the same form as the flow path (FIG. 2 (A)) formed at the second position of the flow path switching device 10. A flow path is formed. Each flow path indicated by a solid arrow in FIGS. 1 (C), 1 (D), 2 (C), and 2 (D) is a flow path in which outside air OA or return air RA flows. Yes, each flow path indicated by a broken line arrow in each figure is a flow path in a state where the flow of outside air OA or return air RA is blocked.

次に、流路切換装置10の制御系について説明する。 Next, the control system of the flow path switching device 10 will be described.

流路切換装置10は、弁体を第1又は第2位置に選択的に切換えるための調節部又は駆動部10a(以下、「駆動部10a」という。)を備える。駆動部10aは、弁体を回転又は移動させる電動式又は流体作動式のアクチュエータ、モータ等を有する。駆動部10aは、制御信号線L1を介して調湿装置1の制御ユニットC/Uに接続される。制御ユニットC/Uは、制御信号線L2を介してCOセンサ等の室内環境検出器CSに接続される。検出器CSは、室内空間RMに配置され、室内空間RMの二酸化炭素濃度を検出するとともに、室内空間RMの温度及び湿度を検出する。所望により、検出器CSを還気路RDに配置しても良い。制御ユニットC/Uは、制御信号線L3を介して建物の中央監視システム又は中央監視装置BAS(図示せず)に接続される。制御ユニットC/Uは更に、制御信号線L4を介して外気センサOSに接続される。外気センサOSは、屋外空間の温度及び湿度を検出する。 The flow path switching device 10 includes an adjusting unit or a driving unit 10a (hereinafter, referred to as “driving unit 10a”) for selectively switching the valve body to the first or second position. The drive unit 10a includes an electric or fluid actuated actuator, a motor, and the like that rotate or move the valve body. The drive unit 10a is connected to the control unit C / U of the humidity control device 1 via the control signal line L1. The control unit C / U is connected to an indoor environment detector CS such as a CO 2 sensor via a control signal line L2. The detector CS is arranged in the indoor space RM, detects the carbon dioxide concentration of the indoor space RM, and also detects the temperature and humidity of the indoor space RM. If desired, the detector CS may be placed in the return airway RD. The control unit C / U is connected to the central monitoring system of the building or the central monitoring device BAS (not shown) via the control signal line L3. The control unit C / U is further connected to the outside air sensor OS via the control signal line L4. The outside air sensor OS detects the temperature and humidity of the outdoor space.

調湿装置1は、室内空間RMの空気質維持に要する所定量の外気OAをデシカントロータ2によって除湿し、給気SAとして室内空間RMに供給する。外気OAは、外気冷房の場合を除き、室内空間RMの空気を新鮮外気で希釈し、その空気質を良好な状態に維持するためのものである。一般に、外気OAの供給量は、室内空間RMの空気質を生活環境又は執務環境上、許容可能な状態に維持するという観点より定められ、例えば、外気OAの最小限の供給量は、室内空間RMの二酸化炭素濃度を許容濃度(1000ppm)以下に維持するのに要する必要換気量に設定される。必要換気量は、室内空間RMの容積や、在室人数により相違するが、通常は、室の面積及び用途等に基づき、建築設計上の在室人数が設定されるとともに、在室人数に相応した必要換気量が設定される。 The humidity control device 1 dehumidifies a predetermined amount of outside air OA required for maintaining the air quality of the indoor space RM by the desiccant rotor 2 and supplies it to the indoor space RM as an air supply SA. The outside air OA is for diluting the air in the indoor space RM with fresh outside air and maintaining the air quality in a good state, except in the case of outside air cooling. Generally, the supply amount of outside air OA is determined from the viewpoint of maintaining the air quality of the indoor space RM in an acceptable state in terms of living environment or work environment. For example, the minimum supply amount of outside air OA is the indoor space. It is set to the required ventilation volume to maintain the carbon dioxide concentration of RM below the permissible concentration (1000ppm). The required ventilation volume varies depending on the volume of the indoor space RM and the number of people in the room, but usually, the number of people in the room is set according to the architectural design based on the area and usage of the room, and it corresponds to the number of people in the room. The required ventilation volume is set.

他方、事務所ビル、公共施設、学校建築等においては、早朝の時間帯や、始業直前の時間帯、空調システムの起動運転時又はウォームアップ運転時、或いは、在室人数が大きく減少する時間帯等の如く、必要換気量の新鮮外気を要しない条件の時間帯があり、このような条件では、必要換気量の外気OAの室内供給は、室内空気質の維持という観点では過剰であり、従って、このような過剰な外気供給量を削減することにより、空調システムの外気負荷を軽減することが可能となる。 On the other hand, in office buildings, public facilities, school buildings, etc., the time zone in the early morning, the time zone immediately before the start of work, the time zone when the air conditioning system is started or warmed up, or the time zone when the number of people in the room decreases significantly. There are times when the required ventilation volume of fresh outside air is not required, and under such conditions, the indoor supply of the required ventilation volume of outside air OA is excessive in terms of maintaining indoor air quality, and therefore By reducing such an excessive amount of outside air supply, it is possible to reduce the load on the outside air of the air conditioning system.

図3は、制御ユニットC/Uによる流路切換装置10の制御態様を概略的に示すフローチャートである。制御ユニットC/Uは、図3のフローチャートによって概略的に示す制御用スレッド又はプロセスを所定時間毎に実行する。以下、制御ユニットC/Uの制御態様について説明する。 FIG. 3 is a flowchart schematically showing a control mode of the flow path switching device 10 by the control unit C / U. The control unit C / U executes the control thread or process schematically shown by the flowchart of FIG. 3 at predetermined time intervals. Hereinafter, the control mode of the control unit C / U will be described.

制御ユニットC/Uは、空調システムの起動又はウォームアップ運転の時間帯や、在室人数が減少する時間帯、即ち、換気量を低減可能な時間帯(以下、「換気量低減可能時間」という。)の情報を中央監視システムBASより取得する(S1)。制御ユニットC/Uは又、室内空間RMの二酸化炭素濃度を示す室内環境検出器CSの検出信号を受信し、室内空間RMの二酸化炭素濃度を検出する(S1)。制御ユニットC/Uは更に、外気温度及び外気湿度を示す外気センサOSの検出信号を受信し、外界雰囲気の温湿度を検出する(S1)。 The control unit C / U is referred to as a time zone for starting or warming up the air conditioning system, a time zone during which the number of people in the room decreases, that is, a time zone during which the ventilation volume can be reduced (hereinafter referred to as "ventilation volume reduction possible time"). ) Is acquired from the central monitoring system BAS (S1). The control unit C / U also receives a detection signal of the indoor environment detector CS indicating the carbon dioxide concentration of the indoor space RM, and detects the carbon dioxide concentration of the indoor space RM (S1). The control unit C / U further receives a detection signal of the outside air sensor OS indicating the outside air temperature and the outside air humidity, and detects the temperature and humidity of the outside atmosphere (S1).

制御ユニットC/Uは、室内空間RMの二酸化炭素濃度が所定値(閾値)α以下であり、換気量低減可能時間に該当する場合(S2,S3)、或いは、室内空間RMの二酸化炭素濃度が所定値(閾値)β(β<α)以下に低下した状態が所定時間以上継続した場合(S4)、室内空間RMの在室人数が極めて少ない状態であると判断し、流路切換装置10を第2位置に切換える(S7)。制御ユニットC/Uは又、室内空間RMの二酸化炭素濃度が所定値α以下であり(S2)、外気センサOSの検出結果が極端な外界気象条件の変化(過大な湿度上昇又は温度上昇等)を示す場合(S5)、急激な外気負荷増大や室内環境の悪化等を回避すべく、流路切換装置10を第2位置に切換える(S7)。なお、所定値βは、所定値αよりも小さい値に設定され、例えば、所定値αは、設計基準値(1000PPM)の90%程度の二酸化炭素濃度(例えば、900PPM)に設定され、所定値βは、設計基準値(1000PPM)の60%程度の二酸化炭素濃度(例えば、600PPM)に設定される。 In the control unit C / U, when the carbon dioxide concentration in the indoor space RM is equal to or less than a predetermined value (threshold) α and corresponds to the ventilation reduction possible time (S2, S3), or when the carbon dioxide concentration in the indoor space RM is When the state in which the value drops below the predetermined value (threshold) β (β <α) continues for a predetermined time or longer (S4), it is determined that the number of people in the indoor space RM is extremely small, and the flow path switching device 10 is used. Switch to the second position (S7). The control unit C / U also has a carbon dioxide concentration of the indoor space RM of a predetermined value α or less (S2), and the detection result of the outside air sensor OS is an extreme change in external weather conditions (excessive humidity rise or temperature rise, etc.). (S5), the flow path switching device 10 is switched to the second position in order to avoid a sudden increase in the outside air load, deterioration of the indoor environment, and the like (S7). The predetermined value β is set to a value smaller than the predetermined value α. For example, the predetermined value α is set to a carbon dioxide concentration (for example, 900PPM) of about 90% of the design reference value (1000PPM) and is set to a predetermined value. β is set to a carbon dioxide concentration (for example, 600PPM) of about 60% of the design reference value (1000PPM).

他方、制御ユニットC/Uは、室内空間RMの二酸化炭素濃度が所定値αを超える場合(S2)、流路切換装置10を第1位置に保持し、或いは、流路切換装置10を第2位置から第1位置に強制的に切換える(S6、S8、S9)。 On the other hand, when the carbon dioxide concentration in the indoor space RM exceeds the predetermined value α (S2), the control unit C / U holds the flow path switching device 10 in the first position, or holds the flow path switching device 10 in the second position. The position is forcibly switched from the position to the first position (S6, S8, S9).

かくして、調湿装置1は、夏期冷房時期において、常時は、外気導入形態で運転され、所要量の新鮮外気を室内空間RMに供給するが、ウォームアップ運転時等の換気量低減可能時間、室内空間RMの二酸化炭素濃度の低下時、或いは、外界環境の過大な湿度上昇時等には、過渡的に還気循環形態で運転されるので、空調システムの外気負荷を軽減することができる。また、流路切換装置10は、室内空間RMの二酸化炭素濃度が高い値を示すと、第1位置に保持され、或いは、第2位置から第1位置に強制的に切換えられるので、還気循環運転に起因した室内環境の悪化を確実に防止することができる。なお、所望により、外気導入運転及び還気循環運転の切換信号(例えば、外気カット信号)を中央監視システムBASから制御ユニットC/Uに入力し、外気導入運転及び還気循環運転を任意に切換えることができるように調湿装置1の制御系を設計し、これにより、外気導入運転及び還気循環運転の切換動作を中央監視システムBASでマニュアル操作又は遠隔操作するようにすることも可能である。 Thus, the humidity control device 1 is always operated in the outside air introduction form during the summer cooling period, and supplies the required amount of fresh outside air to the indoor space RM. When the carbon dioxide concentration in the space RM decreases, or when the humidity in the external environment rises excessively, the air is operated in a transient return air circulation mode, so that the outside air load of the air conditioning system can be reduced. Further, when the carbon dioxide concentration in the indoor space RM shows a high value, the flow path switching device 10 is held in the first position or is forcibly switched from the second position to the first position, so that the return air circulation Deterioration of the indoor environment due to operation can be reliably prevented. If desired, a switching signal for the outside air introduction operation and the return air circulation operation (for example, an outside air cut signal) is input to the control unit C / U from the central monitoring system BAS, and the outside air introduction operation and the return air circulation operation are arbitrarily switched. It is also possible to design the control system of the humidity control device 1 so that the switching operation between the outside air introduction operation and the return air circulation operation can be manually or remotely controlled by the central monitoring system BAS. ..

図4及び図5は、本発明の構成を部分的に含むデシカント式調湿装置の構成を他の参考例として概念的に示すシステム構成図である。図4には、外気導入運転時のデシカント式調湿装置の状態が示されており、図5には、還気循環運転時のデシカント式調湿装置の状態が示されている。各図において、図1及び図2に示す各構成要素又は構成機器等と実質的に同一又は同等の構成要素又は構成機器等については、同一の参照符号が付されている。 4 and 5 are system configuration diagrams conceptually showing the configuration of a desiccant type humidity control device including the configuration of the present invention as another reference example. FIG. 4 shows the state of the desiccant type humidity control device during the outside air introduction operation, and FIG. 5 shows the state of the desiccant type humidity control device during the return air circulation operation. In each figure, the same reference numerals are given to the components or components that are substantially the same as or equivalent to the components or components shown in FIGS. 1 and 2.

図4及び図5に示す調湿装置1は、図1及び図2に示す調湿装置1において、デシカントロータ2の給気下流側に回転型の顕熱交換器9を更に配設した構成を有する。顕熱交換器9は、給気流路6及び排気流路7に跨がって配置される。顕熱交換器9は、ハニカム構造の顕熱交換ロータと、顕熱交換ロータを全体的に回転させる回転駆動装置とを有し、デシカントロータ2と同様、流路方向と平行に配向された回転中心軸線X−Xを中心に連続的又は間欠的に回転する。顕熱交換器9は、図4に示す外気導入運転において外気OA及び還気RAを顕熱交換し、排熱回収する。他方、顕熱交換器9は、開閉弁17aを介装したバイパス流路17を含み、図5に示す還気循環運転において、開閉弁17aを開放して給気流路6の給気SAを給気流路SDにバイパスする。従って、還気循環運転においては、顕熱交換器9の顕熱交換作用は有効に機能せず、還気RAが保有する冷熱(顕熱)が外気OAとの顕熱交換により損失するのを防止し得る。変形例として、バイパス流路17及び開閉弁17aを設けず、還気循環運転においても還気RAを顕熱交換器9を流通又は通過せしめる一方、還気循環運転時に顕熱交換器9の回転を停止して顕熱交換器9の顕熱交換作用を実質的に無効にする制御手段を制御系に設けても良い。 The humidity control device 1 shown in FIGS. 4 and 5 has a configuration in which the rotary sensible heat exchanger 9 is further arranged on the downstream side of the air supply of the desiccant rotor 2 in the humidity control device 1 shown in FIGS. 1 and 2. Have. The sensible heat exchanger 9 is arranged so as to straddle the air supply flow path 6 and the exhaust flow path 7. The sensible heat exchanger 9 has a sensible heat exchange rotor having a honeycomb structure and a rotation drive device for rotating the sensible heat exchange rotor as a whole, and like the desiccant rotor 2, the rotation is oriented parallel to the flow path direction. It rotates continuously or intermittently around the central axis XX. The sensible heat exchanger 9 exchanges sensible heat between the outside air OA and the return air RA in the outside air introduction operation shown in FIG. 4, and recovers the exhaust heat. On the other hand, the sensible heat exchanger 9 includes a bypass flow path 17 interposed with an on-off valve 17a, and in the return air circulation operation shown in FIG. 5, the on-off valve 17a is opened to supply the air supply SA of the air supply flow path 6. Bypass to the air flow SD. Therefore, in the return air circulation operation, the sensible heat exchange action of the sensible heat exchanger 9 does not function effectively, and the cold heat (sensible heat) possessed by the return air RA is lost due to the sensible heat exchange with the outside air OA. Can be prevented. As a modification, the bypass flow path 17 and the on-off valve 17a are not provided, and the return air RA is circulated or passed through the sensible heat exchanger 9 even in the return air circulation operation, while the rotation of the sensible heat exchanger 9 during the return air circulation operation. The control system may be provided with a control means for substantially disabling the sensible heat exchange action of the sensible heat exchanger 9.

図4に示す調湿装置1の外気導入運転において、大気条件の外気OAは、外気導入路OD及び第1給送路D1を介して給気ファン4に誘引され、給気ファン4の給気圧力下に給気流路6に送出され、デシカントロータ2の下半部ハニカム流路を流通又は通過して除湿され、顕熱交換器9の下半部ハニカム流路を流通又は通過して還気RAと顕熱交換し、しかる後、給気流路SDに送出され、給気SAとして室内空間RMに供給される。他方、室内空間RMの空気は、還気RAとして第2給送路D2に導出され、排気ファン3の吸引圧力下に顕熱交換器9の上半部ハニカム流路を流通又は通過して給気SAと顕熱交換し、再生用加熱器8の加熱部に伝熱接触して加熱(予熱)され、しかる後、デシカントロータ2の上半部ハニカム流路を流通又は通過してデシカントロータ2を再生し、排気EAとして排気流路7から系外(屋外環境等)に排気される。 In the outside air introduction operation of the humidity control device 1 shown in FIG. 4, the outside air OA under atmospheric conditions is attracted to the air supply fan 4 via the outside air introduction path OD and the first supply path D1, and the air supply of the air supply fan 4 is performed. It is sent to the air supply flow path 6 under pressure, flows or passes through the lower half honeycomb flow path of the desiccant rotor 2 to dehumidify, and flows or passes through the lower half honeycomb flow path of the sensible heat exchanger 9 to return air. After sensible heat exchange with RA, it is sent to the air supply flow path SD and supplied to the indoor space RM as air supply SA. On the other hand, the air in the indoor space RM is led out to the second supply passage D2 as the return air RA, and is supplied by flowing or passing through the upper half honeycomb flow path of the sensible heat exchanger 9 under the suction pressure of the exhaust fan 3. The heat is exchanged with the air SA, and the heat is transferred to the heating part of the regeneration heater 8 to be heated (preheated). After that, the desiccant rotor 2 flows or passes through the upper half honeycomb flow path of the desiccant rotor 2. Is regenerated and exhausted from the exhaust flow path 7 to the outside of the system (outdoor environment, etc.) as exhaust EA.

これに対し、図5に示す調湿装置1の還気循環運転においては、室内空間RMの還気RAは、給気ファン4の吸引圧力下に室内空間RMから導出され、室内空気導出路RD及び第1給送路D1を介して給気ファン4に誘引され、給気ファン4の給気圧力下に給気流路6に送出され、デシカントロータ2の下半部ハニカム流路を流通又は通過して除湿された後、バイパス流路17を介して給気流路SDに送出され、給気SAとして室内空間RMに再循環する。他方、大気条件の外気OAは、排気ファン3の吸引圧力下に顕熱交換器9を流通又は通過し、加熱器8を流通又は通過して加熱(予熱)された後、デシカントロータ2の上半部ハニカム流路を流通又は通過してデシカントロータ2を再生し、排気EAとして排気流路7から系外(屋外環境等)に排気される。なお、前述のとおり、バイパス流路17による還気パイパス作用に換えて、還気循環運転に顕熱交換器9の回転を停止し、これにより、顕熱交換器9の顕熱交換作用が還気循環運転に有効に機能しないように設定しても良い。 On the other hand, in the return air circulation operation of the humidity control device 1 shown in FIG. 5, the return air RA of the indoor space RM is derived from the indoor space RM under the suction pressure of the air supply fan 4, and the indoor air outlet path RD And, it is attracted to the air supply fan 4 through the first supply passage D1, is sent to the air supply flow path 6 under the air supply pressure of the air supply fan 4, and flows or passes through the lower half honeycomb flow path of the desiccant rotor 2. After being dehumidified, the air is sent to the air supply flow path SD via the bypass flow path 17, and is recirculated to the indoor space RM as the air supply SA. On the other hand, the outside air OA under atmospheric conditions flows or passes through the sensible heat exchanger 9 under the suction pressure of the exhaust fan 3, flows or passes through the heater 8 and is heated (preheated), and then on the desiccant rotor 2. The desiccant rotor 2 is regenerated by flowing or passing through the half honeycomb flow path, and is exhausted from the exhaust flow path 7 to the outside of the system (outdoor environment, etc.) as exhaust EA. As described above, instead of the return air bypass action by the bypass flow path 17, the rotation of the sensible heat exchanger 9 is stopped in the return air circulation operation, whereby the sensible heat exchange action of the sensible heat exchanger 9 is returned. It may be set so as not to function effectively for air circulation operation.

前述した参考例と同じく、図4及び図5に示す調湿装置1においても、調湿装置1は、夏期冷房時期に外気導入形態で定常的に運転され、所要量の新鮮外気を室内空間RMに供給するが、ウォームアップ運転時等の換気量低減可能時間、室内空間RMの二酸化炭素濃度の低下時、或いは、外界環境の過大な湿度上昇時等には、還気循環形態で運転されるので、空調システムの外気負荷を軽減することができる。また、流路切換装置10は、室内空間RMの二酸化炭素濃度が高い値を示すと、第1位置に保持され、或いは、第2位置から第1位置に強制的に切換えられるので、還気循環運転に起因した室内環境の悪化を確実に防止することができる。なお、顕熱交換器9及びバイパス流路17を設けた点を除く本例の調湿装置1の構成は、図1及び図2に示す調湿装置1の構成と実質的に同一であるので、図4及び図5に示す調湿装置1に関する更に詳細な説明は、省略する。 Similar to the reference example described above, also in the humidity control device 1 shown in FIGS. 4 and 5, the humidity control device 1 is constantly operated in the outside air introduction mode during the summer cooling period, and the required amount of fresh outside air is supplied to the indoor space RM. However, it is operated in the return air circulation mode when the ventilation volume can be reduced during warm-up operation, when the carbon dioxide concentration in the indoor space RM decreases, or when the humidity of the external environment rises excessively. Therefore, the load on the outside air of the air conditioning system can be reduced. Further, when the carbon dioxide concentration in the indoor space RM shows a high value, the flow path switching device 10 is held in the first position or is forcibly switched from the second position to the first position, so that the return air circulation Deterioration of the indoor environment due to operation can be reliably prevented. The configuration of the humidity control device 1 of this example is substantially the same as the configuration of the humidity control device 1 shown in FIGS. 1 and 2 except that the sensible heat exchanger 9 and the bypass flow path 17 are provided. , A more detailed description of the humidity control device 1 shown in FIGS. 4 and 5 will be omitted.

図6及び図7は、図4及び図5に示す参考例の変形例に係るデシカント式調湿装置の構成を他の参考例として概念的に示すシステム構成図である。図6には、外気導入運転時のデシカント式調湿装置の状態が示されており、図7には、還気循環運転時のデシカント式調湿装置の状態が示されている。各図において、前述の各参考例の構成要素又は構成機器等と実質的に同一又は同等の構成要素又は構成機器等については、同一の参照符号が付されている。 6 and 7 are system configuration diagrams conceptually showing the configuration of the desiccant type humidity control device according to the modified example of the reference example shown in FIGS. 4 and 5 as another reference example. FIG. 6 shows the state of the desiccant type humidity control device during the outside air introduction operation, and FIG. 7 shows the state of the desiccant type humidity control device during the return air circulation operation. In each figure, the same reference numerals are given to the components or components that are substantially the same as or equivalent to the components or components of each reference example described above.

図6及び図7に示す調湿装置1は、図4及び図5に示す調湿装置1において、顕熱交換器9に換えて、回転型の全熱交換器90をデシカントロータ2の給気上流側に配設した構成を有する。全熱交換器90は、吸湿性を有するハニカムコアと、ハニカムコアを全体的に回転させる回転駆動装置とを有し、回転中心軸線X−Xを中心に連続的又は間欠的に回転する。全熱交換器90は、図6に示す外気導入運転において外気OA及び還気RAを全熱交換し、排熱回収する。他方、全熱交換器90は、開閉弁17aを介装したバイパス流路17を含み、図7に示す還気循環運転において開閉弁17aを開放し、還気RAが全熱交換器90を迂回するようにバイパス流路17を開放する。従って、還気循環運転においては、全熱交換器90の全熱交換作用は有効に機能せず、還気RAが保有する冷熱(顕熱及び潜熱)が外気OAとの熱交換により損失するのを防止し得る。なお、全熱交換器90及びバイパス流路17を設けた点を除く本例の調湿装置1の構成及び機能は、図4及び図5に示す調湿装置1の構成及び機能と実質的に同一である。 In the humidity control device 1 shown in FIGS. 4 and 5, the humidity control device 1 shown in FIGS. 6 and 7 uses a rotary total heat exchanger 90 to supply air to the desiccant rotor 2 instead of the visible heat exchanger 9. It has a configuration arranged on the upstream side. The total heat exchanger 90 has a honeycomb core having hygroscopicity and a rotation driving device that rotates the honeycomb core as a whole, and rotates continuously or intermittently about the rotation center axis XX. The total heat exchanger 90 exchanges total heat between the outside air OA and the return air RA in the outside air introduction operation shown in FIG. 6, and recovers the exhaust heat. On the other hand, the total heat exchanger 90 includes a bypass flow path 17 interposed with an on-off valve 17a, opens the on-off valve 17a in the return air circulation operation shown in FIG. 7, and the return air RA bypasses the total heat exchanger 90. The bypass flow path 17 is opened so as to do so. Therefore, in the return air circulation operation, the total heat exchange action of the total heat exchanger 90 does not function effectively, and the cold heat (sensible heat and latent heat) possessed by the return air RA is lost due to heat exchange with the outside air OA. Can be prevented. The configuration and function of the humidity control device 1 of this example except that the total heat exchanger 90 and the bypass flow path 17 are provided are substantially the same as the configuration and function of the humidity control device 1 shown in FIGS. 4 and 5. It is the same.

図6に示す調湿装置1の外気導入運転において、大気条件の外気OAは、外気導入路OD及び第1給送路D1を介して給気ファン4に誘引され、全熱交換器90の下半部ハニカム流路を流通又は通過して還気RAと全熱交換し、デシカントロータ2の下半部ハニカム流路を流通又は通過して除湿され、しかる後、給気ファン4の給気圧力下に給気流路6から給気流路SDに送出され、給気SAとして室内空間RMに供給される。他方、室内空間RMの空気は、排気ファン3の吸引圧力下に還気RAとして室内空気導出路RDに導出され、第2給送路D2を介して調湿装置1の排気流路7に導入され、全熱交換器90の上半部ハニカム流路を流通又は通過して外気OAと全熱交換し、再生用加熱器8の加熱部に伝熱接触して加熱(予熱)され、しかる後、デシカントロータ2の上半部ハニカム流路を流通又は通過してデシカントロータ2を再生し、排気EAとして排気流路7から系外(屋外環境等)に排気される。 In the outside air introduction operation of the humidity control device 1 shown in FIG. 6, the outside air OA under atmospheric conditions is attracted to the air supply fan 4 via the outside air introduction path OD and the first supply path D1, and is under the total heat exchanger 90. It circulates or passes through the half honeycomb flow path to exchange total heat with the return air RA, flows or passes through the lower half honeycomb flow path of the desiccant rotor 2 to dehumidify, and then the air supply pressure of the air supply fan 4. It is sent downward from the air supply flow path 6 to the air supply flow path SD, and is supplied to the indoor space RM as the air supply SA. On the other hand, the air in the indoor space RM is led out to the indoor air outlet path RD as a return air RA under the suction pressure of the exhaust fan 3, and is introduced into the exhaust flow path 7 of the humidity control device 1 via the second supply path D2. Then, it flows or passes through the upper half honeycomb flow path of the total heat exchanger 90 to exchange total heat with the outside air OA, and is heated (preheated) by heat transfer contact with the heating part of the regeneration heater 8. , The desiccant rotor 2 is regenerated by flowing or passing through the upper half honeycomb flow path of the desiccant rotor 2, and is exhausted from the exhaust flow path 7 to the outside of the system (outdoor environment or the like) as exhaust EA.

図7に示す調湿装置1の還気循環運転において、室内空間RMの還気RAは、給気ファン4の吸引圧力下に室内空間RMから導出され、室内空気導出路RD、第1給送路D1及びバイパス流路17を介してデシカントロータ2の上流側の給気流路6に導入され、デシカントロータ2の下半部ハニカム流路を流通又は通過して除湿された後、給気SAとして室内空間RMに再循環する。他方、大気条件の外気OAは、排気ファン3の吸引圧力下に全熱交換器90を流通又は通過し、加熱器8を流通又は通過して加熱(予熱)された後、デシカントロータ2の上半部ハニカム流路を流通又は通過してデシカントロータ2を再生し、排気EAとして排気流路7から系外(屋外環境等)に排気される。 In the return air circulation operation of the humidity control device 1 shown in FIG. 7, the return air RA of the indoor space RM is led out from the indoor space RM under the suction pressure of the air supply fan 4, and the indoor air lead-out path RD and the first supply are fed. It is introduced into the air supply flow path 6 on the upstream side of the desiccant rotor 2 via the path D1 and the bypass flow path 17, flows through or passes through the lower half honeycomb flow path of the desiccant rotor 2, is dehumidified, and then is used as the air supply SA. It recirculates in the indoor space RM. On the other hand, the outside air OA under atmospheric conditions flows or passes through the total heat exchanger 90 under the suction pressure of the exhaust fan 3, flows or passes through the heater 8 and is heated (preheated), and then on the desiccant rotor 2. The desiccant rotor 2 is regenerated by flowing or passing through the half honeycomb flow path, and is exhausted from the exhaust flow path 7 to the outside of the system (outdoor environment, etc.) as exhaust EA.

なお、前述の参考例と同様、バイパス流路17及び開閉弁17aに換えて、還気循環運転時に全熱交換器90の回転を停止する制御手段を制御系に設け、これにより、還気循環運転時に全熱交換器90の回転を停止し、全熱交換器90の全熱交換作用が還気循環運転時に有効に機能しないように設定することも可能である。 As in the above-mentioned reference example , the control system is provided with a control means for stopping the rotation of the total heat exchanger 90 during the return air circulation operation instead of the bypass flow path 17 and the on-off valve 17a, thereby circulating the return air. It is also possible to stop the rotation of the total heat exchanger 90 during operation so that the total heat exchange action of the total heat exchanger 90 does not function effectively during the return air circulation operation.

かくして、前述した各参考例と同じく、図6及び図7に示す調湿装置1においても、調湿装置1は、夏期冷房時期に外気導入形態で定常的に運転され、所要量の新鮮外気を室内空間RMに供給するが、ウォームアップ運転時等の換気量低減可能時間、室内空間RMの二酸化炭素濃度の低下時、或いは、外界環境の過大な湿度上昇時等には、還気循環形態で運転されるので、空調システムの外気負荷を軽減することができる。また、流路切換装置10は、室内空間RMの二酸化炭素濃度が高い値を示すと、第1位置に保持され、或いは、第2位置から第1位置に強制的に切換えられるので、還気循環運転に起因した室内環境の悪化を確実に防止することができる。 Thus, in the humidity control device 1 shown in FIGS. 6 and 7, similarly to the above-mentioned reference examples , the humidity control device 1 is constantly operated in the outside air introduction form during the summer cooling period to obtain the required amount of fresh outside air. It is supplied to the indoor space RM, but in the return air circulation mode when the ventilation volume can be reduced during warm-up operation, when the carbon dioxide concentration in the indoor space RM decreases, or when the humidity of the external environment rises excessively. Since it is operated, the load on the outside air of the air conditioning system can be reduced. Further, when the carbon dioxide concentration in the indoor space RM shows a high value, the flow path switching device 10 is held in the first position or is forcibly switched from the second position to the first position, so that the return air circulation Deterioration of the indoor environment due to operation can be reliably prevented.

図8及び図9は、本発明の実施形態に係るデシカント式調湿装置の構成を示すシステム構成図である。図8には、外気導入運転時のデシカント式調湿装置の状態が示されており、図9には、還気循環運転時のデシカント式調湿装置の状態が示されている。 8 and 9 are system configuration diagrams showing the configuration of the desiccant type humidity control device according to the embodiment of the present invention. FIG. 8 shows the state of the desiccant type humidity control device during the outside air introduction operation, and FIG. 9 shows the state of the desiccant type humidity control device during the return air circulation operation.

図8及び図9に示す調湿装置1は、図6及び図7に示す調湿装置1において、排気流路7の排気流と給気流路6の給気流とが対向流として全熱交換器90及びデシカントロータ2を流通する流路構成を有し、排気流路7は、垂直隔壁5aによって分割されている。調湿装置1は又、給気流路6及び排気流路7の流入端に配置されたフィルタユニット31、32と、給気流路6に配置された冷温水コイル等の加熱・冷却用熱交換器41、42と、排気流路7に配置された温水コイル等の再生用加熱器8と、給気流路6に配置された加湿器43とを有する。熱交換器41、42は、給気流路6においてデシカントユニット20の上流側及び下流側に夫々配置され、再生用加熱器8は、還気流路7においてデシカントユニット20の上流側に配置され、加湿器43は、給気流路6において熱交換器42と給気ファン4との間に配置される。 In the humidity control device 1 shown in FIGS. 6 and 7, the humidity control device 1 shown in FIGS. 8 and 9 is a total heat exchanger in which the exhaust flow of the exhaust flow path 7 and the supply air flow of the air supply flow path 6 are countercurrents. It has a flow path configuration for passing through the 90 and the desiccant rotor 2, and the exhaust flow path 7 is divided by a vertical partition wall 5a. The humidity control device 1 is also a heat exchanger for heating / cooling the filter units 31 and 32 arranged at the inflow ends of the air supply flow path 6 and the exhaust flow path 7, and the cold / hot water coils arranged in the air supply flow path 6. It has 41, 42, a regenerating heater 8 such as a hot water coil arranged in the exhaust flow path 7, and a humidifier 43 arranged in the air supply flow path 6. The heat exchangers 41 and 42 are arranged on the upstream side and the downstream side of the desiccant unit 20 in the air supply flow path 6, respectively, and the regeneration heater 8 is arranged on the upstream side of the desiccant unit 20 in the return air flow path 7 to humidify. The vessel 43 is arranged between the heat exchanger 42 and the air supply fan 4 in the air supply flow path 6.

図8及び図9に示す調湿装置1の外気導入運転及び還気循環運転において形成される外気流及び還気流の流路構成や、再生用加熱器8の機能又は作用は、図6及び図7に示す調湿装置における外気流及び還気流の流路構成や、再生用加熱器8の機能又は作用と実質的に同一であるので、重複する説明は、省略する。また、熱交換器41、42及び加湿器43の作用及び機能については、後述する実施形態において説明する空気線図(図13〜図16)に示された還気及び外気の状態変化より容易に理解し得るので、これらの機器の機能及び作用については、後述する。 The flow path configurations of the outside airflow and the return airflow formed in the outside air introduction operation and the return air circulation operation of the humidity control device 1 shown in FIGS. 8 and 9 and the functions or actions of the regeneration heater 8 are shown in FIGS. Since it is substantially the same as the flow path configuration of the outside airflow and the return airflow in the humidity control device shown in No. 7 and the function or operation of the regeneration heater 8, the overlapping description will be omitted. Further, the actions and functions of the heat exchangers 41 and 42 and the humidifier 43 can be easily described by the return air and the change in the state of the outside air shown in the psychrometric charts (FIGS. 13 to 16) described in the embodiment described later. As can be understood, the functions and operations of these devices will be described later.

図10、図11及び図12は、本発明好適な実施形態に係るデシカント式調湿装置の基本構成を概念的に示すシステムフロー図及び部分斜視図である。図10には、デシカント式調湿装置の外気導入運転の形態が示されており、図11には、デシカント式調湿装置の還気循環運転の形態が示されている。また、図12(A)には、デシカント式調湿装置の全体構成が外気導入運転時の状態で示され、図12(B)には、全熱交換器の構造が示され、図12(C)及び図12(D)には、交互切替式デシカントブロックの作動形態が示されている。更に、図13は、外気導入形態のデシカント式調湿装置の作用を示す空気線図であり、図14は、還気循環形態のデシカント式調湿装置の作用を示す空気線図である。なお、図13及び図14には、取入れ外気の状態変化が実線で示されており、還気の状態変化が破線で示されている。また、図13及び図14において各点A〜E、a〜dに示す数値は、温度(℃)/絶対湿度(g/kg(DA))である。また、各図において、図1〜9に示す各構成要素又は構成機器等と実質的に同一又は同等の構成要素又は構成機器等については、同一の参照符号が付されている。 10, 11, and 12 are a system flow diagram and a partial perspective view conceptually showing a basic configuration of a desiccant type humidity control device according to a preferred embodiment of the present invention. FIG. 10 shows a mode of outside air introduction operation of the desiccant type humidity control device, and FIG. 11 shows a mode of return air circulation operation of the desiccant type humidity control device. Further, FIG. 12 (A) shows the overall configuration of the desiccant type humidity control device in a state during the outside air introduction operation, and FIG. 12 (B) shows the structure of the total heat exchanger. C) and FIG. 12 (D) show the operation mode of the alternating switchable desiccant block. Further, FIG. 13 is an air diagram showing the operation of the desiccant type humidity control device in the outside air introduction form, and FIG. 14 is an air diagram showing the operation of the desiccant type humidity control device in the return air circulation form. In addition, in FIG. 13 and FIG. 14, the state change of the intake outside air is shown by a solid line, and the state change of the return air is shown by a broken line. The numerical values shown at points A to E and a to d in FIGS. 13 and 14 are temperature (° C.) / absolute humidity (g / kg (DA)). Further, in each figure, the same reference numerals are given to the components or components that are substantially the same as or equivalent to the components or components shown in FIGS. 1 to 9.

本実施形態に係る調湿装置1の基本構成は、本出願人等の特許出願に係る特開2016-40506号公報(特許文献5)に記載されたデシカント式調湿装置の構成と実質的に同一であり、調湿装置1は、調湿装置1の流路方向(中心軸線X−X方向)に対して角度45度傾斜した静止型の全熱交換器90と、ハニカム構造を有する左右一対のデシカントブロック21、22を備えたデシカントユニット20とを有する。各デシカントブロック21、22は、調湿装置1の流路方向に対して角度45度傾斜した方向に気流を流通又は通過させる多数のハニカム流路を有する。 The basic configuration of the humidity control device 1 according to the present embodiment is substantially the same as the configuration of the desiccant type humidity control device described in Japanese Patent Application Laid-Open No. 2016-40506 (Patent Document 5) according to the patent application of the applicant and others. The humidity control device 1 is the same, and the humidity control device 1 is a static total heat exchanger 90 inclined at an angle of 45 degrees with respect to the flow path direction (central axis XX direction) of the humidity control device 1, and a pair of left and right having a honeycomb structure. It has a desiccant unit 20 provided with the desiccant blocks 21 and 22 of the above. Each of the desiccant blocks 21 and 22 has a large number of honeycomb flow paths that allow the air flow to flow or pass in a direction inclined by an angle of 45 degrees with respect to the flow path direction of the humidity control device 1.

調湿装置1は又、調湿装置1の流入端に配置されたフィルタユニット31、32と、給気流路6及び排気流路7に夫々配置された給気ファン4及び排気ファン3と、冷温水コイル等の加熱・冷却用熱交換器41、42と、温水コイル等の再生用加熱器8と、給気流路6に配置された加湿器43とを有する。熱交換器41、42は、給気流路6においてデシカントユニット20の上流側及び下流側に夫々配置され、再生用加熱器8は、還気流路7においてデシカントユニット20の上流側に配置され、加湿器43は、給気流路6において熱交換器42と給気ファン4との間に配置される。 The humidity control device 1 also includes filter units 31 and 32 arranged at the inflow end of the humidity control device 1, an air supply fan 4 and an exhaust fan 3 arranged in the air supply flow path 6 and the exhaust flow path 7, respectively, and cooling temperature. It has heat exchangers 41 and 42 for heating and cooling water coils and the like, a heater 8 for regeneration such as a hot water coil, and a humidifier 43 arranged in an air supply flow path 6. The heat exchangers 41 and 42 are arranged on the upstream side and the downstream side of the desiccant unit 20 in the air supply flow path 6, respectively, and the regeneration heater 8 is arranged on the upstream side of the desiccant unit 20 in the return air flow path 7 to humidify. The vessel 43 is arranged between the heat exchanger 42 and the air supply fan 4 in the air supply flow path 6.

調湿装置1は更に、全熱交換器90のバイパス流路18を有し、バイパス流路18は、開閉弁19を有する。バイパス流路18は、開閉弁19の開放時に全熱交換器90の前後の給気流路6の部分を相互連通させる。開閉弁19は、外気導入運転において閉鎖位置に保持され、還気循環運転において開放される。 The humidity control device 1 further has a bypass flow path 18 of the total heat exchanger 90, and the bypass flow path 18 has an on-off valve 19. The bypass flow path 18 allows the portions of the air supply flow paths 6 before and after the total heat exchanger 90 to communicate with each other when the on-off valve 19 is opened. The on-off valve 19 is held in the closed position in the outside air introduction operation and opened in the return air circulation operation.

調湿装置1は、前述の参考例及び実施形態と同じく、四方弁構造の流路切換装置10を有する。流路切換装置10の各ポートは夫々、外気導入路OD、第1給送路D1、室内空気導出路RD及び第2給送路D2に接続される。図10及び図11において、還気RAの流路は、破線矢印で示され、外気OAは、実線矢印で示されている。流路切換装置10の制御系は、前述の参考例及び実施形態と実質的に同じ構成を有する。 The humidity control device 1 has a flow path switching device 10 having a four-way valve structure, as in the above-described reference examples and embodiments. Each port of the flow path switching device 10 is connected to the outside air introduction path OD, the first supply path D1, the indoor air lead-out path RD, and the second supply path D2, respectively. In FIGS. 10 and 11, the flow path of the return air RA is indicated by a broken line arrow, and the outside air OA is indicated by a solid line arrow. The control system of the flow path switching device 10 has substantially the same configuration as the above-mentioned reference examples and embodiments.

調湿装置1は、夏期冷房時期において、常時は、図10、図12及び図13に示す外気導入形態で運転され、所要量の新鮮外気を室内空間RMに供給する。以下、図10、図12及び図13を参照して、外気導入運転時の調湿装置1の構成及び作用について説明する。 The humidity control device 1 is always operated in the outside air introduction mode shown in FIGS. 10, 12 and 13 during the summer cooling period, and supplies a required amount of fresh outside air to the indoor space RM. Hereinafter, the configuration and operation of the humidity control device 1 during the outside air introduction operation will be described with reference to FIGS. 10, 12, and 13.

全熱交換器90は、特殊加工紙の仕切板及び間隔板によって形成された直交流形式の静止型全熱交換器であり、還気RA及び外気OAが夫々流通又は通過する多数の流路91、92(図12(B))を有する。還気RA及び外気OAは全熱交換器90において全熱交換する。夏期冷房時には、還気RAが保有する冷熱(潜熱及び顕熱)が外気OAによって排熱回収され、外気OAは温度降下し且つ減湿する。この状態変化は、図13の空気線図に状態変化A→B、a→bとして示されている。 The total heat exchanger 90 is a orthogonal flow type static total heat exchanger formed by a partition plate and a spacing plate of specially processed paper, and a large number of flow paths 91 through which the return air RA and the outside air OA each flow or pass. , 92 (FIG. 12 (B)). The return air RA and the outside air OA exchange total heat in the total heat exchanger 90. During summer cooling, the cold heat (latent heat and sensible heat) possessed by the return air RA is recovered as exhaust heat by the outside air OA, and the temperature of the outside air OA drops and the humidity decreases. This state change is shown as a state change A → B and a → b in the psychrometric chart of FIG.

給気流路6及び排気流路7は、前述の実施形態と同じく、水平な隔壁5によって区画されるが、全熱交換器90が流路方向に対して角度45度傾斜しているので、全熱交換器90の下流側において給気流路6及び排気流路7の上下位置が逆転する。全熱交換器90を流通又は通過した外気OAは、隔壁5の下側に配置された熱交換器41によって冷却され、しかる後、デシカントユニット20を流通又は通過して除湿される。この状態変化は、図13の空気線図に状態変化B→C→Dとして示されている。他方、全熱交換器90を流通又は通過した還気RAは、隔壁5の上側に配置された加熱器8によって加熱(予熱)され、しかる後、デシカントユニット20を流通又は通過してデシカントユニット20の乾燥剤を再生する。この状態変化は、図13の空気線図に状態変化b→c→dとして示されている。 The air supply flow path 6 and the exhaust flow path 7 are partitioned by the horizontal partition wall 5 as in the above-described embodiment, but since the total heat exchanger 90 is inclined at an angle of 45 degrees with respect to the flow path direction, all of them are The vertical positions of the air supply flow path 6 and the exhaust flow path 7 are reversed on the downstream side of the heat exchanger 90. The outside air OA that has passed through or passed through the total heat exchanger 90 is cooled by the heat exchanger 41 arranged under the partition wall 5, and then dehumidified by passing through or passing through the desiccant unit 20. This state change is shown as a state change B → C → D in the psychrometric chart of FIG. On the other hand, the return air RA that has passed through or passed through the total heat exchanger 90 is heated (preheated) by the heater 8 arranged above the partition wall 5, and then flows or passes through the desiccant unit 20 to pass through the desiccant unit 20. Regenerate the desiccant. This state change is shown as a state change b → c → d in the psychrometric chart of FIG.

図12に示す如く、デシカントユニット20は、流路方向と直交する中心軸線Y−Yを中心に回動する駆動軸25を有し、駆動軸25は、駆動機構(図示せず)に作動的に連結される。デシカントユニット20は、左右一対の交互切換式デシカントブロック21、22を有し、各デシカントブロックは、矢印で示すように駆動軸25の回動に相応して回動する。 As shown in FIG. 12, the desiccant unit 20 has a drive shaft 25 that rotates about a central axis YY orthogonal to the flow path direction, and the drive shaft 25 operates on a drive mechanism (not shown). Is connected to. The desiccant unit 20 has a pair of left and right alternating switchable desiccant blocks 21 and 22, and each desiccant block rotates in accordance with the rotation of the drive shaft 25 as shown by an arrow.

各デシカントブロック21、22は、デシカントロータと同じくハニカム構造を有し、乾燥剤を担持したハニカムコアと、ハニカムコアによって画成された多数の狭小流路(ハニカム流路)とを備える。デシカントブロック21、22は、中心軸線Y−Y廻りに90度の位相差を有するように配向される。図12(C)に示す如く、還気RAがデシカントブロック21のハニカム流路に流入し、外気OAがデシカントブロック22のハニカム流路に流入する第1過程と、図12(D)に示す如く、還気RAがデシカントブロック22のハニカム流路に流入し、外気OAがデシカントブロック21のハニカム流路に流入する第2過程とが所定の時間間隔で交互に実行される。従って、外気OAを除湿し且つ還気RDにより再生するデシカントユニット20の機能又は作用は、実質的に連続的に継続し又は持続する。 Each of the desiccant blocks 21 and 22 has a honeycomb structure like the desiccant rotor, and includes a honeycomb core carrying a desiccant and a large number of narrow flow paths (honeycomb flow paths) defined by the honeycomb core. The desiccant blocks 21 and 22 are oriented so as to have a phase difference of 90 degrees around the central axis YY. As shown in FIG. 12 (C), the return air RA flows into the honeycomb flow path of the desiccant block 21, and the outside air OA flows into the honeycomb flow path of the desiccant block 22. , The return air RA flows into the honeycomb flow path of the desiccant block 22, and the second process in which the outside air OA flows into the honeycomb flow path of the desiccant block 21 is alternately executed at predetermined time intervals. Therefore, the function or action of the desiccant unit 20 that dehumidifies the outside air OA and regenerates it by the return air RD is substantially continuously continued or sustained.

デシカントユニット20は、全熱交換器90と同じく、流路方向に対して角度45度傾斜しており、デシカントユニット20の上流側における給気流路6及び排気流路7の上下関係は、デシカントユニット20の下流側において反転する。従って、図12(A)に示す如くデシカントユニット20の下側からデシカントユニット20に流入した外気OAは、デシカントユニット20によって除湿された後、隔壁5の上側に位置する給気流路6の部分に流出し、熱交換器42によって冷却され、給気ファン4の給気圧力下に給気SAとして室内空間RMに給送され、室内壁面又は天井面の給気口(図示せず)から室内空間RMに吹出す。この状態変化は、図13の空気線図に状態変化C→D→Eとして示されている。他方、図12(A)に示す如く、デシカントユニット20の上側からデシカントユニット20に流入した還気RAは、デシカントユニット21、22の乾燥剤を再生した後、排気ファン3(図10)に吸引され、排気ファン3の排気給送圧力下に系外(屋外空間等)に排気される。 Like the total heat exchanger 90, the desiccant unit 20 is inclined at an angle of 45 degrees with respect to the flow path direction, and the vertical relationship between the air supply flow path 6 and the exhaust flow path 7 on the upstream side of the desiccant unit 20 is the desiccant unit. Invert on the downstream side of 20. Therefore, as shown in FIG. 12A, the outside air OA that has flowed into the desiccant unit 20 from the lower side of the desiccant unit 20 is dehumidified by the desiccant unit 20 and then enters the portion of the air supply flow path 6 located above the partition wall 5. It flows out, is cooled by the heat exchanger 42, is supplied to the indoor space RM as air supply SA under the air supply pressure of the air supply fan 4, and is supplied to the indoor space RM from the air supply port (not shown) on the indoor wall surface or ceiling surface. Blow out to RM. This state change is shown as a state change C → D → E in the psychrometric chart of FIG. On the other hand, as shown in FIG. 12A, the return air RA that has flowed into the desiccant unit 20 from above the desiccant unit 20 is sucked into the exhaust fan 3 (FIG. 10) after regenerating the desiccants of the desiccant units 21 and 22. Then, it is exhausted to the outside of the system (outdoor space, etc.) under the exhaust supply pressure of the exhaust fan 3.

このような外気導入形態の運転状態に関し、夏期の特定の設計条件において熱交換器41、42の冷却用瞬時熱量(合計)を計算すると、図13の空気線図に示す如く、3.37kW+1.65kW=5.02kWである。 When the instantaneous cooling amount (total) of the heat exchangers 41 and 42 is calculated under the specific design conditions in summer with respect to the operating state of such an outside air introduction mode, 3.37 kW + 1. 65 kW = 5.02 kW.

制御ユニットC/Uは、このような外気導入形態の運転において外気負荷を軽減可能な条件が図3に示す如く成立すると(S2〜S5)、調湿装置1を還気循環運転に切換える(S7)。即ち、制御ユニットC/Uは、室内空間RMの二酸化炭素濃度が所定値α以下であり、換気量低減可能時間に該当する場合(S2、S3)、或いは、室内空間RMの二酸化炭素濃度が所定値β以下に低下した状態が所定時間以上継続した場合(S4)、室内空間RMの在室人数が減少した状態であると判断し、流路切換装置10を図11に示す第2位置に切換える。制御ユニットC/Uは又、室内空間RMの二酸化炭素濃度が所定値α以下であり、外気センサOSの検出結果が極端な外界気象条件の変化(過大な湿度上昇又は温度上昇等)を示す場合(S5)、急激な外気負荷増大や室内環境の悪化等を回避すべく、流路切換装置10を第2位置に切換える(S7)。制御ユニットC/Uは更に、バイパス流路18の開閉弁19を開放し、全熱交換器90の前後の給気流路6の部分をバイパス流路18によって相互連通させる。 When the condition capable of reducing the outside air load is satisfied as shown in FIG. 3 (S2 to S5) in the operation of the outside air introduction mode, the control unit C / U switches the humidity control device 1 to the return air circulation operation (S7). ). That is, in the control unit C / U, when the carbon dioxide concentration in the indoor space RM is equal to or less than a predetermined value α and corresponds to the ventilation volume reduction possible time (S2, S3), or when the carbon dioxide concentration in the indoor space RM is predetermined. When the state of decreasing to the value β or less continues for a predetermined time or more (S4), it is determined that the number of people in the indoor space RM has decreased, and the flow path switching device 10 is switched to the second position shown in FIG. .. The control unit C / U also has a carbon dioxide concentration in the indoor space RM of a predetermined value α or less, and the detection result of the outside air sensor OS indicates an extreme change in external weather conditions (excessive humidity rise, temperature rise, etc.). (S5), the flow path switching device 10 is switched to the second position in order to avoid a sudden increase in the outside air load and deterioration of the indoor environment (S7). The control unit C / U further opens the on-off valve 19 of the bypass flow path 18, and allows the portions of the air supply flow path 6 before and after the total heat exchanger 90 to communicate with each other by the bypass flow path 18.

流路切換装置10を第2位置に切換えた運転形態、即ち、還気循環形態の運転では、図11に示す如く、外気導入路ODは第2給送路D2に接続し、室内空気導出路RDは第1給送路D1に接続する。室内空間RMの還気RAは、室内空気導出路RD及び第1給送路D1を介して給気ファン4に誘引される。還気RAは、全熱交換器90を迂回(バイパス)し、熱交換器41によって冷却され、デシカントユニット20によって除湿された後、熱交換器42によって更に冷却され、しかる後、給送ファン4によって給気流路SDに送出され、室内壁面又は天井面の給気口(図示せず)から室内空間RMに吹出す。この状態変化は、図14の空気線図に状態変化a→b→c→dとして示されている。 In the operation mode in which the flow path switching device 10 is switched to the second position, that is, in the operation of the return air circulation mode, the outside air introduction path OD is connected to the second supply transmission path D2 and the indoor air lead path is connected as shown in FIG. The RD is connected to the first feed path D1. The return air RA of the indoor space RM is attracted to the air supply fan 4 via the indoor air lead-out path RD and the first supply path D1. The return air RA bypasses the total heat exchanger 90, is cooled by the heat exchanger 41, is dehumidified by the desiccant unit 20, and then further cooled by the heat exchanger 42, and then the feed fan 4 It is sent to the air supply flow path SD by, and is blown out to the indoor space RM from the air supply port (not shown) on the indoor wall surface or the ceiling surface. This state change is shown as a state change a → b → c → d in the psychrometric chart of FIG.

他方、外気OAは、全熱交換器90を通過し、加熱器8によって加熱又は加温され、しかる後、デシカントユニット20を流通又は通過する。還気RAが全熱交換器90を迂回(バイパス)しているので、全熱交換器90の熱交換作用は、有効に機能せず、従って、全熱交換器90は、単に排気流路7の一部として機能するにすぎない。外気OAは、加熱器8によって加熱又は加温された後、デシカントユニット20を流通又は通過してデシカントロータ2の乾燥剤を再生し、しかる後、排気EAとして系外(屋外環境等)に排気される。この状態変化は、図14の空気線図に状態変化A→B→Cとして示されている。 On the other hand, the outside air OA passes through the total heat exchanger 90, is heated or heated by the heater 8, and then flows or passes through the desiccant unit 20. Since the return air RA bypasses the total heat exchanger 90, the heat exchange action of the total heat exchanger 90 does not function effectively, so that the total heat exchanger 90 simply bypasses the exhaust flow path 7. It only functions as part of. After being heated or heated by the heater 8, the outside air OA circulates or passes through the desiccant unit 20 to regenerate the desiccant of the desiccant rotor 2, and then exhausts the desiccant to the outside of the system (outdoor environment, etc.) as exhaust EA. Will be done. This state change is shown as a state change A → B → C in the psychrometric chart of FIG.

このような還気循環形態の運転状態に関し、前述の外気導入形態の運転と同じ設計条件において熱交換器41、42の冷却用瞬時熱量(合計)を計算すると、熱交換器41、42の冷却用瞬時熱量(合計)は、図14の空気線図に示す如く、2.44kW+0.63kW=3.07kWである。この値は、前述した外気導入形態の運転における冷却用瞬時熱量の値(5.02kW)の約60%であり、従って、調湿装置1を外気導入形態の運転から還気循環形態の運転に切換えることにより、夏期の特定の設計条件において、約40%の熱エネルギーを削減することが可能である。 When the instantaneous amount of heat for cooling (total) of the heat exchangers 41 and 42 is calculated under the same design conditions as the operation of the outside air introduction mode described above with respect to the operating state of the return air circulation mode, the heat exchangers 41 and 42 are cooled. The instantaneous heat quantity (total) for use is 2.44 kW + 0.63 kW = 3.07 kW as shown in the psychrometric chart of FIG. This value is about 60% of the value of the instantaneous heat quantity for cooling (5.02 kW) in the operation of the outside air introduction form described above, and therefore, the humidity control device 1 is changed from the operation of the outside air introduction form to the operation of the return air circulation form. By switching, it is possible to reduce thermal energy by about 40% under certain summer design conditions.

かくして、本実施形態に係る調湿装置1も又、夏期冷房時期において、常時は、外気導入形態で運転され、所要量の新鮮外気を室内空間RMに供給するが、ウォームアップ運転時等の換気量低減可能時間、室内空間RMの二酸化炭素濃度の低下時、或いは、外界環境の過大な湿度上昇時等には、還気循環形態で運転されるので、室内空間RMに対する過剰な外気供給量を削減し、空調システムの外気負荷を軽減することができる。また、流路切換装置10は、室内空間RMの二酸化炭素濃度が高い値を示すと、第1位置に保持され、或いは、第1位置に強制的に切換えられるので、還気循環運転に起因した室内環境の悪化を回避することができる。 Thus, the humidity control device 1 according to the present embodiment is also always operated in the outside air introduction mode during the summer cooling period, and supplies the required amount of fresh outside air to the indoor space RM, but ventilates during the warm-up operation or the like. When the amount can be reduced, the carbon dioxide concentration in the indoor space RM decreases, or when the humidity of the external environment rises excessively, the system is operated in the return air circulation mode, so that the excess amount of outside air supplied to the indoor space RM can be reduced. It can be reduced and the load on the outside air of the air conditioning system can be reduced. Further, the flow path switching device 10 is held in the first position or forcibly switched to the first position when the carbon dioxide concentration in the indoor space RM shows a high value, which is caused by the return air circulation operation. It is possible to avoid deterioration of the indoor environment.

次に、調湿装置1の冬季加湿運転について説明する。 Next, the winter humidification operation of the humidity control device 1 will be described.

図15は、外気導入形態のデシカント式調湿装置の作用を示す空気線図であり、図16は、還気循環形態のデシカント式調湿装置の作用を示す空気線図である。図15及び図16には、外気の状態変化が実線で示されており、還気の状態変化が破線で示されている。なお、図15及び図16において各点A〜D、a〜cに示す数値は、温度(℃)/絶対湿度(g/kg(DA))である。 FIG. 15 is an air diagram showing the operation of the desiccant type humidity control device in the outside air introduction form, and FIG. 16 is an air diagram showing the operation of the desiccant type humidity control device in the return air circulation form. In FIGS. 15 and 16, the change of state of the outside air is shown by a solid line, and the change of state of the return air is shown by a broken line. The numerical values shown in points A to D and a to c in FIGS. 15 and 16 are temperature (° C.) / absolute humidity (g / kg (DA)).

冬季暖房時期において調湿装置1は、加湿装置として機能するが、その運転態様は、夏期冷房時期の運転と同じく、常時は、図15に示す外気導入形態で運転され、所要量の新鮮外気を室内空間RMに供給し、ウォームアップ運転時等の換気量低減可能時間、室内空間RMの二酸化炭素濃度の低下時、或いは、外界環境の急激な変動時等には、図16に示す還気循環形態で運転される。但し、本例の冬季加湿運転においては、外気及び還気は、デシカントユニット20を単に通過するにすぎず、外気OAは、外気導入形態の運転において、全熱交換器90、熱交換器42及び加湿器43によって加熱・加湿された後、室内空間RMに供給される。この状態変化は、図15の空気線図に状態変化A→B→C→D、a→bとして示されている。他方、還気RAは、還気循環運転において、熱交換器42及び加湿器43によって加熱・加湿された後、室内空間RMに供給される。この状態変化は、図16の空気線図に状態変化a→b→cで示されている。なお、加湿器43として、例えば、気化式加湿器を好ましく使用し得る。 The humidity control device 1 functions as a humidifying device during the winter heating period, and its operation mode is the same as that during the summer cooling period, and is always operated in the outside air introduction mode shown in FIG. 15 to provide a required amount of fresh outside air. Return air circulation shown in FIG. 16 when the ventilation volume can be reduced during warm-up operation by supplying to the indoor space RM, when the carbon dioxide concentration in the indoor space RM decreases, or when the external environment suddenly fluctuates. Driven in form. However, in the winter humidification operation of this example, the outside air and the return air merely pass through the desiccant unit 20, and the outside air OA is the total heat exchanger 90, the heat exchanger 42, and the heat exchanger 42 in the operation of the outside air introduction mode. After being heated and humidified by the humidifier 43, it is supplied to the indoor space RM. This state change is shown as a state change A → B → C → D and a → b in the psychrometric chart of FIG. On the other hand, the return air RA is supplied to the indoor space RM after being heated and humidified by the heat exchanger 42 and the humidifier 43 in the return air circulation operation. This state change is shown by the state change a → b → c in the psychrometric chart of FIG. As the humidifier 43, for example, a vaporization type humidifier can be preferably used.

外気導入形態の運転状態に関し、冬季の特定の設計条件において熱交換器42の加熱用瞬時熱量を計算すると、2.96kWであり、還気循環形態の運転状態に関し、同一の設計条件において熱交換器42の加熱用瞬時熱量を計算すると、0.7kWである。即ち、前述した運転条件等に従って、外気導入形態の運転を過渡的に還気循環形態の運転に切り換えることにより、所要の熱エネルギーを著しく削減することが可能である。 The instantaneous heat quantity for heating of the heat exchanger 42 is calculated to be 2.96 kW under the specific design conditions in winter with respect to the operating state of the outside air introduction form, and the heat exchange under the same design conditions with respect to the operating state of the return air circulation form. The instantaneous heat quantity for heating of the vessel 42 is 0.7 kW. That is, it is possible to significantly reduce the required thermal energy by transiently switching the operation of the outside air introduction form to the operation of the return air circulation form in accordance with the above-mentioned operating conditions and the like.

以上、本発明の好適な実施形態について詳細に説明したが、本発明は、上記実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の範囲内において種々の変更又は変形が可能であり、かかる変更又は変形例も又、本発明の範囲内に含まれるものであることはいうまでもない。 Although the preferred embodiments of the present invention have been described in detail above, the present invention is not limited to the above embodiments, and various modifications or modifications are made within the scope of the present invention described in the claims. It goes without saying that such modifications or modifications are also included within the scope of the present invention.

例えば、全熱交換器をバイパスする上記バイパス流路は、全熱交換器の排気側流路をバイパスするように構成しても良く、或いは、全熱交換器の排気側流路及び給気側流路の双方をバイパスするように構成しても良い。 For example, the bypass flow path that bypasses the total heat exchanger may be configured to bypass the exhaust side flow path of the total heat exchanger, or the exhaust side flow path and the air supply side of the total heat exchanger. It may be configured to bypass both of the flow paths.

また、上記実施形態では、流路切換装置の切換え動作は、デシカント式調湿装置の制御ユニットによって制御されるが、中央監視システム又は中央監視装置によって流路切換装置の動作を遠隔制御又はマニュアル制御し、或いは、室内空間の手動操作スイッチ等によって流路切換装置をマニュアル操作し得るように構成しても良い。 Further, in the above embodiment, the switching operation of the flow path switching device is controlled by the control unit of the desiccant type humidity control device, but the operation of the flow path switching device is remotely controlled or manually controlled by the central monitoring system or the central monitoring device. Alternatively, the flow path switching device may be configured to be manually operated by a manual operation switch or the like in the indoor space.

加えて、除湿制御系の演算結果で除湿要求も加湿要求も生じない場合、流路切換装置の作動を停止又は禁止しても良く、更には、新鮮外気の室内供給をも要しない場合、外調機又は外気処理装置としてのデシカント式調湿装置の運転自体を停止することも可能である。 In addition, if neither the dehumidification request nor the humidification request is generated in the calculation result of the dehumidification control system, the operation of the flow path switching device may be stopped or prohibited, and further, if the indoor supply of fresh outside air is not required, the outside It is also possible to stop the operation of the desiccant type humidity control device as a machine or an outside air treatment device.

本発明は、デシカント式調湿装置及びその制御方法に適用される。本発明の構成は殊に、室内空間に給送すべき外気を乾燥剤によって除湿し且つ予熱後の還気によって乾燥剤を再生する外気導入運転と、乾燥剤によって還気を除湿し且つ予熱後の外気によって乾燥剤を再生する還気循環運転とを選択的に実行するデシカント式調湿装置及びその制御方法に好ましく適用し得る。本発明によれば、空調システムの運転形態又は運転時期や、室内空間の空気質等と関連して外気導入運転と還気循環運転とを選択的に実行し、デシカント式調湿装置の外気負荷を軽減することができるので、その実用的効果は、顕著である。 The present invention is applied to a desiccant type humidity control device and a control method thereof. In particular, the configuration of the present invention includes an outside air introduction operation in which the outside air to be fed to the indoor space is dehumidified by a desiccant and the desiccant is regenerated by the return air after preheating, and the return air is dehumidified by the desiccant and after preheating. It can be preferably applied to a desiccant type humidity control device and a control method thereof for selectively performing a return air circulation operation in which the desiccant is regenerated by the outside air. According to the present invention, the outside air introduction operation and the return air circulation operation are selectively executed in relation to the operation mode or operation time of the air conditioning system, the air quality of the indoor space, etc., and the outside air load of the desiccant type humidity control device is executed. The practical effect is remarkable because it can be reduced.

本発明は更に、このようなデシカント式調湿装置を含む空調システム及びその制御方法に適用される。本発明によれば、空調システム全体の運転形態又は運転時期や、室内空間の空気質等と関連してデシカント式調湿装置の運転形態を変更し、これにより、空調システム全体の外気負荷を軽減することが可能となる。 The present invention is further applied to an air conditioning system including such a desiccant type humidity control device and a control method thereof. According to the present invention, the operation mode or operation timing of the entire air conditioning system, the operation mode of the desiccant type humidity control device in relation to the air quality of the indoor space, etc. are changed, thereby reducing the outside air load of the entire air conditioning system. It becomes possible to do.

1 デシカント式調湿装置
2 デシカントロータ
3 排気ファン
4 給気ファン
5 隔壁
6 給気流路
7 排気流路
8 再生用加熱器
9 顕熱交換器
10 流路切換装置
11、12 三方弁(流路切換装置)
13〜16 開閉弁(流路切換装置)
17、18 バイパス流路
17a、19 開閉弁
20 デシカントユニット
21、22 交互切換式デシカントブロック
41、42 熱交換器
43 加湿器
90 全熱交換器
C/U 制御ユニット
CS 室内環境検出器
OS 外気センサ
RM 室内空間
BAS 中央監視システム又は中央監視装置
OD 外気導入路
SD 給気流路
RD 室内空気導出路
D1 第1給送路
D2 第2給送路
OA 外気
RA 還気
SA 給気
EA 排気
1 Desiccant type humidity control device 2 Desiccant rotor 3 Exhaust fan 4 Air supply fan 5 Partition 6 Air supply flow path 7 Exhaust flow path 8 Regeneration heater 9 Microheat exchanger 10 Flow path switching device 11, 12 Three-way valve (flow path switching) apparatus)
13 to 16 on-off valve (flow path switching device)
17, 18 Bypass flow path 17a, 19 On-off valve 20 Desiccant unit 21, 22 Alternate switching desiccant block 41, 42 Heat exchanger 43 Humidifier 90 Total heat exchanger C / U control unit CS Indoor environment detector OS Outside air sensor RM Indoor space BAS Central monitoring system or central monitoring device OD Outside air introduction path SD Supply air flow path RD Indoor air lead path D1 First supply path D2 Second supply path OA Outside air RA Return air SA Supply air EA Exhaust

Claims (9)

外気導入路によって取込んだ外気を室内空間に供給するための給気流路と、室内空気導出路によって室内空間から導出した還気を排気するための排気流路と、前記給気流路の外気に接触して外気中の水分を吸着し且つ前記排気流路の還気に放湿して再生する乾燥剤を備えたデシカントロータ又はデシカントユニットと、前記乾燥剤に接触する還気を予熱する再生用加熱器とを有するデシカント式調湿装置において、
前記外気導入路及び室内空気導出路に設け又は介装された流路切換装置であって、前記外気を除湿して室内空間に供給し且つ予熱後の前記還気で前記乾燥剤を再生する外気導入運転と、前記還気を除湿して室内空間に供給し且つ予熱後の前記外気で前記乾燥剤を再生する還気循環運転とを選択的に切換えるために、前記給気流路に前記外気を導入し且つ前記還気を前記排気流路に導入する第1位置と、前記給気流路に前記還気を導入し且つ前記外気を前記排気流路に導入する第2位置とに選択的に切換可能な流路切換装置と、
前記デシカントロータ又はデシカントユニットの給気方向上流側に配置され、前記還気及び前記外気の間で全熱交換又は顕熱交換する全熱交換器又は顕熱交換器と、
該全熱交換器又は顕熱交換器と前記デシカントロータ又はデシカントユニットとの間の前記給気流路に配置され、前記流路切換装置の第1位置において前記外気を冷却し、前記流路切換装置の第2位置において前記還気を冷却する冷却器と、
前記流路切換装置の第2位置において全熱交換器又は顕熱交換器の熱交換作用を実質的に無効にするためのパイパス流路、或いは、全熱交換器又は顕熱交換器の回転制御手段とを有することを特徴とするデシカント式調湿装置。
An air supply flow path for supplying the outside air taken in by the outside air introduction path to the indoor space, an exhaust flow path for exhausting the return air derived from the indoor space by the indoor air lead-out path, and an outside air of the air supply flow path. A desiccant rotor or desiccant unit provided with a desiccant that contacts and adsorbs moisture in the outside air and releases moisture to the return air of the exhaust flow path to regenerate, and for regeneration that preheats the return air that comes into contact with the desiccant. In a desiccant type humidity control device having a heater,
An outside air that is provided or interposed in the outside air introduction path and the indoor air outlet path, dehumidifies the outside air and supplies it to the indoor space, and regenerates the desiccant by the return air after preheating. In order to selectively switch between the introduction operation and the return air circulation operation in which the return air is dehumidified and supplied to the indoor space and the desiccant is regenerated by the outside air after preheating, the outside air is supplied to the air supply flow path. Selectively switch between a first position for introducing and introducing the return air into the exhaust flow path and a second position for introducing the return air into the air supply flow path and introducing the outside air into the exhaust flow path. Possible flow path switching device and
A total heat exchanger or sensible heat exchanger arranged on the upstream side of the desiccant rotor or desiccant unit in the air supply direction and exchanging total heat or sensible heat between the return air and the outside air.
The outside air is arranged in the air supply flow path between the total heat exchanger or the velvety heat exchanger and the desiccant rotor or the desiccant unit, and the outside air is cooled at the first position of the flow path switching device, and the flow path switching device is used. A cooler that cools the return air at the second position of
Rotation control of the bypass flow path or the total heat exchanger or the sensible heat exchanger for substantially disabling the heat exchange action of the total heat exchanger or the sensible heat exchanger at the second position of the flow path switching device. A desiccant type humidity control device characterized by having means.
前記流路切換装置は、単数の四方弁、少なくとも2体の三方弁、或いは、少なくとも4体の開閉弁と、室内環境を制御する制御系の制御下に各弁の弁体位置を切換える弁体駆動装置とを備え、前記流路切換装置は、前記外気導入路を前記排気流路又は前記給気流路のいずれか一方に選択的に連通させる弁装置内流路と、前記室内空気導出路を前記排気流路又は前記給気流路のいずれか一方に選択的に連通させる弁装置内流路とを有することを特徴とする請求項1に記載のデシカント式調湿装置。 The flow path switching device includes a single four-way valve, at least two three-way valves, or at least four on-off valves, and a valve body that switches the valve body position of each valve under the control of a control system that controls the indoor environment. The flow path switching device includes a drive device, and the flow path switching device includes a flow path inside the valve device that selectively communicates the outside air introduction path with either the exhaust flow path or the air supply flow path, and the indoor air lead-out path. The desiccant type humidity control device according to claim 1, further comprising a flow path in the valve device that selectively communicates with either the exhaust flow path or the air supply flow path. 前記デシカントロータ又はデシカントユニットによって除湿された前記外気又は還気を冷却する熱交換器が前記デシカントロータ又はデシカントユニットの給気方向下流側の前記給気流路に配置されることを特徴とする請求項1又は2に記載のデシカント式調湿装置。 The claim is characterized in that a heat exchanger for cooling the outside air or the return air dehumidified by the desiccant rotor or the desiccant unit is arranged in the air supply flow path on the downstream side in the air supply direction of the desiccant rotor or the desiccant unit. The desiccant type humidity control device according to 1 or 2. 前記再生用加熱器は、前記還気又は外気を予熱すべく前記全熱交換器又は顕熱交換器と前記デシカントロータ又はデシカントユニットとの間において前記排気流路に配置され、前記デシカントロータ又はデシカントユニットの給気方向下流側の前記給気流路には、前記外気を加湿する加湿器が配置されることを特徴とする請求項1乃至3のいずれか1項に記載のデシカント式調湿装置。 The regeneration heater is arranged in the exhaust flow path between the total heat exchanger or the sensible heat exchanger and the desiccant rotor or the desiccant unit in order to preheat the return air or the outside air, and the desiccant rotor or the desiccant The desiccant type humidity control device according to any one of claims 1 to 3, wherein a humidifier for humidifying the outside air is arranged in the air supply flow path on the downstream side in the air supply direction of the unit. 前記流路切換装置の切換位置を判定すべく、空調システムの運転状態又は建物の運用状態の情報を建物の中央監視システムより取得し、室内空気の二酸化炭素濃度を室内環境検出器より取得し、或いは、外界雰囲気の温度及び/又は湿度を示す外気検出器の情報を取得する制御装置を有することを特徴とする請求項1乃至4のいずれか1項に記載のデシカント式調湿装置。 In order to determine the switching position of the flow path switching device, information on the operating state of the air conditioning system or the operating state of the building is acquired from the central monitoring system of the building, and the carbon dioxide concentration of the indoor air is acquired from the indoor environment detector. Alternatively, the desiccant type humidity control device according to any one of claims 1 to 4, further comprising a control device for acquiring information of an outside air detector indicating the temperature and / or humidity of the outside atmosphere. 請求項1乃至5のいずれか1項に記載されたデシカント式調湿装置を有する空調システムであって、
前記調湿装置によって調温・調湿した外気を室内空間に吹出す給気口と、室内空間の二酸化炭素濃度を検知する室内環境検出器と、外界雰囲気の温度及び/又は湿度を検知する外気検出器と、室内空気の温度を調節する個別空調設備又は個別空調装置と、空調システムの運転形態及び運転時間を制御する中央監視システムとを有することを特徴とする空調システム。
An air conditioning system having the desiccant type humidity control device according to any one of claims 1 to 5.
An air supply port that blows out the outside air that has been conditioned and conditioned by the humidity control device to the indoor space, an indoor environment detector that detects the carbon dioxide concentration in the indoor space, and an outside air that detects the temperature and / or humidity of the outside atmosphere. An air-conditioning system characterized by having a detector, individual air-conditioning equipment or individual air-conditioning equipment that regulates the temperature of indoor air, and a central monitoring system that controls the operation mode and operation time of the air-conditioning system.
請求項1乃至5のいずれか1項に記載されたデシカント式調湿装置の制御方法であって、
空調立上げ時又は空調システム起動時のウォームアップ運転の時間帯、在室人数が比較的少ない時間帯、或いは、比較的少量の新鮮外気を室内に供給すれば良い条件の時間帯を建物の中央監視システムの情報より判定し、室内環境検出器より取得した情報で室内空間の二酸化炭素濃度を判定し、或いは、外界雰囲気の温度及び/又は湿度を示す外気検出器の情報より、外気導入を遮断すべき運転条件を判定し、
この判定結果に基づいて前記流路切換装置の位置を制御することを特徴とするデシカント式調湿装置の制御方法。
The method for controlling a desiccant type humidity control device according to any one of claims 1 to 5.
The center of the building is the time of warm-up operation when the air-conditioning is started up or when the air-conditioning system is started, the time when the number of people in the room is relatively small, or the time when a relatively small amount of fresh outside air should be supplied to the room. Judgment is made from the information of the monitoring system, the carbon dioxide concentration in the indoor space is judged from the information acquired from the indoor environment detector, or the introduction of outside air is blocked from the information of the outside air detector indicating the temperature and / or humidity of the outside atmosphere. Determine the operating conditions to be done and
A control method for a desiccant type humidity control device, which controls the position of the flow path switching device based on the determination result.
前記室内空間の二酸化炭素濃度が所定値を超えるとき、前記流路切換装置を第1位置に保持し、或いは、第2位置から第1位置に強制的に切換えることを特徴とする請求項7に記載の制御方法。 7. A seventh aspect of the present invention, wherein when the carbon dioxide concentration in the indoor space exceeds a predetermined value, the flow path switching device is held in the first position or forcibly switched from the second position to the first position. The control method described. 請求項7又は8に記載された制御方法を適用した空調システムの制御方法又は運転方法であって、
前記調湿装置によって調温・調湿した外気を室内空間に供給し且つ室内空気の温度を個別空調設備又は個別空調装置によって調節する外気導入運転と、外気の室内導入を遮断し且つ室内空気の温度を個別空調設備又は個別空調装置によって調節する還気循環運転とを前記流路切換装置の切換制御に相応して選択的に実行することを特徴とする空調システムの制御方法又は運転方法。
A control method or operation method of an air conditioning system to which the control method according to claim 7 or 8 is applied.
The outside air introduction operation in which the temperature and humidity controlled outside air is supplied to the indoor space by the humidity control device and the temperature of the room air is adjusted by the individual air conditioner or the individual air conditioner, and the outside air introduction to the room is blocked and the room air is introduced. A control method or operation method of an air conditioning system, characterized in that a return air circulation operation in which a temperature is adjusted by an individual air conditioning facility or an individual air conditioning device is selectively executed in accordance with switching control of the flow path switching device.
JP2017073128A 2017-03-31 2017-03-31 Desiccant type humidity control device and its control method Active JP6898138B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017073128A JP6898138B2 (en) 2017-03-31 2017-03-31 Desiccant type humidity control device and its control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017073128A JP6898138B2 (en) 2017-03-31 2017-03-31 Desiccant type humidity control device and its control method

Publications (2)

Publication Number Publication Date
JP2018173255A JP2018173255A (en) 2018-11-08
JP6898138B2 true JP6898138B2 (en) 2021-07-07

Family

ID=64107278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017073128A Active JP6898138B2 (en) 2017-03-31 2017-03-31 Desiccant type humidity control device and its control method

Country Status (1)

Country Link
JP (1) JP6898138B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022256428A1 (en) * 2021-06-01 2022-12-08 MakeSHIFT Innovations, LLC Directly heated desiccant wheel

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7273962B2 (en) * 2019-07-10 2023-05-15 三菱電機株式会社 air treatment equipment
TWI714201B (en) * 2019-08-07 2020-12-21 華懋科技股份有限公司 Catalyst refluxing high-efficiency organic waste gas treatment system and method

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5353606A (en) * 1991-10-15 1994-10-11 Yoho Robert W Desiccant multi-fuel hot air/water air conditioning unit
JPH05346253A (en) * 1992-06-12 1993-12-27 Aten:Kk Humidity regulating type ventilating device
JP3160190B2 (en) * 1995-10-05 2001-04-23 鹿島建設株式会社 Deodorization and dust removal method in hotel guest rooms
JP2002054838A (en) * 2000-08-10 2002-02-20 Seibu Giken Co Ltd Dehumidifying air conditioning apparatus
JP2004239461A (en) * 2003-02-04 2004-08-26 Daikin Ind Ltd Air-conditioner and air conditioning system
JP2004353908A (en) * 2003-05-28 2004-12-16 Seibu Giken Co Ltd Dehumidifying air conditioner
JP2007071495A (en) * 2005-09-09 2007-03-22 Matsushita Electric Ind Co Ltd Air conditioner
JP4835688B2 (en) * 2008-12-25 2011-12-14 三菱電機株式会社 Air conditioner, air conditioning system
JP2011185572A (en) * 2010-03-10 2011-09-22 Osaka Gas Co Ltd Desiccant air conditioning device
JP5669587B2 (en) * 2010-04-21 2015-02-12 株式会社竹中工務店 Low temperature regeneration desiccant air conditioner and operation method
JP6376890B2 (en) * 2014-08-13 2018-08-22 クボタ空調株式会社 Desiccant block device and desiccant air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022256428A1 (en) * 2021-06-01 2022-12-08 MakeSHIFT Innovations, LLC Directly heated desiccant wheel

Also Published As

Publication number Publication date
JP2018173255A (en) 2018-11-08

Similar Documents

Publication Publication Date Title
AU2006253462B2 (en) Air conditioning system
CN110709643B (en) Ventilation system
KR100675802B1 (en) An apparatus to remove or humidity moisture
JP2004257588A (en) Dehumidifying air-conditioner
JP5669587B2 (en) Low temperature regeneration desiccant air conditioner and operation method
JP4827906B2 (en) A desiccant air conditioner that supplies dry air with an ultra-low dew point temperature without a purge zone.
JP5542701B2 (en) Low temperature regeneration desiccant air conditioner
JP6178174B2 (en) Desiccant air conditioner and desiccant air conditioner
JP4729409B2 (en) Desiccant ventilation system
JP5862266B2 (en) Ventilation system
JP6898138B2 (en) Desiccant type humidity control device and its control method
JP2011089665A (en) Humidity conditioner
KR102180663B1 (en) Air conditioner and the method thereof
WO2017183689A1 (en) Outside-air treatment system, and device and method for controlling outside-air treatment system
JP6532270B2 (en) Low temperature regeneration desiccant air conditioner
JP2011033302A (en) Humidity control ventilator
JPH07163830A (en) Dry dehumidifier and air conditioner used therewith
JP3265524B2 (en) Desiccant air conditioner
JP2004069222A (en) Ventilating and humidity conditioning apparatus
JP4803816B2 (en) Desiccant air conditioner
JP2000205599A (en) Desiccant air-conditioning system
JP6320116B2 (en) Air conditioning system
JP2006071168A (en) Air conditioner
KR20190024395A (en) Air conditioner and the method thereof
JP2011027283A (en) Air conditioning system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200909

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200918

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210610

R150 Certificate of patent or registration of utility model

Ref document number: 6898138

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150