JP2018028424A - Humidifying/dehumidifying air conditioner - Google Patents

Humidifying/dehumidifying air conditioner Download PDF

Info

Publication number
JP2018028424A
JP2018028424A JP2016177104A JP2016177104A JP2018028424A JP 2018028424 A JP2018028424 A JP 2018028424A JP 2016177104 A JP2016177104 A JP 2016177104A JP 2016177104 A JP2016177104 A JP 2016177104A JP 2018028424 A JP2018028424 A JP 2018028424A
Authority
JP
Japan
Prior art keywords
air
water
water surface
air conditioning
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016177104A
Other languages
Japanese (ja)
Other versions
JP7161650B2 (en
Inventor
伊藤 義夫
Yoshio Ito
義夫 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2016177104A priority Critical patent/JP7161650B2/en
Publication of JP2018028424A publication Critical patent/JP2018028424A/en
Application granted granted Critical
Publication of JP7161650B2 publication Critical patent/JP7161650B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a humidifying/dehumidifying air conditioner which achieves power saving of air conditioning by performing humidity control as, in the case where air conditioning is performed in a residence, an office, a factory, a livestock barn and the like (hereinafter referred to as general air conditioning), temperature control is performed but humidity control is hardly performed and it is because the power consumption increases by the humidity control, and which also achieves power saving of air conditioning by eliminating or reducing the requirement of fresh air, even though fresh air should be introduced in a living space where a person exists.SOLUTION: Water is flowed from an upper part of a nonwoven cloth or a towel cloth or a sponge cloth, the water is impregnated in the cloth and it drips down. Thus, a water surface is created in the vertical direction. A large number of water surfaces are arranged in the longitudinal direction, they are brought into contact with air conditioning air, and the humidity of the air conditioning air is controlled (hereinafter referred to as vertical water surface 2). In the case of performing dehumidification, water in a water tank 1 which is cooled to a temperature lower than a wet bulb temperature of the air is flowed on the vertical water surface 2, and it is brought into contact with the air conditioning air. In the case of performing humidification, the water in the water tank 1 which is heated to a temperature higher than the wet bulb temperature of the air is flowed on the vertical water surface 2, and it is brought into contact with the air conditioning air.SELECTED DRAWING: Figure 1

Description

住居、オフィス、工場、畜舎等を除加湿空調する。
除湿して、夏季の空調を行い、快適な環境を作ることが望まれているが除湿すると、従来の除湿装置では、消費電力が増加する。本件は除湿して消費電力を減少する空調装置に関する。
Humidification and dehumidification of residences, offices, factories, barns, etc.
It is desired to perform dehumidification and air conditioning in summer to create a comfortable environment. However, when dehumidification is performed, power consumption increases in the conventional dehumidifier. This case relates to an air conditioner that dehumidifies to reduce power consumption.

最近の主な除湿方法は1.冷却除湿、2.乾式除湿方法、3.噴霧除湿方法。
4.湿式除湿方法等である。
Recent major dehumidification methods are: 1. Cooling dehumidification 2. dry dehumidification method; Spray dehumidification method.
4). Wet dehumidification method and the like.

冷却除湿方法はエアコンと称していて、夏期に25℃で運転すると、冷房除湿を同時に作動する様に工夫されており、相対湿度が60%Rhになるようになっている。空気を一旦露点温度以下まで下げなければ除湿しないので、吹き出し温度を空調温度より、10℃以上さげているため、大きなエネルギーを必要している。
又、除湿モードで、運転すると、送風速度が遅くなり、室温は25℃以上に上昇する。また、25℃の冷房温度運転より、冷凍機がフル回転になるために消費電力が増大する。
冷却除湿は空調空気を露点温度以下に冷却して、結露させて除湿する。
一般的に使用しているエアコンは冷却除湿方式であり、25℃に設定運転をすると相対湿度が、60%RH前後又は以下になるように設計されており、快適環境になる。最近は環境庁より、省エネするために、夏季の空調温度を28℃に上げる様に要請があるが、28℃で運転すると、絶対水分量が上がり、快適環境にならないから、実行されていない場合が多い。
The cooling and dehumidifying method is called an air conditioner, and when it is operated at 25 ° C. in summer, it is devised to operate the cooling and dehumidifying simultaneously, and the relative humidity is set to 60% Rh. Since dehumidification is not performed unless the air is once lowered below the dew point temperature, a large amount of energy is required because the blowing temperature is lowered by 10 ° C. or more from the air conditioning temperature.
In addition, when operated in the dehumidifying mode, the air blowing speed becomes slow and the room temperature rises to 25 ° C. or higher. In addition, the power consumption increases due to the full rotation of the refrigerator from the cooling temperature operation of 25 ° C.
Cooling dehumidification cools air-conditioning air below the dew point temperature and causes dew condensation to dehumidify.
The air conditioner generally used is a cooling and dehumidifying method, and when it is set to 25 ° C., the relative humidity is designed to be around 60% RH or below, and it becomes a comfortable environment. Recently, in order to save energy, the Environment Agency has requested that the air conditioning temperature in summer be raised to 28 ° C. However, if the operation is performed at 28 ° C, the absolute moisture content will increase and the comfortable environment will not be realized. There are many.

乾式除湿方法はシリカゲルに空気を接触させて、除湿する方法である。
この方法はシリカゲルに付着した水分を除く作業が不可欠であり、120℃以上の熱風でシリカゲルを再生しなければならない。
このためにシリカゲルへの加熱電力と、シリカゲルと接触した空気が加熱されるので、余熱を冷却するための電力が必要となる。
最近、稚内の珪藻土を利用し低温度での再生が報じられているが、除湿量が少ないので、未だ実用化されていない。
The dry dehumidification method is a method of dehumidifying by bringing silica into contact with air.
In this method, it is essential to remove moisture adhering to the silica gel, and the silica gel must be regenerated with hot air of 120 ° C. or higher.
For this reason, the heating power to the silica gel and the air in contact with the silica gel are heated, so that power for cooling the residual heat is required.
Recently, it has been reported that diatomaceous earth in Wakkanai is used for regeneration at low temperatures, but it has not been put into practical use because of its low dehumidification amount.

噴霧除湿方法は露点室の中で露点温度以下に冷却した水を霧状に噴霧し空気を冷却して除湿を行う方法であるが、この方法は必ず再熱が必要になるので、環境試験機などの小型空間では有効であるが、住宅などの一般空調などには不向きである。  The spray dehumidification method is a method of spraying water cooled below the dew point temperature in the dew point chamber in the form of a mist and cooling the air to perform dehumidification. However, this method always requires reheating. It is effective in small spaces such as, but it is not suitable for general air conditioning in houses.

湿式除加湿方法は、塩化リチュームや塩化カルシュームを利用した湿式湿方法は温度が25℃〜30℃の範囲では大量の除湿効果ある省エネが可能であるが、塩化リチュームや塩化カルシュームの再生装置が必要なため、装置が大型化し、高額となる。また、塩化リチュームや塩化カルシュームの廃液処理が必要であるので、あまり普及していない。  Wet dehumidification / humidification methods can be energy-saving with a large amount of dehumidification effect in the range of temperatures between 25 ° C and 30 ° C, while wet dehumidification methods using chloride chloride or chloride chloride require a regeneration device for chloride chloride or chloride chloride. For this reason, the apparatus becomes large and expensive. Further, since waste liquid treatment of chloride chloride or calcium chloride is necessary, it is not very popular.

特開平2009−127929 公報  JP 2009-127929 A 特開平11−141955 公報  JP-A-11-141955 特開平9−159253 公報  JP-A-9-159253 特開平2006−004674 公報  JP 2006-004674 A 特開平2007−225154 公報  Japanese Patent Laid-Open No. 2007-225154

住居、オフィス、工場、畜舎等を空調する(以後一般空調と称する。)場合には温度調節は行われているが、湿度調節はほとんど行われていない。
その訳は湿度調節をすると、消費電力が増加するからである。本発明は湿度調節をして、空調の消エネを行う。
人が存在する居住空間には新鮮空気を導入しなければならないが、本発明は新鮮空気を必要としないか、減少して、空調の消エネを行う。
In the case of air conditioning a house, office, factory, barn, etc. (hereinafter referred to as general air conditioning), the temperature is adjusted, but the humidity is hardly adjusted.
This is because power consumption increases when humidity is adjusted. In the present invention, the humidity is adjusted and the air conditioning is turned off.
Although fresh air must be introduced into a living space where people are present, the present invention does not require or reduces fresh air, thereby eliminating the energy of air conditioning.

外国の乾燥地帯では、気温30℃でも、相対湿度が低いので、快適に感じる。
恒温恒湿室にて体感試験して真意を確認する実験行った。エアコンの最適冷房温度は25℃運転時であった。室温30℃で、相対湿度が40%RHであればエアコン25℃運転とほとんど体感温度は同じであると50人中の45人の千葉大学工学部都市環境部の試験結果(論文。これからの空調)がある。
当方においても、確認のため、エアコンの25℃運転時と立体水面による室温30℃で相対湿度40%の比較試験を行った結果、どちらに入室しているか判らなくなるほどであった。
In a dry region in foreign countries, even if the temperature is 30 ° C, the relative humidity is low, so it feels comfortable.
An experiment was conducted to confirm the true meaning by a sensation test in a constant temperature and humidity chamber. The optimum cooling temperature of the air conditioner was at 25 ° C operation. If the temperature is 30 ° C and the relative humidity is 40% RH, the temperature is almost the same as the air conditioner 25 ° C operation. There is.
For us, as a result of conducting a comparative test of 40% relative humidity at a room temperature of 30 ° C. when the air conditioner was operated at 25 ° C. for confirmation, it was difficult to know which one was in the room.

誰でも水で加湿することは知っていますが、水が除湿することあまり知られていません。
その実験状況を図3の恒温恒湿室を使用して、実験をします。
密閉した恒温恒湿室に水槽を作り、水を張り、水を冷却出来る様に冷却コイルを設置して、水の温度が調節冷却出来る様にします。
(実験 1)室温 30℃ 水温30℃(成り行き制御)にすると、相対湿度 100%RHになる。
(実験 2)室温 30℃ 水温25℃(冷却制御)にすると、 相対湿度 65%RHになる。
(実験 3)室温 30℃ 水温20℃(冷却制御)にすると、 相対湿度 40%RHになる。
以上の実験から、室内の温度が同じで、室内の空気と接触している水の水温が下がると相対湿度も下がり、冷却した水が除湿したことになる。又、水温が湿球温度と同じであることを発見した。
Everyone knows that it will be humidified with water, but it is not well known that water dehumidifies.
The experiment will be conducted using the constant temperature and humidity chamber shown in Fig. 3.
A water tank is created in a sealed constant temperature and humidity chamber, water is added, and a cooling coil is installed so that the water can be cooled, so that the temperature of the water can be controlled and cooled.
(Experiment 1) Room temperature 30 ° C. When the water temperature is 30 ° C. (result control), the relative humidity becomes 100% RH.
(Experiment 2) Room temperature 30 ° C. When the water temperature is 25 ° C. (cooling control), the relative humidity becomes 65% RH.
(Experiment 3) When the room temperature is 30 ° C. and the water temperature is 20 ° C. (cooling control), the relative humidity becomes 40% RH.
From the above experiment, when the temperature of the water in contact with the room air is the same, the relative humidity is also lowered, and the cooled water is dehumidified. It was also discovered that the water temperature was the same as the wet bulb temperature.

本発明の立体水面の説明をします。不織布又はタオル布又の上部から水を流し布にしみこませ落下させて、垂直方向に水面をつくり、縦方向並列に多数ならべて、空調空気と接触させて、空調空気の湿度を制御する。(以下立体水面)と称す.
除湿する場合は水槽の水温を空気の湿球温度より低い温度以下に冷却した水を立体水面に流し、空調空気と接触させる。
加湿する場合は水槽の水温を空気の湿球温度より高い温度以上に加熱した水を立体水面に流し、空調空気と接触させる。
I will explain the three-dimensional water surface of the present invention. Water is poured into the cloth from the upper part of the nonwoven fabric or towel cloth, and dropped to create a water surface in the vertical direction. The surface is arranged in parallel in the vertical direction and brought into contact with the conditioned air to control the humidity of the conditioned air. (Hereinafter referred to as three-dimensional water surface).
In the case of dehumidifying, water cooled to a temperature lower than the wet bulb temperature of air is flowed to the three-dimensional water surface and brought into contact with the conditioned air.
In the case of humidification, water heated to a temperature higher than the wet bulb temperature of air is flowed over the three-dimensional water surface and brought into contact with the conditioned air.

従来のエアコンでは、室温25℃運転の室内空気と吹き出し空気のエンタルピーは差12.3であり、本発明の立体水面による、温湿度で、30℃/40%RHにおける室内空気と吹き出し空気の差はエンタルピー5.9であるので、循環空気の消費エネルギーにおける省エネ率は52%の省エネが出来る。  In a conventional air conditioner, the enthalpy between room air and air blown at room temperature of 25 ° C. is 12.3, and the difference between room air and blown air at 30 ° C./40% RH in terms of temperature and humidity due to the three-dimensional water surface of the present invention. Since the enthalpy is 5.9, the energy saving rate in the energy consumption of the circulating air is 52%.

新鮮空気のエンタルピーは従来のアエコンのエンタルピー差は7.0であり、本発明の立体水面のエンタルピー差5.1であるので、消費エネルギーにおける省エネ率は新鮮空気による省エネは22.2%である。  As for the enthalpy of fresh air, the enthalpy difference of the conventional air-conditioner is 7.0, and the enthalpy difference of the three-dimensional water surface of the present invention is 5.1. Therefore, the energy saving rate in the energy consumption is 22.2%. .

空気中から除湿された直後の水は炭酸ガスが全く含まれていないので、空気と接触すると、水温が20℃以下であれば、炭酸ガスを除湿した水量とほぼ同じ体積の炭酸ガスを吸収する。この特徴により、一般空調に必要な新鮮空気の量を必要がないか、減量することが出来る。
新鮮空気の量を必要がないか、減量することが出来れば、新鮮空気による顕熱負荷及び潜熱負荷がさらに低下して、新鮮空気負荷は22.2%以下に省エネすることが出来る。
Since the water immediately after dehumidification from the air does not contain any carbon dioxide, when it comes into contact with the air, if the water temperature is 20 ° C. or less, it absorbs carbon dioxide of the same volume as the amount of water dehumidified from carbon dioxide. . This feature makes it possible to reduce or reduce the amount of fresh air required for general air conditioning.
If the amount of fresh air is not required or can be reduced, the sensible heat load and latent heat load due to the fresh air can be further reduced, and the fresh air load can be saved to 22.2% or less.

本発明の実施形態に関る一般空調に関する温湿度制御の構成を概略的に示す図である。It is a figure which shows roughly the structure of the temperature / humidity control regarding the general air conditioning concerning embodiment of this invention. 本発明の立体水面の詳細図である。It is detail drawing of the three-dimensional water surface of this invention. 冷却した水面で除湿が出来る事を、説明するための恒温恒湿器の概略図である。It is the schematic of the thermo-hygrostat for demonstrating that dehumidification can be performed with the cooled water surface. 従来の一般空調に使用されている、冷房装置の夏期1日平均の負荷時の湿り線図であるIt is a wet line figure at the time of the load of the summer 1 day average of the air conditioner used for the conventional general air conditioning. 本発明の立体水面で、一般空調に使用された場合の、冷房時の夏期1日平均の負荷時の湿り線図である。It is a three-dimensional water surface of this invention, and when it is used for general air conditioning, it is a wetness diagram at the time of the load of the summer average at the time of cooling.

以下、本発明の実施の形態を図1〜図5に用いて説明する。
[図1]においては、本発明の実施形態に関る一般空調に関する温湿度制御の構成を概略的に示す図であり、本発明の立体水面の構造を示すものである。
1水槽、2不織布、3水中ポンプ、4送水管、5ペレート熱交換器、6空調フィン、7循環ファン、8ヒートポンプ、等で構成する空調機である。
[図2]は本発明の立体水面詳細図であり、空調する空気を除湿する場合は湿球温度以下に水槽の水を冷却する。空調する空気を加湿する場合は湿球温度以上に水槽の水を加熱する。冷却と加熱はヒートポンプを使用し、熱交換はプレート熱交換器を図2に記載したが、水槽内に銅管を使用しても良い。
9.不織布の固定金具 10.プレート熱交換器ガス菅出口 11.プレート熱交換器ガス菅入口
[図3]は従来技術の恒温恒室室である。水面が除加湿することを説明するものである。
12.水槽 13.冷却用ガス管 14.空調用フィン 15.循環ファン
[図4]は従来のエアコンの空気湿り線図で説明したものである。省エネを比較するための参考図である。
の空調を空気湿り線図で説明したものである。
[図5]は本発明の立体水面による空調を空気湿り線図で説明したものである。省エネを比較するための図である。
Hereinafter, embodiments of the present invention will be described with reference to FIGS.
In FIG. 1, it is a figure which shows roughly the structure of the temperature / humidity control regarding the general air conditioning concerning embodiment of this invention, and shows the structure of the solid water surface of this invention.
1 air tank, 2 non-woven fabric, 3 submersible pump, 4 water pipe, 5 peret heat exchanger, 6 air conditioning fins, 7 circulation fan, 8 heat pump, etc.
FIG. 2 is a detailed view of the three-dimensional water surface of the present invention. When dehumidifying the air to be conditioned, the water in the aquarium is cooled below the wet bulb temperature. When humidifying the air to be conditioned, the water in the aquarium is heated above the wet bulb temperature. Although a heat pump is used for cooling and heating and a plate heat exchanger is described in FIG. 2 for heat exchange, a copper tube may be used in the water tank.
9. Nonwoven fabric fixing bracket 10. 10. Plate heat exchanger gas outlet The plate heat exchanger gas inlet [FIG. 3] is a thermostat chamber of the prior art. This explains that the water surface is dehumidified.
12 Water tank 13. 13. Gas pipe for cooling Air conditioning fins 15. The circulation fan [FIG. 4] is described with reference to the air wetness diagram of a conventional air conditioner. It is a reference figure for comparing energy saving.
The air conditioning is described with an air wetness diagram.
[FIG. 5] explains air-conditioning by the three-dimensional water surface of the present invention with an air wetness diagram. It is a figure for comparing energy saving.

空気湿り線図[図4]に関する。
夏期において、外気温度が32℃で相対湿度が50%RHの時、従来の空調をして室内温度25℃で相対湿度60%RHの快適環境の制御した場合の消費エネルギーを調べるにはエンタルピーの差に風量を乗じる。
循環空気のエンタルピーは空調機入口のエンタルピーは(hB 56.0)空調機出口のエンタルピー(hC 42.7)=エンタルピー差(12.3)×風量となる。
It relates to the air wetting diagram [FIG. 4].
In the summer, when the outside air temperature is 32 ° C and the relative humidity is 50% RH, the energy consumption of the conventional air-conditioning and the indoor temperature of 25 ° C and the relative humidity of 60% RH is controlled. Multiply the difference by the air volume.
The enthalpy of the circulating air is (hB 56.0) the enthalpy of the air conditioner outlet (hC 42.7) = the enthalpy difference (12.3) × the air volume.

空気湿り線図[図5]に関する。
夏期において、外気温度が32℃で相対湿度が50%RHの時、本発明の立体水面を付属した、空調機で、室内温度30℃で相対湿度40%RHの快適環境で制御した場合の消費エネルギーを調べるにはエンタルピーの差に風量を乗じる。
循環空気のエンタルピーは空調機入口のエンタルピーは(RB 57.9)―空調機出口のエンタルピー(RC 52.0)=エンタルピー差(5.9)×風量となる。
It relates to the air wetting diagram [FIG. 5].
In summer, when the outside air temperature is 32 ° C. and the relative humidity is 50% RH, the air conditioner attached with the three-dimensional water surface of the present invention consumes when controlled in a comfortable environment with an indoor temperature of 30 ° C. and a relative humidity of 40% RH. To investigate energy, multiply the difference in enthalpy by the air volume.
The enthalpy of the circulating air is (RB 57.9) -enthalpy of the air conditioner outlet (RC 52.0) = enthalpy difference (5.9) × air volume.

従来の空調25℃運転の循環風のエンタルピーは差12.3であり、本発明の立体水面の30℃/40%RHにおけるエンタルピーは差5.9であるので、消費エネルギーにおける省エネ率は52%の省エネが出来る。  The enthalpy of the circulating air in the conventional air-conditioning operation at 25 ° C. is 12.3, and the enthalpy at 30 ° C./40% RH of the three-dimensional water surface of the present invention is 5.9, so that the energy saving rate in energy consumption is 52%. Can save energy.

新鮮空気のエンタルピーは従来のアエコンエンタルピー差は7.0であり、本発明の立体水面のエンタルピー差5.1であるので、消費エネルギーにおける省エネ率は22.2%の省エネが出来る。  As for the enthalpy of fresh air, the conventional aecon enthalpy difference is 7.0, and the enthalpy difference of the three-dimensional water surface of the present invention is 5.1, so that the energy saving rate in energy consumption can be 22.2%.

空気中から除湿された直後の水は炭酸ガスが全く含まれていないので、空気と接触すると、水温が20℃以下であれば、炭酸ガスを除湿した水量とほぼ同じ体積の炭酸ガスを吸収する。この特徴により、一般空調に必要な新鮮空気の量を必要がないか、減量することが出来る。
新鮮空気の量を必要がないか、減量することが出来れば、新鮮空気による顕熱負荷及び潜熱負荷がさらに低下して、省エネすることが出来る。
Since the water immediately after dehumidification from the air does not contain any carbon dioxide, when it comes into contact with the air, if the water temperature is 20 ° C. or less, it absorbs carbon dioxide of the same volume as the amount of water dehumidified from carbon dioxide. . This feature makes it possible to reduce or reduce the amount of fresh air required for general air conditioning.
If the amount of fresh air is not required or can be reduced, the sensible heat load and latent heat load due to the fresh air can be further reduced to save energy.

立体水面は空調空気と接触するので、空気中で浮遊する粉塵やウイルスや有機溶媒等を水面で付着吸収するので、空気洗浄を行うい働きがある。  Since the three-dimensional water surface comes into contact with the conditioned air, dust, viruses, organic solvents, etc. floating in the air adhere and absorb on the water surface, so that it has a function of performing air cleaning.

[図1]の符号
1.水槽 2.立体水面 3.送水管 4.水中ポンプ
5.ヒートポンプフィン 6.ヒートポンプ
[図2]の符号
7.水給水ノズル 8.不織布 9.水槽 10.プレート熱交換器
11.給水菅 12.ヒートポンプ配管帰り菅 13.ヒートポンプ配管往菅
[図3]の符号
7.水槽 8.冷却コイル 9.ヒーター 10.ファン
[図4]の符号
A.外気空気 B.室内空気 C.冷却器出口空気 M.冷却器入口空気
hA.外気エンタルピー hB.室内エンタルピー
hC.冷却器出口エンタルピー hM.冷却器入口エンタルピー
[図5]の符号
A.外気空気 B.室内空気 C.冷却器出口空気 M.冷却器入口空気
HA.外気エンタルピー RB.室内エンタルピー
RC.冷却器出口エンタルピー RM.冷却器入口エンタルピー
1 of FIG. Aquarium 2. Three-dimensional water surface Water pipe 4. 4. Submersible pump Heat pump fins 6. Reference numeral 7 of the heat pump [FIG. 2]. Water supply nozzle 8. Nonwoven fabric 9. Water tank 10. Plate heat exchanger 11. Water tank 12. 12. Heat pump piping return rod Heat pump piping forward [Fig. 3] 7. Aquarium 8. Cooling coil 9. Heater 10. Reference sign of fan [FIG. Outside air B. Indoor air C.I. C. Cooler outlet air Cooler inlet air hA. Outside air enthalpy hB. Indoor enthalpy hC. Cooler outlet enthalpy hM. Cooler inlet enthalpy [Fig. Outside air B. Indoor air C.I. C. Cooler outlet air Cooler inlet air HA. Outside air enthalpy RB. Indoor enthalpy RC. Cooler outlet enthalpy RM. Cooler inlet enthalpy

Claims (7)

1水槽 2不織布 3水中ポンプ 4送水管 5プレート熱交器で構成した立体水面を有した除加湿装置。  1 water tank 2 non-woven fabric 3 submersible pump 4 water pipe 5 dehumidifying / humidifying device having a three-dimensional water surface composed of a 5-plate heat exchanger 湿度制御に、立体水面に水を流しながら、冷房時は水を湿球温度以下に冷却調節して除湿し、暖房時は水を湿球温度以上に加熱調節して、加湿することを特徴とする装置。  For humidity control, while flowing water on the three-dimensional water surface, during cooling, the water is cooled and adjusted to below the wet bulb temperature to dehumidify, and during heating, the water is heated to above the wet bulb temperature and humidified. Device to do. 立体水面に水を流しながら、ヒートポンプの熱交換器を使用し、ヒートポンプが冷却時は除湿と冷房を行い、加熱時は加湿と加熱を行うことを、特徴する装置。  An apparatus characterized by using a heat exchanger of a heat pump while flowing water on a three-dimensional water surface, dehumidifying and cooling when the heat pump is cooled, and humidifying and heating when heated. 立体水面を使用し、井戸水のみで夏期は除湿を行い,冬期は加湿を行うことを特徴すると装置。  The equipment is characterized by using three-dimensional water surface and dehumidifying only with well water in summer and humidifying in winter. 立体水面を使用し、井戸水とヒートポンプを同時に使用して、夏期は除湿と冷房を行い,冬期は加湿と加熱行い、空調することが出来る空調装置。  An air conditioner that uses three-dimensional water surface, can use well water and heat pump at the same time, dehumidify and cool in summer, and humidify and heat in winter. 人が存在する居住空間には新鮮空気を導入しなければならないが、立体水面に常時空調空気が接触しているので、新鮮空気を必要としないか、減少して、空調の消エネを行う装置。  Although fresh air must be introduced into living spaces where people are present, air-conditioned air is always in contact with the three-dimensional water surface. . 冷房装置、暖房装置、除湿装置、加湿装置、空気清浄装置を1台にした装置。  A device that combines a cooling device, a heating device, a dehumidifying device, a humidifying device, and an air purifying device.
JP2016177104A 2016-08-15 2016-08-15 Dehumidification air conditioner Active JP7161650B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016177104A JP7161650B2 (en) 2016-08-15 2016-08-15 Dehumidification air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016177104A JP7161650B2 (en) 2016-08-15 2016-08-15 Dehumidification air conditioner

Publications (2)

Publication Number Publication Date
JP2018028424A true JP2018028424A (en) 2018-02-22
JP7161650B2 JP7161650B2 (en) 2022-10-27

Family

ID=61248988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016177104A Active JP7161650B2 (en) 2016-08-15 2016-08-15 Dehumidification air conditioner

Country Status (1)

Country Link
JP (1) JP7161650B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111023344A (en) * 2019-12-18 2020-04-17 彭香莲 Constant-humidity purifying equipment for air plant
CN114110831A (en) * 2021-11-18 2022-03-01 惠瑞净化科技(江苏)有限公司 Energy-saving full fresh air conditioning unit control system for lithium battery clean room
CN114484609A (en) * 2021-12-24 2022-05-13 青岛海尔空调器有限总公司 Method and device for controlling movable humidifier and movable humidifier

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51111763U (en) * 1975-03-07 1976-09-09
JPH0599446A (en) * 1991-10-04 1993-04-20 Ebara Shinwa:Kk Air humidifier/cooler
JP2002286250A (en) * 2001-03-26 2002-10-03 Matsushita Seiko Co Ltd Desiccant air conditioning system
JP2007327712A (en) * 2006-06-09 2007-12-20 Japan Exlan Co Ltd Humidity control system
JP2009127929A (en) * 2007-11-22 2009-06-11 Tsubuku Reiki Kogyo Kk Air conditioner, thermo-hygrostat device including the same, and humidity control method
JP2011163705A (en) * 2010-02-12 2011-08-25 Tokyo Electric Power Co Inc:The Method and device for air humidification
JP2012154548A (en) * 2011-01-25 2012-08-16 Zojirushi Corp Humidifier
JP2014206358A (en) * 2013-04-16 2014-10-30 三菱電機株式会社 Air conditioner
JP2015073982A (en) * 2013-10-04 2015-04-20 ノリ・トレーディング有限会社 Direct adsorption and removal method of carbon dioxide gas and the like in air using characteristics of superfine water and natural mechanism, eliminating method and eliminated device of outdoor unit by recovering condenser exhaust heat from refrigerator and method and device capable of preventing updraft by the device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51111763U (en) * 1975-03-07 1976-09-09
JPH0599446A (en) * 1991-10-04 1993-04-20 Ebara Shinwa:Kk Air humidifier/cooler
JP2002286250A (en) * 2001-03-26 2002-10-03 Matsushita Seiko Co Ltd Desiccant air conditioning system
JP2007327712A (en) * 2006-06-09 2007-12-20 Japan Exlan Co Ltd Humidity control system
JP2009127929A (en) * 2007-11-22 2009-06-11 Tsubuku Reiki Kogyo Kk Air conditioner, thermo-hygrostat device including the same, and humidity control method
JP2011163705A (en) * 2010-02-12 2011-08-25 Tokyo Electric Power Co Inc:The Method and device for air humidification
JP2012154548A (en) * 2011-01-25 2012-08-16 Zojirushi Corp Humidifier
JP2014206358A (en) * 2013-04-16 2014-10-30 三菱電機株式会社 Air conditioner
JP2015073982A (en) * 2013-10-04 2015-04-20 ノリ・トレーディング有限会社 Direct adsorption and removal method of carbon dioxide gas and the like in air using characteristics of superfine water and natural mechanism, eliminating method and eliminated device of outdoor unit by recovering condenser exhaust heat from refrigerator and method and device capable of preventing updraft by the device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111023344A (en) * 2019-12-18 2020-04-17 彭香莲 Constant-humidity purifying equipment for air plant
CN114110831A (en) * 2021-11-18 2022-03-01 惠瑞净化科技(江苏)有限公司 Energy-saving full fresh air conditioning unit control system for lithium battery clean room
CN114110831B (en) * 2021-11-18 2023-07-21 惠瑞净化科技(江苏)有限公司 Energy-saving full fresh air conditioning unit control system for lithium battery clean room
CN114484609A (en) * 2021-12-24 2022-05-13 青岛海尔空调器有限总公司 Method and device for controlling movable humidifier and movable humidifier
CN114484609B (en) * 2021-12-24 2024-03-19 青岛海尔空调器有限总公司 Method and device for controlling movable humidifier and movable humidifier

Also Published As

Publication number Publication date
JP7161650B2 (en) 2022-10-27

Similar Documents

Publication Publication Date Title
JP5417213B2 (en) Indirect evaporative cooling type external air conditioning system
CN101979927B (en) Rotating wheel moisture removal and cooling-plate radiation cooling combined air conditioning system and air conditioning method thereof
JP2017537293A5 (en)
US4488408A (en) Cooling method and system therefor
CN103791592B (en) For the cool-down dehumidification method of warm and humid autonomous control system
KR20130142259A (en) Desiccant air conditioner
CN106907809B (en) Air conditioning system combining hollow fiber membrane liquid dehumidification and evaporative cooling
CN104676782B (en) A kind of solution humidifying air processor of multistage distributary
CN201637022U (en) Air processor
KR101436613B1 (en) Dehumidified cooling system for district cooling with cooling, ventilation and humidification
JP2018028424A (en) Humidifying/dehumidifying air conditioner
JP4683548B2 (en) Desiccant ventilator
WO2011060676A1 (en) Integrated solution dehumidification air conditioner
JP2007285539A (en) Air conditioning system
CN201688514U (en) Air conditioning device independently controlling temperature and humidity by double cold sources
CN104089341B (en) Room conditioning
JP5155378B2 (en) Server room air conditioning system
JP6321212B2 (en) Dehumidifying and cooling device
CN204693891U (en) A kind of self-operated type dehumidifying humidifying air-conditioner fresh air treatment system
CN108758818B (en) Fixed wall radiation convection air conditioner utilizing air film heat exchange
Chen et al. Field study on independent dehumidification air-conditioning system-II: performance of the whole system
JP2018128186A (en) Air conditioning system
JP2009210163A (en) Double air washer type water cooler/heater
JPH0894130A (en) Air conditioner
JP6858396B2 (en) Air conditioning system

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161014

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190716

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20191022

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200330

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200923

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20200923

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20201106

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20201111

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20201127

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20201203

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210104

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20210608

C19 Decision taken to dismiss amendment

Free format text: JAPANESE INTERMEDIATE CODE: C19

Effective date: 20210618

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20210624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210730

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20211005

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20211013

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211101

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20220111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220127

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20220412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220502

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20220621

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20220729

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20220808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220808

R150 Certificate of patent or registration of utility model

Ref document number: 7161650

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150