JP5417213B2 - Indirect evaporative cooling type external air conditioning system - Google Patents

Indirect evaporative cooling type external air conditioning system Download PDF

Info

Publication number
JP5417213B2
JP5417213B2 JP2010028045A JP2010028045A JP5417213B2 JP 5417213 B2 JP5417213 B2 JP 5417213B2 JP 2010028045 A JP2010028045 A JP 2010028045A JP 2010028045 A JP2010028045 A JP 2010028045A JP 5417213 B2 JP5417213 B2 JP 5417213B2
Authority
JP
Japan
Prior art keywords
air
cooling
indirect evaporative
dehumidified
cooling tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010028045A
Other languages
Japanese (ja)
Other versions
JP2011163682A (en
Inventor
真 小金井
仁志 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kogyosha Co Ltd
Original Assignee
Asahi Kogyosha Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kogyosha Co Ltd filed Critical Asahi Kogyosha Co Ltd
Priority to JP2010028045A priority Critical patent/JP5417213B2/en
Publication of JP2011163682A publication Critical patent/JP2011163682A/en
Application granted granted Critical
Publication of JP5417213B2 publication Critical patent/JP5417213B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Central Air Conditioning (AREA)

Description

本発明は、病院やホテル等のビルをドレンレス空調するための外調機システムに係り、特にデシカント除湿器と間接蒸発型冷却器とを用いた間接蒸発冷却型外調機システムに関するものである。   The present invention relates to an external air conditioning system for drainless air conditioning of buildings such as hospitals and hotels, and more particularly to an indirect evaporative cooling external air conditioning system using a desiccant dehumidifier and an indirect evaporative cooler.

従来、病院やホテル等のビル内の部屋を空調する際には、各室内に設置されたファンコイルユニット(FCU)等の室内機に外調機で外気負荷処理を行った空気を導入して冷暖房するようにしている。しかし、夏場の冷房では、潜熱負荷処理のために、外調機及び室内機の冷却コイルには、除湿のため結露が発生し、微生物汚染によるIAQ(空気質)の低下の問題がある。   Conventionally, when air-conditioning a room in a building such as a hospital or a hotel, air that has been subjected to an external air load treatment by an external air conditioner is introduced into an indoor unit such as a fan coil unit (FCU) installed in each room. Air conditioning is used. However, during cooling in summer, due to latent heat load processing, condensation occurs in the cooling coils of the external air conditioner and indoor unit due to dehumidification, and there is a problem of IAQ (air quality) degradation due to microbial contamination.

そこで、本発明者は、この外調機及び室内機の内部の結露の問題を改良するために、室内機を既設空調機としてそのまま使用し、その既設空調機にデシカント除湿器を組み込んだドレンレス空調システムを提案した(特許文献2)。   Therefore, in order to improve the problem of dew condensation inside the external air conditioner and the indoor unit, the present inventor used the indoor unit as it is as an existing air conditioner and built a desiccant dehumidifier into the existing air conditioner. A system was proposed (Patent Document 2).

このドレンレス空調システムは、デシカント除湿器で、除湿(潜熱処理)を行い、冷却コイルで、冷却(顕熱処理)して、室内側に送風することで、空調空気が露点温度以下になることを防止している。   This drainless air-conditioning system uses a desiccant dehumidifier to dehumidify (latent heat treatment), cool it with a cooling coil (sensible heat treatment), and blow it into the room to prevent the conditioned air from dropping below the dew point temperature. doing.

しかし、デシカント除湿器では、除湿により温度上昇した空気を冷却するために、冷凍機やヒートポンプ等の冷凍サイクルを用いるためCOPが低下しやすく、省エネの観点からは改良が必要である。   However, the desiccant dehumidifier uses a refrigeration cycle such as a refrigerator or a heat pump in order to cool the air whose temperature has been increased by dehumidification, so that the COP tends to decrease, and improvement is necessary from the viewpoint of energy saving.

省エネの観点では、特許文献1に示されるように、デシカント除湿器で除湿されて昇温した除湿空気を、蒸発型熱交換器で冷却することが好ましい。この蒸発型熱交換器は、除湿空気が通る流路と上水が通る流路とを交互に積層したもので、上水を除湿空気と熱交換させることで蒸発させ、その蒸発潜熱で除湿空気を冷却するものである。しかし、除湿空気の冷却のために上水を必要とし、熱交換後に排水されて、回収利用されないため、上水を無駄に使用する問題がある。また間接型熱交換器は、紙をベースとした材料が用いられるため、バクテリア、細菌の繁殖が避けられない懸念がある。   From the viewpoint of energy saving, as shown in Patent Document 1, it is preferable to cool the dehumidified air that has been dehumidified by the desiccant dehumidifier and raised in temperature with an evaporative heat exchanger. This evaporative heat exchanger is composed of alternately laminated channels through which dehumidified air passes and channels through which clean water passes, and evaporates by exchanging the clean water with dehumidified air, and uses the latent heat of evaporation to remove dehumidified air. It is what cools. However, since clean water is required for cooling the dehumidified air and is drained after heat exchange and is not collected and used, there is a problem of wasteful use of clean water. In addition, since an indirect heat exchanger uses a paper-based material, there is a concern that bacteria and bacterial growth cannot be avoided.

そこで、クーリングタワーなどの冷却塔を用いて冷却水とし、その冷却水とデシカント除湿器で除湿された除湿空気とを間接蒸発型冷却器で、間接熱交換して冷却することで、IAQの問題もなく、また省エネルギーの間接蒸発冷却型システムとすることが可能である。   Therefore, cooling water such as a cooling tower is used as cooling water, and the cooling water and dehumidified air dehumidified by the desiccant dehumidifier are cooled by indirect heat exchange using an indirect evaporative cooler. In addition, an energy-saving indirect evaporative cooling type system can be obtained.

特開2007−24467号公報JP 2007-24467 A 特許第3559255号公報Japanese Patent No. 3559255

しかし、外気導入の一般の冷却塔による冷却では、冷却水の温度を30℃までしか冷却できず、30℃程度の冷却水では、冷房に必要な室温レベル(26℃程度)まで冷却できず、冷却能力が不足するため、既設空調機の負荷が大きくなる問題がある。   However, in the cooling by a general cooling tower for introducing outside air, the temperature of the cooling water can be cooled only to 30 ° C., and the cooling water of about 30 ° C. cannot be cooled to the room temperature level (about 26 ° C.) necessary for cooling, Since the cooling capacity is insufficient, there is a problem that the load on the existing air conditioner becomes large.

そこで、本発明の目的は、上記課題を解決し、既設空調機とデシカント除湿器を組合せ、デシカント除湿器からの除湿空気を室温レベルまで冷却できる間接蒸発冷却型外調機システムを提供することにある。   Accordingly, an object of the present invention is to provide an indirect evaporative cooling type external air conditioner system that can solve the above-mentioned problems and can combine existing air conditioners and desiccant dehumidifiers to cool the dehumidified air from the desiccant dehumidifiers to a room temperature level. is there.

上記目的を達成するために請求項1の発明は、空調空間を空調する既設空調機とデシカント除湿器を組合せ、そのデシカント除湿器で外気を導入すると共に除湿して換気空気供給ラインを介して既設空調機に除湿した空気を供給し、他方空調空間の空気を換気空気排気ラインを介してデシカント除湿器に排気すると共に、その排気空気を除湿後の空気と熱交換させて排気し、その排気空気と熱交換した除湿空気を既設空調機に冷却して供給するための間接蒸発冷却型外調機システムにおいて、上記換気空気供給ラインに、除湿空気を冷却する間接蒸発型冷却器を接続し、その間接蒸発型冷却器に冷却水を供給循環する冷却塔を接続し、その冷却塔に、間接蒸発型冷却器で冷却された冷却除湿空気の一部を導入して大気中に排気する除湿空気排気ラインを接続したことを特徴とする間接蒸発冷却型外調機システムである。   In order to achieve the above object, the invention of claim 1 combines an existing air conditioner for air-conditioning an air-conditioning space with a desiccant dehumidifier, introduces outside air with the desiccant dehumidifier and dehumidifies it through a ventilation air supply line. The dehumidified air is supplied to the air conditioner, and the air in the air-conditioned space is exhausted to the desiccant dehumidifier via the ventilation air exhaust line, and the exhaust air is exhausted by exchanging heat with the dehumidified air. In an indirect evaporative cooling external air conditioning system for cooling and supplying dehumidified air heat-exchanged to an existing air conditioner, an indirect evaporative cooler that cools the dehumidified air is connected to the ventilation air supply line. A cooling tower that circulates and circulates cooling water is connected to the indirect evaporative cooler, and a portion of the cooled dehumidified air cooled by the indirect evaporative cooler is introduced into the cooling tower and exhausted to the atmosphere. An indirect evaporative cooling type outer conditioner system characterized by connecting a line.

請求項2の発明は、既設空調機の空調空気循環量に対して、0.1〜0.5倍の外気をデシカント除湿器に導入すると共に、導入外気と等量の空気を空調空間からデシカント除湿器に排気し、上記間接蒸発型冷却器で冷却された冷却除湿空気の0.2〜0.4倍の冷却除湿空気を冷却塔に流すようにした請求項1記載の間接蒸発冷却型外調機システムである。   The invention of claim 2 introduces 0.1 to 0.5 times of the outside air into the desiccant dehumidifier with respect to the circulated air circulation amount of the existing air conditioner, and at the same time, introduces the same amount of air as the introduced outside air from the conditioned space to the desiccant. 2. The outside of the indirect evaporative cooling type according to claim 1, wherein the dehumidified air is exhausted to the dehumidifier and 0.2 to 0.4 times the cooled dehumidified air cooled by the indirect evaporative cooler is caused to flow to the cooling tower. It is a regulation system.

請求項3の発明は、上記冷却塔と間接蒸発型冷却器とは冷却水循環ラインにて接続され、上記冷却塔に導入された冷却除湿空気で冷却水を19〜24℃に冷却して上記間接蒸発型冷却器に供給する請求項2記載の間接蒸発冷却型外調機システムである。   In the invention of claim 3, the cooling tower and the indirect evaporative cooler are connected by a cooling water circulation line, and the cooling water is cooled to 19-24 ° C. with cooling dehumidified air introduced into the cooling tower, and the indirect 3. The indirect evaporative cooling external air conditioning system according to claim 2, which is supplied to the evaporative cooler.

請求項4の発明は、上記冷却塔として既設の外気導入型冷却塔を用い、その外気導入型冷却塔の外気導入部を覆って導入室を形成し、その導入室に上記除湿空気排気ラインを接続した請求項1〜3いずれかに記載の間接蒸発冷却型外調機システムである。   The invention of claim 4 uses an existing outside air introduction type cooling tower as the cooling tower, forms an introduction chamber covering the outside air introduction part of the outside air introduction type cooling tower, and the dehumidified air exhaust line is provided in the introduction chamber. It is the indirect evaporative cooling type external air conditioning system in any one of Claims 1-3 connected.

本発明によれば、間接蒸発型冷却器で冷却された湿球温度の低い冷却除湿空気を冷却塔に通風して、間接蒸発型冷却器に供給循環する冷却水と直接熱交換させることで、水の蒸発が促進され、冷却循環水の温度を効率的に低下させることができ、この冷却水を間接蒸発型冷却器に供給循環して除湿空気を冷却することで、既設空調機の負荷が少なくドレンレスで空調できるという優れた効果を発揮するものである。   According to the present invention, the cooling dehumidified air having a low wet bulb temperature cooled by the indirect evaporation cooler is passed through the cooling tower and directly exchanged with the cooling water supplied and circulated to the indirect evaporation cooler. Evaporation of water is promoted, and the temperature of the cooling circulating water can be reduced efficiently. Supplying and circulating this cooling water to the indirect evaporation type cooler to cool the dehumidified air, the load on the existing air conditioner is reduced. It has the excellent effect of being able to air-condition with little drain.

本発明の一実施の形態を示す図である。It is a figure which shows one embodiment of this invention. 本発明の間接蒸発冷却型外調機システムにおけるデシカント除湿器から冷却塔で排気される空気の状態を、空気線図により示した図である。It is the figure which showed the state of the air exhausted by the cooling tower from the desiccant dehumidifier in the indirect evaporative cooling type external air conditioning system of this invention with the air diagram.

以下、本発明の好適な一実施の形態を添付図面に基づいて詳述する。   A preferred embodiment of the present invention will be described below in detail with reference to the accompanying drawings.

図1において、10は、ホテルやオフィス等の建物の部屋である空調空間であり、この空調空間10には、ファンコイルユニット(FCU)等の既設空調機11が設けられる。   In FIG. 1, reference numeral 10 denotes an air-conditioned space that is a room of a building such as a hotel or office. The air-conditioned space 10 is provided with an existing air conditioner 11 such as a fan coil unit (FCU).

この既設空調機11は、吸込口12と吹出口13を有する本体14内に、冷媒液(冷水又は温水等)が供給されるコイル15と循環ファン16が設けられ、既設空調機11のコイル15が、冷媒供給管17と冷媒排出管18を介して冷温水発生機等(図示せず)に接続されて構成される。   In the existing air conditioner 11, a coil 15 to which a refrigerant liquid (cold water or hot water or the like) is supplied and a circulation fan 16 are provided in a main body 14 having a suction port 12 and an outlet 13, and the coil 15 of the existing air conditioner 11 is provided. Is connected to a cold / hot water generator or the like (not shown) via a refrigerant supply pipe 17 and a refrigerant discharge pipe 18.

既設空調機11は、循環ファン16にて室内空気RAを吸込口12から吸引し、その室内空気RAをコイル15で設定温度に調整して冷風(或いは温風)とし、その空調空気SAを吹出口13から空調空間10に吹き出して空調空間10を設定の温度に空調する。   The existing air conditioner 11 sucks the indoor air RA from the suction port 12 with the circulation fan 16, adjusts the indoor air RA to the set temperature with the coil 15, and cools the air (or warm air), and blows the conditioned air SA. The air-conditioning space 10 is blown out from the outlet 13 to the air-conditioned space 10 to air-condition the air-conditioned space 10 to a set temperature.

既設空調機11には、換気空気供給ライン21を介してデシカント除湿器20が接続され、そのデシカント除湿器20に空調空間10からの室内空気の一部を換気空気VAとして排気する換気空気排気ライン22が接続される。   A desiccant dehumidifier 20 is connected to the existing air conditioner 11 via a ventilation air supply line 21, and a ventilation air exhaust line that exhausts a part of room air from the air-conditioned space 10 to the desiccant dehumidifier 20 as ventilation air VA. 22 is connected.

デシカント除湿器20は、ケーシング23内が外気導入通路24と排気通路25に仕切られ、その両通路24、25を横断するように回転自在に設けられた除湿ロータ26と顕熱ロータ27とで構成される。   The desiccant dehumidifier 20 is configured by a dehumidification rotor 26 and a sensible heat rotor 27 that are partitioned into an outside air introduction passage 24 and an exhaust passage 25 inside the casing 23 and are rotatably provided so as to cross both the passages 24 and 25. Is done.

外気導入通路24には押し込みファン28が設けられ、排気通路25に吸引ファン29が設けられ、その排気側にダンパ30が設けられ、排気通路25の顕熱ロータ27と除湿ロータ26間に、太陽熱など自然エネルギーまたは電気、ガス等で加熱された熱媒を利用するヒータ31が設けられる。   A push-in fan 28 is provided in the outside air introduction passage 24, a suction fan 29 is provided in the exhaust passage 25, a damper 30 is provided on the exhaust side thereof, and solar heat is provided between the sensible heat rotor 27 and the dehumidification rotor 26 in the exhaust passage 25. A heater 31 that uses a heat medium heated by natural energy, electricity, gas or the like is provided.

このデシカント除湿器20においては、外気OAが押し込みファン28より導入され、除湿ロータ26で除湿され、顕熱ロータ27を通って冷却されて換気空気供給ライン21に供給され、空調空間10の換気空気VAは、換気空気排気ライン22より顕熱ロータ27を通って温熱が回収され、ヒータ31で加熱され、その加熱された換気空気で除湿ロータ26を再生し、排気ファン29、ダンパ30を通して排気空気EAとして大気中に排出される。   In the desiccant dehumidifier 20, the outside air OA is introduced from the pushing fan 28, dehumidified by the dehumidifying rotor 26, cooled through the sensible heat rotor 27, supplied to the ventilation air supply line 21, and ventilated air in the conditioned space 10. In the VA, the heat is recovered from the ventilation air exhaust line 22 through the sensible heat rotor 27, heated by the heater 31, the dehumidification rotor 26 is regenerated by the heated ventilation air, and the exhaust air is exhausted through the exhaust fan 29 and the damper 30. It is discharged into the atmosphere as EA.

さて、本発明においては、デシカント除湿器20の除湿ロータ26により除湿された外気OAが吸着熱により温度が上昇し(60℃程度)、顕熱ロータ27で、換気空気VAの冷熱を回収して冷却しても、除湿空気の温度は30℃以上もあるため、その除湿空気を、デシカント除湿器20と既設空調機11間の換気空気供給ライン21に接続した間接蒸発型冷却器32で、19〜24℃に冷却するものである。   In the present invention, the temperature of the outside air OA dehumidified by the dehumidification rotor 26 of the desiccant dehumidifier 20 is increased by the heat of adsorption (about 60 ° C.), and the sensible heat rotor 27 collects the cold heat of the ventilation air VA. Even after cooling, the temperature of the dehumidified air is 30 ° C. or more. Therefore, the dehumidified air is connected to a ventilation air supply line 21 between the desiccant dehumidifier 20 and the existing air conditioner 11, It cools to -24 degreeC.

この間接蒸発型冷却器32の循環冷却水は、冷却塔33により空冷されるが、従来例で説明したように一般の外気導入型冷却塔で空冷しても30℃程度にしか冷却できない。   The circulating cooling water of the indirect evaporative cooler 32 is air-cooled by the cooling tower 33, but can be cooled only to about 30 ° C. even if it is air-cooled by a general external air introduction type cooling tower as described in the conventional example.

そこで、本発明は、冷却塔33の冷却水を空冷する際に、間接蒸発型冷却器32で冷却され、既設空調機11に供給する冷却除湿空気の一部を、冷却塔33に導入して空冷した後、大気中に排出するようにしたものである。   Therefore, in the present invention, when the cooling water of the cooling tower 33 is air-cooled, a part of the cooling dehumidified air that is cooled by the indirect evaporation cooler 32 and supplied to the existing air conditioner 11 is introduced into the cooling tower 33. After air cooling, it is discharged into the atmosphere.

以下この間接蒸発型冷却器32と冷却塔33を説明する。   Hereinafter, the indirect evaporation type cooler 32 and the cooling tower 33 will be described.

先ず冷却塔33は、新規の冷却塔でも既設の冷却塔でもよく、図では既設の外気導入型の冷却塔を改良して冷却塔33としたものである。   First, the cooling tower 33 may be a new cooling tower or an existing cooling tower. In the figure, the existing outside air introduction type cooling tower is improved to be a cooling tower 33.

冷却塔33は、塔本体34の上部に散水管35が設けられると共に塔本体34に排気ファン36が設けられ、その散水管35で散水された水と排気ファン36で排気される空気とを直接接触させて熱交換する充填材37aからなる熱交換部37が設けられ、その熱交換部37の上部にミストエリミネータ38が設けられて構成される。   The cooling tower 33 is provided with a water sprinkling pipe 35 at the top of the tower main body 34 and an exhaust fan 36 on the tower main body 34, and the water sprinkled by the water sprinkling pipe 35 and the air exhausted by the exhaust fan 36 are directly connected. A heat exchanging portion 37 made of a filler 37 a that is brought into contact with each other to exchange heat is provided, and a mist eliminator 38 is provided above the heat exchanging portion 37.

この冷却塔33と間接蒸発型冷却器32とが冷却水循環ライン40にて接続され、塔本体34の冷却水溜39の冷却水が、入口側冷却水循環ライン40aを介して間接蒸発型冷却器32に供給され、熱交換後の冷却水が出口側の冷却水循環ライン40bより、循環ポンプ41を介して散水管35に供給されて循環されるようになっている。   The cooling tower 33 and the indirect evaporative cooler 32 are connected by a cooling water circulation line 40, and the cooling water in the cooling water reservoir 39 of the tower body 34 is supplied to the indirect evaporation cooler 32 via the inlet side cooling water circulation line 40a. The supplied cooling water after the heat exchange is supplied from the cooling water circulation line 40b on the outlet side to the sprinkling pipe 35 via the circulation pump 41 and circulated.

なお、図では、熱交換部37は、気液接触を良好にするための充填材37aを充填して形成し、その熱交換部37の下部に排気ファン36を設ける例を示しているが、熱交換部37が単に気液接触する空間で形成され、また排気ファン36が、熱交換部37の上部にある一般の筒状のクーリングタワーであっても良い。   In the figure, the heat exchanging portion 37 is formed by filling a filler 37a for improving gas-liquid contact, and an exhaust fan 36 is provided below the heat exchanging portion 37. The heat exchanging unit 37 may be formed in a space where the gas-liquid contact is simply made, and the exhaust fan 36 may be a general cylindrical cooling tower located above the heat exchanging unit 37.

この冷却塔33の熱交換部37の下部の外気導入部44は、一般の外気導入型冷却塔では、大気開放されているが、本発明においては、この外気導入部44を覆って導入室45を形成し、その導入室45に、間接蒸発型冷却器32の下流側の換気空気供給ライン21から分岐した除湿空気排気ライン46を接続したものである。   The outside air introduction section 44 below the heat exchanging section 37 of the cooling tower 33 is open to the atmosphere in a general outside air introduction type cooling tower, but in the present invention, the outside air introduction section 44 is covered so as to cover the outside air introduction section 44. The dehumidified air exhaust line 46 branched from the ventilation air supply line 21 on the downstream side of the indirect evaporation cooler 32 is connected to the introduction chamber 45.

この除湿空気排気ライン46と、除湿空気排気ライン46が接続された換気空気供給ライン21の下流側には、冷却除湿空気を分配するためのダンパ47、48が接続される。   On the downstream side of the dehumidified air exhaust line 46 and the ventilation air supply line 21 to which the dehumidified air exhaust line 46 is connected, dampers 47 and 48 for distributing the cooled dehumidified air are connected.

本発明においては、既設空調機11をドレンレス空調とする際には、二点鎖線で囲ったようにデシカント除湿器20、間接蒸発型冷却器32、冷却塔33からなる外調機50を既設空調機11に接続することで、間接蒸発冷却型外調機システムを構築することができる。   In the present invention, when the existing air conditioner 11 is to be drainless air conditioner, the external air conditioner 50 including the desiccant dehumidifier 20, the indirect evaporative cooler 32, and the cooling tower 33 is surrounded by the two-dot chain line. By connecting to the machine 11, an indirect evaporative cooling external air conditioning system can be constructed.

次に、間接蒸発冷却型外調機システムにおける空調を説明する。   Next, air conditioning in the indirect evaporative cooling external air conditioning system will be described.

先ず、既設空調機11のコイル15に冷温水発生機等から、冷媒液(冷水)を供給して冷房運転を行う。この際、既設空調機11のコイル15のみで冷房を行うと結露が発生し、これが原因でIAQの低下を招くため、コイル15で結露が発生しないように、外気OAをデシカント除湿器20を介して除湿した空気を既設空調機11に導入することで、ドレンレス空調を行う。換気空気として導入する外気OAは、既設空調機11の空調空気循環量に対して0.1〜0.5倍導入し、その外気導入量と同量の空気を空調空間10から換気空気VAとしてデシカント除湿器20に排気する。   First, a cooling liquid operation is performed by supplying a refrigerant liquid (cold water) to the coil 15 of the existing air conditioner 11 from a cold / hot water generator or the like. At this time, if the cooling is performed only with the coil 15 of the existing air conditioner 11, dew condensation occurs, which causes a reduction in IAQ. Therefore, the outside air OA is passed through the desiccant dehumidifier 20 so that dew condensation does not occur in the coil 15. Drainless air conditioning is performed by introducing the dehumidified air into the existing air conditioner 11. The outside air OA introduced as ventilation air is introduced 0.1 to 0.5 times the conditioned air circulation amount of the existing air conditioner 11, and the same amount of air as the outside air introduction amount is used as the ventilation air VA from the conditioned space 10. Exhaust to desiccant dehumidifier 20.

導入された外気OAは、デシカント除湿器20の除湿ロータ26を通って除湿され、吸着熱によって、60℃程度の除湿空気となって顕熱ロータ27を通り、他方、顕熱ロータ27では、空調空間10の換気空気VAが、換気空気排気ライン22を通して導入されるため、除湿空気と換気空気とが顕熱ロータ27を介して間接熱交換される。   The introduced outside air OA is dehumidified through the dehumidifying rotor 26 of the desiccant dehumidifier 20, and is dehumidified air of about 60 ° C. by adsorption heat and passes through the sensible heat rotor 27. Since the ventilation air VA in the space 10 is introduced through the ventilation air exhaust line 22, the dehumidified air and the ventilation air are indirectly heat-exchanged via the sensible heat rotor 27.

顕熱ロータ27を通って昇温した換気空気は、太陽熱など自然エネルギーまたは電気、ガス等で加熱されるヒータ31にて加熱され、除湿ロータ26に吸着された水分を脱着し、除湿ロータ26を再生した後、排気される。   Ventilation air heated through the sensible heat rotor 27 is heated by a heater 31 heated by natural energy such as solar heat, electricity, gas, etc., desorbs moisture adsorbed on the dehumidifying rotor 26, and dehumidifies the rotor 26. After regeneration, it is exhausted.

次に顕熱ロータ27で冷却された除湿空気は、間接蒸発型冷却器32で、19〜24℃に冷却され、換気空気供給ライン21を通して、既設空調機11側に供給され、そこで吸込口12の室内空気と混合されて既設空調機11内に導入されコイル15で設定の温度に冷却されて吹出口13から吹き出される。   Next, the dehumidified air cooled by the sensible heat rotor 27 is cooled to 19 to 24 ° C. by the indirect evaporation type cooler 32, and is supplied to the existing air conditioner 11 side through the ventilation air supply line 21, where the inlet 12 And is introduced into the existing air conditioner 11, cooled to a set temperature by the coil 15, and blown out from the air outlet 13.

このように冷却除湿空気を既設空調機11に供給することで、コイル15での結露を発生させずにIAQの高い空調が行える。   By supplying the cooled dehumidified air to the existing air conditioner 11 in this way, air conditioning with a high IAQ can be performed without causing condensation in the coil 15.

本発明においては、間接蒸発型冷却器32で冷却された冷却除湿空気の20〜40%を除湿空気排気ライン46を介して冷却塔33に導入し、冷却塔33の循環冷却水を空冷することで、水の蒸発が促進され、冷却塔33の冷却水の温度を効果的に低下させることができるため、既設空調機11のコイル15で冷却する熱量は僅かであり、COPを向上させることができる。   In the present invention, 20 to 40% of the cooled dehumidified air cooled by the indirect evaporative cooler 32 is introduced into the cooling tower 33 through the dehumidified air exhaust line 46, and the circulating cooling water in the cooling tower 33 is cooled by air. Since the evaporation of water is promoted and the temperature of the cooling water in the cooling tower 33 can be effectively reduced, the amount of heat to be cooled by the coil 15 of the existing air conditioner 11 is small, and the COP can be improved. it can.

なお、暖房時は、コイル15に冷媒液(温水)を供給して暖房を行う。この暖房運転においては、外調機50は基本的には停止状態とするが、換気用空気を供給する場合には、デシカント除湿器20を通して供給するようにしてもよい。   During heating, a refrigerant liquid (hot water) is supplied to the coil 15 for heating. In this heating operation, the external air conditioner 50 is basically in a stopped state, but when supplying ventilation air, it may be supplied through the desiccant dehumidifier 20.

次に、図2の空気線図により、外気が除湿され、冷却塔で冷却されるまでの除湿空気の状態を説明する。   Next, the state of the dehumidified air until the outside air is dehumidified and cooled by the cooling tower will be described with reference to the air diagram of FIG.

先ず、図2では、冷却塔33の循環冷却水量を5.4l/min、冷却塔33への風量230m3/H、換気空気供給ライン21の主風量600m3/H、水空気比1.2としたときの例を示したものである。 First, in FIG. 2, the circulating cooling water amount of the cooling tower 33 is 5.4 l / min, the air volume to the cooling tower 33 is 230 m 3 / H, the main air volume of the ventilation air supply line 21 is 600 m 3 / H, and the water / air ratio is 1.2. This is an example when

図2において、点Aの外気(30.5℃、絶対湿度0.020kg/kgDA)がデシカント除湿器20の除湿ロータ26で除湿されて点B(56℃、絶対湿度0.010kg/kgDA)とされ、顕熱ロータ27にて、点C(32℃、絶対湿度0.010kg/kgDA)とされる。この除湿空気は、間接蒸発型冷却器32にて点D(27℃)とされて冷却塔33に導入されて循環冷却水と直接熱交換すると共に冷却水が蒸発することで、点E(温度24℃、相対湿度100%)となって排気される。   In FIG. 2, the outside air at point A (30.5 ° C., absolute humidity 0.020 kg / kgDA) is dehumidified by the dehumidifying rotor 26 of the desiccant dehumidifier 20 to obtain point B (56 ° C., absolute humidity 0.010 kg / kgDA). In the sensible heat rotor 27, the point C (32 ° C., absolute humidity 0.010 kg / kgDA) is obtained. This dehumidified air is set to point D (27 ° C.) by the indirect evaporation type cooler 32 and is introduced into the cooling tower 33 to directly exchange heat with the circulating cooling water, and the cooling water evaporates, so that the point E (temperature 24 ° C. and relative humidity 100%).

ここで冷却塔33の循環冷却水は、点Eの排気空気と同じ24℃以下まで冷却され、これが間接蒸発型冷却器32に供給循環されることで、除湿空気は24℃以下にされて既設空調機11側に供給されることとなる。   Here, the circulating cooling water of the cooling tower 33 is cooled to 24 ° C. or less, which is the same as the exhaust air at the point E, and is supplied and circulated to the indirect evaporation type cooler 32 so that the dehumidified air is made 24 ° C. or less and is already installed. It will be supplied to the air conditioner 11 side.

一般に、外気導入型の冷却塔を用いた場合、水の温度を、外気の湿球温度(夏期25℃程度)+5℃程度=30℃程度までしか冷却できないが、本発明ではデシカント除湿器20により作られた低湿球温度(19℃程度)の除湿空気の一部を冷却塔33に導入することにより、水の蒸発を促進し、循環冷却水温度を24℃程度まで低下することができる。   In general, when an outside air introduction type cooling tower is used, the temperature of water can be cooled only to the wet air bulb temperature (about 25 ° C. in summer) + about 5 ° C. = about 30 ° C. In the present invention, the desiccant dehumidifier 20 is used. By introducing a part of the produced dehumidified air having a low wet bulb temperature (about 19 ° C.) into the cooling tower 33, water evaporation can be promoted and the circulating cooling water temperature can be lowered to about 24 ° C.

デシカント除湿器を組み込んだ外調機では、一般に供給空気温度を室温設定温レベル(26〜27℃程度)まで下げることが求められるため、外気導入型の冷却塔で作られた30℃程度の冷却水では対応できないが、本発明では24℃程度の冷却水が使えるため、間接蒸発型冷却器32での除湿空気の冷却に適用できる。   In an external air conditioner incorporating a desiccant dehumidifier, it is generally required to lower the supply air temperature to a room temperature setting temperature level (about 26 to 27 ° C.). Although water cannot be used, the present invention can be applied to cooling dehumidified air in the indirect evaporative cooler 32 because cooling water of about 24 ° C. can be used.

この間接蒸発型冷却器32による冷却は、冷却のために冷凍機を使用しないので、脱フロン型の外調機システムとなると共に間接蒸発型冷却器32は、冷却コイルを介した間接冷却方式であるため、絶対湿度を低く維持したまま除湿空気冷却することが可能である。   Since the cooling by the indirect evaporative cooler 32 does not use a refrigerator for cooling, it becomes a chlorofluorocarbon external air conditioning system and the indirect evaporative cooler 32 is an indirect cooling system through a cooling coil. Therefore, it is possible to cool the dehumidified air while keeping the absolute humidity low.

また、本発明においては、既設空調機11に外調機50を組み込む際に、デシカント除湿器20を使用し、冷却塔33は、既設の冷却塔を改良するだけでシステムを構築することが可能となり、設備コストを低減することが可能である。   Further, in the present invention, when the external air conditioner 50 is incorporated into the existing air conditioner 11, the desiccant dehumidifier 20 is used, and the cooling tower 33 can be constructed only by improving the existing cooling tower. Thus, the equipment cost can be reduced.

10 空調空間
11 既設空調機
20 デシカント除湿器
21 換気空気供給ライン
32 間接蒸発型冷却器
33 冷却塔
46 除湿空気排気ライン
DESCRIPTION OF SYMBOLS 10 Air-conditioned space 11 Existing air conditioner 20 Desiccant dehumidifier 21 Ventilation air supply line 32 Indirect evaporative cooler 33 Cooling tower 46 Dehumidification air exhaust line

Claims (4)

空調空間を空調する既設空調機とデシカント除湿器を組合せ、そのデシカント除湿器で外気を導入すると共に除湿して換気空気供給ラインを介して既設空調機に除湿した空気を供給し、他方空調空間の空気を換気空気排気ラインを介してデシカント除湿器に排気すると共に、その排気空気を除湿後の空気と熱交換させて排気し、その排気空気と熱交換した除湿空気を既設空調機に冷却して供給するための間接蒸発冷却型外調機システムにおいて、上記換気空気供給ラインに、除湿空気を冷却する間接蒸発型冷却器を接続し、その間接蒸発型冷却器に冷却水を供給循環する冷却塔を接続し、その冷却塔に、間接蒸発型冷却器で冷却された冷却除湿空気の一部を導入して大気中に排気する除湿空気排気ラインを接続したことを特徴とする間接蒸発冷却型外調機システム。   Combine existing air conditioner and air desiccant dehumidifier for air-conditioning space, introduce external air with the desiccant dehumidifier and supply dehumidified air to the existing air conditioner via the ventilation air supply line. Air is exhausted to the desiccant dehumidifier through the ventilation air exhaust line, and the exhaust air is exhausted by exchanging heat with the dehumidified air, and the dehumidified air heat-exchanged with the exhaust air is cooled to the existing air conditioner. In an indirect evaporative cooling external air conditioning system for supplying, a cooling tower for connecting an indirect evaporative cooler for cooling dehumidified air to the ventilation air supply line and supplying and circulating cooling water to the indirect evaporative cooler Indirect evaporation, characterized in that a dehumidified air exhaust line for introducing a part of the cooled dehumidified air cooled by the indirect evaporative cooler and exhausting it into the atmosphere is connected to the cooling tower.却型 outside the control system. 既設空調機の空調空気循環量に対して、0.1〜0.5倍の外気をデシカント除湿器に導入すると共に、導入外気と等量の空気を空調空間からデシカント除湿器に排気し、上記間接蒸発型冷却器で冷却された冷却除湿空気の0.2〜0.4倍の冷却除湿空気を冷却塔に流すようにした請求項1記載の間接蒸発冷却型外調機システム。   While introducing outside air to the desiccant dehumidifier 0.1 to 0.5 times the conditioned air circulation amount of the existing air conditioner, the same amount of air as the introduced outside air is exhausted from the conditioned space to the desiccant dehumidifier, The indirect evaporative cooling type external air conditioning system according to claim 1, wherein 0.2 to 0.4 times the cooling dehumidified air cooled by the indirect evaporative cooler is caused to flow through the cooling tower. 上記冷却塔と間接蒸発型冷却器とは冷却水循環ラインにて接続され、上記冷却塔に導入された冷却除湿空気で冷却水を19〜24℃に冷却して上記間接蒸発型冷却器に供給する請求項2記載の間接蒸発冷却型外調機システム。   The cooling tower and the indirect evaporative cooler are connected by a cooling water circulation line, and the cooling water is cooled to 19 to 24 ° C. with the cooling dehumidified air introduced into the cooling tower and supplied to the indirect evaporative cooler. The indirect evaporative cooling external air conditioning system according to claim 2. 上記冷却塔として既設の外気導入型冷却塔を用い、その外気導入型冷却塔の外気導入部を覆って導入室を形成し、その導入室に上記除湿空気排気ラインを接続した請求項1〜3いずれかに記載の間接蒸発冷却型外調機システム。   An existing outside air introduction type cooling tower is used as the cooling tower, an introduction chamber is formed to cover an outside air introduction part of the outside air introduction type cooling tower, and the dehumidified air exhaust line is connected to the introduction chamber. The indirect evaporative cooling external air conditioning system according to any one of the above.
JP2010028045A 2010-02-10 2010-02-10 Indirect evaporative cooling type external air conditioning system Active JP5417213B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010028045A JP5417213B2 (en) 2010-02-10 2010-02-10 Indirect evaporative cooling type external air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010028045A JP5417213B2 (en) 2010-02-10 2010-02-10 Indirect evaporative cooling type external air conditioning system

Publications (2)

Publication Number Publication Date
JP2011163682A JP2011163682A (en) 2011-08-25
JP5417213B2 true JP5417213B2 (en) 2014-02-12

Family

ID=44594580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010028045A Active JP5417213B2 (en) 2010-02-10 2010-02-10 Indirect evaporative cooling type external air conditioning system

Country Status (1)

Country Link
JP (1) JP5417213B2 (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110220254A (en) 2010-05-25 2019-09-10 7Ac技术公司 The method and system of air conditioning and other processing is carried out using liquid drier
CN102705933B (en) * 2012-05-02 2014-07-30 西安工程大学 Natural-cooling, vertical tubular indirect evaporation and direct evaporation combined air conditioning unit
ES2755800T3 (en) 2012-06-11 2020-04-23 7Ac Tech Inc Methods and systems for turbulent and corrosion resistant heat exchangers
US9506697B2 (en) 2012-12-04 2016-11-29 7Ac Technologies, Inc. Methods and systems for cooling buildings with large heat loads using desiccant chillers
CN108443996B (en) 2013-03-01 2021-04-20 7Ac技术公司 Desiccant air conditioning method and system
WO2014152888A1 (en) 2013-03-14 2014-09-25 7 Ac Technologies, Inc. Methods and systems for liquid desiccant air conditioning system retrofit
CN105121979B (en) 2013-03-14 2017-06-16 7Ac技术公司 For the method and system of differential body liquid drier air adjustment
CN103234248B (en) * 2013-04-25 2015-09-30 西安工程大学 Forced standpipe indirectly-fluid dynamic spray chamber composite evaporation cooling air conditioning
ES2759926T3 (en) 2013-06-12 2020-05-12 7Ac Tech Inc Liquid Desiccant Air Conditioning System
EP3120083B1 (en) 2014-03-20 2020-07-01 7AC Technologies, Inc. Rooftop liquid desiccant systems and methods
KR101560823B1 (en) * 2014-04-21 2015-10-16 주식회사 경동나비엔 Hybrid type heat pump device
WO2016081933A1 (en) 2014-11-21 2016-05-26 7Ac Technologies, Inc. Methods and systems for mini-split liquid desiccant air conditioning
GR1008870B (en) * 2015-01-20 2016-10-14 Δημητριος Νικολαου Τερτιπης Coupling of an indirect evaporative cooler with an air-to-air exchanger
EP3271659A4 (en) * 2015-03-15 2018-12-05 Cotes A/S A cooling system, a cooling unit, and a method of cooling intake-air to an air-conditioned building space
RU2694379C1 (en) * 2015-06-22 2019-07-12 Дач Инновейшн Ин Эр Тритмент Бв Building equipped with air treatment system
RU2595583C1 (en) * 2015-06-23 2016-08-27 Владимир Евгеньевич Воскресенский Ventilation plant with forced drying and evaporation cooling system
CN111448425A (en) 2017-11-01 2020-07-24 7Ac技术公司 Storage tank system for liquid desiccant air conditioning system
CN111373202B (en) 2017-11-01 2021-11-26 艾默生环境优化技术有限公司 Method and apparatus for uniform distribution of liquid desiccant in membrane modules in liquid desiccant air conditioning systems
CN108006855A (en) * 2017-12-11 2018-05-08 广东申菱环境系统股份有限公司 Data center module recovery efficient Cooling Air-conditioning System
US11022330B2 (en) 2018-05-18 2021-06-01 Emerson Climate Technologies, Inc. Three-way heat exchangers for liquid desiccant air-conditioning systems and methods of manufacture
MX2021001137A (en) * 2018-07-31 2021-06-15 Univ King Abdullah Sci & Tech Liquid dessicant cooler system and method.
CN111998601A (en) * 2020-08-21 2020-11-27 天津大学 Device and method for cooling circulating water

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63129228A (en) * 1986-11-18 1988-06-01 Daikin Ind Ltd Air cooling apparatus
US5022241A (en) * 1990-05-04 1991-06-11 Gas Research Institute Residential hybrid air conditioning system
US5170633A (en) * 1991-06-24 1992-12-15 Amsted Industries Incorporated Desiccant based air conditioning system
US5460004A (en) * 1993-04-09 1995-10-24 Ari-Tec Marketing, Inc. Desiccant cooling system with evaporative cooling
JP3635295B2 (en) * 1997-12-01 2005-04-06 株式会社西部技研 Air conditioner
JP3555590B2 (en) * 2001-04-18 2004-08-18 ダイキン工業株式会社 Humidity control device
KR100607204B1 (en) * 2004-06-18 2006-08-01 (주) 위젠글로벌 Method for evaporative cooling of coolant and apparatus thereof
BRPI0810346A2 (en) * 2007-05-09 2014-10-14 Mcnnnac Energy Services Inc "COOLING SYSTEM"

Also Published As

Publication number Publication date
JP2011163682A (en) 2011-08-25

Similar Documents

Publication Publication Date Title
JP5417213B2 (en) Indirect evaporative cooling type external air conditioning system
JP2968241B2 (en) Dehumidifying air conditioning system and operating method thereof
JP6395801B2 (en) Method and system for retrofitting liquid desiccant air conditioning system
JP5183236B2 (en) Replacement air conditioning system
WO2007141901A1 (en) Humidity controller
JP4857901B2 (en) Desiccant air conditioning system
JP2009275955A (en) Desiccant air-conditioning device
JP5336133B2 (en) Air conditioning system
JP4729409B2 (en) Desiccant ventilation system
KR101436613B1 (en) Dehumidified cooling system for district cooling with cooling, ventilation and humidification
US20080083232A1 (en) Dehumidification apparatus, and air conditioning apparatus and air conditioning system having the same
JP6018938B2 (en) Air conditioning system for outside air treatment
KR20200092221A (en) An air conditioning system
JP4683548B2 (en) Desiccant ventilator
KR101363941B1 (en) Stand type dehumidified cooling system with ventilation for apartment building district cooling
JP4333986B2 (en) Air conditioner
JP6321212B2 (en) Dehumidifying and cooling device
JP2011058676A (en) Air conditioning system
JP4230038B2 (en) Dehumidifying air conditioner
KR100947617B1 (en) Dehumidifying air conditioner
WO2004081462A1 (en) Air conditioning method using liquid desiccant
KR101361099B1 (en) Dehumidified cooling system with ventilation for apartment building district cooling
JP3933264B2 (en) Dehumidification air conditioning system
JPH11304194A (en) Desiccant air-conditioning method
JP2005127544A (en) Air conditioning system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131118

R150 Certificate of patent or registration of utility model

Ref document number: 5417213

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131205

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250