JP6376890B2 - Desiccant block device and desiccant air conditioner - Google Patents

Desiccant block device and desiccant air conditioner Download PDF

Info

Publication number
JP6376890B2
JP6376890B2 JP2014164615A JP2014164615A JP6376890B2 JP 6376890 B2 JP6376890 B2 JP 6376890B2 JP 2014164615 A JP2014164615 A JP 2014164615A JP 2014164615 A JP2014164615 A JP 2014164615A JP 6376890 B2 JP6376890 B2 JP 6376890B2
Authority
JP
Japan
Prior art keywords
air
desiccant
air path
path
posture state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014164615A
Other languages
Japanese (ja)
Other versions
JP2016040506A (en
Inventor
正明 篠原
正明 篠原
俊介 鈴木
俊介 鈴木
博徳 菅野
博徳 菅野
一樹 和田
一樹 和田
順也 山本
順也 山本
幹雄 高橋
幹雄 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Corp
Kubota Air Conditioner Ltd
Original Assignee
Takenaka Corp
Kubota Air Conditioner Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Corp, Kubota Air Conditioner Ltd filed Critical Takenaka Corp
Priority to JP2014164615A priority Critical patent/JP6376890B2/en
Publication of JP2016040506A publication Critical patent/JP2016040506A/en
Application granted granted Critical
Publication of JP6376890B2 publication Critical patent/JP6376890B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Central Air Conditioning (AREA)

Description

本発明は、デシカントブロック装置およびデシカント空気調和機に関し、デシカントブロックおよび還気の効率的な使用に係るものである。   The present invention relates to a desiccant block device and a desiccant air conditioner, and relates to efficient use of a desiccant block and return air.

この種の技術では、デシカントブロックや全熱交換器がビルや住宅等における還気と外気の換気に使用されており、換気によって失われる空調エネルギーの全熱である顕熱(温度)と潜熱(湿度)を還気と外気との間で交換回収している。   In this type of technology, desiccant blocks and total heat exchangers are used to ventilate the return air and outside air in buildings and houses, etc., and the sensible heat (temperature) and latent heat (the total heat of air conditioning energy lost by ventilation) Humidity) is exchanged and recovered between the return air and the outside air.

例えば、特許文献1においては、外気が全熱交換器を通過した後にデシカントロータを通過して給気され、還気がデシカントロータを通過した後に全熱交換器を通過して排気される。そして、全熱交換器において外気と還気との間で全熱交換が行われ、デシカントロータでは外気に接触する一側で湿気の吸着もしくは収着により外気が除湿され、還気に接触する他側で湿気の脱着により還気が加湿される。   For example, in Patent Document 1, outside air passes through the desiccant rotor after passing through the total heat exchanger and is supplied, and return air passes through the desiccant rotor and then exhausts through the total heat exchanger. In the total heat exchanger, total heat exchange is performed between the outside air and the return air. In the desiccant rotor, the outside air is dehumidified by the adsorption or sorption of moisture on one side that contacts the outside air, and the other side contacts the return air. The return air is humidified by desorption of moisture on the side.

静止型のデシカントブロックへ通気する外気と還気の切り替え手段には、例えば特許文献2に記載するものがある。特許文献2においては、デシカントブロックが外気経路に接続する収着状態とデシカントブロックが還気経路に接続する再生状態とを切り替える収脱切替部を備えており、収脱切替部は扉体がスライドすることでデシカントブロックへ流入する外気と還気を切り換えている。   An example of switching means between outside air and return air that ventilates a stationary desiccant block is disclosed in Patent Document 2. In Patent Document 2, a sorption switching unit is provided that switches between a sorption state in which the desiccant block is connected to the outside air path and a regeneration state in which the desiccant block is connected to the return air path. By doing so, the outside air flowing into the desiccant block and the return air are switched.

あるいは、特許文献3では、除加湿素子(デシカントブロック)が複数の通気路を有しており、通気路は通過空気の流れが除加湿素子の回転軸に対して垂直方向に形成されている。この除加湿素子を回転軸廻りに90°だけ間欠的に回転または往復させることで通気路が処理側となる状態と再生側となる状態を切り替えている。   Alternatively, in Patent Document 3, the dehumidifying / humidifying element (desiccant block) has a plurality of air passages, and the air flow is formed in a direction perpendicular to the rotation axis of the dehumidifying / humidifying elements. The dehumidifying / humidifying element is intermittently rotated or reciprocated by 90 ° around the rotation axis, thereby switching the state where the ventilation path is on the processing side and the state where it is on the regeneration side.

特許4475823Patent 4475823 特開2013−155941JP2013-155941A 特許3860374Patent 3860374

上記した特許文献1の構成のように、デシカント部として円筒形状のデシカントロータを使用する場合には、デシカントロータが真円形であるために、矩形断面の通気路を有する空気調和機では、有効な流路面積が減少し、通気路に無駄な部位が生じる。   When a cylindrical desiccant rotor is used as the desiccant portion as in the configuration of Patent Document 1 described above, since the desiccant rotor is a true circle, the air conditioner having an air passage having a rectangular cross section is effective. The flow passage area is reduced, and a wasteful portion is generated in the air passage.

さらに、特許文献1では、還気がデシカントロータを再生した後に、デシカントロータから脱着させた湿気を含んで高湿度な状態で全熱交換器に流入し、この高湿度な還気と外気とで全熱交換を行う。このため、還気と外気の湿度差が小さくなり、全熱交換器における潜熱交換量が少なくなる問題があった。   Furthermore, in Patent Document 1, after the return air regenerates the desiccant rotor, it flows into the total heat exchanger in a high humidity state including the moisture desorbed from the desiccant rotor. Perform total heat exchange. For this reason, there has been a problem that the humidity difference between the return air and the outside air is reduced, and the amount of latent heat exchange in the total heat exchanger is reduced.

特許文献2の構成のように、静止型のデシカントブロックを使用する場合には、流路を切り替えるための手段として流路ごとにダンパを必要とし、複数のダンパと各ダンパを開閉駆動する複数の駆動装置(ダンパモータ)とを必要とし、全体として装置が複雑化する問題があった。   When a stationary desiccant block is used as in the configuration of Patent Document 2, a damper is required for each flow path as a means for switching the flow path, and a plurality of dampers and a plurality of dampers that open and close each damper are driven. A drive device (damper motor) is required, and there is a problem that the device is complicated as a whole.

特許文献3では、デシカントブロックの通気路を切り替える際に、夏季において、デシカントブロックの処理側(外気側)に接続した通気路の上流側開口が切替操作後においても再生側(還気側)に接続する上流側開口となる。このため、デシカントブロックの通気路において外気および還気が同じ通気方向に並流状に流れる。   In Patent Document 3, when switching the air passage of the desiccant block, in the summer, the upstream side opening of the air passage connected to the processing side (outside air side) of the desiccant block is on the regeneration side (return air side) even after the switching operation. It becomes an upstream opening to be connected. For this reason, outside air and return air flow in the same ventilation direction in the air flow path of the desiccant block.

処理側に接続した通気路では、外気から吸着もしくは収着する湿気の吸湿量が通気路の上流側において多くなり、通気路の下流側において少なくなる。この通気路に還気を外気と並流状に流すと、再生用空気である還気は湿気の吸湿量が多い側から湿気の吸湿量が少ない側へ流れ、通気路の入口側において多量の湿気を吸収した還気が通気路の出口側において吸湿量の少ない部位に接触する。   In the air passage connected to the processing side, the amount of moisture absorbed or sorbed from the outside air increases on the upstream side of the air passage and decreases on the downstream side of the air passage. When the return air flows through this ventilation path in parallel with the outside air, the return air, which is the regeneration air, flows from the side with the higher moisture absorption amount to the side with the lower moisture absorption amount, and a large amount is generated at the inlet side of the ventilation channel. The return air that has absorbed the moisture comes into contact with a portion having a small amount of moisture absorption on the outlet side of the air passage.

一般的に、還気が湿気を吸収する能力は外気と還気の湿度差が小さくなるほどに低下し、デシカントブロックから湿気を脱着させる操作はデシカントブロックの湿度と還気の湿度との湿度差が小さくなるほどに困難性が増す。   In general, the ability of return air to absorb moisture decreases as the humidity difference between the outside air and return air decreases, and the operation of removing moisture from the desiccant block results in a humidity difference between the desiccant block humidity and the return air humidity. As it gets smaller, the difficulty increases.

このため、デシカントブロックの通気路において外気および還気を同方向に並流状に通気する構成は、デシカントブロックの再生効率が低下する構造的要因を含むことになる。
本発明は上記した課題を解決するものであり、デシカントブロックの再生効率を高めることができるデシカントブロック装置、および複雑な構造を伴うことなく、全熱交換器における潜熱交換量を高めることができる空気調和機を提供することを目的とする。
For this reason, the configuration in which the outside air and the return air are ventilated in the same direction in the air flow path of the desiccant block includes a structural factor that reduces the regeneration efficiency of the desiccant block.
The present invention solves the above-described problems, and a desiccant block device that can increase the regeneration efficiency of the desiccant block, and air that can increase the amount of latent heat exchange in the total heat exchanger without a complicated structure. The purpose is to provide a harmony machine.

上記課題を解決するために、本発明のデシカントブロック装置は、空気調和機内で除湿対象空気経路と再生用空気経路との間に介在し、除湿対象空気経路と再生用空気経路の流路方向と直交する方向の軸心廻りに回転自在に設けた複数のデシカント部を有し、複数のデシカント部は、前記軸心廻りの回転操作によって一体的に変転する断面正四角形の柱体状をなし、通気路が除湿対象空気経路に連通する第1姿勢状態と、通気路が再生用空気経路に連通する第2姿勢状態とに変転し、少なくとも1つのデシカント部が第1姿勢状態にあるときに、他の少なくとも一つのデシカント部が第2姿勢状態にあり、第1姿勢状態から第2姿勢状態への変転に際し、第1姿勢状態で除湿対象空気経路に接続した通気路の空気流入口をなす上流側開口が第2姿勢状態で通気路の空気流出口をなす下流側開口となることを特徴とする。 In order to solve the above problems, the desiccant block device of the present invention is interposed between the dehumidification target air path and the regeneration air path in the air conditioner , and the flow direction of the dehumidification target air path and the regeneration air path is It has a plurality of desiccant portions provided so as to be rotatable around the axis in the direction orthogonal to each other, and the plurality of desiccant portions have a columnar shape with a regular tetragonal cross section that changes integrally by a rotation operation around the axis, When the air passage changes into a first posture state where the air passage communicates with the dehumidification target air path and a second posture state where the air passage communicates with the regeneration air passage , and at least one desiccant part is in the first posture state, When at least one other desiccant part is in the second posture state, and when changing from the first posture state to the second posture state, the upstream forming the air inlet of the air passage connected to the dehumidification target air path in the first posture state Side opening is first Characterized in that the downstream opening which forms the air outlet of the air passage in posture.

本発明のデシカント空気調和機は、室内へ外気を給気し、夏季において除湿対象空気経路となり、冬季に再生用空気経路となる外気経路と、室内からの還気を排気し、夏季において再生用空気経路となり、冬季に除湿対象空気経路となる還気経路と、外気経路と還気経路に連通するデシカントブロック装置を備え、デシカントブロック装置は、外気経路と還気経路との間に介在し、外気経路と還気経路の流路方向と直交する方向の軸心廻りに回転自在に設けた複数のデシカント部を有し、複数のデシカント部は、前記軸心廻りの回転操作によって一体的に変転する断面正四角形の柱体状をなし、通気路が除湿対象空気経路に連通する第1姿勢状態と、通気路が再生用空気経路に連通する第2姿勢状態とに変転し、少なくとも1つのデシカント部が第1姿勢状態にあるときに、他の少なくとも一つのデシカント部が第2姿勢状態にあり、第1姿勢状態から第2姿勢状態への変転に際し、第1姿勢状態で除湿対象空気経路に接続した通気路の空気流入口をなす上流側開口が第2姿勢状態で通気路の空気流出口をなす下流側開口となることを特徴とする。 The desiccant air conditioner of the present invention supplies outside air into the room, becomes a dehumidifying air path in the summer, exhausts the outside air path that becomes the regeneration air path in the winter, and the indoor return air, and regenerates in the summer It has an air path, a return air path that becomes an air path to be dehumidified in winter, and a desiccant block device that communicates with the outside air path and the return air path. The desiccant block device is interposed between the outside air path and the return air path, It has a plurality of desiccant parts rotatably provided around the axis in the direction orthogonal to the flow direction of the outside air path and the return air path, and the plurality of desiccant parts are transformed together by a rotation operation around the axis. to cross without the square pillar-shaped, and the vicissitudes into a first posture state communicating with the dehumidified air passage ventilation passage, and a second orientation state air passage communicates with the regeneration air passage, at least one desiccant Is in the first posture state, the other at least one desiccant part is in the second posture state, and is connected to the dehumidification target air path in the first posture state when changing from the first posture state to the second posture state. The upstream opening that forms the air inlet of the vent passage is the downstream opening that forms the air outlet of the vent passage in the second posture state.

本発明のデシカント空気調和機は、室内へ外気を給気し、夏季において除湿対象空気経路となり、冬季に再生用空気経路となる外気経路と、室内からの還気を排気し、夏季において再生用空気経路となり、冬季に除湿対象空気経路となる還気経路と、外気経路と還気経路に連通するデシカントブロック装置と全熱交換器を備え、
デシカントブロック装置は、外気経路と還気経路との間に介在し、かつ軸心廻りの回転操作によって通気路が除湿対象空気経路に連通する第1姿勢状態と、通気路が再生用空気経路に連通する第2姿勢状態とに変転する複数のデシカント部を有し、
複数のデシカント部は、少なくとも1つのデシカント部が第1姿勢状態にあるときに、他の少なくとも一つのデシカント部が第2姿勢状態にあり、第1姿勢状態から第2姿勢状態への変転に際し、第1姿勢状態で除湿対象空気経路に接続した通気路の空気流入口をなす上流側開口が第2姿勢状態で通気路の空気流出口をなす下流側開口となり、
全熱交換器は、外気経路と還気経路の双方の経路においてデシカントブロック装置の上流側に位置し、デシカントブロック装置を未通過の外気と還気が全熱交換し、
外気経路および還気経路は、全熱交換器を迂回するバイパス部を有することを特徴とする。
The desiccant air conditioner of the present invention supplies outside air into the room, becomes a dehumidifying air path in the summer, exhausts the outside air path that becomes the regeneration air path in the winter, and the indoor return air, and regenerates in the summer It has an air path, a return air path that becomes a dehumidifying air path in winter, a desiccant block device and a total heat exchanger that communicate with the outside air path and the return air path,
The desiccant block device includes a first posture state in which the air passage is connected between the outside air path and the return air path, and the air passage communicates with the air path to be dehumidified by the rotation operation around the shaft center, and the air passage becomes the air path for regeneration. Having a plurality of desiccant portions that change to the communicating second posture state;
When the at least one desiccant part is in the first posture state, at least one other desiccant part is in the second posture state, and when the plurality of desiccant parts are in the second posture state, The upstream opening that forms the air inlet of the air passage connected to the air path to be dehumidified in the first posture state becomes the downstream opening that forms the air outlet of the air passage in the second posture state,
The total heat exchanger is located on the upstream side of the desiccant block device in both the outside air route and the return air route, and the outside air and the return air that have not passed through the desiccant block device totally exchange heat,
The outside air path and the return air path have a bypass section that bypasses the total heat exchanger .

以上のように本発明によれば、除湿対象空気がデシカント部の通気路を通過することで、通気路では上流側の吸湿度が下流側の吸湿度に比べて高くなる。このため、デシカントブロック装置のデシカント部は、軸心廻りに回転して通気路の両側の開口が上流側と下流側に入れ替わり、通気路が除湿対象空気経路と再生用空気経路に対してそれぞれ異なる側の開口で連通する。   As described above, according to the present invention, the air to be dehumidified passes through the air passage in the desiccant portion, so that the upstream side moisture absorption is higher than the downstream side moisture absorption in the air passage. For this reason, the desiccant part of the desiccant block device rotates around the shaft center, and the openings on both sides of the air passage are switched between the upstream side and the downstream side, and the air passage is different from the dehumidification target air path and the regeneration air path. It communicates with the opening on the side.

この状態で、再生用空気、つまり夏季には還気、冬季には外気が通気路を除湿対象空気に対して向流方向に流れるので、再生用空気は、湿度がまだ低くて湿気の吸収能力が高い状態で、通気路の吸湿度が低い上流側の部位を流れ、その後、通気路の湿度が高い下流側へ流れて行くにつれて湿度が高まる。よって、デシカント部は軸心廻りの回転により通気路に外気と還気が向流状に流れるので、デシカント部の再生効率が高まる。   In this state, regeneration air, that is, return air in the summer and outside air flows in the counterflow direction to the air to be dehumidified in the winter, so the regeneration air is still low in humidity and absorbs moisture. In a high state, the air flows through the upstream portion where the moisture absorption of the air passage is low, and thereafter, the humidity increases as it flows to the downstream side where the air passage is high in humidity. Therefore, since the outside air and the return air flow countercurrently in the air passage due to the rotation around the axial center, the regeneration efficiency of the desiccant portion is increased.

デシカント空気調和機は、全熱交換器が外気経路と還気経路の双方においてデシカントブロック装置の上流側に位置し、外気はデシカントブロック装置を未通過の還気と全熱交換器において全熱交換するので、外気と還気の湿度差が大きくなり、潜熱交換量が多くなる。   In the desiccant air conditioner, the total heat exchanger is located upstream of the desiccant block device in both the outside air path and the return air path, and the outside air exchanges total heat in the total heat exchanger with the return air that has not passed through the desiccant block device. As a result, the humidity difference between the outside air and the return air increases, and the amount of latent heat exchange increases.

静止型全熱交換器と回転により通気路を外気と還気が向流状に流れるデシカントブロック装置とを備えることにより、外気経路および還気経路の流路形状に制限がなく、コンパクトな空気調和機を実現できる。   By providing a static total heat exchanger and a desiccant block device in which the outside air and return air flow countercurrently through the air passage by rotation, there is no restriction on the flow path shape of the outside air and return air routes, and compact air conditioning Machine can be realized.

本発明の実施の形態におけるデシカント空気調和機の構成を示す模式図The schematic diagram which shows the structure of the desiccant air conditioner in embodiment of this invention 同実施の形態における全熱交換器を示す斜視図The perspective view which shows the total heat exchanger in the same embodiment 同実施の形態におけるデシカントブロック装置の第1姿勢状態を示す斜視図The perspective view which shows the 1st attitude | position state of the desiccant block apparatus in the embodiment 同実施の形態におけるデシカントブロック装置の第2姿勢状態を示す斜視図The perspective view which shows the 2nd attitude | position state of the desiccant block apparatus in the embodiment 同実施の形態におけるデシカント空気調和機の構成を示す斜視図The perspective view which shows the structure of the desiccant air conditioner in the embodiment 図5のZ方向から視た空気の流れを示す模式図Schematic diagram showing the flow of air viewed from the Z direction of FIG. 図5のY方向から見た空気の流れを示す模式図Schematic diagram showing the air flow as seen from the Y direction in FIG. 同実施の形態におけるデシカントブロック装置のシール構造を示す斜視図The perspective view which shows the seal structure of the desiccant block apparatus in the embodiment 図8のa部拡大図Part a enlarged view of FIG. 本発明の他の実施の形態におけるデシカントブロック装置を示す模式図The schematic diagram which shows the desiccant block apparatus in other embodiment of this invention 本発明の他の実施の形態におけるデシカントブロック装置を示す斜視図The perspective view which shows the desiccant block apparatus in other embodiment of this invention. 同デシカントブロック装置の正面図Front view of the desiccant block device 図12のA−A矢視断面図AA arrow sectional view of FIG. 図13のa部拡大図Part a enlarged view of FIG.

以下、本発明の実施の形態を図面に基づいて説明する。図1から図5において、デシカント空気調和機は、ケーシング1に、外気OAを取り込む外気口2、室内へ外気OAを給気SAとして供給する給気口3、還気RAを取り込む還気口4、還気RAを排気EAとして排出する排気口5とを有しており、ここでは外気口2から給気口3までの通気路を外気経路6とし、還気口4から排気口5までの通気路を還気経路7として説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. 1 to 5, the desiccant air conditioner includes an outside air port 2 that takes in the outside air OA into the casing 1, an air inlet 3 that supplies the outside air OA into the room as a supply air SA, and a return air port 4 that takes in the return air RA. , And an exhaust port 5 for exhausting the return air RA as exhaust EA. Here, an air passage from the outside air port 2 to the air supply port 3 is defined as an outside air path 6, and from the return air port 4 to the exhaust port 5. The ventilation path will be described as the return air path 7.

外気経路6は、夏季に除湿対象空気経路となり、冬季に再生用空気経路(加湿対象)となる。還気経路7は、夏季に再生用空気経路となり、冬季に除湿対象空気経路となる。
ケーシング1の内部は、横閉鎖板8で上下に分離され、第1縦閉鎖板9および第2縦閉鎖板10でそれぞれ上流側と下流側に分離されている。
The outside air path 6 becomes a dehumidification target air path in the summer and a regeneration air path (humidification target) in the winter. The return air path 7 becomes a regeneration air path in the summer and a dehumidification target air path in the winter.
The inside of the casing 1 is separated vertically by a horizontal closing plate 8 and separated by an upstream side and a downstream side by a first longitudinal closing plate 9 and a second longitudinal closing plate 10, respectively.

横閉鎖板8より上方で第1縦閉鎖板9より上流側を第1室11、横閉鎖板8より下方で第1縦閉鎖板9より上流側を第2室12、横閉鎖板8より上方で第1縦閉鎖板9と第2縦閉鎖板10の間を第3室13、横閉鎖板8より下方で第1縦閉鎖板9と第2縦閉鎖板10の間を第4室14、横閉鎖板8より上方で第2縦閉鎖板10より下流側を第5室15、横閉鎖板8より下方で第2縦閉鎖板10より下流側を第6室16とする。   Above the horizontal closing plate 8 and upstream from the first vertical closing plate 9 is the first chamber 11, below the horizontal closing plate 8 and upstream from the first vertical closing plate 9 to the second chamber 12 and above the horizontal closing plate 8. Thus, the third chamber 13 is provided between the first vertical closing plate 9 and the second vertical closing plate 10, and the fourth chamber 14 is provided between the first vertical closing plate 9 and the second vertical closing plate 10 below the horizontal closing plate 8. A fifth chamber 15 is defined above the horizontal closing plate 8 and downstream from the second vertical closing plate 10, and a sixth chamber 16 is defined below the horizontal closing plate 8 and downstream from the second vertical closing plate 10.

外気経路6は、第1室11、第4室14、第5室15からなり、還気経路7は、第2室12、第3室13、第6室16からなる。外気経路6と還気経路7の途中には双方に連通するデシカントブロック装置17と全熱交換器18を設けている。さらに、外気経路6には、第4室14に第1冷温水コイル19を配置し、第5室15に給気ファン20およびその下流に第2冷温水コイル21を配置しており、還気経路7には、第3室13に温水コイル22を配置し、第6室16に排気ファン23を配置している。第1冷温水コイル19、温水コイル22の隔壁によって第3室13および第4室14はそれぞれ前室13a、14aおよび後室13b、14bに分かれている。この第1冷温水コイル19、第2冷温水コイル21、温水コイル22の数量や位置に制限はない。   The outside air path 6 includes a first chamber 11, a fourth chamber 14, and a fifth chamber 15, and the return air path 7 includes a second chamber 12, a third chamber 13, and a sixth chamber 16. A desiccant block device 17 and a total heat exchanger 18 communicating with both of the outside air path 6 and the return air path 7 are provided. Further, in the outside air path 6, a first cold / hot water coil 19 is disposed in the fourth chamber 14, an air supply fan 20 is disposed in the fifth chamber 15, and a second cold / hot water coil 21 is disposed downstream thereof. In the path 7, the hot water coil 22 is disposed in the third chamber 13, and the exhaust fan 23 is disposed in the sixth chamber 16. The third chamber 13 and the fourth chamber 14 are divided into front chambers 13a and 14a and rear chambers 13b and 14b by partitions of the first cold / hot water coil 19 and the hot water coil 22, respectively. There is no restriction | limiting in the quantity and position of this 1st cold / hot water coil 19, the 2nd cold / hot water coil 21, and the hot water coil 22. FIG.

デシカントブロック装置17は第3室13と第4室14と第5室15と第6室16との間に介在し、デシカントブロック装置17より上流側に位置する全熱交換器18は第1室11と第2室12と第3室13と第4室14との間に介在している。   The desiccant block device 17 is interposed between the third chamber 13, the fourth chamber 14, the fifth chamber 15, and the sixth chamber 16, and the total heat exchanger 18 located upstream from the desiccant block device 17 is disposed in the first chamber. 11, the second chamber 12, the third chamber 13, and the fourth chamber 14.

図2に示すように、全熱交換器18は、外気経路6に連通する複数の流路18aからなる第1流路群181と、還気経路7に連通する複数の流路18bからなる第2流路群182を有しており、第1流路群181の流路18aと第2流路群182の流路18bとを交互に積み重ね、かつ双方の流路18a、18bを直交流状に配置した静止型全熱交換器であり、外気OAはデシカントブロック装置17を未通過の還気RAと全熱交換器18において全熱交換する。   As shown in FIG. 2, the total heat exchanger 18 includes a first flow path group 181 including a plurality of flow paths 18 a communicating with the outside air path 6 and a first flow path 18 b including a plurality of flow paths 18 b communicating with the return air path 7. It has two flow path groups 182, and the flow paths 18a of the first flow path group 181 and the flow paths 18b of the second flow path group 182 are alternately stacked, and both flow paths 18a and 18b are orthogonally flowed. The outside air OA exchanges total heat with the return air RA that has not passed through the desiccant block device 17 in the total heat exchanger 18.

デシカントブロック装置17は、外気経路6と還気経路7の流路方向と直交する方向の軸心廻りに回転自在に設けた複数のデシカント部17a、17bからなり、各デシカント部17a、17bは、それぞれに複数の通気路171a、171bを有するデシカントブロック172a、172bおよびデシカントブロック172a、172bを収納保持するフレーム173a、173bを備えている。本実施の形態では、二つのデシカント部17a、17bを開示して説明するが、デシカント部17a、17bには数量的な制限はない。   The desiccant block device 17 includes a plurality of desiccant portions 17a and 17b that are rotatably provided around an axis in a direction orthogonal to the flow direction of the outside air path 6 and the return air path 7, and each of the desiccant parts 17a and 17b includes: Desiccant blocks 172a and 172b each having a plurality of ventilation paths 171a and 171b and frames 173a and 173b for storing and holding the desiccant blocks 172a and 172b are provided. In the present embodiment, two desiccant portions 17a and 17b are disclosed and described, but the desiccant portions 17a and 17b are not limited in quantity.

本実施の形態において、複数のデシカント部17a、17bは、軸心廻りの回転操作により、一体的に変転する断面正四角形の柱体状をなし、軸心と平行な4面のうちの1組の対向面A、Bのうちの一方が空気流入面をなし、他方が空気流出面をなし、他の1組の対向面C、Dが閉鎖面をなす。デシカント部17a、17bには形状的な制限はなく、種々の形状を採用できる。   In the present embodiment, the plurality of desiccant portions 17a and 17b form a columnar body having a regular tetragonal cross section that transforms integrally by rotating around the shaft center, and one set of four surfaces parallel to the shaft center. One of the facing surfaces A and B forms an air inflow surface, the other forms an air outflow surface, and the other set of facing surfaces C and D forms a closing surface. The desiccant portions 17a and 17b are not limited in shape, and various shapes can be employed.

デシカント部17a、17bを回転駆動する手段としては種々のものが採用でき、例えばプーリーとベルトの組み合わせ、スプロケットとチェーンの組み合わせである。回転軸の方向は水平方向にも、垂直方向にも配置することができる。   Various means can be adopted as means for rotationally driving the desiccant portions 17a and 17b, for example, a combination of a pulley and a belt, and a combination of a sprocket and a chain. The direction of the rotation axis can be arranged both in the horizontal direction and in the vertical direction.

通気路171a、171bは空気流入面と空気流出面との間に形成されており、空気流入面における開口が空気流入口となり、空気流出面における開口が空気流出口となり、一方のデシカント部17aの通気路171aと他方のデシカント部17bの通気路171bは直交する方向に形成されている。   The air passages 171a and 171b are formed between the air inflow surface and the air outflow surface, and an opening at the air inflow surface serves as an air inflow port, an opening at the air outflow surface serves as an air outflow port, and the desiccant portion 17a The ventilation path 171a and the ventilation path 171b of the other desiccant part 17b are formed in the orthogonal direction.

デシカント部17a、17bは、軸心廻りの回転操作によって通気路171a、171bが除湿対象空気経路、つまり夏季には外気経路6、冬季には還気経路7に連通する第1姿勢状態と、通気路171a、171bが再生空気用経路、つまり夏季には還気経路7、冬季には外気経路6に連通する第2姿勢状態とに変転する。   The desiccant portions 17a and 17b have a first posture state in which the air passages 171a and 171b communicate with the dehumidification target air path, that is, the outdoor air path 6 in summer and the return air path 7 in winter by rotation around the axis. The paths 171a and 171b change to a regenerative air path, that is, a second posture state communicating with the return air path 7 in the summer and the outside air path 6 in the winter.

例えば、夏季において、一方のデシカント部17aは、第1姿勢状態にあるときに、外気経路6の上流側に向く面が空気流入面となり、外気経路6の下流側に向く面が空気流出面となり、閉鎖面が還気経路7に対向する。   For example, in the summer, when one of the desiccant portions 17a is in the first posture state, a surface facing the upstream side of the outside air path 6 is an air inflow surface, and a surface facing the downstream side of the outside air path 6 is an air outflow surface. The closed surface faces the return air path 7.

そして、他方のデシカント部17bが第2姿勢状態となって、還気経路7の上流側に向く面が空気流入面となり、還気経路7の下流側に向く面が空気流出面となり、閉鎖面が外気経路6に対向する。   And the other desiccant part 17b will be in a 2nd attitude | position state, the surface which faces the upstream of the return air path 7 becomes an air inflow surface, and the surface which faces the downstream of the return air path 7 becomes an air outflow surface, Is opposed to the outside air path 6.

図8、図9に示すように、横閉鎖板8、第2縦閉鎖板10は、デシカント部17a、17bに対向する縁端部にフレキシブルなシール部材24を設けており、シール部材24はデシカント部17a、17bの角部においてフレーム173a、173bに密接し、デシカント部17a、17bと横閉鎖板8、第2縦閉鎖板10のそれぞれとの間を封止している。   As shown in FIGS. 8 and 9, the horizontal closing plate 8 and the second vertical closing plate 10 are provided with a flexible sealing member 24 at an edge portion facing the desiccant portions 17 a and 17 b, and the sealing member 24 is a desiccant. The corners of the portions 17a and 17b are in close contact with the frames 173a and 173b, and seal between the desiccant portions 17a and 17b and the horizontal closing plate 8 and the second vertical closing plate 10, respectively.

以下、上記した構成における作用について説明する。
夏季モード
夏季モードでは、外気OAが除湿対象空気で外気経路6が除湿対象空気経路となり、還気RAが再生用空気で還気経路7が再生用空気経路となる。
Hereinafter, the operation of the above configuration will be described.
Summer Mode In the summer mode, the outside air OA is the dehumidification target air, the outside air path 6 is the dehumidification target air path, the return air RA is the regeneration air, and the return air path 7 is the regeneration air path.

このために、図6(a)に示すように、一方のデシカント部17aが外気経路6に接続する第1姿勢状態にあるときに、図7(a)に示すように、他のデシカント部17bが還気経路7に接続する第2姿勢状態となる。   For this reason, as shown in FIG. 6A, when one of the desiccant portions 17a is in the first posture state connected to the outside air path 6, as shown in FIG. 7A, the other desiccant portion 17b. Becomes the second posture state connected to the return air path 7.

この状態で、全熱交換器18には、外気経路6に連通する第1流路群181の複数の流路18aに外気OAが流入し、還気経路7に連通する第2流路群182の複数の流路18bに還気RAが流入し、外気OAと還気RAが全熱交換器18において全熱交換する。このとき、還気RAはデシカントブロック装置17を通過する前の状態にあり、その湿度が低い状態にあり、外気OAと還気RAの湿度差が大きく、潜熱交換量が大きくなる。   In this state, the external air OA flows into the total heat exchanger 18 into the plurality of flow paths 18a of the first flow path group 181 communicating with the external air path 6, and the second flow path group 182 communicating with the return air path 7. The return air RA flows into the plurality of flow paths 18b, and the outside air OA and the return air RA are totally exchanged in the total heat exchanger 18. At this time, the return air RA is in a state before passing through the desiccant block device 17 and its humidity is low, the humidity difference between the outside air OA and the return air RA is large, and the amount of latent heat exchange is increased.

全熱交換器18を通過した外気OAは、夏季に冷水コイルとなる第1冷温水コイル19で予冷されて後に、図6(a)に示すように、一方のデシカント部17aに流入して吸着もしくは収着により除湿される。その後、外気OAは給気ファン20を通って、夏季に冷水コイルとなる第2冷温水コイル21で設定温度に調整されて給気される。   The outside air OA that has passed through the total heat exchanger 18 is pre-cooled by a first cold / hot water coil 19 serving as a cold water coil in the summer, and then flows into one desiccant portion 17a and adsorbed as shown in FIG. 6 (a). Or it is dehumidified by sorption. Thereafter, the outside air OA passes through the air supply fan 20, is adjusted to the set temperature by the second cold / hot water coil 21 that becomes a cold water coil in the summer, and is supplied.

一方、全熱交換器18を通過した還気RAは、温水コイル22で予熱されて後に、図7(a)に示すように、他方のデシカント部17bに流入し、吸収により湿気を脱離させてデシカント部17bを再生し、排気ファン23により排気される。   On the other hand, the return air RA that has passed through the total heat exchanger 18 is preheated by the hot water coil 22 and then flows into the other desiccant portion 17b as shown in FIG. The desiccant portion 17b is regenerated and exhausted by the exhaust fan 23.

所定時間の経過後、あるいは適当時に、図6(b)、図7(b)に示すように、デシカントブロック装置17のデシカント部17a、17bを回転させ、一方のデシカント部17aを第1姿勢状態から第2姿勢状態へ変転させ、他方のデシカント部17bを第2姿勢状態から第1姿勢状態へ変転させる。   As shown in FIGS. 6 (b) and 7 (b), after the elapse of a predetermined time or at an appropriate time, the desiccant parts 17a and 17b of the desiccant block device 17 are rotated so that one of the desiccant parts 17a is in the first posture state. To the second posture state, and the other desiccant portion 17b is changed from the second posture state to the first posture state.

除湿に使用した一方のデシカント部17aが第1姿勢状態から第2姿勢状態へ変転するのに際し、図6(a)に示すように、第1姿勢状態で外気経路6に接続した通気路171aの空気流入口をなす上流側開口(B)が、図6(c)に示すように、還気経路7に接続する第2姿勢状態で通気路171aの空気流出口をなす下流側開口(B)となる。   When one desiccant portion 17a used for dehumidification changes from the first posture state to the second posture state, as shown in FIG. 6 (a), the air passage 171a connected to the outside air path 6 in the first posture state As shown in FIG. 6C, the upstream opening (B) that forms the air inlet forms the downstream opening (B) that forms the air outlet of the ventilation passage 171a in the second posture state where the upstream opening (B) is connected to the return air path 7. It becomes.

このように、デシカントブロック装置17のデシカント部17a、17bが、軸心廻りに回転して通気路171a、171bの上流側の開口が下流側へ変転し、通気路171a、171bが除湿対象空気経路の外気経路6と再生用空気経路の還気経路7に対してそれぞれ異なる側の開口で連通する。このため、一方のデシカント部17aの通気路171aは、外気が流れる間に吸湿度の高くなった部位が上流側から下流側に変転し、吸湿度の低い部位が下流側から上流側へ変転する。   As described above, the desiccant portions 17a and 17b of the desiccant block device 17 rotate around the shaft center, and the opening on the upstream side of the air passages 171a and 171b changes to the downstream side, and the air passages 171a and 171b are dehumidified air paths. The outside air path 6 communicates with the return air path 7 of the regeneration air path through openings on different sides. For this reason, as for the ventilation path 171a of one desiccant part 17a, the part where moisture absorption became high changes from the upstream to the downstream while external air flows, and the part where moisture absorption is low changes from the downstream to the upstream. .

この状態で、図6(c)に示すように、再生用空気の還気RAが通気路171aを上流側開口(A)から下流側開口(B)に向けて、除湿対象空気である外気OAの流れに対して向流方向に流れるので、再生用空気は、湿度がまだ低くて湿気の吸収能力が高い状態で、通気路171aの吸湿度が低い上流側の部位を流れ、その後、通気路171aの吸湿度が高い下流側へ流れて行くのにつれて湿度が高まり、通気路171aが再生される。よって、デシカント部17aは軸心廻りの回転により通気路171aに外気OAと還気RAが向流状に流れることで、デシカント部17aの再生効率が高まる。   In this state, as shown in FIG. 6 (c), the return air RA for the regeneration air moves from the upstream side opening (A) to the downstream side opening (B) through the ventilation path 171a, and the outside air OA that is the dehumidification target air Therefore, the regeneration air flows in the upstream portion where the moisture absorption capacity of the ventilation passage 171a is low in a state where the humidity is still low and the moisture absorption capacity is high, and then the ventilation passage. Humidity increases as it flows downstream, where the moisture absorption of 171a is high, and the air passage 171a is regenerated. Therefore, the regeneration efficiency of the desiccant portion 17a is increased by allowing the outside air OA and the return air RA to flow countercurrently in the air passage 171a due to rotation around the axial center of the desiccant portion 17a.

さらに、デシカント部17a、17bの空気流入面が空気流出面に切り替わるので、空気流入面に付着した埃や異物が、回転操作の都度に排気側へ排出され、通気抵抗の増加を抑制でき、給気ファン20および排気ファン23の動力を抑制できる。
冬季モード
冬季には、還気RAが除湿対象空気で還気経路7が除湿対象空気経路となり、外気OAが再生用空気で外気経路6が再生用空気経路(加湿対象)となり、上述した操作と同様の操作において、還気RAから除湿した湿気を外気OAに与えて加湿し、調整後の外気OAを給気する。
Further, since the air inflow surfaces of the desiccant portions 17a and 17b are switched to the air outflow surfaces, dust and foreign matter adhering to the air inflow surfaces are discharged to the exhaust side at every rotation operation, and an increase in ventilation resistance can be suppressed. The power of the air fan 20 and the exhaust fan 23 can be suppressed.
Winter Mode In the winter, the return air RA is the dehumidification target air, the return air path 7 is the dehumidification target air path, the outside air OA is the regeneration air, and the outside air path 6 is the regeneration air path (humidification target). In the same operation, the moisture dehumidified from the return air RA is given to the outside air OA to be humidified, and the adjusted outside air OA is supplied.

この場合にも、デシカントブロック装置17のデシカント部17a、17bが、軸心廻りに回転して通気路171a、171bの上流側の開口が下流側へ変転し、通気路171a、171bが除湿対象空気経路の還気経路7と再生用空気経路の外気経路6に対してそれぞれ異なる側の開口で連通する。このため、一方のデシカント部17aの通気路171aは、還気が流れる間に吸湿度の高くなった部位が上流側から下流側に変転し、吸湿度の低い部位が下流側から上流側へ変転する。   Also in this case, the desiccant parts 17a and 17b of the desiccant block device 17 rotate around the shaft center, and the opening on the upstream side of the air passages 171a and 171b changes to the downstream side, and the air passages 171a and 171b are dehumidified air. The return air path 7 of the path and the outside air path 6 of the regeneration air path communicate with each other through different openings. For this reason, in the air passage 171a of one desiccant portion 17a, the portion where the moisture absorption is increased while the return air flows is changed from the upstream side to the downstream side, and the portion where the moisture absorption is low is changed from the downstream side to the upstream side. To do.

そして、再生用空気の外気OAは、通気路171aを除湿対象空気である還気RAの流れに対して向流方向に流れ、湿度がまだ低くて湿気の吸収能力が高い状態で、通気路171aの吸湿度が低い上流側の部位を流れ、その後、通気路171aの吸湿度が高い下流側へ流れて行くのにつれて湿度が高まり、通気路171aが再生される。よって、デシカント部17aは軸心廻りの回転により通気路171aに外気OAと還気RAが向流状に流れることで、デシカント部17aの再生効率が高まり、冬季における外気OAの加湿効率が高まる。   Then, the outside air OA of the regeneration air flows in the counterflow direction with respect to the flow of the return air RA that is the dehumidifying air through the ventilation path 171a, and the ventilation path 171a is in a state where the humidity is still low and the moisture absorption capacity is high. Then, the humidity increases as it flows through the upstream portion where the moisture absorption is low and then flows downstream where the moisture absorption of the air passage 171a is high, and the air passage 171a is regenerated. Therefore, the desiccant portion 17a is rotated around the axial center so that the outside air OA and the return air RA flow countercurrently to the air passage 171a, thereby increasing the regeneration efficiency of the desiccant portion 17a and increasing the humidification efficiency of the outside air OA in winter.

このように、本発明に係るデシカントブロック装置17と静止型の全熱交換器18を組み合わせ、デシカントブロック装置17における外気と還気の向流状の通気を行い、かつ全熱交換器18において外気とデシカントブロック装置17を未通過の還気との全熱交換を行うことで、デシカント部の再生効率を高めることができるとともに、複雑な構造を伴うことなく、全熱交換器における全熱交換率を高めることができる空気調和機を実現できる。   As described above, the desiccant block device 17 according to the present invention and the stationary total heat exchanger 18 are combined, and the counter air flow in the desiccant block device 17 is counterflowed between the outside air and the return air. Heat exchange with the return air that has not passed through the desiccant block device 17 can increase the regeneration efficiency of the desiccant part, and the total heat exchange rate in the total heat exchanger without a complicated structure It is possible to realize an air conditioner that can enhance the temperature.

デシカントブロック装置17における流路の切り替えをデシカントブロック装置17の回転により行うことで、従来の切替装置に比べて部品点数および可動箇所の削減により、装置全体の耐久性やメンテナンス性を向上させることができる。
本発明の他の実施の形態
図10に示すように、第1室11と第4室14の間に外気経路6のバイパス路6aおよびダンパ装置6bを設け、第2室12と第3室13の間に還気経路7のバイパス路7aおよびダンパ装置7bを設けることも可能である。ダンパ装置7bの数量や位置に制限はない。本実施の形態において、先の実施の形態と同様の作用を行う部材には同符号を付してその説明を省略する。
By switching the flow path in the desiccant block device 17 by rotating the desiccant block device 17, it is possible to improve the durability and maintainability of the entire device by reducing the number of parts and movable parts compared to the conventional switching device. it can.
Other Embodiments of the Invention As shown in FIG. 10, a bypass path 6 a and a damper device 6 b of the outside air path 6 are provided between the first chamber 11 and the fourth chamber 14, and the second chamber 12 and the third chamber 13 are provided. It is also possible to provide the bypass path 7a and the damper device 7b of the return air path 7 between them. There is no limitation on the quantity or position of the damper device 7b. In the present embodiment, members that perform the same operations as those of the previous embodiments are denoted by the same reference numerals, and description thereof is omitted.

この構成によれば、外気OAと還気RAの比エンタルピに差が少なく、換気運転において全熱交換器18が不要となる中間期には、ダンパ装置6b、7bを開放することで、外気OAおよび還気RAがそれぞれバイパス路6a、7aを通って全熱交換器18を迂回して流れる。このため、給気ファン20および排気ファン23の動力を低減できる。   According to this configuration, in the intermediate period when the specific enthalpy between the outside air OA and the return air RA is small and the total heat exchanger 18 is not required in the ventilation operation, the damper devices 6b and 7b are opened, thereby opening the outside air OA. And the return air RA flow around the total heat exchanger 18 through the bypass passages 6a and 7a, respectively. For this reason, the power of the air supply fan 20 and the exhaust fan 23 can be reduced.

図11から図14に示すように、デシカントブロック装置17は、断面正円形の円筒体をなす複数のデシカント部30a、30bで構成することもできる。ここでは、デシカント部30a、30bが軸心廻りの外周面に円周の1/4ずつに分けられた空気流入面A、空気流出面B、閉鎖面C、Dを有しており、一方のデシカント部30aの空気流入面Aと空気流出面Bの間に通気路171aを形成し、他方のデシカント部30bの空気流入面Aと空気流出面Bの間に通気路171bを形成する。   As shown in FIGS. 11 to 14, the desiccant block device 17 can also be configured by a plurality of desiccant portions 30 a and 30 b forming a cylindrical body having a regular circular cross section. Here, the desiccant portions 30a, 30b have an air inflow surface A, an air outflow surface B, and closed surfaces C, D divided into a quarter of the circumference on the outer peripheral surface around the axis. An air passage 171a is formed between the air inflow surface A and the air outflow surface B of the desiccant portion 30a, and an air passage 171b is formed between the air inflow surface A and the air outflow surface B of the other desiccant portion 30b.

この構成においてもデシカント部30a、30bの回転により、流路の切り替えを行うことができる。そして、デシカント部30a、30bの断面形状を正円形とすることで、シール部材24が常にデシカント部30a、30bの外周面に摺接する状態を維持するので、流路切り替え時における気流のリークを抑制できる。   Even in this configuration, the flow path can be switched by the rotation of the desiccant portions 30a and 30b. And by making the cross-sectional shape of the desiccant portions 30a and 30b into a circular shape, the seal member 24 is always kept in sliding contact with the outer peripheral surface of the desiccant portions 30a and 30b, so that airflow leakage during flow path switching is suppressed. it can.

1 ケーシング
2 外気口
3 給気口
4 還気口
5 排気口
6 外気経路
6a バイパス路
6b ダンパ装置
7 還気経路
7a バイパス路
7b ダンパ装置
8 横閉鎖板
9 第1縦閉鎖板
10 第2縦閉鎖板
11 第1室
12 第2室
13 第3室
13a 前室
13b 後室
14 第4室
14a 前室
14b 後室
15 第5室
16 第6室
17 デシカントブロック装置
17a、17b デシカント部
18 全熱交換器
18a、18b 流路
19 第1冷温水コイル
20 給気ファン
21 第2冷温水コイル
22 温水コイル
23 排気ファン
24 シール部材
30a、30b デシカント部
171a、171b 通気路
172a、172b デシカントブロック
173a、173b フレーム
181 第1流路群
182 第2流路群
OA 外気
RA 還気
SA 給気
EA 排気
DESCRIPTION OF SYMBOLS 1 Casing 2 Outside air port 3 Air supply port 4 Return air port 5 Exhaust port 6 Outside air path 6a Bypass path 6b Damper apparatus 7 Return air path 7a Bypass path 7b Damper apparatus 8 Horizontal closing board 9 1st vertical closing board 10 2nd vertical closing Plate 11 First chamber 12 Second chamber 13 Third chamber 13a Front chamber 13b Rear chamber 14 Fourth chamber 14a Front chamber 14b Rear chamber 15 Fifth chamber 16 Sixth chamber 17 Desiccant block device 17a, 17b Desiccant section 18 Total heat exchange 18a, 18b Flow path 19 First cold / hot water coil 20 Air supply fan 21 Second cold / hot water coil 22 Hot water coil 23 Exhaust fan 24 Seal member 30a, 30b Desiccant part 171a, 171b Ventilation path 172a, 172b Desiccant block 173a, 173b Frame 181 First channel group 182 Second channel group OA Outside air RA Return air SA Supply air E Exhaust

Claims (3)

空気調和機内で除湿対象空気経路と再生用空気経路との間に介在し、除湿対象空気経路と再生用空気経路の流路方向と直交する方向の軸心廻りに回転自在に設けた複数のデシカント部を有し、
複数のデシカント部は、前記軸心廻りの回転操作によって一体的に変転する断面正四角形の柱体状をなし、通気路が除湿対象空気経路に連通する第1姿勢状態と、通気路が再生用空気経路に連通する第2姿勢状態とに変転し、
少なくとも1つのデシカント部が第1姿勢状態にあるときに、他の少なくとも一つのデシカント部が第2姿勢状態にあり、第1姿勢状態から第2姿勢状態への変転に際し、第1姿勢状態で除湿対象空気経路に接続した通気路の空気流入口をなす上流側開口が第2姿勢状態で通気路の空気流出口をなす下流側開口となることを特徴とするデシカントブロック装置。
A plurality of desiccants that are interposed between the dehumidification target air path and the regeneration air path in the air conditioner and are rotatable about the axis in the direction perpendicular to the flow direction of the dehumidification target air path and the regeneration air path. Part
The plurality of desiccant portions are formed in a columnar shape having a regular square cross section that is integrally transformed by the rotation operation around the axis, and the air passage is used for regeneration, and the air passage is in communication with the air path to be dehumidified. Change to the second posture state communicating with the air path ,
When at least one desiccant portion is in the first posture state, at least one other desiccant portion is in the second posture state, and dehumidification is performed in the first posture state when changing from the first posture state to the second posture state. The desiccant block device characterized in that the upstream opening forming the air inlet of the air passage connected to the target air path becomes the downstream opening forming the air outlet of the air passage in the second posture state.
室内へ外気を給気し、夏季において除湿対象空気経路となり、冬季に再生用空気経路となる外気経路と、室内からの還気を排気し、夏季において再生用空気経路となり、冬季に除湿対象空気経路となる還気経路と、外気経路と還気経路に連通するデシカントブロック装置を備え、
デシカントブロック装置は、外気経路と還気経路との間に介在し、外気経路と還気経路の流路方向と直交する方向の軸心廻りに回転自在に設けた複数のデシカント部を有し、複数のデシカント部は、前記軸心廻りの回転操作によって一体的に変転する断面正四角形の柱体状をなし、通気路が除湿対象空気経路に連通する第1姿勢状態と、通気路が再生用空気経路に連通する第2姿勢状態とに変転し、
少なくとも1つのデシカント部が第1姿勢状態にあるときに、他の少なくとも一つのデシカント部が第2姿勢状態にあり、第1姿勢状態から第2姿勢状態への変転に際し、第1姿勢状態で除湿対象空気経路に接続した通気路の空気流入口をなす上流側開口が第2姿勢状態で通気路の空気流出口をなす下流側開口となることを特徴とするデシカント空気調和機。
The outside air is supplied to the room and becomes a dehumidification target air path in the summer, and the outside air path that becomes the regeneration air path in the winter and the return air from the room is exhausted to become the regeneration air path in the summer and the dehumidification air in the winter. It is equipped with a desiccant block device that communicates with the return air path, the outside air path and the return air path.
The desiccant block device has a plurality of desiccant portions that are interposed between the outside air path and the return air path, and are rotatably provided around the axis in the direction orthogonal to the flow direction of the outside air path and the return air path. The plurality of desiccant portions are formed in a columnar shape having a regular square cross section that is integrally transformed by the rotation operation around the axis, and the air passage is used for regeneration, and the air passage is in communication with the air path to be dehumidified. Change to the second posture state communicating with the air path ,
When at least one desiccant portion is in the first posture state, at least one other desiccant portion is in the second posture state, and dehumidification is performed in the first posture state when changing from the first posture state to the second posture state. A desiccant air conditioner, wherein an upstream opening that forms an air inlet of an air passage connected to a target air path is a downstream opening that forms an air outlet of the air passage in the second posture state.
室内へ外気を給気し、夏季において除湿対象空気経路となり、冬季に再生用空気経路となる外気経路と、室内からの還気を排気し、夏季において再生用空気経路となり、冬季に除湿対象空気経路となる還気経路と、外気経路と還気経路に連通するデシカントブロック装置と全熱交換器を備え、
デシカントブロック装置は、外気経路と還気経路との間に介在し、かつ軸心廻りの回転操作によって通気路が除湿対象空気経路に連通する第1姿勢状態と、通気路が再生用空気経路に連通する第2姿勢状態とに変転する複数のデシカント部を有し、
複数のデシカント部は、少なくとも1つのデシカント部が第1姿勢状態にあるときに、他の少なくとも一つのデシカント部が第2姿勢状態にあり、第1姿勢状態から第2姿勢状態への変転に際し、第1姿勢状態で除湿対象空気経路に接続した通気路の空気流入口をなす上流側開口が第2姿勢状態で通気路の空気流出口をなす下流側開口となり、
全熱交換器は、外気経路と還気経路の双方の経路においてデシカントブロック装置の上流側に位置し、デシカントブロック装置を未通過の外気と還気が全熱交換し、
外気経路および還気経路は、全熱交換器を迂回するバイパス部を有することを特徴とするデシカント空気調和機。
The outside air is supplied to the room and becomes a dehumidification target air path in the summer, and the outside air path that becomes the regeneration air path in the winter and the return air from the room is exhausted to become the regeneration air path in the summer and the dehumidification air in the winter. A return air path, a desiccant block device and a total heat exchanger communicating with the outside air path and the return air path,
The desiccant block device includes a first posture state in which the air passage is connected between the outside air path and the return air path, and the air passage communicates with the air path to be dehumidified by the rotation operation around the shaft center, and the air passage becomes the air path for regeneration. Having a plurality of desiccant portions that change to the communicating second posture state;
When the at least one desiccant part is in the first posture state, at least one other desiccant part is in the second posture state, and when the plurality of desiccant parts are in the second posture state, The upstream opening that forms the air inlet of the air passage connected to the air path to be dehumidified in the first posture state becomes the downstream opening that forms the air outlet of the air passage in the second posture state,
The total heat exchanger is located on the upstream side of the desiccant block device in both the outside air route and the return air route, and the outside air and the return air that have not passed through the desiccant block device totally exchange heat,
The desiccant air conditioner characterized in that the outside air path and the return air path have a bypass section that bypasses the total heat exchanger .
JP2014164615A 2014-08-13 2014-08-13 Desiccant block device and desiccant air conditioner Active JP6376890B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014164615A JP6376890B2 (en) 2014-08-13 2014-08-13 Desiccant block device and desiccant air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014164615A JP6376890B2 (en) 2014-08-13 2014-08-13 Desiccant block device and desiccant air conditioner

Publications (2)

Publication Number Publication Date
JP2016040506A JP2016040506A (en) 2016-03-24
JP6376890B2 true JP6376890B2 (en) 2018-08-22

Family

ID=55540875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014164615A Active JP6376890B2 (en) 2014-08-13 2014-08-13 Desiccant block device and desiccant air conditioner

Country Status (1)

Country Link
JP (1) JP6376890B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6898138B2 (en) * 2017-03-31 2021-07-07 株式会社竹中工務店 Desiccant type humidity control device and its control method
JP2019098267A (en) * 2017-12-05 2019-06-24 健兒 梅津 Intermittent actuation desiccant unit
JP7129281B2 (en) * 2018-08-29 2022-09-01 鹿島建設株式会社 Desiccant air conditioner
US20220113042A1 (en) * 2019-03-05 2022-04-14 Mitsubishi Electric Corporation Air treatment apparatus
JP7273962B2 (en) * 2019-07-10 2023-05-15 三菱電機株式会社 air treatment equipment

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6060576U (en) * 1983-09-27 1985-04-26 三菱電機株式会社 Counterflow type total heat exchanger
JP2968224B2 (en) * 1997-01-21 1999-10-25 株式会社荏原製作所 Air conditioners and air conditioning systems
JP2003161465A (en) * 2001-11-26 2003-06-06 Daikin Ind Ltd Humidity conditioning device
JP2005164184A (en) * 2003-12-05 2005-06-23 Misawa Homes Co Ltd Ventilation device and ventilation method
JP5127870B2 (en) * 2010-04-09 2013-01-23 三菱電機株式会社 Air conditioner
JP5063745B2 (en) * 2010-06-11 2012-10-31 三菱電機株式会社 Air conditioner
SE537905C2 (en) * 2012-06-29 2015-11-17 Ctt Systems Ab Sorption drying system and method for dehumidifying a moist gas stream

Also Published As

Publication number Publication date
JP2016040506A (en) 2016-03-24

Similar Documents

Publication Publication Date Title
JP6376890B2 (en) Desiccant block device and desiccant air conditioner
JP3709815B2 (en) Air conditioner
JP5885781B2 (en) Dehumidifying device and dehumidifying system
US20130174730A1 (en) Energy recovery ventilator and dehumidifier
AU2004280429B2 (en) Air conditioning apparatus
JP4022549B2 (en) Ventilation equipment
JP3680149B2 (en) Air conditioner
JP5521106B1 (en) Dehumidification system
US20060162367A1 (en) Air conditioner
AU2002318752B2 (en) Air conditioning device
JP2002235933A (en) Air conditioner
JP2008142656A (en) Dehumidification apparatus
JPH07163830A (en) Dry dehumidifier and air conditioner used therewith
JP6559055B2 (en) Desiccant humidity controller
JP3692977B2 (en) Air conditioner
JP5241693B2 (en) Desiccant system
JP4165102B2 (en) Humidity control system
JP2015087070A (en) Dehumidification system
JP2018169054A (en) Air conditioning system
JP2003202128A (en) Humidity controller
JP3649203B2 (en) Humidity control device
JP2002191971A (en) Adsorption element structure and humidity controller
KR102580539B1 (en) Air Conditioner
JP2017129318A (en) Humidity adjustment device
JP2013160459A (en) Humidity controller

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160712

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20170608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180320

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180626

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180724

R150 Certificate of patent or registration of utility model

Ref document number: 6376890

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250