WO2003067158A1 - Humidity controller - Google Patents

Humidity controller Download PDF

Info

Publication number
WO2003067158A1
WO2003067158A1 PCT/JP2003/000615 JP0300615W WO03067158A1 WO 2003067158 A1 WO2003067158 A1 WO 2003067158A1 JP 0300615 W JP0300615 W JP 0300615W WO 03067158 A1 WO03067158 A1 WO 03067158A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
adsorption
humidity control
heat exchanger
drain water
Prior art date
Application number
PCT/JP2003/000615
Other languages
French (fr)
Japanese (ja)
Inventor
Tomohiro Yabu
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Priority to AU2003211885A priority Critical patent/AU2003211885A1/en
Publication of WO2003067158A1 publication Critical patent/WO2003067158A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1423Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant with a moving bed of solid desiccants, e.g. a rotary wheel supporting solid desiccants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1429Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant alternatively operating a heat exchanger in an absorbing/adsorbing mode and a heat exchanger in a regeneration mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/22Means for preventing condensation or evacuating condensate
    • F24F13/222Means for preventing condensation or evacuating condensate for evacuating condensate
    • F24F2013/225Means for preventing condensation or evacuating condensate for evacuating condensate by evaporating the condensate in the cooling medium, e.g. in air flow from the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/02System or Device comprising a heat pump as a subsystem, e.g. combined with humidification/dehumidification, heating, natural energy or with hybrid system
    • F24F2203/021Compression cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1008Rotary wheel comprising a by-pass channel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1016Rotary wheel combined with another type of cooling principle, e.g. compression cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1056Rotary wheel comprising a reheater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1068Rotary wheel comprising one rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1084Rotary wheel comprising two flow rotor segments

Definitions

  • the present invention relates to a humidity control apparatus for adjusting the humidity of air, and more particularly to a humidity control apparatus having an adsorption element and a refrigerant circuit.
  • suction element is known, for example.
  • a dehumidifying operation for supplying dehumidified air to a room and a humidifying operation for supplying humidified air to a room are performed by switching.
  • the suction element is housed in a casing and is configured to be driven to rotate around its central axis.
  • the adsorption element allows a part of the adsorption side air to pass therethrough, and the remaining part passes the regeneration side air heated by the electric heater.
  • the adsorption side air whose moisture has been deprived by a part of the adsorption element is supplied to the room.
  • the remaining part of the adsorption element is regenerated by the heated regeneration air, and the regeneration air that has passed through the adsorption element is discharged outside the room.
  • the regeneration side air provided with the moisture desorbed from the adsorption element is supplied to the room, and the adsorption side air deprived of the adsorption element is discharged outside the room.
  • the adsorbing element rotates, the portion that has absorbed the moisture is sequentially regenerated, and the regenerated portion sequentially absorbs the moisture, so that the dehumidifying operation or the humidifying operation is continuously performed.
  • an electric heater is used as a heat source for heating the air on the regeneration side, but a heat pump may be used as a heat source instead.
  • a refrigerant circuit constituting a heat pump is provided with two heat exchangers, one of which serves as an evaporator and the other serves as a condenser.
  • the heat exchanger that functions as a condenser the regeneration-side air is heated by heat exchange with the refrigerant.
  • the heat exchanger which is the evaporator, The air on the adsorption side after passing through the element exchanges heat with the refrigerant.
  • the adsorption side air dehumidified by the adsorption element is cooled by the evaporator and supplied into the room, while the regeneration side air is heated by the condenser to regenerate the adsorption element and discharged outside the room.
  • the regeneration-side air heated by the condenser is humidified by the adsorption element and supplied to the room, while the adsorption-side air that has given moisture to the adsorption air in preparation for humidification passes through the evaporator. It is discharged outside the room.
  • the present invention has been made in view of such problems, and an object of the present invention is to solve these problems caused by drain water generated in an evaporator when a refrigerant circuit is applied to a humidity control device. Is to eliminate. Disclosure of the invention
  • the drain water is discharged into the second air path on the regeneration side during the dehumidifying operation or the humidifying operation and evaporated, or is discharged into the first air path on the adsorption side during the humidifying operation and evaporated. It is like that.
  • the first solution taken by the present invention is an adsorbing element (81, 82) (90) having an adsorbent and bringing the adsorbent into contact with air, and a refrigeration cycle by circulating a refrigerant.
  • a humidifying device configured to perform at least one of a humidifying operation of supplying the second air into the room and discharging the first air.
  • the humidity control apparatus is configured to discharge drain water generated in the evaporator (103, 104) by moisture in the first air into a path of the second air to evaporate.
  • the evaporator (103) is condensed by moisture of the first air that cannot be adsorbed by the adsorbing elements (81, 82) (90) during a dehumidifying operation when the outdoor is in a high humidity.
  • Drain water (W) is generated, or defrost operation is performed when the evaporator (104) is frosted during humidification operation when the outdoor temperature is low, and drain water (defrost water) (W) is generated.
  • the drain water (W) is supplied into the path of the second air, and evaporates in the path. Therefore, during the dehumidifying operation, the drain water (W) is discharged to the outside of the room together with the second air, and during the humidifying operation, the drain water (W) is contained in the second air and supplied to the room.
  • a second solution taken by the present invention is the first solution, wherein the drain water (W) generated in the evaporator (103, 104) is transferred to the condenser (102) in the second air path. ) And the adsorbing element (81, 82) (90) during the regeneration operation.
  • the drain water (W) is supplied between the condenser (102) and the adsorption elements (81, 82) (90) in the path of the second air, so that the drain water (W) W) evaporates in the second air and is contained in the second air.
  • the third solution taken by the present invention is the first solution, wherein the drain water (W) generated in the evaporator (103, 104) is transferred to the condenser (102) in the path of the second air. ) Or it is configured to supply to the upstream side.
  • the drain water (W) evaporates in the second air by supplying the drain water W to the condenser (102) or the upstream side thereof in the path of the second air. Are included in the second air.
  • a fourth solution taken by the present invention is the adsorption device according to the first solution, wherein drain water generated in the evaporator (103, 104) is regenerated in a second air path during regeneration operation. (81, 82) It is characterized in that it is configured to supply to the downstream side of (90).
  • the drain water (W) is supplied to the downstream side of the adsorption element (81, 82) (90) in the path of the second air, so that the drain water is It evaporates and is contained in the second air.
  • a fifth solution taken by the present invention is to perform a refrigeration cycle by circulating a refrigerant with an adsorption element (81, 82) (90) having an adsorbent and bringing the adsorbent into contact with air.
  • a humidifying operation is performed in which a regeneration operation is performed in which the air passes through the condenser (102) of the circuit (100) and the adsorption elements (81, 82) (90), and at least the second air is supplied into the room and the first air is discharged. It is assumed that a humidity control device that can be operated is used.
  • the humidifying device is configured to discharge drain water () generated in the evaporator (103, 104) by moisture in the first air into a path of the first air during a humidifying operation to evaporate. It is characterized by being.
  • the drain water (W) generated in the evaporator (103, 104) by the first air on the adsorption side during the humidification operation is returned to the first air to evaporate, and is re-evaporated. Contained in the first air. Water cannot be returned to the first air on the adsorption side during the dehumidification operation, but such operation is possible during the humidification operation.
  • a sixth solution taken by the present invention is the fifth solution according to the fifth solution, wherein the drain water W generated in the evaporator (103, 104) is adsorbed during the adsorption operation in the path of the first air. It is characterized in that it is configured to supply to the upstream side of the elements (81, 82) (90).
  • the drain water W is supplied to the upstream side of the adsorption element (81, 82) (90), so that the drain water (3 ⁇ 4) evaporates in the first air on the dehumidifying side, It is contained in the first air, so that water can be further adsorbed by the adsorption elements (81, 82) and (90).
  • a seventh solution taken by the present invention is the solution according to any one of the first to sixth aspects, wherein the first adsorption element (81) and the second adsorption element are used as the adsorption element (81, 82). (82), the first suction element (81) performs a suction operation and the second suction element (82) performs a regenerating operation, and the second suction element (82) performs a suction operation. In addition, a second operation in which the first adsorption element (81) performs a regeneration operation is alternately switched to supply the first air or the second air to the room.
  • the first operation and the second operation are alternately switched while the first air dehumidified during the adsorption operation by the adsorption element (81, 82) is used. It is supplied indoors.
  • the first operation and the second air are alternately switched, and the second air humidified during the regeneration operation by the adsorption element (81, 82) is supplied to the room. That is, in the seventh solution, a so-called batch-type operation is performed in which the two adsorption elements (81, 82) are alternately used on the adsorption side and the regeneration side.
  • An eighth solution taken by the present invention is the humidity control side passage (85) according to the seventh solution, wherein the adsorbing element (81, 82) forces the first air or the second air to flow alternately and alternately.
  • the second air before passing through the condenser (104) can be used as the cooling fluid.
  • the heat of adsorption of the first air generated when performing the adsorption operation in the seventh solution is recovered by the cooling fluid, so that the first air is cooled.
  • the suction element (90) is configured in a rotor shape and has a first air path and a first air path. (2) Arranged across the air path, the suction element (90) rotates continuously or intermittently to perform the adsorption operation on the first air path side and the regeneration operation on the second air path side. This is characterized in that the first air or the second air is supplied to the room at the same time.
  • the first air dehumidified by the adsorption operation is supplied to the room.
  • the portion of the adsorption element (90) which adsorbs the moisture moves into the path of the second air by the rotation of the adsorption element (90) and is regenerated, and is further rotated to rotate in the path of the first air. By moving to, it is used again for suction operation.
  • the second air humidified by the regeneration operation is supplied to the room.
  • the part of the adsorption element (90) that has released the water moves into the path of the first air due to the rotation of the adsorption element (90), adsorbs the water, and further rotates to remove the water of the second air. By moving into the route, it is used again for the reproducing operation.
  • the drain water (W) generated in the evaporator (103, 104) by the moisture in the first air is contained in the second air during the dehumidifying operation and is discharged to the outside or the like. It is released and contained in the second air during humidification operation and is supplied indoors. For this reason, it is possible to prevent problems caused by dripping of drain water (W) from the evaporators (103, 104).
  • the second air can be humidified by using the drain water (W), so that efficient operation can be performed.
  • drain water (W) generated in the evaporator (103, 104) by moisture in the first air is contained in the first air during the humidifying operation. Since the water is discharged to the outside, it is possible to prevent the problem caused by the dripping of the drain water (W) as in the first to fourth solutions.
  • the suction side is formed using a batch type (see the seventh and eighth solutions) or a rotor type (see the ninth solution) suction elements (81, 82) (90).
  • the amount of water adsorption on the adsorption side of the adsorption element (81, 82) (90) increases.
  • the release amount will also increase, and it will be possible to improve the humidification capacity.
  • the dehumidifying operation or the humidifying operation can be performed continuously by performing the batch operation using the first adsorption element (81) and the second adsorption element (82).
  • the drain water generated in the evaporator (103, 104) is continuously treated.
  • the first air in addition to the same effect as the seventh solution, can be cooled by the cooling fluid, so that the blowing temperature particularly during the dehumidifying operation increases. Can be prevented.
  • FIG. 1 is an exploded perspective view showing a configuration of a humidity control apparatus according to Embodiment 1 and a first operation during a dehumidification operation.
  • FIG. 2 is an exploded perspective view showing a second operation during the dehumidifying operation in the humidity control apparatus according to the first embodiment.
  • FIG. 3 is an exploded perspective view showing a first operation during a humidification operation in the humidity control apparatus according to the first embodiment.
  • FIG. 4 is an exploded perspective view showing a second operation during the humidification operation in the humidity control apparatus according to the first embodiment.
  • FIG. 5 is a schematic configuration diagram illustrating a main part of the humidity control apparatus according to the first embodiment.
  • FIG. 6 is a schematic perspective view showing the adsorption element of the humidity control apparatus according to the first embodiment.
  • FIG. 7 is a piping diagram illustrating a configuration of the refrigerant circuit according to the first embodiment.
  • FIG. 8 is an explanatory diagram conceptually showing the operation of the humidity control apparatus according to the first embodiment.
  • FIG. 9 is an explanatory diagram showing a process of drain water during the driving operation in FIG.
  • FIG. 10 is an explanatory diagram showing a modification of the treatment of drain water during the humidification operation.
  • FIG. 11 is an explanatory view showing the operation of the humidity control apparatus according to the second embodiment and the treatment of drain water.
  • FIG. 12 is an explanatory diagram showing the operation of the humidity control apparatus according to the third embodiment and the treatment of drain water.
  • the humidity control apparatus is configured to switch between a dehumidifying operation in which dehumidified first air is supplied indoors and a humidifying operation in which humidified second air is supplied indoors.
  • this humidity control device includes a refrigerant circuit (100) and two adsorption elements (81, 82), and an adsorption element (81, 82) used for the adsorption operation on the dehumidification side and a regenerator on the humidification side.
  • a so-called batch-type operation that alternately switches the adsorption elements (81, 82) used for raw operation It is configured to perform.
  • the humidity control device has a slightly flat rectangular parallelepiped casing (10).
  • the casing (10) has two adsorbing elements (81, 82) having an adsorbent and bringing the adsorbent into contact with air, and a refrigeration cycle in which a refrigerant is circulated to perform a refrigeration cycle (100).
  • the refrigerant circuit (100) includes a compressor (101), a regenerative heat exchanger (102), a first heat exchanger (103), and a second heat exchanger ( 104) etc. The details of the refrigerant circuit (100) will be described later.
  • the adsorption element (81, 82) is configured by alternately stacking flat plate members (83) and corrugated corrugated members (84).
  • the flat plate member (83) is formed in a rectangular shape.
  • the corrugated plate member (84) is formed in the same rectangular shape as the flat plate member (83), and is laminated so that the ridge directions of the adjacent corrugated plate members (84) cross each other at an angle of 90 °. ing.
  • the adsorption element (81, 82) is formed in a rectangular parallelepiped or quadrangular prism shape as a whole.
  • the humidity control side passage (85) and the cooling side passage (86) include the flat plate member (83). ) Are formed alternately.
  • the humidity control side passage (85) is opened on the long side of the flat plate member (83), and the cooling side passage (86) is opened on the short side of the flat plate member (83). ) Is open.
  • the front and rear end faces of the drawing constitute a closed surface in which neither the humidity control side passage (85) nor the cooling side passage (86) is open. I have.
  • the surface of the flat plate member (83) facing the humidity control side passage (85) or the surface of the corrugated plate member (84) provided in the humidity control side passage (85) is provided.
  • An adsorbent for adsorbing water vapor is applied. Examples of this type of adsorbent include silica gel, zeolite, and ion exchange resin.
  • an outdoor panel (11) is provided on the most front side, and an indoor panel (12) is provided on the farthest side.
  • the outdoor panel (11) has an outdoor suction port (13) near its left end, An outdoor air outlet (16) is formed near the end.
  • the room-side panel (12) has an indoor-side outlet (14) near its left end, and an indoor-side inlet (15) near its right end.
  • a first partition plate (20) and a second partition plate (30) are provided in order from the near side to the far side.
  • the internal space of the casing (10) is divided into three spaces by the first and second partition plates (20, 30).
  • the space between the outdoor panel (11) and the first partition plate (20) is divided into an upper outdoor upper flow path (41) and a lower outdoor lower flow path (42).
  • the outdoor upper flow path (41) communicates with the outdoor space through the outdoor air outlet (16).
  • the outdoor lower flow path (42) communicates with the outdoor space through the outdoor suction port (13).
  • An exhaust fan (96) is installed near the right end of the space between the outdoor panel (11) and the first partition (20).
  • a second heat exchanger (104) is installed in the outdoor upper flow path (41).
  • the second heat exchanger (104) is a so-called cross-fin type fin-and-tube heat exchanger, and the air and refrigerant circuit (41) flowing through the upper outdoor passage (41) toward the exhaust fan (96) 100) to exchange heat with the refrigerant. That is, the second heat exchanger (104) is for exchanging heat between the air discharged outside and the refrigerant.
  • the first partition (20) has a first right opening (21), a first left opening (22), a first upper right opening (23), a first lower right opening (24), a first upper left opening (25). ), And the first lower left opening (26) are formed.
  • Each of these openings (21, 22,...) Has an openable / closable shutter and is configured to be openable and closable.
  • the first right opening (21) and the first left opening (22) are vertically long rectangular openings.
  • the first right opening (21) is provided near the right end of the first partition (20).
  • the first left opening (22) is provided near the left end of the first partition (20).
  • the first upper right opening (23), the first lower right opening (24), the first upper left opening (25), and the first lower left opening (26) are horizontally long rectangular openings.
  • the first upper right opening (23) is provided to the left of the first right opening (21) in the upper part of the first partition plate (20).
  • the first lower right opening (24) is provided in the lower part of the first partition plate (20), to the left of the first right opening (21).
  • the first upper left opening (25) is to the right of the first left opening (22) above the first partition (20). It is provided next to it.
  • the first lower left opening (26) is provided at the lower part of the first partition plate (20), right next to the first left opening (22).
  • the first partition plate (20) between the second partition plate (30), two adsorption elements (81, 82) are Installation. These adsorption elements (81, 82) are arranged side by side at predetermined intervals. Specifically, a first suction element (81) is provided on the right side, and a second suction element (82) is provided on the left side.
  • each of the adsorption elements (81, 82) has left and right side surfaces of a casing (10) side plate, upper and lower surfaces of a top plate and a bottom plate of the casing (10), and front and rear end surfaces of an outdoor panel (11) and a room. They are arranged so that they are almost parallel to the inner panel (12).
  • each adsorption element (81, 82) installed in the casing (10) has a cooling-side passage (86) opened on the left and right side surfaces.
  • One side of the first adsorbing element (81) where the cooling-side passage (86) opens is opposed to one side of the second adsorbing element (82) where the cooling-side passage (86) opens. I'm wearing
  • the space between the first partition plate (20) and the second partition plate (30) is divided into several partitions by the right channel (51), the left channel (52), the upper right channel (53), It is divided into a lower right channel (54), an upper left channel (55), a lower left channel (56), and a central channel (57).
  • the right flow path (51) is formed on the right side of the first adsorption element (81), and communicates with the cooling-side passage (86) of the first adsorption element (81).
  • the left flow path (52) is formed on the left side of the second adsorption element (82), and communicates with the cooling-side passage (86) of the second adsorption element (82).
  • the upper right flow path (53) is formed above the first adsorption element (81) and communicates with the humidity control side passageway (85) of the first adsorption element (81).
  • the lower right flow path (54) is formed below the first adsorption element (81) and communicates with the humidity control side passage (85) of the first adsorption element (81).
  • the upper left flow path (55) is formed above the second adsorption element (82), and communicates with the humidity control passage (85) of the second adsorption element (82).
  • the lower left flow path (56) is formed below the second adsorption element (82) and communicates with the humidity control side passage (85) of the second adsorption element (82).
  • the central flow path (57) is formed between the first adsorption element (81) and the second adsorption element (82), and communicates with the cooling-side passage (86) of both adsorption elements (81, 82).
  • the cross-sectional shape of the channel shown in FIGS. 1 and 5 is square.
  • the regenerative heat exchanger (102) is a so-called cross-fin type fin-and-tube heat exchanger that exchanges heat between the air flowing through the central flow path (57) and the refrigerant in the refrigerant circuit (100). It is configured. This regenerative heat exchanger (102) is arranged in the central channel (57). In other words, the regenerative heat exchanger (102) is the first adsorption element
  • the regenerative heat exchanger (102) is provided so as to partition the central flow path (57) up and down in a state of being laid almost horizontally. Further, the regenerative heat exchanger (102) is arranged such that the upper surface thereof is slightly lower than the lower surfaces of the first and second adsorption elements (81, 82).
  • a right-side shirt (61) is provided between the first adsorption element (81) and the regenerative heat exchanger (102).
  • the right side shutter (61) partitions the lower portion of the regenerative heat exchanger (102) in the central channel (57) from the lower right channel (54), and is configured to be openable and closable.
  • a left shirt (62) is provided between the second adsorption element (82) and the regenerative heat exchanger (102).
  • the left shirt (62) partitions the lower part of the regenerative heat exchanger (102) in the central flow path (57) from the lower left flow path (56), and is configured to be openable and closable. .
  • the flow path (41, 42) between the outdoor panel (11) and the first partition (20) and the flow path (51, 42) between the first partition (20) and the second partition (30) 52,...) are switched between a communication state and a blocking state by an opening / closing shutter provided in the opening (21, 22,...) Of the first partition plate (20).
  • the right flow path (51) and the outdoor lower flow path (42) communicate with each other.
  • the left flow path (52) and the outdoor lower flow path (42) communicate with each other.
  • the first upper right opening (23) is in an open state
  • the upper right flow path (53) communicates with the outdoor upper flow path (41).
  • the second divider (30) has a second right opening (31), a second left opening (32) ', a second upper right opening (33), a second lower right opening (34), a second upper left opening ( 35) and a second lower left opening (36) are formed.
  • Each of these openings (31, 32,...) Has an openable / closable shutter and is configured to be openable and closable.
  • the second right opening (31) and the second left opening (32) are vertically long rectangular openings.
  • the second right opening (31) is provided near the right end of the second partition (30).
  • the second left opening (32) is provided near the left end of the second partition (30).
  • the second upper right opening (33), the second lower right opening (34), the second upper left opening (35), and the second lower left opening (36) are horizontally long rectangular openings.
  • the second upper right opening (33) is provided to the left of the second right opening (31) above the second partition plate (30).
  • the second lower right opening (M) is provided below the second partition plate (30) and to the left of the second right opening (31).
  • the second upper left opening (35) is provided on the upper part of the second partition plate (30), right next to the second left opening (32).
  • the second lower left opening (36) is provided below the second partition plate (30) and to the right of the second left opening (32).
  • the space between the indoor panel (12) and the second partition plate (30) is divided into an upper indoor upper flow path (46) and a lower indoor lower flow path (47).
  • the indoor upper flow path (46) communicates with the indoor space through the indoor outlet (14).
  • the indoor lower flow path (47) communicates with the indoor space through the indoor suction port (15).
  • an air supply fan (95) is installed near the left end.
  • a first heat exchanger (103) is installed in the indoor-side upper flow path (46).
  • the first heat exchanger (103) is a so-called cross-fin type fin 'and' tube heat exchanger, and the air and refrigerant circuit that flows through the upper air passage (46) toward the air supply fan (95). It is configured to exchange heat with (100) refrigerant. That is, the first heat exchanger (103) is for exchanging heat between the air supplied to the room and the refrigerant.
  • the flow path between the first partition plate (20) and the second partition plate (30) and the flow path between the second partition plate (30) and the outdoor panel (11) are defined by the second partition plate (30).
  • the open / close shutter provided at the opening of () switches between the open and closed states. Specifically, when the second right opening (31) is in an open state, the right flow path (51) communicates with the indoor lower flow path (47). When the second left opening (32) is in the open state, the left flow path (52) communicates with the indoor lower flow path (47). When the second upper right opening (33) is in an open state, the upper right flow path (53) communicates with the indoor upper flow path (46). When the second lower right opening (34) is in the open state, the lower right flow path (54) communicates with the indoor lower flow path (47).
  • the upper left flow path (55) communicates with the indoor upper flow path (46).
  • the second lower left flow path (56) communicates with the indoor lower flow path (47).
  • the refrigerant circuit (100) is a closed circuit filled with a refrigerant.
  • the refrigerant circuit (100) includes a compressor (101), a regenerative heat exchanger (102), a first heat exchanger (103), a second heat exchanger (104), a receiver (105), a four-way switching valve ( 120), and an electric expansion valve (110).
  • a vapor compression refrigeration cycle is performed by circulating the refrigerant.
  • the discharge side of the compressor (101) is connected to one end of the regenerative heat exchanger (102).
  • the other end of the regenerative heat exchanger (102) is connected to one end of an electric expansion valve (110) via a receiver (105).
  • the other end of the electric expansion valve (110) is connected to the first port (121) of the four-way switching valve (120).
  • the second port (122) is connected to one end of the second heat exchanger (104), and the fourth port (124) is connected to one end of the first heat exchanger (103). Have been.
  • the third port (123) of the four-way switching valve (120) is sealed.
  • the other end of the first heat exchanger (103) and the other end of the second heat exchanger (104) are respectively connected to the suction side of the compressor (101).
  • the four-way switching valve (120) has a state in which the first port (121) and the second port (122) communicate with each other and the third port (123) and the fourth port (124) communicate with each other. 121) and the fourth port (124) communicate with each other, and the state is switched to a state where the second port 22 ) and the third port (123) communicate with each other. As described above, the third port (123) of the four-way switching valve (120) is closed. That is, in the refrigerant circuit (100) of the present embodiment, the four-way switching valve (120) is used as a three-way valve.
  • This humidity controller switches between the dehumidifying operation and the humidifying operation as described above.
  • this humidity control device The first operation in which the adsorption operation is performed by the landing element (81) and the reproduction operation is performed by the second adsorption element (82);
  • the dehumidifying operation or the humidifying operation is performed by alternately switching the operation and the second operation, and supplying the first air or the second air to the room.
  • the regenerative heat exchanger (102) becomes a condenser and the first heat exchanger (103) becomes an evaporator, while the second heat exchanger (104) becomes an evaporator. Is dormant. The operation of the refrigerant circuit (100) will be described later.
  • the first operation of the dehumidifying operation will be described with reference to FIGS.
  • an adsorption operation on the first adsorption element (81) and a reproduction operation on the second adsorption element (82) are performed. That is, in the first operation, the air is dehumidified by the first adsorption element (81), and at the same time, the adsorbent of the second adsorption element (82) is regenerated.
  • the first lower right opening (24) and the first upper left opening (25) are in communication with each other, and the remaining openings (21, 22, 23, 26 ) Is shut off.
  • the first lower right opening (24) connects the lower outdoor passage (42) and the lower right passage (54), and the first upper left opening (25) connects the upper left passage (55) to the outdoor.
  • the upper flow path (41) communicates with the upper flow path (41).
  • the second right opening (31) and the second upper right opening (33) are in communication with each other, and the remaining openings (32, 34, 35, 36) are in a closed state.
  • the lower right side flow path (47) and the right side flow path (51) communicate with each other through the second right side opening (31), and the upper right side flow path (53) and the upper side inside the room through the second upper right opening (33).
  • the flow path (46) communicates.
  • the right side shirt (61) is closed and the left side shirt (62) is open. ing. In this state, the lower part of the regenerative heat exchanger (102) in the central flow path (57) communicates with the lower left flow path (56) via the left shirt (62).
  • the first air taken into the casing (10) flows into the lower right channel (54) from the outdoor lower channel (42) through the first lower right opening (24).
  • the second air taken into the casing (10) flows into the right flow path (51) from the indoor lower flow path (47) through the second right opening (31).
  • the first air in the lower right flow path (54) flows into the humidity control side passage (85) of the first adsorption element (81). While flowing through the humidity control side passage (85), the water vapor contained in the first air is adsorbed by the adsorbent. The first air dehumidified by the first adsorption element (81) flows into the upper right channel (53).
  • the second air in the right flow path (51) flows into the cooling-side passage (86) of the first adsorption element (81). While flowing through the cooling side passage (86), the second air absorbs the heat of adsorption generated when the water vapor of the first air is adsorbed by the adsorbent in the humidity control side passage (85). That is, the second air flows through the cooling-side passage (86) as a cooling fluid.
  • the second air which has lost the heat of adsorption, flows into the central channel (57) and passes through the regenerative heat exchanger (102). At that time, in the regeneration heat exchanger (102), the second air is heated by heat exchange with the refrigerant. Thereafter, the second air flows from the central channel (57) into the lower left channel (56).
  • the second air heated by the first adsorption element (81) and the regenerative heat exchanger (102) is introduced into the humidity control passage (85) of the second adsorption element (82).
  • the adsorbent is heated by the second air, and water vapor is released from the adsorbent. That is, the regeneration of the second adsorption element (82) is performed.
  • the water vapor desorbed from the adsorbent flows into the upper left channel (55) together with the second air.
  • the dehumidified first air that has flowed into the upper right channel (53) is sent into the indoor upper channel (46) through the second upper right opening (33).
  • the first air passes through the first heat exchanger (103) while flowing through the indoor upper flow path (46), and is cooled by heat exchange with the refrigerant.
  • the dehumidified and cooled first air is then supplied to the room through the indoor side outlet (14).
  • the second air flowing into the upper left channel (55) flows into the outdoor upper channel (41) through the first upper left opening (25).
  • This second air flows through the upper outdoor passage (41). While passing through the second heat exchanger (104).
  • the second heat exchanger (104) is at rest and the second air is neither heated nor cooled.
  • the second air used for cooling the first adsorbing element (81) and regenerating the second adsorbing element (82) is discharged outside through the outdoor air outlet (16).
  • the second operation of the dehumidifying operation will be described with reference to FIGS.
  • the adsorption operation on the second adsorption element (82) and the reproduction operation on the first adsorption element (81) are performed, contrary to the first operation. That is, in the second operation, the air is dehumidified by the second adsorption element (82), and at the same time, the adsorbent of the first adsorption element (81) is regenerated.
  • the first upper right opening (23) and the first lower left opening (26) are in communication with each other, and the remaining openings (21, 22, 24, 25) Is shut off.
  • the upper right channel (53) communicates with the outdoor upper channel (41) through the first upper right opening (23), and the outdoor lower channel (42) and the lower left channel through the first lower left opening (26).
  • the flow path (56) communicates.
  • the second left opening (32) and the second upper left opening (35) are in communication with each other, and the remaining openings (31, 33, 34, 36) are in a closed state.
  • the lower left flow path (47) and the left flow path (52) communicate with each other through the second left opening (32), and the upper left flow path (55) and the upper indoor path through the second upper left opening (35).
  • the flow path (46) communicates.
  • the left shirt (62) is closed and the right shirt (61) is open.
  • the lower part of the regenerative heat exchanger (102) in the central flow path (57) communicates with the lower right flow path (54) via the right side shutter (61).
  • the first air taken into the casing (10) flows into the lower left channel (56) from the outdoor lower channel (42) through the first lower left opening (26).
  • the second air taken into the casing (10) flows into the left flow path (52) from the indoor lower flow path (47) through the second left opening (32).
  • the first air in the lower left flow path (56) flows into the humidity control side passageway (85) of the second adsorption element (82). While flowing through the humidity control side passage (85), the water vapor contained in the first air is adsorbed by the adsorbent.
  • the second air in the left flow path (52) flows into the cooling-side passage (86) of the second adsorption element (82). While flowing through the cooling side passage (86), the second air absorbs the heat of adsorption generated when the water vapor of the first air is adsorbed by the adsorbent in the humidity control side passage (85). That is, the second air flows through the cooling-side passage (86) as a cooling fluid.
  • the second air which has lost the heat of adsorption, flows into the central channel (57) and passes through the regenerative heat exchanger (102). At that time, in the regeneration heat exchanger (102), the second air is heated by heat exchange with the refrigerant. Thereafter, the second air flows from the central channel (57) to the lower right channel (54).
  • the second air heated by the second adsorption element (82) and the regenerative heat exchanger (102) is introduced into the humidity control passage (85) of the first adsorption element (81).
  • the adsorbent is heated by the second air, and water vapor is released from the adsorbent. That is, the regeneration of the first adsorption element (81) is performed.
  • the water vapor desorbed from the adsorbent flows into the upper right channel (53) together with the second air.
  • the dehumidified first air that has flowed into the upper left flow path (55) is sent into the indoor upper flow path (46) through the second upper left opening (35).
  • the first air passes through the first heat exchanger (103) while flowing through the indoor upper flow path (46), and is cooled by heat exchange with the refrigerant.
  • the dehumidified and cooled first air is then supplied to the room through the indoor side outlet (14).
  • the second air flowing into the upper right channel (53) flows into the outdoor upper channel (41) through the first upper right opening (23).
  • the second air passes through the second heat exchanger (104) while flowing through the outdoor upper flow path (41).
  • the second heat exchanger (104) is at rest and the second air is neither heated nor cooled.
  • the second air used for cooling the second adsorbing element (82) and regenerating the first adsorbing element (81) is discharged outside through the outdoor air outlet (16).
  • the regenerative heat exchanger (102) becomes a condenser and the second heat exchanger (104) becomes an evaporator, while the first heat exchanger (103) becomes an evaporator. Is dormant. The operation of the refrigerant circuit (100) will be described later.
  • the first operation of the humidification operation will be described with reference to FIGS.
  • an adsorption operation on the first adsorption element (81) and a reproduction operation on the second adsorption element (82) are performed. That is, in the first operation, the air is humidified by the second adsorption element (82), and the adsorbent of the first adsorption element (81) adsorbs water vapor.
  • the first right opening (21) and the first upper right opening (23) are in communication with each other, and the remaining openings (22, 24, 25, 26) Is shut off.
  • the lower outdoor channel (42) and the right channel (51) communicate with each other through the first right opening (21), and the upper right channel (53) and the upper outdoor unit flow through the first upper right opening (23).
  • the flow path (41) communicates.
  • the second lower right opening (34) and the second upper left opening (35) are in communication with each other, and the remaining openings (31, 32, 33, 36) are in a closed state. I have.
  • the indoor lower flow path (47) and the lower right flow path (54) communicate with each other by the second lower right opening (34), and the upper left flow path (55) and the indoor side flow through the second upper left opening (35).
  • the upper flow path (46) communicates with the upper flow path (46).
  • the right side shutter (61) is closed, and the left side shutter (62) is open.
  • the lower part of the regenerative heat exchanger (102) in the central flow path (57) communicates with the lower left flow path (56) via the left shirt (62).
  • the first air taken into the casing (10) flows into the lower right channel (54) from the indoor lower channel (47) through the second lower right opening (34).
  • the second air taken into the casing (10) flows into the right flow path (51) from the outdoor lower flow path (42) through the first right opening (21).
  • the first air in the lower right flow path (54) flows into the humidity control side passage (85) of the first adsorption element (81). While flowing through the humidity control side passage (85), the water vapor contained in the first air is adsorbed by the adsorbent. Moisture deprived by the first adsorption element (81) The first air flows into the upper right channel (53).
  • the second air in the right flow path (51) flows into the cooling-side passage (86) of the first adsorption element (81). While flowing through the cooling side passage (86), the second air absorbs the heat of adsorption generated when the water vapor of the first air is adsorbed by the adsorbent in the humidity control side passage (85). That is, the second air flows through the cooling-side passage (86) as a cooling fluid.
  • the second air which has lost the heat of adsorption, flows into the central channel (57) and passes through the regenerative heat exchanger (102). At that time, in the regeneration heat exchanger (102), the second air is heated by heat exchange with the refrigerant. Thereafter, the second air flows from the central channel (57) into the lower left channel (56).
  • the second air heated by the first adsorption element (81) and the regenerative heat exchanger (102) is introduced into the humidity control passage (85) of the second adsorption element (82).
  • the adsorbent is heated by the second air, and water vapor is released from the adsorbent. That is, the regeneration of the second adsorption element (82) is performed. Then, the water vapor desorbed from the adsorbent is provided to the second air, and the second air is humidified.
  • the second air humidified by the second adsorption element (82) then flows into the upper left flow path (55).
  • the second air that has flowed into the upper left flow path (55) flows into the indoor upper flow path (46) through the second upper left opening (35).
  • the second air passes through the first heat exchanger (103) while flowing through the indoor-side upper flow path (46).
  • the first heat exchanger (103) is at rest and the second air is neither heated nor cooled.
  • the second air humidified by the second adsorption element (82) is supplied to the room ⁇ through the indoor side outlet (14).
  • the first air that has flowed into the upper right flow path (53) is sent into the outdoor upper flow path (41) through the first upper right opening (23).
  • the first air passes through the second heat exchanger (104) while flowing through the outdoor-side upper flow path (41), and is cooled by heat exchange with the refrigerant. After that, the first air deprived of moisture and heat is discharged outside through the outdoor air outlet (16).
  • the second operation of the humidifying operation will be described with reference to FIGS.
  • the adsorption operation on the second adsorption element (82) and the reproduction operation on the first adsorption element (81) are performed, contrary to the first operation. That is, in the second operation, the air is humidified by the first adsorption element (S1), and the adsorbent of the second adsorption element (82) adsorbs water vapor.
  • the first left opening (22) and the first upper left opening (25) are in communication with each other, and the remaining openings (21, 23, 24, 26) Is shut off.
  • the first lower left opening (22) connects the lower outdoor channel (42) to the left channel (52), and the first upper left opening (25) connects the upper left channel (55) to the upper outdoor unit.
  • the flow path (41) communicates.
  • the second upper right opening (33) and the second lower left opening (36) are in communication with each other, and the remaining openings (31, 32, 34, 35) are in a closed state.
  • the upper right channel (53) communicates with the indoor upper channel (46) through the second upper right opening (33)
  • the indoor lower channel (47) communicates with the left lower channel (47) through the second lower left opening (36).
  • the lower flow path (56) communicates.
  • the left shirt (62) is closed and the right shirt (61) is open.
  • the lower part of the regenerative heat exchanger (102) in the central flow path (57) communicates with the lower right flow path (54) via the right side shutter (61).
  • the first air taken into the casing (10) flows into the lower left flow path (56) from the indoor lower flow path (47) through the second lower left opening (36).
  • the second air taken into the casing (10) flows from the outdoor lower flow path (42) to the left flow path (52) through the first left opening (22).
  • the first air in the lower left flow path (56) flows into the humidity control side passageway (85) of the second adsorption element (82). While flowing through the humidity control side passage (85), the water vapor contained in the first air is adsorbed by the adsorbent. The first air deprived of moisture by the second adsorption element (82) flows into the upper left flow path (55).
  • the second air in the left flow path (52) flows into the cooling-side passage (86) of the second adsorption element (82). While flowing through the cooling side passage (86), the second air absorbs the heat of adsorption generated when the water vapor of the first air is adsorbed by the adsorbent in the humidity control side passage (85). That is, the second air flows through the cooling-side passage (86) as a cooling fluid.
  • the second air which has lost the heat of adsorption, flows into the central channel (57) and passes through the regenerative heat exchanger (102). At that time, in the regeneration heat exchanger (102), the second air is heated by heat exchange with the refrigerant. Thereafter, the second air flows from the central channel (57) to the lower right channel (54).
  • the second air heated by the second adsorption element (82) and the regenerative heat exchanger (102) It is introduced into the humidity control side passage (85) of the receiving element (81).
  • the adsorbent is heated by the second air, and water vapor is released from the adsorbent. That is, the regeneration of the first adsorption element (81) is performed. Then, the water vapor desorbed from the adsorbent is provided to the second air, and the second air is humidified.
  • the second air humidified by the first adsorption element (81) then flows into the upper right channel (53).
  • the second air flowing into the upper right flow path (53) flows into the indoor upper flow path (46) through the second upper right opening (33).
  • the second air passes through the first heat exchanger (103) while flowing through the indoor-side upper flow path (46).
  • the first heat exchanger (103) is at rest and the second air is neither heated nor cooled.
  • the second air humidified by the first adsorption element (81) is supplied indoors through the indoor-side outlet (14).
  • the first air flowing into the upper left flow path (55) is sent into the outdoor upper flow path (41) through the first upper left opening (25).
  • the first air passes through the second heat exchanger (104) while flowing through the outdoor-side upper flow path (41), and is cooled by heat exchange with the refrigerant. After that, the first air deprived of moisture and heat is discharged outside through the outdoor outlet (16).
  • the operation of the refrigerant circuit (100) will be described with reference to FIGS.
  • the flows of the first air and the second air shown in FIG. 8 are those during the second operation.
  • the electric expansion valve (110) is omitted.
  • the four-way switching valve (120) is in a state where the first port (121) and the fourth port (124) communicate with each other and the second port (122) and the third port (123) communicate with each other. Become. Further, the opening of the electric expansion valve (110) is appropriately adjusted according to the operating conditions.
  • the compressor (101) When the compressor (101) is operated in this state, the refrigerant circulates in the refrigerant circuit (100) to perform a refrigeration cycle. At that time, in the refrigerant circuit (100), the regenerative heat exchanger (102) becomes a condenser, the first heat exchanger (103) becomes an evaporator, and the second heat exchanger (104) is in a rest state ( See Figure 8 (a)).
  • the refrigerant discharged from the compressor (101) is sent to the regenerative heat exchanger (102).
  • the refrigerant flowing into the regeneration heat exchanger (102) exchanges heat with the second air and releases heat to the second air.
  • the refrigerant condensed in the regenerative heat exchanger (102) is sent to the electric expansion valve (110) through the receiver (105). This refrigerant is decompressed when passing through the electric expansion valve (110). The refrigerant decompressed by the electric expansion valve (110) is sent to the first heat exchanger (103) through the four-way switching valve (120). The refrigerant flowing into the first heat exchanger (103) exchanges heat with the first air, absorbs heat from the first air, and evaporates. No. 1 heat exchanger (10
  • the refrigerant evaporated in 3) is drawn into the compressor (101) and compressed, and then discharged from the compressor (101).
  • the four-way switching valve (120) is in a state where the first port (121) and the second port (122) communicate with each other and the third port (123) and the fourth port (124) communicate with each other. Become. Further, the opening of the electric expansion valve (110) is appropriately adjusted according to the operating conditions.
  • the compressor (101) When the compressor (101) is operated in this state, the refrigerant circulates in the refrigerant circuit (100) to perform a refrigeration cycle. At that time, in the refrigerant circuit (100), the regenerative heat exchanger (102) becomes a condenser, the second heat exchanger (104) becomes an evaporator, and the first heat exchanger (103) is in a rest state ( (See Fig. 8 (b)).
  • the refrigerant discharged from the compressor (101) is sent to the regenerative heat exchanger (102).
  • the refrigerant flowing into the regenerative heat exchanger (102) exchanges heat with the second air, releases heat to the second air, and condenses.
  • the refrigerant condensed in the regenerative heat exchanger (102) is sent to the electric expansion valve (110) through the receiver (105). This refrigerant is decompressed when passing through the electric expansion valve (110).
  • the refrigerant decompressed by the electric expansion valve (110) is sent to the second heat exchanger (104) through the four-way switching valve (120).
  • the refrigerant flowing into the second heat exchanger (104) exchanges heat with the first air, absorbs heat from the first air, and evaporates.
  • Second heat exchanger (104) exchanges heat with the first air, absorbs heat from the first air, and evaporates.
  • the refrigerant evaporated in 4) is sucked into the compressor (101), compressed, and then discharged from the compressor (101).
  • the refrigerant circulating in the refrigerant circuit (100) during the humidifying operation absorbs heat from the first air in the second heat exchanger (104) and releases heat to the second air in the regenerative heat exchanger (102). That is, heat is recovered from the first air exhausted to the outside in the second heat exchanger (104), and the heat recovered in the second heat exchanger (104) is recovered in the second heat exchanger (102). 2Used for heating air.
  • this humidity control device uses an evaporator (first heat) by the moisture in the first air that could not be completely adsorbed by the adsorption elements (81, 82) when the dehumidification operation was performed in an extremely humid outdoor environment.
  • the evaporator (second heat exchanger) (104) is defrosted due to dew on the (exchanger) (103) or the outdoor temperature is low during the humidification operation, it is defrosted. (Including defrost water) is generated, but this drain water can be treated in the equipment without discharging it as liquid in the equipment.
  • a drain pan (71), a drain pump (72), and a drain pipe (73) are provided.
  • defrost operation it is possible to arbitrarily select a defrost operation using a heater, a reverse cycle defrost operation, a hot gas defrost operation, or any other defrost operation.
  • a defrost operation it is possible to arbitrarily select a defrost operation using a heater, a reverse cycle defrost operation, a hot gas defrost operation, or any other defrost operation.
  • the description of the specific contents is omitted.
  • this humidity control device transfers the drain water (W) generated in the first heat exchanger (103) by the moisture in the first air during the dehumidifying operation to the second air path. It is configured to release into and evaporate.
  • the drain water W is transferred between the regenerative heat exchanger (102) and the adsorbing element (81, 82) during the regenerating operation in the second air path. It is configured so that it can be supplied to With this configuration, the drain water (W) generated in the first heat exchanger (103) is heated by the regenerative heat exchanger (102) downstream of the regenerative heat exchanger (102). Contained in the second air and discharged outside the room. Therefore, the drain water (W) does not cause ⁇ in the equipment and the drain water (W) does not drop into the room.
  • the drain water (W) is directly supplied to the regenerative heat exchanger (102) in the second air path as shown by the arrow (A2), or as shown by the arrow (A3). In the second air path, it is supplied to the upstream side of the regenerative heat exchanger (102) (in the figure, it is upstream of the adsorption elements (81, 82) on the adsorption side, but it may be downstream). To do It is possible. Furthermore, the drain water (3 ⁇ 4 is supplied to the downstream side of the adsorbing element (81, 82) during the regeneration operation in the path of the second air as indicated by the arrow (A4). Even in these cases, the drain water (W) does not cause ⁇ in the equipment and the drain water (W) does not drop into the room.
  • drain water (W) during the humidification operation will be described.
  • this humidifier controls the drain generated by performing the defrost operation when the first air passes through the second heat exchanger (104) and forms frost during the humidification operation.
  • Water (W) is contained in the second air and supplied to the room as in the dehumidifying operation.
  • the drain water (W) is combined with the regenerative heat exchanger (102) and the adsorption element (81, 82) during the regenerating operation in the second air path. It is configured to be able to supply during.
  • the drain water (W) generated in the second heat exchanger (104) is heated by the regenerative heat exchanger (102) downstream of the regenerative heat exchanger (102). It is contained in the second air and is supplied indoors. Therefore, the drain water (W) does not cause ⁇ in the equipment and the drain water (W) does not drop into the room.
  • the drain water (W) can be directly supplied to the regenerative heat exchanger (102) in the second air path as shown by the arrow (B2), or as shown by the arrow (B3). Alternatively, it can be supplied to the upstream side of the regenerative heat exchanger (102) in the path of the second air. Further, the drain water (W) is configured to be supplied to the downstream side of the adsorption element (81, 82) during the regeneration operation in the path of the second air, as indicated by the arrow (B4). It is good. Even in these cases, the drain water (W) does not cause ⁇ in the equipment and the drain water (W) does not drop into the room.
  • the drain water (W) may be returned to the first air on the adsorption side.
  • the drain water (W) generated in the second heat exchanger (104) by the moisture in the first air is converted into the first air Is supplied to the upstream side of the adsorption element (81, 82) that is performing the adsorption operation in the path.
  • the drain water (W) is contained in the first air and is adsorbed by the adsorption elements (81, 82 ).
  • drain water (W) does not cause ⁇ in the equipment and drain water (W) does not drop into the room. Also, in this case, the amount of water adsorbed by the adsorption element (81, 82) used on the adsorption side increases, so that the amount of regeneration when the element (81, 82 ) is switched to the reproduction side increases. As a result, the humidification ability can be increased.
  • the drain water (W) generated in the first and second heat exchangers (103, 104) as evaporators is introduced into the second air path during the dehumidifying operation and the humidifying operation.
  • the liquid is evaporated in the second air, or is introduced into the path of the first air to be adsorbed by the adsorbing elements (81, 82).
  • drain water W drops from the evaporator (10 3 , 10), causing water to form inside the casing (10) or causing the casing (1
  • the drain water (W) is introduced into the path of the first air during the humidifying operation and is adsorbed by the adsorbing element (81, 82), the configuration shown in Fig. 10 is used. Since this moisture can be given to the second air, the humidification amount can be increased. Further, in the first embodiment, since the batch-type treatment is performed by using the two adsorption elements (81, 82), the humidification operation and the dehumidification operation can be performed continuously. Since the air is used as the cooling fluid for the first air, it is possible to prevent the temperature of the blowout from increasing during the dehumidifying operation.
  • the humidity control apparatus of the first embodiment is configured so that heat of adsorption generated when adsorbing moisture of the first air is recovered by the cooling fluid, but the humidity control apparatus is configured as shown in FIG.
  • a configuration using an adsorption element (81, 82) that does not recover adsorption heat may be used.
  • the suction elements (81, 82) are not shown, but, for example, a flat plate member (83) and a corrugated plate member (84) are alternately stacked to form a rectangular parallelepiped block, and all of the corrugated plate members ( By aligning the direction of the ridge line of (84), only the humidity control side passage (85) is provided. Then, in the adsorption element (8 1,82), the adsorbent is applied to both sides of double-sided and corrugated plate members of the plate member (8 3) (84).
  • the dehumidifying operation shown in FIG. When passing through one of (1, 82), moisture is absorbed and dehumidified, and the first air is cooled by the first heat exchanger (103) and supplied to the room. Further, the second air is heated in the regenerative heat exchanger (102), passes through the other of the adsorption elements (81, 82), desorbs moisture from the elements (81, 82), and removes water from the adsorption elements (81, 82). 81, 82). The second air is released outside the room after regenerating the adsorption element. Then, the adsorption side and the regeneration side are alternately switched, and the continuous operation is performed.
  • the second air was heated pressurized with regenerative heat exchanger (103) during the humidifying operation shown in FIG. 1 1 (b), passes through one of the adsorption element (81, 82), the adsorption element (8 1 , 82) to be humidified and supplied indoors.
  • the first air passes through the other of the adsorption elements (81, 82)
  • moisture is adsorbed by the adsorption elements (81, 82)
  • the first air exchanges heat with the refrigerant in the second heat exchanger (104). It is cooled and released outside the room.
  • the drain water (W) is discharged into the second air passage and evaporated. I do.
  • the drain water (W) flows through the second air path through a drain pan (71), a drain pump (72), and a drain pipe (73). Is supplied between the regeneration heat exchanger (102) and the adsorption element (81, 82) during the regeneration operation.
  • the drain water (3 ⁇ 4) generated in the first heat exchanger (103) is the second air heated by the regenerative heat exchanger (102) downstream of the regenerative heat exchanger (102). Therefore, the water is not discharged from the room because of the drain water (W), and the drain water (W) does not drop into the room.
  • the drain water (W) is supplied directly to the regenerative heat exchanger (102) in the second air path as shown by the arrow (A2) or (2) It can be supplied to the upstream side of the regenerative heat exchanger (102) in the path of air. It is also possible to supply it during the regeneration operation in the path of the second air as shown by the arrow (A4). It can also be supplied downstream of the adsorption element (81, 82). Even in these cases, the drain water (W) does not cause ⁇ in the equipment, nor does the drain water (3 ⁇ 4) drop into the room.
  • drain water (W) is generated in the second heat exchanger (104), which is an evaporator during the humidification operation, the drain water W is similarly discharged into the path of the second air and evaporated.
  • the drain water (W) is connected to the regenerative heat exchanger (102) and the adsorption element (81, 82) during the regenerating operation in the path of the second air. ).
  • the drain water (W) generated in the second heat exchanger (104) is downstream of the regenerative heat exchanger (102), and is discharged from the second heat exchanger (102). It is contained in air and is supplied indoors. Therefore, no water is generated in the equipment due to the drain water, and the drain water (W) does not drop into the room.
  • the drain water (W) is supplied directly to the regenerative heat exchanger (102) in the path of the second air, as shown by the arrows of the signs (B2) and (B3), or in the path of the second air. It is possible to supply the gas to the upstream side of the regenerative heat exchanger (102) with the adsorber (81, 81) during the regenerating operation in the path of the second air as shown by the arrow (B4). It is also possible to supply to downstream side of (82). Even in these cases, the drain water (W) does not cause ⁇ in the equipment and the drain water (W) does not drop into the room.
  • the drain water W is supplied to the upstream side of the adsorption elements (81, 82) in the first air path as shown by the arrow (C) in FIG. 11 (b). Is also good. In this case, the amount of water adsorbed by the adsorbing element (81, 82) on the adsorbing side increases, so that when the adsorbing element (81, 82) is switched to the regenerating side, the amount of humidification of the second air is increased. It becomes possible.
  • Embodiment 3 of the present invention as shown in FIG. 12, instead of using the two adsorption elements (81, 82) alternately on the adsorption side and the regeneration side and using them, an adsorption element formed in a rotor shape (hereinafter, referred to as the adsorption element) is used. This is an example in which (90) is used.
  • the suction rotor (90) is configured to rotate continuously or intermittently about a rotation axis (91).
  • the suction rotor (90) is formed by making the suction element (81, 82) of the second embodiment into a disk shape, and has an air passage for removing and humidifying air along the axial direction.
  • the suction rotor (90) is disposed so as to extend over the first air side air flow path and the second air side air flow path.
  • the cooling-side passage described in the first embodiment is not provided in the suction rotor (90). However, for example, the cooling-side passage may be provided along the radial direction of the suction rotor.
  • the first air is sucked during the dehumidifying operation.
  • Moisture is absorbed and dehumidified when passing through a part of the landing rotor (90), and the first air is cooled by the first heat exchanger (103) and supplied to the room.
  • the second air (RA) is heated in the regenerative heat exchanger (102), it passes through another part of the adsorption rotor (90), and desorbs water from the adsorption rotor (90). Regenerate suction rotor (90).
  • the second air is released outside the room after regenerating the adsorption rotor (90).
  • the portion performing the suction operation and the portion performing the regeneration operation change continuously or intermittently. For this reason, the portion that has adsorbed moisture can be reused for re-adsorption after regenerating, thereby enabling continuous operation.
  • the humidity control device transfers the drain water (W) to the regenerative heat exchanger (102) in the path of the second air as shown by the arrow (A1). ) And the suction rotor (90).
  • the humidity control device supplies the drain water W directly to the regenerative heat exchanger (102) in the path of the second air as shown by the arrow (A2) or the drain water W as shown by the arrow (A3). In this way, it is also possible to supply to the upstream side of the regenerative heat exchanger (102) in the path of the second air.
  • the drain water (W) may be configured to be supplied to the downstream side of the adsorption rotor (90) in the path of the second air as indicated by an arrow (A4).
  • the second air is heated by the regenerative heat exchanger (102) and then passes through a part of the adsorption rotor (90).
  • the second air absorbs the moisture of the suction rotor (90), is humidified, and is supplied indoors.
  • the first air passes through another part of the adsorption rotor (90)
  • moisture is adsorbed by the adsorption rotor (90)
  • the second heat exchanger (104) the outdoor air is removed.
  • the humidifier operates such that the first air passes through the second heat exchanger (104), and the drain water (W) generated by the first air passes through the second heat exchanger (104). Is configured.
  • the drain water is supplied between the regenerative heat exchanger (102) and the adsorption rotor (go) in the path of the second air as indicated by the arrow (B1).
  • the drain water (W) is supplied directly to the regenerative heat exchanger (102) in the second air path as indicated by the arrow (B2), or may be indicated by the arrow (B3).
  • the drain water (W) generated in the first heat exchanger (103) during the dehumidifying operation is included in the second air and discharged outside the room. Drain water generated in the second heat exchanger (104) during the humidification operation is supplied to the first air or the second air. Therefore, the drain water (W) does not cause ⁇ in the equipment and the drain water (W) does not drop into the room.
  • the present invention may be configured as follows in the above embodiment.
  • each of the above embodiments relates to a humidity control device configured to perform both the dehumidifying operation and the humidifying operation.
  • the present invention is applicable to a device that performs only the dehumidifying operation or only the humidifying operation.
  • W drain water
  • the present invention is useful for a humidity control device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Central Air Conditioning (AREA)
  • Air Humidification (AREA)
  • Drying Of Gases (AREA)
  • Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)

Abstract

In a humidity controller having adsorption elements (81, 82) and a refrigerant circuit, in order to prevent drain water (W) produced in evaporators (103, 104) from rusting the interior of the casing of the controller or from dripping into the room, either the drain water (W) is discharged for evaporation into a second air path on the recovery side during dehumidification operation or humidification operation, or it is discharged for evaporation into a first air path on the adsorption side during humidification operation.

Description

m 糸田  m Itoda
技術分野 Technical field
本発明は、 空気の湿度調節を行う調湿装置に関し、 特に吸着素子と冷媒回路を 備えた調湿装置に関するものである。 背景技術  The present invention relates to a humidity control apparatus for adjusting the humidity of air, and more particularly to a humidity control apparatus having an adsorption element and a refrigerant circuit. Background art
従来より、 特開平 1 1一 2 4 1 8 3 7号公報に開示されているように、 例えば ロータ状の吸着素子を用いた調湿装置が知られている。 この調湿装置では、 減湿 された空気を室内へ供給する除湿運転と、 加湿された空気を室内へ供給する加湿 運転とが切り換えて行われる。 吸着素子は、 ケーシングに収納されると共に、 そ の中心軸周りに回転駆動されるように構成されている。 また、 吸着素子は、 その 一部を吸着側空気が通過し、 残りの部分を電気ヒータで加熱された再生側空気が 通過する。  DESCRIPTION OF RELATED ART Conventionally, as disclosed in Unexamined-Japanese-Patent No. 11-124,737, the humidity control apparatus using the rotor-shaped adsorption | suction element is known, for example. In this humidity control apparatus, a dehumidifying operation for supplying dehumidified air to a room and a humidifying operation for supplying humidified air to a room are performed by switching. The suction element is housed in a casing and is configured to be driven to rotate around its central axis. In addition, the adsorption element allows a part of the adsorption side air to pass therethrough, and the remaining part passes the regeneration side air heated by the electric heater.
上記調湿装置の除湿運転では、 吸着素子の一部で水分を奪われた吸着側空気が 室内へ供給される。 また、 吸着素子の残りの部分は加熱された再生側空気によつ て再生され、 吸着素子を通過した再生側空気が室外へ排出される。 一方、 加湿運 転の場合は、 吸着素子から脱離した水分を付与された再生側空気が室内へ供給さ れ、 吸着素子に水分を奪われた吸着側空気が室外へ排出される。 そして、 吸着素 子が回転するのに伴って、 水分を吸着した部分が順次再生され、 かつ再生された 部分が順次水分を吸着することになり、 除湿運転または加湿運転が連続的に行わ れる。  In the dehumidifying operation of the humidity control device, the adsorption side air whose moisture has been deprived by a part of the adsorption element is supplied to the room. The remaining part of the adsorption element is regenerated by the heated regeneration air, and the regeneration air that has passed through the adsorption element is discharged outside the room. On the other hand, in the case of the humidification operation, the regeneration side air provided with the moisture desorbed from the adsorption element is supplied to the room, and the adsorption side air deprived of the adsorption element is discharged outside the room. Then, as the adsorbing element rotates, the portion that has absorbed the moisture is sequentially regenerated, and the regenerated portion sequentially absorbs the moisture, so that the dehumidifying operation or the humidifying operation is continuously performed.
上記調湿装置では、 再生側空気を加熱するための熱源として電気ヒータを用い ているが、 これに代えてヒートポンプを熱源に用いることも考えられる。 通常、 ヒートポンプを構成する冷媒回路には、 2つの熱交換器が設けられ、 その一方が 蒸発器となって他方が凝縮器となる。 凝縮器となる熱交換器では、 再生側空気が 冷媒との熱交換によって加熱される。 一方、 蒸発器となる熱交換器では、 吸着素 子を通過後の吸着側空気が冷媒との熱交換を行う。 In the above humidity control device, an electric heater is used as a heat source for heating the air on the regeneration side, but a heat pump may be used as a heat source instead. Normally, a refrigerant circuit constituting a heat pump is provided with two heat exchangers, one of which serves as an evaporator and the other serves as a condenser. In the heat exchanger that functions as a condenser, the regeneration-side air is heated by heat exchange with the refrigerant. On the other hand, the heat exchanger, which is the evaporator, The air on the adsorption side after passing through the element exchanges heat with the refrigerant.
そして、 除湿時には吸着素子で減湿された吸着側空気が蒸発器で冷却され、 室 内へ供給される一方、 再生側空気が凝縮器で加熱されて吸着素子を再生し、 室外 へ排出される。 また、 加湿時には凝縮器で加熱された再生側空気が吸着素子で加 湿され、 室内へ供給される一方、 加湿に備えて吸着空気に水分を与えた吸着側空 気が蒸発器を通過し、 室外へ排出される。 ところで、 加湿時に室外温度が所定値より低いと除湿側の空気の水分により蒸 発器が着霜し、 デフロス ト運転の際にこの蒸発器でドレン水が発生する。 このた め、 ドレン水がこの蒸発器から滴下して、装置ケーシングの鲭の原因となったり、 室内への水滴の落下の原因となる。 また、 除湿時に室外の湿度が所定値より高い と吸着素子で処理できない水分が蒸発器のドレン水となり、 同様の問題が生じて しまう。  During dehumidification, the adsorption side air dehumidified by the adsorption element is cooled by the evaporator and supplied into the room, while the regeneration side air is heated by the condenser to regenerate the adsorption element and discharged outside the room. . At the time of humidification, the regeneration-side air heated by the condenser is humidified by the adsorption element and supplied to the room, while the adsorption-side air that has given moisture to the adsorption air in preparation for humidification passes through the evaporator. It is discharged outside the room. By the way, if the outdoor temperature is lower than a predetermined value at the time of humidification, moisture in the air on the dehumidifying side causes frost formation on the evaporator, and drain water is generated in the evaporator during the defrost operation. As a result, drain water drops from this evaporator, causing a drop in the equipment casing and dropping water drops indoors. If the outdoor humidity is higher than a predetermined value during dehumidification, moisture that cannot be processed by the adsorption element becomes drain water of the evaporator, causing the same problem.
本発明は、 このような問題点に鑑みて創案されたものであり、 その目的とする ところは、 調湿装置に冷媒回路を適用した場合に蒸発器で発生するドレン水によ るこれらの問題を解消することである。 発明の開示  The present invention has been made in view of such problems, and an object of the present invention is to solve these problems caused by drain water generated in an evaporator when a refrigerant circuit is applied to a humidity control device. Is to eliminate. Disclosure of the invention
本発明は、 上記ドレン水を除湿運転時または加湿運転時に再生側の第 2空気の 経路中に放出して蒸発させるか、 加湿運転時に吸着側の第 1空気の経路中に放出 して蒸発させるようにしたものである。  In the present invention, the drain water is discharged into the second air path on the regeneration side during the dehumidifying operation or the humidifying operation and evaporated, or is discharged into the first air path on the adsorption side during the humidifying operation and evaporated. It is like that.
具体的に、 本発明が講じた第 1の解決手段は、 吸着剤を有して該吸着剤を空気 と接触させる吸着素子 (81, 82) (90) と、 冷媒を循環させて冷凍サイクルを行う 冷媒回路 (100) とを備え、 第 1空気を吸着素子 (81, 82) (90) と冷媒回路 (10 0) の蒸発器 (103, 104) とに通過させる吸着動作と、 第 2空気を冷媒回路 (100) の凝縮器 (102) と吸着素子 (81, 82) (90) とに通過させる再生動作とを行い、 第 1空気を室内へ供給して第 2空気を排出する除湿運転と、 第 2空気を室内へ供給 して第 1空気を排出する加湿運転との少なくとも一方が可能に構成された調湿装 置を前提としている。 そして、 この調湿装置は、 第 1空気中の水分により蒸発器 (103, 104) で発生し たドレン水 を、 第 2空気の経路中に放出して蒸発させるように構成されてい ることを特徴としている。 More specifically, the first solution taken by the present invention is an adsorbing element (81, 82) (90) having an adsorbent and bringing the adsorbent into contact with air, and a refrigeration cycle by circulating a refrigerant. A refrigerant circuit (100), an adsorption operation for passing the first air through the adsorbing elements (81, 82) (90) and the evaporator (103, 104) of the refrigerant circuit (100), and a second air Dehumidification operation in which the air is passed through the condenser (102) of the refrigerant circuit (100) and the adsorption elements (81, 82) (90) to perform a regeneration operation to supply the first air into the room and discharge the second air. And a humidifying device configured to perform at least one of a humidifying operation of supplying the second air into the room and discharging the first air. The humidity control apparatus is configured to discharge drain water generated in the evaporator (103, 104) by moisture in the first air into a path of the second air to evaporate. Features.
この第 1の解決手段においては、 例えば室外が高湿の場合の除湿運転時に吸着 素子 (81, 82) (90) で吸着しきれない第 1空気の水分により蒸発器 (103) が結露 してドレン水 (W) が発生したり、室外が低温の場合の加湿運転時に蒸発器(104) が着霜した際にデフロス ト運転を行ってドレン水 (デフロス ト水) (W) が発生し たりした場合に、 このドレン水 (W) が第 2空気の経路中に供給され、 該経路中で 蒸発する。 したがって、 除湿運転時にはドレン水 (W) が第 2空気とともに室外な どへ排出され、 加湿運転時にはドレン水 (W) が第 2空気に含まれて室内に供給さ れる。  In the first solution, the evaporator (103) is condensed by moisture of the first air that cannot be adsorbed by the adsorbing elements (81, 82) (90) during a dehumidifying operation when the outdoor is in a high humidity. Drain water (W) is generated, or defrost operation is performed when the evaporator (104) is frosted during humidification operation when the outdoor temperature is low, and drain water (defrost water) (W) is generated. In this case, the drain water (W) is supplied into the path of the second air, and evaporates in the path. Therefore, during the dehumidifying operation, the drain water (W) is discharged to the outside of the room together with the second air, and during the humidifying operation, the drain water (W) is contained in the second air and supplied to the room.
また、 本発明が講じた第 2の解決手段は、 上記第 1の解決手段において、 蒸発 器 (103, 104) で発生したドレン水 (W) を、 第 2空気の経路中で凝縮器 (102) と 再生動作中の吸着素子 (81, 82) (90) の間に供給するように構成されていること を特徴としている。 この第 2の解決手段では、 ドレン水 (W) が第 2空気の経路中 で凝縮器 (102) と吸着素子 (81, 82) (90) の間に供給されることで、 該ドレン水 (W) が第 2空気中で蒸発し、 該第 2空気に含まれる。  A second solution taken by the present invention is the first solution, wherein the drain water (W) generated in the evaporator (103, 104) is transferred to the condenser (102) in the second air path. ) And the adsorbing element (81, 82) (90) during the regeneration operation. In the second solution, the drain water (W) is supplied between the condenser (102) and the adsorption elements (81, 82) (90) in the path of the second air, so that the drain water (W) W) evaporates in the second air and is contained in the second air.
また、 本発明が講じた第 3の解決手段は、 上記第 1の解決手段において、 蒸発 器 (103, 104) で発生したドレン水 (W) を、 第 2空気の経路中で凝縮器 (102) ま たはその上流側に供給するように構成されていることを特徴としている。 この第 3の解決手段では、 ドレン水 W が第 2空気の経路中で凝縮器 (102) またはそ の上流側に供給されることで、 該ドレン水 (W) が第 2空気中で蒸発し、 該第 2空 気に含まれる。  Further, the third solution taken by the present invention is the first solution, wherein the drain water (W) generated in the evaporator (103, 104) is transferred to the condenser (102) in the path of the second air. ) Or it is configured to supply to the upstream side. In the third solution, the drain water (W) evaporates in the second air by supplying the drain water W to the condenser (102) or the upstream side thereof in the path of the second air. Are included in the second air.
また、 本発明が講じた第 4の解決手段は、 上記第 1の解決手段において、 蒸発 器 (103, 104) で発生したドレン水 を、 第 2空気の経路中で再生動作中の吸 着素子 (81, 82) (90) の下流側に供給するように構成されていることを特徴とし ている。 この第 4の解決手段では、 ドレン水 (W) が第 2空気の経路中で吸着素子 (81, 82) (90) の下流側に供給されることで、 該ドレン水 が第 2空気中で蒸 発し、 該第 2空気に含まれる。 また、 本発明が講じた第 5の解決手段は、 吸着剤を有して該吸着剤を空気と接 触させる吸着素子 (81, 82) (90) と、 冷媒を循環させて冷凍サイクルを行う冷媒 回路 (100) とを備え、 第 1空気を吸着素子 (81, 82) (90) と冷媒回路 (100) の 蒸発器 (103, 104) とに通過させる吸着動作と、 第 2空気を冷媒回路 (100) の凝 縮器 (102) と吸着素子 (81, 82) (90) とに通過させる再生動作とを行い、 少なく とも第 2空気を室内へ供給して第 1空気を排出する加湿運転が可能に構成された 調湿装置を前提としている。 Further, a fourth solution taken by the present invention is the adsorption device according to the first solution, wherein drain water generated in the evaporator (103, 104) is regenerated in a second air path during regeneration operation. (81, 82) It is characterized in that it is configured to supply to the downstream side of (90). In the fourth solution, the drain water (W) is supplied to the downstream side of the adsorption element (81, 82) (90) in the path of the second air, so that the drain water is It evaporates and is contained in the second air. A fifth solution taken by the present invention is to perform a refrigeration cycle by circulating a refrigerant with an adsorption element (81, 82) (90) having an adsorbent and bringing the adsorbent into contact with air. A refrigerant circuit (100) for adsorbing the first air through the adsorbing elements (81, 82) (90) and the evaporator (103, 104) of the refrigerant circuit (100); A humidifying operation is performed in which a regeneration operation is performed in which the air passes through the condenser (102) of the circuit (100) and the adsorption elements (81, 82) (90), and at least the second air is supplied into the room and the first air is discharged. It is assumed that a humidity control device that can be operated is used.
そして、 この調湿装置は、 第 1空気中の水分により蒸発器 (103, 104) で発生し たドレン水 ( を、 加湿運転時に、 第 1空気の経路中に放出して蒸発させるよう に構成されていることを特徴としている。  The humidifying device is configured to discharge drain water () generated in the evaporator (103, 104) by moisture in the first air into a path of the first air during a humidifying operation to evaporate. It is characterized by being.
この第 5の解決手段においては、 加湿運転時に吸着側の第 1空気により蒸発器 ( 103, 104) で発生したドレン水 (W) は、 該第 1空気中に戻されて蒸発し、 再度 該第 1空気に含まれる。 除湿運転時に吸着側の第 1空気に水分を戻すことはでき ないが、 加湿運転時にはこのような操作が可能である。  In the fifth solution, the drain water (W) generated in the evaporator (103, 104) by the first air on the adsorption side during the humidification operation is returned to the first air to evaporate, and is re-evaporated. Contained in the first air. Water cannot be returned to the first air on the adsorption side during the dehumidification operation, but such operation is possible during the humidification operation.
また、 本発明が講じた第 6の解決手段は、 上記第 5の解決手段において、 蒸発 器 (103, 104) で発生したドレン水 W を、 第 1空気の経路中で吸着動作中の吸 着素子 (81, 82) (90) の上流側に供給するように構成されていることを特徴とし ている。 この第 6の解決手段では、 ドレン水 W が吸着素子 (81, 82) (90) の上 流側に供給されることで、 該ドレン水 (¾ が除湿側の第 1空気中で蒸発し、 該第 1空気に含まれる。 このため、 水分を吸着素子 (81, 82) (90) にさらに吸着させ ることができる。  A sixth solution taken by the present invention is the fifth solution according to the fifth solution, wherein the drain water W generated in the evaporator (103, 104) is adsorbed during the adsorption operation in the path of the first air. It is characterized in that it is configured to supply to the upstream side of the elements (81, 82) (90). In the sixth solution, the drain water W is supplied to the upstream side of the adsorption element (81, 82) (90), so that the drain water (¾) evaporates in the first air on the dehumidifying side, It is contained in the first air, so that water can be further adsorbed by the adsorption elements (81, 82) and (90).
また、 本発明が講じた第 7の解決手段は、 上記第 1から第 6のいずれか 1の解 決手段において、 吸着素子 (81, 82) として第 1吸着素子 (81) と第 2吸着素子 (8 2) とを備え、 第 1吸着素子 (81) で吸着動作を行うとともに第 2吸着素子 (82) で再生動作を行う第 1動作と、 第 2吸着素子 (82) で吸着動作を行うとともに第 1吸着素子 (81) で再生動作を行う第 2動作とを交互に切り換え、 第 1空気また は第 2空気を室内へ供給するように構成されていることを特徴としている。  Further, a seventh solution taken by the present invention is the solution according to any one of the first to sixth aspects, wherein the first adsorption element (81) and the second adsorption element are used as the adsorption element (81, 82). (82), the first suction element (81) performs a suction operation and the second suction element (82) performs a regenerating operation, and the second suction element (82) performs a suction operation. In addition, a second operation in which the first adsorption element (81) performs a regeneration operation is alternately switched to supply the first air or the second air to the room.
この第 7の解決手段においては、 除湿運転時には第 1動作と第 2動作とを交互 に切り換えながら、 吸着素子 (81, 82) での吸着動作の際に減湿された第 1空気が 室内へ供給される。 また、 加湿運転時には第 1動作と第 2空気とを交互に切り換 えながら、 吸着素子 (81, 82) での再生動作の際に加湿された第 2空気が室内へ供 給される。 つまり、 この第 7の解決手段では、 2つの吸着素子 (81,82) を吸着側 と再生側で交互に切り換えて用いる、 いわゆるバッチ式の動作が行われる。 In the seventh solution, during the dehumidification operation, the first operation and the second operation are alternately switched while the first air dehumidified during the adsorption operation by the adsorption element (81, 82) is used. It is supplied indoors. In addition, during the humidification operation, the first operation and the second air are alternately switched, and the second air humidified during the regeneration operation by the adsorption element (81, 82) is supplied to the room. That is, in the seventh solution, a so-called batch-type operation is performed in which the two adsorption elements (81, 82) are alternately used on the adsorption side and the regeneration side.
また、 本発明が講じた第 8の解決手段は、 上記第 7の解決手段において、 吸着 素子 (81, 82) 力 第 1空気または第 2空気が交互に切り換えられて流れる調湿側 通路 (85) と、 冷却用流体が流れる冷却側通路 (86) とを備えるとともに、 第 1 空気と冷却用流体とが熱交換を行って、 吸着素子 (81, 82) における第 1空気の吸 着熱を冷却用流体で回収するように構成されていることを特徴としている。 例え ば、 冷却用流体としては、 凝縮器 (104) を通過する前の第 2空気を用いることが できる。  An eighth solution taken by the present invention is the humidity control side passage (85) according to the seventh solution, wherein the adsorbing element (81, 82) forces the first air or the second air to flow alternately and alternately. ) And a cooling-side passage (86) through which a cooling fluid flows, and heat exchange between the first air and the cooling fluid to reduce heat of adsorption of the first air in the adsorption element (81, 82). It is characterized in that it is configured to recover with a cooling fluid. For example, the second air before passing through the condenser (104) can be used as the cooling fluid.
この第 8の解決手段においては、 上記第 7の解決手段において吸着動作を行う 際に発生した第 1空気の吸着熱が冷却用流体に回収されることで、 該第 1空気が 冷却される。  In the eighth solution, the heat of adsorption of the first air generated when performing the adsorption operation in the seventh solution is recovered by the cooling fluid, so that the first air is cooled.
また、 本発明が講じた第 9の解決手段は、 上記第 1から第 6のいずれか 1の解 決手段において、 吸着素子 (90) 力 ロータ状に構成されるとともに第 1空気の 経路と第 2空気の経路にまたがって配置され、 吸着素子 (90) を連続的または断 続的に回転させながら第 1空気の経路側での吸着動作と第 2空気の経路側での再 生動作とを同時に行い、 第 1空気または第 2空気を室内へ供給するように構成さ れていることを特徴としている。  According to a ninth solution of the present invention, in the solution of any one of the first to sixth aspects, the suction element (90) is configured in a rotor shape and has a first air path and a first air path. (2) Arranged across the air path, the suction element (90) rotates continuously or intermittently to perform the adsorption operation on the first air path side and the regeneration operation on the second air path side. This is characterized in that the first air or the second air is supplied to the room at the same time.
この第 9の解決手段において、 除湿運転時には、 吸着動作により減湿された第 1空気が室内へ供給される。 その際、 吸着素子 (90) の水分を吸着した部分は、 該吸着素子 (90) が回転することにより第 2空気の経路内へ移動して再生され、 さらに回転して第 1空気の経路内へ移動することにより再度吸着動作に使用され る。  In the ninth solution, during the dehumidifying operation, the first air dehumidified by the adsorption operation is supplied to the room. At this time, the portion of the adsorption element (90) which adsorbs the moisture moves into the path of the second air by the rotation of the adsorption element (90) and is regenerated, and is further rotated to rotate in the path of the first air. By moving to, it is used again for suction operation.
また、 加湿運転時には、 再生動作により加湿された第 2空気が室内へ供給され る。 その際、 吸着素子 (90) の水分を放出した部分は、 該吸着素子 (90) が回転 することにより第 1空気の経路内へ移動して水分を吸着し、 さらに回転して第 2 空気の経路内へ移動することにより再度再生動作に使用される。 一効果一 Also, during the humidification operation, the second air humidified by the regeneration operation is supplied to the room. At this time, the part of the adsorption element (90) that has released the water moves into the path of the first air due to the rotation of the adsorption element (90), adsorbs the water, and further rotates to remove the water of the second air. By moving into the route, it is used again for the reproducing operation. One effect one
上記第 1〜第 4の解決手段によれば、 第 1空気中の水分により蒸発器 (103, 10 4) で発生したドレン水 (W) 力 除湿運転時には第 2空気に含まれて室外などへ 放出され、 加湿運転時には第 2空気に含まれて室内に供給される。 このため、 蒸 発器 (103, 104) からのドレン水 (W) の滴下による問題を防止できる。 また、 特 に加湿運転時にはドレン水 (W) を利用して第 2空気を加湿できるので、 効率のよ い運転を行うことが可能となる。  According to the first to fourth solutions, the drain water (W) generated in the evaporator (103, 104) by the moisture in the first air is contained in the second air during the dehumidifying operation and is discharged to the outside or the like. It is released and contained in the second air during humidification operation and is supplied indoors. For this reason, it is possible to prevent problems caused by dripping of drain water (W) from the evaporators (103, 104). In particular, during the humidifying operation, the second air can be humidified by using the drain water (W), so that efficient operation can be performed.
また、 上記第 5及び第 6の解決手段によれば、 第 1空気中の水分により蒸発器 ( 103, 104) で発生したドレン水 (W) 力 加湿運転時に第 1空気中に含まれて室 外などへ放出されるようにしているので、 上記第 1から第 4の解決手段と同様、 ドレン水 (W) の滴下による問題を防止できる。 また、 このように構成すると、 例 えばバッチ式 (第 7, 第 8解決手段を参照) やロータ式 (第 9解決手段を参照) の吸着素子 (81, 82) (90) を用いて吸着側と再生側を順次切り換えて運転を行う 場合に、 吸着素子 (81, 82) (90) の吸着側での水分吸着量が増えるために、 吸着 側を加湿側に切り換えて使用するときの水分の放出量も増えることとなり、 加湿 能力を向上させることが可能となる。  Further, according to the fifth and sixth solutions, drain water (W) generated in the evaporator (103, 104) by moisture in the first air is contained in the first air during the humidifying operation. Since the water is discharged to the outside, it is possible to prevent the problem caused by the dripping of the drain water (W) as in the first to fourth solutions. In addition, with such a configuration, for example, the suction side is formed using a batch type (see the seventh and eighth solutions) or a rotor type (see the ninth solution) suction elements (81, 82) (90). When the operation is performed by sequentially switching between the adsorption side and the regeneration side, the amount of water adsorption on the adsorption side of the adsorption element (81, 82) (90) increases. The release amount will also increase, and it will be possible to improve the humidification capacity.
また、 上記第 7の解決手段によれば、 第 1吸着素子 (81) と第 2吸着素子(82) を用いてバッチ式の動作を行うことにより、 除湿運転または加湿運転を連続して 行えるとともに、 蒸発器 (103, 104) で発生したドレン水 を連続して処理で さる。  Further, according to the seventh solution, the dehumidifying operation or the humidifying operation can be performed continuously by performing the batch operation using the first adsorption element (81) and the second adsorption element (82). The drain water generated in the evaporator (103, 104) is continuously treated.
また、 第 8の解決手段によれば、 上記第 7の解決手段と同様の効果が得られる に加えて、 第 1空気を冷却用流体で冷却できるため、 特に除湿運転時の吹き出し 温度が上昇するのを防止できる。  According to the eighth solution, in addition to the same effect as the seventh solution, the first air can be cooled by the cooling fluid, so that the blowing temperature particularly during the dehumidifying operation increases. Can be prevented.
また、 上記第 9の解決手段によれば、 吸着素子 (90) をロータ状にして回転さ せながら吸着動作と再生動作を同時に行うことにより、 除湿運転または加湿運転 を連続して行えるとともに、 蒸発器 (103, 104) で発生したドレン水 (W) を連続 して処理できる。 図面の簡単な説明 図 1は、 実施形態 1に係る調湿装置の構成及び除湿運転中の第 1動作を示す分 解斜視図である。 According to the ninth solution, the adsorption operation and the regeneration operation are performed simultaneously while rotating the adsorption element (90) in a rotor shape, so that the dehumidifying operation or the humidifying operation can be performed continuously, and the evaporating operation can be performed. Drain water (W) generated in the vessel (103, 104) can be treated continuously. BRIEF DESCRIPTION OF THE FIGURES FIG. 1 is an exploded perspective view showing a configuration of a humidity control apparatus according to Embodiment 1 and a first operation during a dehumidification operation.
図 2は、 実施形態 1に係る調湿装置での除湿運転中の第 2動作を示す分解斜視 図である。  FIG. 2 is an exploded perspective view showing a second operation during the dehumidifying operation in the humidity control apparatus according to the first embodiment.
図 3は、 実施形態 1に係る調湿装置での加湿運転中の第 1動作を示す分解斜視 図である。  FIG. 3 is an exploded perspective view showing a first operation during a humidification operation in the humidity control apparatus according to the first embodiment.
図 4は、 実施形態 1に係る調湿装置での加湿運転中の第 2動作を示す分解斜視 図である。  FIG. 4 is an exploded perspective view showing a second operation during the humidification operation in the humidity control apparatus according to the first embodiment.
図 5は、 実施形態 1に係る調湿装置の要部を示す概略構成図である。  FIG. 5 is a schematic configuration diagram illustrating a main part of the humidity control apparatus according to the first embodiment.
図 6は、 実施形態 1に係る調湿装置の吸着素子を示す概略斜視図である。  FIG. 6 is a schematic perspective view showing the adsorption element of the humidity control apparatus according to the first embodiment.
図 7は、 実施形態 1に係る冷媒回路の構成を示す配管系統図である。  FIG. 7 is a piping diagram illustrating a configuration of the refrigerant circuit according to the first embodiment.
図 8は、 実施形態 1に係る調湿装置の運転動作を概念的に示す説明図である。 図 9は、 図 8の運転動作の際のドレン水の処理を示す説明図である。  FIG. 8 is an explanatory diagram conceptually showing the operation of the humidity control apparatus according to the first embodiment. FIG. 9 is an explanatory diagram showing a process of drain water during the driving operation in FIG.
図 1 0は、 加湿運転時のドレン水の処理の変形例を示す説明図である。  FIG. 10 is an explanatory diagram showing a modification of the treatment of drain water during the humidification operation.
図 1 1は、 実施形態 2に係る調湿装置の運転動作と ドレン水の処理を示す説明 図である。  FIG. 11 is an explanatory view showing the operation of the humidity control apparatus according to the second embodiment and the treatment of drain water.
図 1 2は、 実施形態 3に係る調湿装置の運転動作と ドレン水の処理を示す説明 図である。 発明を実施するための最良の形態  FIG. 12 is an explanatory diagram showing the operation of the humidity control apparatus according to the third embodiment and the treatment of drain water. BEST MODE FOR CARRYING OUT THE INVENTION
[実施形態 1 ]  [Embodiment 1]
以下、 本発明の実施形態を図面に基づいて詳細に説明する。 尚、 以下の説明に おいて、 「上」 「下」 「左」 「右」 「前」 「後」 「手前」 「奥」 は、 何れも参照する図面 におけるものを意味している。  Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the following description, “up”, “down”, “left”, “right”, “front”, “rear”, “front”, and “back” mean those in the drawings referred to.
本実施形態に係る調湿装置は、 減湿された第 1空気が室内へ供給される除湿運 転と、 加湿された第 2空気が室内へ供給される加湿運転とを切り換えて行うよう に構成されている。 また、 この調湿装置は、冷媒回路 (100) と 2つの吸着素子 (8 1, 82) とを備え、 減湿側での吸着動作に用いる吸着素子 (81, 82) と加湿側での再 生動作に用いる吸着素子 (81, 82) を交互に切り換える、 いわゆるバッチ式の動作 を行うように構成されている。 ここでは、 本実施形態に係る調湿装置の構成につ いて、 図 1, 図 5, 図 6 , 図 7を参照しながら説明する。 The humidity control apparatus according to the present embodiment is configured to switch between a dehumidifying operation in which dehumidified first air is supplied indoors and a humidifying operation in which humidified second air is supplied indoors. Have been. Further, this humidity control device includes a refrigerant circuit (100) and two adsorption elements (81, 82), and an adsorption element (81, 82) used for the adsorption operation on the dehumidification side and a regenerator on the humidification side. A so-called batch-type operation that alternately switches the adsorption elements (81, 82) used for raw operation It is configured to perform. Here, the configuration of the humidity control apparatus according to the present embodiment will be described with reference to FIGS. 1, 5, 6, and 7. FIG.
《調湿装置の全体構成》  《Overall configuration of humidity control device》
図 1, 図 5に示すように、 上記調湿装置は、 やや扁平な直方体状のケーシング (10) を備えている。 このケーシンク" ( 10) には、 吸着剤を有して該吸着剤を空 気と接触させる 2つの吸着素子 (81, 82) と、冷媒を循環させて冷凍サイクルを行 ぅ冷媒回路 (100) (図 7参照) とが収納されている。 冷媒回路 (100) には、 圧縮 機 (101)、 再生熱交換器 (102)、 第 1熱交換器 (103)、 及び第 2熱交換器 (104) などが設けられている。 この冷媒回路 (100) の詳細については後述する。  As shown in FIGS. 1 and 5, the humidity control device has a slightly flat rectangular parallelepiped casing (10). The casing (10) has two adsorbing elements (81, 82) having an adsorbent and bringing the adsorbent into contact with air, and a refrigeration cycle in which a refrigerant is circulated to perform a refrigeration cycle (100). (Refer to Fig. 7.) The refrigerant circuit (100) includes a compressor (101), a regenerative heat exchanger (102), a first heat exchanger (103), and a second heat exchanger ( 104) etc. The details of the refrigerant circuit (100) will be described later.
図 6に示すように、 上記吸着素子 (81, 82) は、 平板状の平板部材 (83) と波形 状の波板部材 (84) とを交互に積層して構成されている。 平板部材 (83) は、 長 方形状に形成されている。 また、 波板部材 (84) は、 平板部材 (83) と同様の長 方形状に形成され、 隣接する波板部材 (84) の稜線方向が互いに 9 0 ° の角度で 交差する姿勢で積層されている。 そして、 吸着素子 (81, 82) は、 全体として直方 体状ないし四角柱状に形成されている。  As shown in FIG. 6, the adsorption element (81, 82) is configured by alternately stacking flat plate members (83) and corrugated corrugated members (84). The flat plate member (83) is formed in a rectangular shape. The corrugated plate member (84) is formed in the same rectangular shape as the flat plate member (83), and is laminated so that the ridge directions of the adjacent corrugated plate members (84) cross each other at an angle of 90 °. ing. And the adsorption element (81, 82) is formed in a rectangular parallelepiped or quadrangular prism shape as a whole.
上記吸着素子 (81, 82) には、 平板部材 (83) 及び波板部材 (84) の積層方向に おいて、 調湿側通路 (85) と冷却側通路 (86) とが平板部材 (83) を挟んで交互 に区画形成されている。 この吸着素子 (81, 82) において、 平板部材 (83) の長辺 側の側面に調湿側通路 (85) が開口し、 平板部材 (83) の短辺側の側面に冷却側 通路 (86) が開口している。 また、 この吸着素子 (81, 82) において、 同図の手前 側と奥側の端面は、 調湿側通路 (85) と冷却側通路 (86) の何れも開口しない閉 塞面を構成している。  In the adsorbing element (81, 82), in the stacking direction of the flat plate member (83) and the corrugated plate member (84), the humidity control side passage (85) and the cooling side passage (86) include the flat plate member (83). ) Are formed alternately. In the adsorption element (81, 82), the humidity control side passage (85) is opened on the long side of the flat plate member (83), and the cooling side passage (86) is opened on the short side of the flat plate member (83). ) Is open. In this adsorption element (81, 82), the front and rear end faces of the drawing constitute a closed surface in which neither the humidity control side passage (85) nor the cooling side passage (86) is open. I have.
上記吸着素子 (81, 82) において、 調湿側通路 (85) に臨む平板部材 (83) の表 面や、 調湿側通路 (85) に設けられた波板部材 (84) の表面には、 水蒸気を吸着 するための吸着剤が塗布されている。 この種の吸着剤としては、 例えばシリカゲ ル、 ゼォライ ト、 イオン交換樹脂等が挙げられる。  In the adsorption element (81, 82), the surface of the flat plate member (83) facing the humidity control side passage (85) or the surface of the corrugated plate member (84) provided in the humidity control side passage (85) is provided. An adsorbent for adsorbing water vapor is applied. Examples of this type of adsorbent include silica gel, zeolite, and ion exchange resin.
図 1に示すように、 上記ケーシンク、' ( 10) において、 最も手前側には室外側パ ネル (11) が設けられ、 最も奥側には室内側パネル (12) が設けられている。 室 外側パネル (11) には、 その左端寄りに室外側吸込口 (13) が形成され、 その右 端寄りに室外側吹出口 (16) が形成されている。 一方、 室內側パネル (12) には、 その左端寄りに室内側吹出口 (14) が形成され、 その右端寄りに室内側吸込口 (1 5) が形成されている。 As shown in FIG. 1, in the case sink (10), an outdoor panel (11) is provided on the most front side, and an indoor panel (12) is provided on the farthest side. The outdoor panel (11) has an outdoor suction port (13) near its left end, An outdoor air outlet (16) is formed near the end. On the other hand, the room-side panel (12) has an indoor-side outlet (14) near its left end, and an indoor-side inlet (15) near its right end.
ケーシング (10) の内部には、 手前側から奥側へ向かって順に、 第 1仕切板 (2 0) と、 第 2仕切板 (30) とが設けられている。 ケーシング (10) の内部空間は、 これら第 1 ,第 2仕切板(20, 30)によって、前後に 3つの空間に仕切られている。 室外側パネル (11) と第 1仕切板 (20) の間の空間は、 上側の室外側上部流路 (41) と下側の室外側下部流路 (42) とに区画されている。 室外側上部流路 (41) は、室外側吹出口 (16) によって室外空間と連通している。 室外側下部流路 (42) は、 室外側吸込口 (13) によって室外空間と連通している。  Inside the casing (10), a first partition plate (20) and a second partition plate (30) are provided in order from the near side to the far side. The internal space of the casing (10) is divided into three spaces by the first and second partition plates (20, 30). The space between the outdoor panel (11) and the first partition plate (20) is divided into an upper outdoor upper flow path (41) and a lower outdoor lower flow path (42). The outdoor upper flow path (41) communicates with the outdoor space through the outdoor air outlet (16). The outdoor lower flow path (42) communicates with the outdoor space through the outdoor suction port (13).
室外側パネル (11) と第 1仕切板 (20) の間の空間には、 その右端寄りに排気 ファン (96) が設置されている。 また、 室外側上部流路 (41) には、 第 2熱交換 器 (104) が設置されている。 第 2熱交換器 (104) は、 いわゆるクロスフィン型 のフィン . アンド 'チューブ熱交換器であって、 排気ファン (96) へ向けて室外 側上部流路 (41) を流れる空気と冷媒回路 (100) の冷媒とを熱交換させるように 構成されている。 つまり、 第 2熱交換器 (104) は、 室外へ排出される空気と冷媒 とを熱交換させるためのものである。  An exhaust fan (96) is installed near the right end of the space between the outdoor panel (11) and the first partition (20). A second heat exchanger (104) is installed in the outdoor upper flow path (41). The second heat exchanger (104) is a so-called cross-fin type fin-and-tube heat exchanger, and the air and refrigerant circuit (41) flowing through the upper outdoor passage (41) toward the exhaust fan (96) 100) to exchange heat with the refrigerant. That is, the second heat exchanger (104) is for exchanging heat between the air discharged outside and the refrigerant.
第 1仕切板 (20) には、 第 1右側開口 (21)、 第 1左側開口 (22)、 第 1右上開 口 (23)、 第 1右下開口 (24)、 第 1左上開口 (25)、 及び第 1左下開口 (26) が形 成されている。 これらの開口 (21, 22,···) は、 それぞれが開閉シャツタを備えて 開閉自在に構成されている。  The first partition (20) has a first right opening (21), a first left opening (22), a first upper right opening (23), a first lower right opening (24), a first upper left opening (25). ), And the first lower left opening (26) are formed. Each of these openings (21, 22,...) Has an openable / closable shutter and is configured to be openable and closable.
第 1右側開口 (21) 及ぴ第 1左側開口 (22) は、 縦長の長方形状の開口である。 第 1右側開口 (21) は、 第 1仕切板 (20) の右端近傍に設けられている。 第 1左 側開口 (22) は、 第 1仕切板 (20) の左端近傍に設けられている。 第 1右上開口 (23)、 第 1右下開口 (24)、 第 1左上開口 (25)、 及び第 1左下開口 (26) は、 横 長の長方形状の開口である。 第 1右上開口 (23) は、 第 1仕切板 (20) の上部に おける第 1右側開口 (21) の左隣に設けられている。 第 1右下開口 (24) は、 第 1仕切板 (20) の下部における第 1右側開口 (21) の左隣に設けられている。 第 1左上開口 (25) は、 第 1仕切板 (20) の上部における第 1左側開口 (22) の右 隣に設けられている。 第 1左下開口 (26) は、 第 1仕切板 (20) の下部における 第 1左側開口 (22) の右隣に設けられている。 The first right opening (21) and the first left opening (22) are vertically long rectangular openings. The first right opening (21) is provided near the right end of the first partition (20). The first left opening (22) is provided near the left end of the first partition (20). The first upper right opening (23), the first lower right opening (24), the first upper left opening (25), and the first lower left opening (26) are horizontally long rectangular openings. The first upper right opening (23) is provided to the left of the first right opening (21) in the upper part of the first partition plate (20). The first lower right opening (24) is provided in the lower part of the first partition plate (20), to the left of the first right opening (21). The first upper left opening (25) is to the right of the first left opening (22) above the first partition (20). It is provided next to it. The first lower left opening (26) is provided at the lower part of the first partition plate (20), right next to the first left opening (22).
第 1仕切板 (20) と第 2仕切板 (30) の間には、 2つの吸着素子 (81, 82) が設 置されている。 これら吸着素子 (81, 82) は、 所定の間隔をおいて左右に並んだ状 態に配置されている。 具体的には、 右寄りに第 1吸着素子 (81) が設けられ、 左 寄りに第 2吸着素子 (82) が設けられている。 The first partition plate (20) between the second partition plate (30), two adsorption elements (81, 82) are Installation. These adsorption elements (81, 82) are arranged side by side at predetermined intervals. Specifically, a first suction element (81) is provided on the right side, and a second suction element (82) is provided on the left side.
第 1, 第 2吸着素子 (81, 82) は、 それぞれにおける平板部材 (83) 及び波板部 材 (84) の積層方向がケーシング (10) の長手方向 (図 1における手前から奥へ 向かう方向) と一致すると共に、 それぞれにおける平板部材 (83) 等の積層方向 が互いに平行となる姿勢で設置されている。 更に、 各吸着素子 (81, 82) は、 左右 の側面がケーシング (10) の側板と、 上下面がケーシング (10) の天板及び底板 と、 前後の端面が室外側パネル (11) 及び室内側パネル (12) とそれぞれ略平行 になる姿勢で配置されている。  In the first and second suction elements (81, 82), the laminating direction of the flat plate member (83) and the corrugated plate member (84) in each case is the longitudinal direction of the casing (10) (the direction from the front to the back in FIG. 1). ), And the stacking directions of the flat plate members (83) and the like in each case are installed so as to be parallel to each other. Further, each of the adsorption elements (81, 82) has left and right side surfaces of a casing (10) side plate, upper and lower surfaces of a top plate and a bottom plate of the casing (10), and front and rear end surfaces of an outdoor panel (11) and a room. They are arranged so that they are almost parallel to the inner panel (12).
また、 ケーシング (10) 内に設置された各吸着素子 (81, 82) には、 その左右の 側面に冷却側通路 (86) が開口している。 そして、 第 1吸着素子 (81) において 冷却側通路 (86) の開口する 1つの側面と、 第 2吸着素子 (82) において冷却側 通路 (86) の開口する 1つの側面とは、 互いに向かい合つている。  In addition, each adsorption element (81, 82) installed in the casing (10) has a cooling-side passage (86) opened on the left and right side surfaces. One side of the first adsorbing element (81) where the cooling-side passage (86) opens is opposed to one side of the second adsorbing element (82) where the cooling-side passage (86) opens. I'm wearing
第 1仕切板 (20) と第 2仕切板 (30) の間の空間は、 数枚の仕切板により、 右 側流路 (51)、 左側流路 (52)、 右上流路 (53)、 右下流路 (54)、 左上流路 (55)、 左下流路 (56)、 及び中央流路 (57) に区画されている。  The space between the first partition plate (20) and the second partition plate (30) is divided into several partitions by the right channel (51), the left channel (52), the upper right channel (53), It is divided into a lower right channel (54), an upper left channel (55), a lower left channel (56), and a central channel (57).
右側流路 (51) は、 第 1吸着素子 (81) の右側に形成され、 第 1吸着素子 (81) の冷却側通路 (86) に連通している。 左側流路 (52) は、 第 2吸着素子 (82) の 左側に形成され、 第 2吸着素子 (82) の冷却側通路 (86) に連通している。 右上流路 (53) は、 第 1吸着素子 (81) の上側に形成され、 第 1吸着素子 (81) の調湿側通路 (85) に連通している。 右下流路 (54) は、 第 1吸着素子 (81) の 下側に形成され、 第 1吸着素子 (81) の調湿側通路 (85) に連通している。 左上 流路 (55) は、 第 2吸着素子 (82) の上側に形成され、 第 2吸着素子 (82) の調 湿側通路 (85) に連通している。 左下流路 (56) は、 第 2吸着素子 (82) の下側 に形成され、 第 2吸着素子 (82) の調湿側通路 (85) に連通している。 中央流路 (57) は、 第 1吸着素子 (81) と第 2吸着素子 (82) の間に形成され、 両吸着素子 (81, 82) の冷却側通路(86) に連通している。 この中央流路 (57) は、 図 1, 図 5に現れる流路断面の形状が四角形状となっている。 The right flow path (51) is formed on the right side of the first adsorption element (81), and communicates with the cooling-side passage (86) of the first adsorption element (81). The left flow path (52) is formed on the left side of the second adsorption element (82), and communicates with the cooling-side passage (86) of the second adsorption element (82). The upper right flow path (53) is formed above the first adsorption element (81) and communicates with the humidity control side passageway (85) of the first adsorption element (81). The lower right flow path (54) is formed below the first adsorption element (81) and communicates with the humidity control side passage (85) of the first adsorption element (81). The upper left flow path (55) is formed above the second adsorption element (82), and communicates with the humidity control passage (85) of the second adsorption element (82). The lower left flow path (56) is formed below the second adsorption element (82) and communicates with the humidity control side passage (85) of the second adsorption element (82). The central flow path (57) is formed between the first adsorption element (81) and the second adsorption element (82), and communicates with the cooling-side passage (86) of both adsorption elements (81, 82). In this central channel (57), the cross-sectional shape of the channel shown in FIGS. 1 and 5 is square.
再生熱交換器 (102) は、 いわゆるクロスフィン型のフィン · アンド ·チューブ 熱交換器であって、 中央流路 (57) を流れる空気と冷媒回路 (100) の冷媒とを熱 交換させるように構成されている。 この再生熱交換器 (102) は、 中央流路 (57) に配置されている。 つまり、 再生熱交換器 (102) は、 左右に並んだ第 1吸着素子 The regenerative heat exchanger (102) is a so-called cross-fin type fin-and-tube heat exchanger that exchanges heat between the air flowing through the central flow path (57) and the refrigerant in the refrigerant circuit (100). It is configured. This regenerative heat exchanger (102) is arranged in the central channel (57). In other words, the regenerative heat exchanger (102) is the first adsorption element
(81) と第 2吸着素子 (82) の間に設置されている。 更に、 再生熱交換器 (102) は、 ほぼ水平に寝かせられた状態で、 中央流路 (57) を上下に仕切るように設け られている。 また、再生熱交換器(102) は、 その上面が第 1及び第 2吸着素子 (8 1, 82) の下面よりも僅かに下となるように配置されている。 (81) and the second adsorption element (82). Further, the regenerative heat exchanger (102) is provided so as to partition the central flow path (57) up and down in a state of being laid almost horizontally. Further, the regenerative heat exchanger (102) is arranged such that the upper surface thereof is slightly lower than the lower surfaces of the first and second adsorption elements (81, 82).
第 1吸着素子 (81) と再生熱交換器 (102) の間には、 右側シャツタ (61) が設 けられている。 この右側シャツタ (61) は、 中央流路 (57) における再生熱交換 器 (102) の下側部分と右下流路 (54) との間を仕切るものであって、 開閉自在に 構成されている。 一方、 第 2吸着素子 (82) と再生熱交換器 (102) の間には、 左 側シャツタ (62) が設けられている。 この左側シャツタ (62) は、 中央流路 (57) における再生熱交換器 (102) の下側部分と左下流路 (56) との間を仕切るもので あって、 開閉自在に構成されている。  A right-side shirt (61) is provided between the first adsorption element (81) and the regenerative heat exchanger (102). The right side shutter (61) partitions the lower portion of the regenerative heat exchanger (102) in the central channel (57) from the lower right channel (54), and is configured to be openable and closable. . On the other hand, a left shirt (62) is provided between the second adsorption element (82) and the regenerative heat exchanger (102). The left shirt (62) partitions the lower part of the regenerative heat exchanger (102) in the central flow path (57) from the lower left flow path (56), and is configured to be openable and closable. .
室外側パネル (11) と第 1仕切板 (20) の間の流路 (41, 42) と、 第 1仕切板 (2 0) と第 2仕切板 (30) の間の流路 (51, 52,···) とは、 第 1仕切板 (20) の開口 (2 1, 22,…) に設けられた開閉シャツタによって、連通状態と遮断状態に切り換えら れる。 具体的に、 第 1右側開口 (21) を開口状態とすると、 右側流路 (51) と室 外側下部流路 (42) が連通する。 第 1左側開口 (22) を開口状態とすると、 左側 流路 (52) と室外側下部流路 (42) が連通する。 第 1右上開口 (23) を開口状態 とすると、 右上流路 (53) と室外側上部流路 (41) が連通する。 第 1右下開口 (2 4) を開口状態とすると、 右下流路 (54) と室外側下部流路 (42) が連通する。 第 1左上開口 (25) を開口状態とすると、 左上流路 (55) と室外側上部流路 (41) が連通する。 第 1左下開口 (26) を開口状態とすると、 左下流路 (56) と室外側 下部流路 (42) が連通する。 第 2仕切板 (30) には、 第 2右側開口 (31)、 第 2左側開口 (32)'、 第 2右上開 口 (33)、 第 2右下開口 (34)、 第 2左上開口 (35)、 及び第 2左下開口 (36) が形 成されている。 これらの開口 (31, 32, ··· ) は、 それぞれが開閉シャツタを備えて 開閉自在に構成されている。 The flow path (41, 42) between the outdoor panel (11) and the first partition (20) and the flow path (51, 42) between the first partition (20) and the second partition (30) 52,...) Are switched between a communication state and a blocking state by an opening / closing shutter provided in the opening (21, 22,...) Of the first partition plate (20). Specifically, when the first right opening (21) is in an open state, the right flow path (51) and the outdoor lower flow path (42) communicate with each other. When the first left opening (22) is in an open state, the left flow path (52) and the outdoor lower flow path (42) communicate with each other. When the first upper right opening (23) is in an open state, the upper right flow path (53) communicates with the outdoor upper flow path (41). When the first lower right opening (24) is in an open state, the lower right flow path (54) communicates with the outdoor lower flow path (42). When the first upper left opening (25) is in an open state, the upper left flow path (55) and the outdoor upper flow path (41) communicate with each other. When the first lower left opening (26) is in the open state, the lower left flow path (56) communicates with the outdoor lower flow path (42). The second divider (30) has a second right opening (31), a second left opening (32) ', a second upper right opening (33), a second lower right opening (34), a second upper left opening ( 35) and a second lower left opening (36) are formed. Each of these openings (31, 32,...) Has an openable / closable shutter and is configured to be openable and closable.
第 2右側開口 (31) 及び第 2左側開口 (32) は、縦長の長方形状の開口である。 第 2右側開口 (31) は、 第 2仕切板 (30) の右端近傍に設けられている。 第 2左 側開口 (32) は、 第 2仕切板 (30) の左端近傍に設けられている。 第 2右上開口 (33)、 第 2右下開口 (34)、 第 2左上開口 (35)、 及び第 2左下開口 (36) は、 横 長の長方形状の開口である。 第 2右上開口 (33) は、 第 2仕切板 (30) の上部に おける第 2右側開口 (31) の左隣に設けられている。 第 2右下開口 (M) は、 第 2仕切板 (30) の下部における第 2右側開口 (31) の左隣に設けられている。 第 2左上開口 (35) は、 第 2仕切板 (30) の上部における第 2左側開口 (32) の右 隣に設けられている。 第 2左下開口 (36) は、 第 2仕切板 (30) の下部における 第 2左側開口 (32) の右隣に設けられている。  The second right opening (31) and the second left opening (32) are vertically long rectangular openings. The second right opening (31) is provided near the right end of the second partition (30). The second left opening (32) is provided near the left end of the second partition (30). The second upper right opening (33), the second lower right opening (34), the second upper left opening (35), and the second lower left opening (36) are horizontally long rectangular openings. The second upper right opening (33) is provided to the left of the second right opening (31) above the second partition plate (30). The second lower right opening (M) is provided below the second partition plate (30) and to the left of the second right opening (31). The second upper left opening (35) is provided on the upper part of the second partition plate (30), right next to the second left opening (32). The second lower left opening (36) is provided below the second partition plate (30) and to the right of the second left opening (32).
室内側パネル (12) と第 2仕切板 (30) の間の空間は、 上側の室内側上部流路 (46) と下側の室内側下部流路 (47) とに区画されている。 室内側上部流路 (46) は、室内側吹出口 (14) によって室内空間と連通している。 室内側下部流路 (47) は、 室内側吸込口 (15) によって室内空間と連通している。  The space between the indoor panel (12) and the second partition plate (30) is divided into an upper indoor upper flow path (46) and a lower indoor lower flow path (47). The indoor upper flow path (46) communicates with the indoor space through the indoor outlet (14). The indoor lower flow path (47) communicates with the indoor space through the indoor suction port (15).
室内側パネル (12) と第 2仕切板 (30) の間の空間には、 その左端寄りに給気 ファン (95) が設置されている。 また、 室内側上部流路 (46) には、 第 1熱交換 器 (103) が設置されている。 第 1熱交換器 (103) は、 いわゆるクロスフィン型 のフィン ' アンド 'チューブ熱交換器であって、 給気ファン (95) へ向けて室内 側上部流路 (46) を流れる空気と冷媒回路 (100) の冷媒とを熱交換させるように 構成されている。 つまり、 第 1熱交換器 (103) は、 室内へ供給される空気と冷媒 とを熱交換させるためのものである。  In the space between the indoor side panel (12) and the second partition (30), an air supply fan (95) is installed near the left end. In addition, a first heat exchanger (103) is installed in the indoor-side upper flow path (46). The first heat exchanger (103) is a so-called cross-fin type fin 'and' tube heat exchanger, and the air and refrigerant circuit that flows through the upper air passage (46) toward the air supply fan (95). It is configured to exchange heat with (100) refrigerant. That is, the first heat exchanger (103) is for exchanging heat between the air supplied to the room and the refrigerant.
第 1仕切板 (20) と第 2仕切板 (30) の間の流路と、 第 2仕切板 (30) と室外 側パネル (11) の間の流路とは、 第 2仕切板 (30) の開口に設けられた開閉シャ ッタによって、 連通状態と遮断状態に切り換えられる。 具体的に、 第 2右側開口 (31) を開口状態とすると、 右側流路 (51) と室内側下部流路 (47) が連通する。 第 2左側開口 (32) を開口状態とすると、 左側流路 (52) と室内側下部流路 (47) が連通する。 第 2右上開口 (33) を開口状態とすると、 右上流路 (53) と室内側 上部流路 (46) が連通する。 第 2右下開口 (34) を開口状態とすると、 右下流路 (54) と室内側下部流路 (47) が連通する。 第 2左上開口 (35) を開口状態とす ると、 左上流路 (55) と室内側上部流路 (46) が連通する。 第 2左下開口 (36) を開口状態とすると、 左下流路 (56) と室内側下部流路 (47) が連通する。 The flow path between the first partition plate (20) and the second partition plate (30) and the flow path between the second partition plate (30) and the outdoor panel (11) are defined by the second partition plate (30). The open / close shutter provided at the opening of () switches between the open and closed states. Specifically, when the second right opening (31) is in an open state, the right flow path (51) communicates with the indoor lower flow path (47). When the second left opening (32) is in the open state, the left flow path (52) communicates with the indoor lower flow path (47). When the second upper right opening (33) is in an open state, the upper right flow path (53) communicates with the indoor upper flow path (46). When the second lower right opening (34) is in the open state, the lower right flow path (54) communicates with the indoor lower flow path (47). When the second upper left opening (35) is in the open state, the upper left flow path (55) communicates with the indoor upper flow path (46). When the second lower left opening (36) is in the open state, the lower left flow path (56) communicates with the indoor lower flow path (47).
《冷媒回路の構成》  《Configuration of refrigerant circuit》
図 7に示すように、 上記冷媒回路 (100) は、 冷媒の充填された閉回路である。 冷媒回路 (100) には、 圧縮機 (101)、 再生熱交換器 (102)、 第 1熱交換器 (10 3)、 第 2熱交換器 (104)、 レシーバ (105)、 四方切換弁 (120)、 及び電動膨張弁 ( 110) が設けられている。 この冷媒回路 (100) では、 冷媒を循環させることで 蒸気圧縮式の冷凍サイクルが行われる。  As shown in FIG. 7, the refrigerant circuit (100) is a closed circuit filled with a refrigerant. The refrigerant circuit (100) includes a compressor (101), a regenerative heat exchanger (102), a first heat exchanger (103), a second heat exchanger (104), a receiver (105), a four-way switching valve ( 120), and an electric expansion valve (110). In the refrigerant circuit (100), a vapor compression refrigeration cycle is performed by circulating the refrigerant.
冷媒.回路 (100) において、 圧縮機 (101) の吐出側は、 再生熱交換器 ( 102) の 一端に接続されている。 再生熱交換器 (102) の他端は、 レシーバ (105) を介し て電動膨張弁 (110) の一端に接続されている。 電動膨張弁 (110) の他端は、 四 方切換弁 (120) の第 1ポート (121) に接続されている。 この四方切換弁 (120) は、 第 2ポート (122) が第 2熱交換器 (104) の一端に接続され、 第 4ポート (1 24) が第 1熱交換器 (103) の一端に接続されている。 また、 四方切換弁 (120) の第 3ポート (123) は、 封止されている。 第 1熱交換器 (103) の他端と第 2熱 交換器 (104) の他端とは、 それぞれが圧縮機 (101) の吸入側に接続されている。 四方切換弁 (120) は、 第 1ポート (121) と第 2ポート (122) が互いに連通し て第 3ポート (123) と第 4ポート (124) が互いに連通する状態と、 第 1ポート ( 121) と第 4ポート (124) が互いに連通して第 2ポート 22) と第 3ポート (1 23) が互いに連通する状態とに切り換わる。 尚、 上述のように、 四方切換弁 (12 0) の第 3ポート (123) は、 閉塞されている。 つまり、 本実施形態の冷媒回路 (1 00) では、 四方切換弁 (120) が三方弁として用いられている。 In the refrigerant circuit (100), the discharge side of the compressor (101) is connected to one end of the regenerative heat exchanger (102). The other end of the regenerative heat exchanger (102) is connected to one end of an electric expansion valve (110) via a receiver (105). The other end of the electric expansion valve (110) is connected to the first port (121) of the four-way switching valve (120). In the four-way switching valve (120), the second port (122) is connected to one end of the second heat exchanger (104), and the fourth port (124) is connected to one end of the first heat exchanger (103). Have been. The third port (123) of the four-way switching valve (120) is sealed. The other end of the first heat exchanger (103) and the other end of the second heat exchanger (104) are respectively connected to the suction side of the compressor (101). The four-way switching valve (120) has a state in which the first port (121) and the second port (122) communicate with each other and the third port (123) and the fourth port (124) communicate with each other. 121) and the fourth port (124) communicate with each other, and the state is switched to a state where the second port 22 ) and the third port (123) communicate with each other. As described above, the third port (123) of the four-way switching valve (120) is closed. That is, in the refrigerant circuit (100) of the present embodiment, the four-way switching valve (120) is used as a three-way valve.
—運転動作—  —Driving operation—
次に、 上記調湿装置の運転動作について説明する。 この調湿装置は、 上述した ように除湿運転と加湿運転とを切り換えて行う。 また、 この調湿装置は、 第 1吸 着素子 (81) で吸着動作を行うとともに第 2吸着素子 (82) で再生動作を行う第 1動作と、 第 2吸着素子 (82) で吸着動作を行うとともに第 1吸着素子 (81) で 再生動作を行う第 2動作とを交互に切り換え、 第 1空気または第 2空気を室内へ 供給することによつて除湿運転または加湿運転を行う。 Next, the operation of the humidity control device will be described. This humidity controller switches between the dehumidifying operation and the humidifying operation as described above. In addition, this humidity control device The first operation in which the adsorption operation is performed by the landing element (81) and the reproduction operation is performed by the second adsorption element (82); The dehumidifying operation or the humidifying operation is performed by alternately switching the operation and the second operation, and supplying the first air or the second air to the room.
《除湿運転》  《Dehumidification operation》
図 1, 図 2に示すように、 除湿運転時において、 給気ファン (95) を駆動する と、 室外空気が室外側吸込口 (13) を通じてケーシング (10) 内に取り込まれる。 この室外空気は、 第 1空気として室外側下部流路 (42) へ流入する。 一方、 排気 ファン (96) を駆動すると、 室内空気が室内側吸込口 (15) を通じてケーシング ( 10) 内に取り込まれる。 この室内空気は、第 2空気として室内側下部流路 (47) へ流入する。  As shown in Fig. 1 and Fig. 2, when the air supply fan (95) is driven during the dehumidification operation, the outdoor air is taken into the casing (10) through the outdoor air inlet (13). This outdoor air flows into the outdoor-side lower flow path (42) as first air. On the other hand, when the exhaust fan (96) is driven, indoor air is taken into the casing (10) through the indoor-side suction port (15). This room air flows into the room-side lower flow path (47) as second air.
また、 除湿運転時において、 冷媒回路 (100) では、 再生熱交換器 (102) が凝 縮器となり、 第 1熱交換器 (103) が蒸発器となる一方、 第 2熱交換器 (104) が 休止している。 この冷媒回路 (100) の動作については後述する。  Also, during the dehumidification operation, in the refrigerant circuit (100), the regenerative heat exchanger (102) becomes a condenser and the first heat exchanger (103) becomes an evaporator, while the second heat exchanger (104) becomes an evaporator. Is dormant. The operation of the refrigerant circuit (100) will be described later.
除湿運転の第 1動作について、 図 1 , 図 5を参照しながら説明する。 この第 1 動作では、 第 1吸着素子 (81) についての吸着動作と、 第 2吸着素子 (82) につ いての再生動作とが行われる。 つまり、 第 1動作では、 第 1吸着素子 (81) で空 気が減湿されると同時に、 第 2吸着素子 (82) の吸着剤が再生される。  The first operation of the dehumidifying operation will be described with reference to FIGS. In the first operation, an adsorption operation on the first adsorption element (81) and a reproduction operation on the second adsorption element (82) are performed. That is, in the first operation, the air is dehumidified by the first adsorption element (81), and at the same time, the adsorbent of the second adsorption element (82) is regenerated.
図 1に示すように、 第 1仕切板 (20) では、 第 1右下開口 (24) と第 1左上開 口 (25) とが連通状態となり、 残りの開口 (21, 22, 23, 26) が遮断状態となってい る。 この状態では、 第 1右下開口 (24) によって室外側下部流路 (42) と右下流 路 (54) とが連通し、 第 1左上開口 (25) によって左上流路 (55) と室外側上部 流路 (41) とが連通する。  As shown in Fig. 1, in the first partition (20), the first lower right opening (24) and the first upper left opening (25) are in communication with each other, and the remaining openings (21, 22, 23, 26 ) Is shut off. In this state, the first lower right opening (24) connects the lower outdoor passage (42) and the lower right passage (54), and the first upper left opening (25) connects the upper left passage (55) to the outdoor. The upper flow path (41) communicates with the upper flow path (41).
第 2仕切板 (30) では、 第 2右側開口 (31) と第 2右上開口 (33) とが連通状 態となり、 残りの開口 (32, 34, 35, 36) が遮断状態となっている。 この状態では、 第 2右側開口 (31) によって室内側下部流路 (47) と右側流路 (51) とが連通し、 第 2右上開口 (33) によって右上流路 (53) と室内側上部流路 (46) とが連通す る。  In the second partition (30), the second right opening (31) and the second upper right opening (33) are in communication with each other, and the remaining openings (32, 34, 35, 36) are in a closed state. . In this state, the lower right side flow path (47) and the right side flow path (51) communicate with each other through the second right side opening (31), and the upper right side flow path (53) and the upper side inside the room through the second upper right opening (33). The flow path (46) communicates.
右側シャツタ (61) は閉鎖状態となり、 左側シャツタ (62) は開口状態となつ ている。 この状態では、 中央流路 (57) における再生熱交換器 (102) の下側部分 と左下流路 (56) とが、 左側シャツタ (62) を介して連通する。 The right side shirt (61) is closed and the left side shirt (62) is open. ing. In this state, the lower part of the regenerative heat exchanger (102) in the central flow path (57) communicates with the lower left flow path (56) via the left shirt (62).
ケーシング (10) に取り込まれた第 1空気は、 室外側下部流路 (42) から第 1 右下開口 (24) を通って右下流路 (54) へ流入する。 一方、 ケーシング (10) に 取り込まれた第 2空気は、 室内側下部流路 (47) から第 2右側開口 (31) を通つ て右側流路 (51) へ流入する。  The first air taken into the casing (10) flows into the lower right channel (54) from the outdoor lower channel (42) through the first lower right opening (24). On the other hand, the second air taken into the casing (10) flows into the right flow path (51) from the indoor lower flow path (47) through the second right opening (31).
図 5 ( a )にも示すように、 右下流路 (54) の第 1空気は、 第 1吸着素子 (81) の調湿側通路 (85) へ流入する。 この調湿側通路 (85) を流れる間に、 第 1空気 に含まれる水蒸気が吸着剤に吸着される。 第 1吸着素子 (81) で減湿された第 1 空気は、 右上流路 (53) へ流入する。  As shown in FIG. 5 (a), the first air in the lower right flow path (54) flows into the humidity control side passage (85) of the first adsorption element (81). While flowing through the humidity control side passage (85), the water vapor contained in the first air is adsorbed by the adsorbent. The first air dehumidified by the first adsorption element (81) flows into the upper right channel (53).
一方、 右側流路 (51) の第 2空気は、 第 1吸着素子 (81) の冷却側通路 (86) へ流入する。 この冷却側通路 (86) を流れる間に、 第 2空気は、 調湿側通路 (85) で第 1空気の水蒸気が吸着剤に吸着される際に生じた吸着熱を吸熱する。つまり、 第 2空気は、 冷却用流体として冷却側通路 (86) を流れる。 吸着熱を奪った第 2 空気は、 中央流路 (57) へ流入して再生熱交換器 (102) を通過する。 その際、 再 生熱交換器(102)では、第 2空気が冷媒との熱交換によって加熱される。その後、 第 2空気は、 中央流路 (57) から左下流路 (56) へ流入する。  On the other hand, the second air in the right flow path (51) flows into the cooling-side passage (86) of the first adsorption element (81). While flowing through the cooling side passage (86), the second air absorbs the heat of adsorption generated when the water vapor of the first air is adsorbed by the adsorbent in the humidity control side passage (85). That is, the second air flows through the cooling-side passage (86) as a cooling fluid. The second air, which has lost the heat of adsorption, flows into the central channel (57) and passes through the regenerative heat exchanger (102). At that time, in the regeneration heat exchanger (102), the second air is heated by heat exchange with the refrigerant. Thereafter, the second air flows from the central channel (57) into the lower left channel (56).
第 1吸着素子 (81) 及び再生熱交換器 (102) で加熱された第 2空気は、 第 2吸 着素子 (82) の調湿側通路 (85) へ導入される。 この調湿側通路 (85) では、 第 2空気によって吸着剤が加熱され、 吸着剤から水蒸気が脱離する。 つまり、 第 2 吸着素子 (82) の再生が行われる。 吸着剤から脱離した水蒸気は、 第 2空気と共 に左上流路 (55) へ流入する。  The second air heated by the first adsorption element (81) and the regenerative heat exchanger (102) is introduced into the humidity control passage (85) of the second adsorption element (82). In the humidity control passage (85), the adsorbent is heated by the second air, and water vapor is released from the adsorbent. That is, the regeneration of the second adsorption element (82) is performed. The water vapor desorbed from the adsorbent flows into the upper left channel (55) together with the second air.
図 1に示すように、 右上流路 (53) へ流入した減湿後の第 1空気は、 第 2右上 開口 (33) を通って室内側上部流路 (46) へ送り込まれる。 この第 1空気は、 室 内側上部流路 (46) を流れる間に第 1熱交換器 (103) を通過し、 冷媒との熱交換 によって冷却される。 減湿されて冷却された第 1空気は、 その後、 室内側吹出口 ( 14) を通って室内へ供給される。  As shown in FIG. 1, the dehumidified first air that has flowed into the upper right channel (53) is sent into the indoor upper channel (46) through the second upper right opening (33). The first air passes through the first heat exchanger (103) while flowing through the indoor upper flow path (46), and is cooled by heat exchange with the refrigerant. The dehumidified and cooled first air is then supplied to the room through the indoor side outlet (14).
一方、 左上流路 (55) へ流入した第 2空気は、 第 1左上開口 (25) を通って室 外側上部流路 (41) へ流入する。 この第 2空気は、 室外側上部流路 (41) を流れ る間に第 2熱交換器 (104) を通過する。 その際、 第 2熱交換器 (104) は休止し ており、 第 2空気は加熱も冷却もされない。 そして、 第 1吸着素子 (81) の冷却 と第 2吸着素子 (82) の再生に利用された第 2空気は、 室外側吹出口 (16) を通 つて室外へ排出される。 On the other hand, the second air flowing into the upper left channel (55) flows into the outdoor upper channel (41) through the first upper left opening (25). This second air flows through the upper outdoor passage (41). While passing through the second heat exchanger (104). At that time, the second heat exchanger (104) is at rest and the second air is neither heated nor cooled. Then, the second air used for cooling the first adsorbing element (81) and regenerating the second adsorbing element (82) is discharged outside through the outdoor air outlet (16).
除湿運転の第 2動作について、 図 2, 図 5を参照しながら説明する。 この第 2 動作では、 第 1動作時とは逆に、 第 2吸着素子 (82) についての吸着動作と、 第 1吸着素子 (81) についての再生動作とが行われる。 つまり、 第 2動作では、 第 2吸着素子 (82) で空気が減湿されると同時に、 第 1吸着素子 (81) の吸着剤が 再生される。  The second operation of the dehumidifying operation will be described with reference to FIGS. In the second operation, the adsorption operation on the second adsorption element (82) and the reproduction operation on the first adsorption element (81) are performed, contrary to the first operation. That is, in the second operation, the air is dehumidified by the second adsorption element (82), and at the same time, the adsorbent of the first adsorption element (81) is regenerated.
図 2に示すように、 第 1仕切板 (20) では、 第 1右上開口 (23) と第 1左下開 口 (26) とが連通状態となり、 残りの開口 (21, 22, 24, 25) が遮断状態となってい る。 この状態では、 第 1右上開口 (23) によって右上流路 (53) と室外側上部流 路 (41) とが連通し、 第 1左下開口 (26) によって室外側下部流路 (42) と左下 流路 (56) とが連通する。  As shown in FIG. 2, in the first partition (20), the first upper right opening (23) and the first lower left opening (26) are in communication with each other, and the remaining openings (21, 22, 24, 25) Is shut off. In this state, the upper right channel (53) communicates with the outdoor upper channel (41) through the first upper right opening (23), and the outdoor lower channel (42) and the lower left channel through the first lower left opening (26). The flow path (56) communicates.
第 2仕切板 (30) では、 第 2左側開口 (32) と第 2左上開口 (35) とが連通状 態となり、 残りの開口 (31, 33, 34, 36) が遮断状態となっている。 この状態では、 第 2左側開口 (32) によって室内側下部流路 (47) と左側流路 (52) とが連通し、 第 2左上開口 (35) によって左上流路 (55) と室内側上部流路 (46) とが連通す る。  In the second partition (30), the second left opening (32) and the second upper left opening (35) are in communication with each other, and the remaining openings (31, 33, 34, 36) are in a closed state. . In this state, the lower left flow path (47) and the left flow path (52) communicate with each other through the second left opening (32), and the upper left flow path (55) and the upper indoor path through the second upper left opening (35). The flow path (46) communicates.
左側シャツタ (62) は閉鎖状態となり、 右側シャツタ (61) は開口状態となつ ている。 この状態では、 中央流路 (57) における再生熱交換器 (102) の下側部分 と右下流路 (54) とが、 右側シャツタ (61) を介して連通する。  The left shirt (62) is closed and the right shirt (61) is open. In this state, the lower part of the regenerative heat exchanger (102) in the central flow path (57) communicates with the lower right flow path (54) via the right side shutter (61).
ケーシング (10) に取り込まれた第 1空気は、 室外側下部流路 (42) から第 1 左下開口 (26) を通って左下流路 (56) へ流入する。 一方、 ケーシング (10) に 取り込まれた第 2空気は、 室内側下部流路 (47) から第 2左側開口 (32) を通つ て左側流路 (52) へ流入する。  The first air taken into the casing (10) flows into the lower left channel (56) from the outdoor lower channel (42) through the first lower left opening (26). On the other hand, the second air taken into the casing (10) flows into the left flow path (52) from the indoor lower flow path (47) through the second left opening (32).
図 5 ( b )にも示すように、 左下流路 (56) の第 1空気は、 第 2吸着素子 (82) の調湿側通路 (85) へ流入する。 この調湿側通路 (85) を流れる間に、 第 1空気 に含まれる水蒸気が吸着剤に吸着される。 第 2吸着素子 (82) で減湿された第 1 空気は、 左上流路 (55) へ流入する。 As shown in FIG. 5 (b), the first air in the lower left flow path (56) flows into the humidity control side passageway (85) of the second adsorption element (82). While flowing through the humidity control side passage (85), the water vapor contained in the first air is adsorbed by the adsorbent. The first dehumidified by the second adsorption element (82) Air flows into the upper left channel (55).
一方、 左側流路 (52) の第 2空気は、 第 2吸着素子 (82) の冷却側通路 (86) へ流入する。 この冷却側通路 (86) を流れる間に、 第 2空気は、 調湿側通路 (85) で第 1空気の水蒸気が吸着剤に吸着される際に生じた吸着熱を吸熱する。つまり、 第 2空気は、 冷却用流体として冷却側通路 (86) を流れる。 吸着熱を奪った第 2 空気は、 中央流路 (57) へ流入して再生熱交換器 (102) を通過する。 その際、 再 生熱交換器(102)では、第 2空気が冷媒との熱交換によって加熱される。その後、 第 2空気は、 中央流路 (57) から右下流路 (54) へ流入する。  On the other hand, the second air in the left flow path (52) flows into the cooling-side passage (86) of the second adsorption element (82). While flowing through the cooling side passage (86), the second air absorbs the heat of adsorption generated when the water vapor of the first air is adsorbed by the adsorbent in the humidity control side passage (85). That is, the second air flows through the cooling-side passage (86) as a cooling fluid. The second air, which has lost the heat of adsorption, flows into the central channel (57) and passes through the regenerative heat exchanger (102). At that time, in the regeneration heat exchanger (102), the second air is heated by heat exchange with the refrigerant. Thereafter, the second air flows from the central channel (57) to the lower right channel (54).
第 2吸着素子 (82) 及び再生熱交換器 (102) で加熱された第 2空気は、 第 1吸 着素子 (81) の調湿側通路 (85) へ導入される。 この調湿側通路 (85) では、 第 2空気によって吸着剤が加熱され、 吸着剤から水蒸気が脱離する。 つまり、 第 1 吸着素子 (81) の再生が行われる。 吸着剤から脱離した水蒸気は、 第 2空気と共 に右上流路 (53) へ流入する。  The second air heated by the second adsorption element (82) and the regenerative heat exchanger (102) is introduced into the humidity control passage (85) of the first adsorption element (81). In the humidity control passage (85), the adsorbent is heated by the second air, and water vapor is released from the adsorbent. That is, the regeneration of the first adsorption element (81) is performed. The water vapor desorbed from the adsorbent flows into the upper right channel (53) together with the second air.
図 2に示すように、 左上流路 (55) へ流入した減湿後の第 1空気は、 第 2左上 開口 (35) を通って室内側上部流路 (46) へ送り込まれる。 この第 1空気は、 室 内側上部流路 (46) を流れる間に第 1熱交換器 (103) を通過し、 冷媒との熱交換 によって冷却される。 減湿されて冷却された第 1空気は、 その後、 室内側吹出口 ( 14) を通って室内へ供給される。  As shown in FIG. 2, the dehumidified first air that has flowed into the upper left flow path (55) is sent into the indoor upper flow path (46) through the second upper left opening (35). The first air passes through the first heat exchanger (103) while flowing through the indoor upper flow path (46), and is cooled by heat exchange with the refrigerant. The dehumidified and cooled first air is then supplied to the room through the indoor side outlet (14).
一方、 右上流路 (53) へ流入した第 2空気は、 第 1右上開口 (23) を通って室 外側上部流路 (41) へ流入する。 この第 2空気は、 室外側上部流路 (41) を流れ る間に第 2熱交換器 (104) を通過する。 その際、 第 2熱交換器 (104) は休止し ており、 第 2空気は加熱も冷却もされない。 そして、 第 2吸着素子 (82) の冷却 と第 1吸着素子 (81) の再生に利用された第 2空気は、 室外側吹出口 (16) を通 つて室外へ排出される。  On the other hand, the second air flowing into the upper right channel (53) flows into the outdoor upper channel (41) through the first upper right opening (23). The second air passes through the second heat exchanger (104) while flowing through the outdoor upper flow path (41). At that time, the second heat exchanger (104) is at rest and the second air is neither heated nor cooled. Then, the second air used for cooling the second adsorbing element (82) and regenerating the first adsorbing element (81) is discharged outside through the outdoor air outlet (16).
《加湿運転》  << Humidification operation >>
図 3, 図 4に示すように、 加湿運転時において、 給気ファン (95) を駆動する と、室外空気が室外側吸込口 (13) を通じてケーシング (10) 内に取り込まれる。 この室外空気は、 第 2空気として室外側下部流路 (42) へ流入する。 一方、 排気 ファン (96) を駆動すると、 室内空気が室内側吸込口 (15) を通じてケーシング ( 10) 内に取り込まれる。 この室内空気は、 第 1空気として室内側下部流路 (47) へ流入する。 As shown in Figs. 3 and 4, when the air supply fan (95) is driven during the humidification operation, the outdoor air is taken into the casing (10) through the outdoor air inlet (13). The outdoor air flows into the outdoor lower channel (42) as second air. On the other hand, when the exhaust fan (96) is driven, the room air flows into the casing through the indoor suction port (15). (10) is taken in. This room air flows into the room-side lower flow path (47) as first air.
また、 加湿運転時において、 冷媒回路 (100) では、 再生熱交換器 (102) が凝 縮器となり、 第 2熱交換器 (104) が蒸発器となる一方、 第 1熱交換器 (103) が 休止している。 この冷媒回路 (100) の動作については後述する。  In the humidification operation, in the refrigerant circuit (100), the regenerative heat exchanger (102) becomes a condenser and the second heat exchanger (104) becomes an evaporator, while the first heat exchanger (103) becomes an evaporator. Is dormant. The operation of the refrigerant circuit (100) will be described later.
加湿運転の第 1動作について、 図 3 , 図 5を参照しながら説明する。 この第 1 動作では、 第 1吸着素子 (81) についての吸着動作と、 第 2吸着素子 (82) につ いての再生動作とが行われる。 つまり、 第 1動作では、 第 2吸着素子 (82) で空 気が加湿され、 第 1吸着素子 (81) の吸着剤が水蒸気を吸着する。  The first operation of the humidification operation will be described with reference to FIGS. In the first operation, an adsorption operation on the first adsorption element (81) and a reproduction operation on the second adsorption element (82) are performed. That is, in the first operation, the air is humidified by the second adsorption element (82), and the adsorbent of the first adsorption element (81) adsorbs water vapor.
図 3に示すように、 第 1仕切板 (20) では、 第 1右側開口 (21) と第 1右上開 口 (23) とが連通状態となり、 残りの開口 (22, 24, 25, 26) が遮断状態となってい る。 この状態では、 第 1右側開口 (21) によって室外側下部流路 (42) と右側流 路 (51) とが連通し、 第 1右上開口 (23) によって右上流路 (53) と室外側上部 流路 (41) とが連通する。  As shown in FIG. 3, in the first partition (20), the first right opening (21) and the first upper right opening (23) are in communication with each other, and the remaining openings (22, 24, 25, 26) Is shut off. In this state, the lower outdoor channel (42) and the right channel (51) communicate with each other through the first right opening (21), and the upper right channel (53) and the upper outdoor unit flow through the first upper right opening (23). The flow path (41) communicates.
第 2仕切板 (30) では、 第 2右下開口 (34) と第 2左上開口 (35) とが連通状 態となり、 残りの開口 (31,32, 33,36) が遮断状態となっている。 この状態では、 第 2右下開口 (34) によって室内側下部流路 (47) と右下流路 (54) とが連通し、 第 2左上開口 (35) によって左上流路 (55) と室内側上部流路 (46) とが連通す る。  In the second partition plate (30), the second lower right opening (34) and the second upper left opening (35) are in communication with each other, and the remaining openings (31, 32, 33, 36) are in a closed state. I have. In this state, the indoor lower flow path (47) and the lower right flow path (54) communicate with each other by the second lower right opening (34), and the upper left flow path (55) and the indoor side flow through the second upper left opening (35). The upper flow path (46) communicates with the upper flow path (46).
右側シャツタ (61) は閉鎖状態となり、 左側シャツタ (62) は開口状態となつ ている。 この状態では、 中央流路 (57) における再生熱交換器 (102) の下側部分 と左下流路 (56) とが、 左側シャツタ (62) を介して連通する。  The right side shutter (61) is closed, and the left side shutter (62) is open. In this state, the lower part of the regenerative heat exchanger (102) in the central flow path (57) communicates with the lower left flow path (56) via the left shirt (62).
ケーシング (10) に取り込まれた第 1空気は、 室内側下部流路 (47) から第 2 右下開口 (34) を通って右下流路 (54) へ流入する。 一方、 ケーシング (10) に 取り込まれた第 2空気は、 室外側下部流路 (42) から第 1右側開口 (21) を通つ て右側流路 (51) へ流入する。  The first air taken into the casing (10) flows into the lower right channel (54) from the indoor lower channel (47) through the second lower right opening (34). On the other hand, the second air taken into the casing (10) flows into the right flow path (51) from the outdoor lower flow path (42) through the first right opening (21).
図 5 ( a )にも示すように、 右下流路 (54) の第 1空気は、 第 1吸着素子 (81) の調湿側通路 (85) へ流入する。 この調湿側通路 (85) を流れる間に、 第 1空気 に含まれる水蒸気が吸着剤に吸着される。 第 1吸着素子 (81) で水分を奪われた 第 1空気は、 右上流路 (53) へ流入する。 As shown in FIG. 5 (a), the first air in the lower right flow path (54) flows into the humidity control side passage (85) of the first adsorption element (81). While flowing through the humidity control side passage (85), the water vapor contained in the first air is adsorbed by the adsorbent. Moisture deprived by the first adsorption element (81) The first air flows into the upper right channel (53).
一方、 右側流路 (51) の第 2空気は、 第 1吸着素子 (81) の冷却側通路 (86) へ流入する。 この冷却側通路 (86) を流れる間に、 第 2空気は、 調湿側通路 (85) で第 1空気の水蒸気が吸着剤に吸着される際に生じた吸着熱を吸熱する。つまり、 第 2空気は、 冷却用流体として冷却側通路 (86) を流れる。 吸着熱を奪った第 2 空気は、 中央流路 (57) へ流入して再生熱交換器 (102) を通過する。 その際、 再 生熱交換器(102)では、第 2空気が冷媒との熱交換によって加熱される。その後、 第 2空気は、 中央流路 (57) から左下流路 (56) へ流入する。  On the other hand, the second air in the right flow path (51) flows into the cooling-side passage (86) of the first adsorption element (81). While flowing through the cooling side passage (86), the second air absorbs the heat of adsorption generated when the water vapor of the first air is adsorbed by the adsorbent in the humidity control side passage (85). That is, the second air flows through the cooling-side passage (86) as a cooling fluid. The second air, which has lost the heat of adsorption, flows into the central channel (57) and passes through the regenerative heat exchanger (102). At that time, in the regeneration heat exchanger (102), the second air is heated by heat exchange with the refrigerant. Thereafter, the second air flows from the central channel (57) into the lower left channel (56).
第 1吸着素子 (81) 及び再生熱交換器 (102) で加熱された第 2空気は、 第 2吸 着素子 (82) の調湿側通路 (85) へ導入される。 この調湿側通路 (85) では、 第 2空気によって吸着剤が加熱され、 吸着剤から水蒸気が脱離する。 つまり、 第 2 吸着素子 (82) の再生が行われる。 そして、 吸着剤から脱離した水蒸気が第 2空 気に付与され、 第 2空気が加湿される。 第 2吸着素子 (82) で加湿された第 2空 気は、 その後に左上流路 (55) へ流入する。  The second air heated by the first adsorption element (81) and the regenerative heat exchanger (102) is introduced into the humidity control passage (85) of the second adsorption element (82). In the humidity control passage (85), the adsorbent is heated by the second air, and water vapor is released from the adsorbent. That is, the regeneration of the second adsorption element (82) is performed. Then, the water vapor desorbed from the adsorbent is provided to the second air, and the second air is humidified. The second air humidified by the second adsorption element (82) then flows into the upper left flow path (55).
図 3に示すように、 左上流路 (55) へ流入した第 2空気は、 第 2左上開口 (35) を通って室内側上部流路 (46) へ流入する。 この第 2空気は、 室内側上部流路 (4 6) を流れる間に第 1熱交換器 (103) を通過する。 その際、 第 1熱交換器 (103) は休止しており、第 2空気は加熱も冷却もされない。 そして、 第 2吸着素子(82) で加湿された第 2空気は、 室内側吹出口 (14) を通って室內へ供給される。  As shown in FIG. 3, the second air that has flowed into the upper left flow path (55) flows into the indoor upper flow path (46) through the second upper left opening (35). The second air passes through the first heat exchanger (103) while flowing through the indoor-side upper flow path (46). At that time, the first heat exchanger (103) is at rest and the second air is neither heated nor cooled. Then, the second air humidified by the second adsorption element (82) is supplied to the room 內 through the indoor side outlet (14).
一方、 右上流路 (53) へ流入した第 1空気は、 第 1右上開口 (23) を通って室 外側上部流路 (41) へ送り'込まれる。 この第 1空気は、 室外側上部流路 (41) を 流れる間に第 2熱交換器 (104) を通過し、 冷媒との熱交換によって冷却される。 その後、 水分と熱を奪われた第 1空気は、 室外側吹出口 (16) を通って室外へ排 出 dれる。 ·  On the other hand, the first air that has flowed into the upper right flow path (53) is sent into the outdoor upper flow path (41) through the first upper right opening (23). The first air passes through the second heat exchanger (104) while flowing through the outdoor-side upper flow path (41), and is cooled by heat exchange with the refrigerant. After that, the first air deprived of moisture and heat is discharged outside through the outdoor air outlet (16). ·
加湿運転の第 2動作について、 図 4 , 図 5を参照しながら説明する。 この第 2 動作では、 第 1動作時とは逆に、 第 2吸着素子 (82) についての吸着動作と、 第 1吸着素子 (81) についての再生動作とが行われる。 つまり、 この第 2動作では、 第 1吸着素子 (S1) で空気が加湿され、 第 2吸着素子 (82) の吸着剤が水蒸気を 吸着する。 図 4に示すように、 第 1仕切板 (20) では、 第 1左側開口 (22) と第 1左上開 口 (25) とが連通状態となり、 残りの開口 (21, 23, 24, 26) が遮断状態となってい る。 この状態では、 第 1左側開口 (22) によって室外側下部流路 (42) と左側流 路 (52) とが連通し、 第 1左上開口 (25) によって左上流路 (55) と室外側上部 流路 (41) とが連通する。 The second operation of the humidifying operation will be described with reference to FIGS. In the second operation, the adsorption operation on the second adsorption element (82) and the reproduction operation on the first adsorption element (81) are performed, contrary to the first operation. That is, in the second operation, the air is humidified by the first adsorption element (S1), and the adsorbent of the second adsorption element (82) adsorbs water vapor. As shown in FIG. 4, in the first partition (20), the first left opening (22) and the first upper left opening (25) are in communication with each other, and the remaining openings (21, 23, 24, 26) Is shut off. In this state, the first lower left opening (22) connects the lower outdoor channel (42) to the left channel (52), and the first upper left opening (25) connects the upper left channel (55) to the upper outdoor unit. The flow path (41) communicates.
第 2仕切板 (30) では、 第 2右上開口 (33) と第 2左下開口 (36) とが連通状 態となり、 残りの開口 (31, 32, 34, 35) が遮断状態となっている。 この状態では、 第 2右上開口 (33) によって右上流路 (53) と室内側上部流路 (46) とが連通し、 第 2左下開口 (36) によって室内側下部流路 (47) と左下流路 (56) とが連通す る。  In the second partition plate (30), the second upper right opening (33) and the second lower left opening (36) are in communication with each other, and the remaining openings (31, 32, 34, 35) are in a closed state. . In this state, the upper right channel (53) communicates with the indoor upper channel (46) through the second upper right opening (33), and the indoor lower channel (47) communicates with the left lower channel (47) through the second lower left opening (36). The lower flow path (56) communicates.
左側シャツタ (62) は閉鎖状態となり、 右側シャツタ (61) は開口状態となつ ている。 この状態では、 中央流路 (57) における再生熱交換器 (102) の下側部分 と右下流路 (54) とが、 右側シャツタ (61) を介して連通する。  The left shirt (62) is closed and the right shirt (61) is open. In this state, the lower part of the regenerative heat exchanger (102) in the central flow path (57) communicates with the lower right flow path (54) via the right side shutter (61).
ケーシング (10) に取り込まれた第 1空気は、 室内側下部流路 (47) から第 2 左下開口 (36) を通って左下流路 (56) へ流入する。 一方、 ケーシング (10) に 取り込まれた第 2空気は、 室外側下部流路 (42) から第 1左側開口 (22) を通つ て左側流路 (52) へ流入する。  The first air taken into the casing (10) flows into the lower left flow path (56) from the indoor lower flow path (47) through the second lower left opening (36). On the other hand, the second air taken into the casing (10) flows from the outdoor lower flow path (42) to the left flow path (52) through the first left opening (22).
図 5 ( b )にも示すように、 左下流路 (56) の第 1空気は、 第 2吸着素子 (82) の調湿側通路 (85) へ流入する。 この調湿側通路 (85) を流れる間に、 第 1空気 に含まれる水蒸気が吸着剤に吸着される。 第 2吸着素子 (82) で水分を奪われた 第 1空気は、 左上流路 (55) へ流入する。  As shown in FIG. 5 (b), the first air in the lower left flow path (56) flows into the humidity control side passageway (85) of the second adsorption element (82). While flowing through the humidity control side passage (85), the water vapor contained in the first air is adsorbed by the adsorbent. The first air deprived of moisture by the second adsorption element (82) flows into the upper left flow path (55).
一方、 左側流路 (52) の第 2空気は、 第 2吸着素子 (82) の冷却側通路 (86) へ流入する。 この冷却側通路 (86) を流れる間に、 第 2空気は、 調湿側通路 (85) で第 1空気の水蒸気が吸着剤に吸着される際に生じた吸着熱を吸熱する。つまり、 第 2空気は、 冷却用流体として冷却側通路 (86) を流れる。 吸着熱を奪った第 2 空気は、 中央流路 (57) へ流入して再生熱交換器 (102) を通過する。 その際、 再 生熱交換器(102)では、第 2空気が冷媒との熱交換によって加熱される。その後、 第 2空気は、 中央流路 (57) から右下流路 (54) へ流入する。  On the other hand, the second air in the left flow path (52) flows into the cooling-side passage (86) of the second adsorption element (82). While flowing through the cooling side passage (86), the second air absorbs the heat of adsorption generated when the water vapor of the first air is adsorbed by the adsorbent in the humidity control side passage (85). That is, the second air flows through the cooling-side passage (86) as a cooling fluid. The second air, which has lost the heat of adsorption, flows into the central channel (57) and passes through the regenerative heat exchanger (102). At that time, in the regeneration heat exchanger (102), the second air is heated by heat exchange with the refrigerant. Thereafter, the second air flows from the central channel (57) to the lower right channel (54).
第 2吸着素子 (82) 及び再生熱交換器 (102) で加熱された第 2空気は、 第 1吸 着素子 (81) の調湿側通路 (85) へ導入される。 この調湿側通路 (85) では、 第 2空気によって吸着剤が加熱され、 吸着剤から水蒸気が脱離する。 つまり、 第 1 吸着素子 (81) の再生が行われる。 そして、 吸着剤から脱離した水蒸気が第 2空 気に付与され、 第 2空気が加湿される。 第 1吸着素子 (81) で加湿された第 2空 気は、 その後に右上流路 (53) へ流入する。 The second air heated by the second adsorption element (82) and the regenerative heat exchanger (102) It is introduced into the humidity control side passage (85) of the receiving element (81). In the humidity control passage (85), the adsorbent is heated by the second air, and water vapor is released from the adsorbent. That is, the regeneration of the first adsorption element (81) is performed. Then, the water vapor desorbed from the adsorbent is provided to the second air, and the second air is humidified. The second air humidified by the first adsorption element (81) then flows into the upper right channel (53).
図 4に示すように、右上流路 (53) へ流入した第 2空気は、 第 2右上開口 (33) を通って室内側上部流路 (46) へ流入する。 この第 2空気は、 室内側上部流路 (4 6) を流れる間に第 1熱交換器 (103) を通過する。 その際、 第 1熱交換器 (103) は休止しており、第 2空気は加熱も冷却もされない。 そして、第 1吸着素子 (81) で加湿された第 2空気は、 室内側吹出口 (14) を通って室内へ供給される。  As shown in FIG. 4, the second air flowing into the upper right flow path (53) flows into the indoor upper flow path (46) through the second upper right opening (33). The second air passes through the first heat exchanger (103) while flowing through the indoor-side upper flow path (46). At that time, the first heat exchanger (103) is at rest and the second air is neither heated nor cooled. Then, the second air humidified by the first adsorption element (81) is supplied indoors through the indoor-side outlet (14).
一方、 左上流路 (55) へ流入した第 1空気は、 第 1左上開口 (25) を通って室 外側上部流路 (41) へ送り込まれる。 この第 1空気は、 室外側上部流路 (41) を 流れる間に第 2熱交換器 (104) を通過し、 冷媒との熱交換によって冷却される。 その後、 水分と熱を奪われた第 1空気は、 室外側吹出口 (16) を通って室外へ排 出される。  On the other hand, the first air flowing into the upper left flow path (55) is sent into the outdoor upper flow path (41) through the first upper left opening (25). The first air passes through the second heat exchanger (104) while flowing through the outdoor-side upper flow path (41), and is cooled by heat exchange with the refrigerant. After that, the first air deprived of moisture and heat is discharged outside through the outdoor outlet (16).
《冷媒回路の動作》  《Operation of refrigerant circuit》
冷媒回路 (100) の動作について、 図 7, 図 8を参照しながら説明する。 尚、 図 8に示す第 1空気及び第 2空気の流れは、 第 2動作時のものである。 また、 図 8 では電動膨張弁 (110) は省略している。  The operation of the refrigerant circuit (100) will be described with reference to FIGS. The flows of the first air and the second air shown in FIG. 8 are those during the second operation. In FIG. 8, the electric expansion valve (110) is omitted.
除湿運転時の動作について説明する。 除湿運転時において、 四方切換弁 (120) は、 第 1ポート (121) と第 4ポート (124) が互いに連通して第 2ポート (122) と第 3ポート (123) が互いに連通する状態となる。 また、 電動膨張弁 (110) は、 その開度が運転条件に応じて適宜調節される。  The operation during the dehumidifying operation will be described. During the dehumidifying operation, the four-way switching valve (120) is in a state where the first port (121) and the fourth port (124) communicate with each other and the second port (122) and the third port (123) communicate with each other. Become. Further, the opening of the electric expansion valve (110) is appropriately adjusted according to the operating conditions.
この状態で圧縮機 (101) を運転すると、 冷媒回路 (100) で冷媒が循環して冷 凍サイクルが行われる。 その際、 冷媒回路 (100) では、 再生熱交換器 (102) が 凝縮器となり、 第 1熱交換器 (103) が蒸発器となり、 第 2熱交換器 (104) が休 止状態となる (図 8 ( a )参照)。  When the compressor (101) is operated in this state, the refrigerant circulates in the refrigerant circuit (100) to perform a refrigeration cycle. At that time, in the refrigerant circuit (100), the regenerative heat exchanger (102) becomes a condenser, the first heat exchanger (103) becomes an evaporator, and the second heat exchanger (104) is in a rest state ( See Figure 8 (a)).
圧縮機 (101) から吐出された冷媒は、 再生熱交換器 (102) へ送られる。 再生 熱交換器 (102) へ流入した冷媒は、 第 2空気との熱交換を行い、 第 2空気に放熱 03 00615 The refrigerant discharged from the compressor (101) is sent to the regenerative heat exchanger (102). The refrigerant flowing into the regeneration heat exchanger (102) exchanges heat with the second air and releases heat to the second air. 03 00615
22 して凝縮する。 再生熱交換器 (102) で凝縮した冷媒は、 レシーバ (105) を通つ て電動膨張弁 (110) へ送られる。 この冷媒は、 電動膨張弁 (110) を通過する際 に減圧される。 電動膨張弁 (110) で減圧された冷媒は、 四方切換弁 (120) を通 つて第 1熱交換器 (103) へ送られる。 第 1熱交換器 (103) へ流入した冷媒は、 第 1空気との熱交換を行い、 第 1空気から吸熱して蒸発する。 第 1熱交換器 (1022 to condense. The refrigerant condensed in the regenerative heat exchanger (102) is sent to the electric expansion valve (110) through the receiver (105). This refrigerant is decompressed when passing through the electric expansion valve (110). The refrigerant decompressed by the electric expansion valve (110) is sent to the first heat exchanger (103) through the four-way switching valve (120). The refrigerant flowing into the first heat exchanger (103) exchanges heat with the first air, absorbs heat from the first air, and evaporates. No. 1 heat exchanger (10
3) で蒸発した冷媒は、 圧縮機 (101) へ吸入されて圧縮され、 その後に圧縮機 (1 01) から吐出される。 The refrigerant evaporated in 3) is drawn into the compressor (101) and compressed, and then discharged from the compressor (101).
加湿運転時の動作について説明する。 加湿運転時において、 四方切換弁 (120) は、 第 1ポート (121) と第 2ポート (122) が互いに連通して第 3ポート (123) と第 4ポート (124) が互いに連通する状態となる。 また、 電動膨張弁 (110) は、 その開度が運転条件に応じて適宜調節される。  The operation during the humidification operation will be described. During the humidification operation, the four-way switching valve (120) is in a state where the first port (121) and the second port (122) communicate with each other and the third port (123) and the fourth port (124) communicate with each other. Become. Further, the opening of the electric expansion valve (110) is appropriately adjusted according to the operating conditions.
この状態で圧縮機 (101) を運転すると、 冷媒回路 (100) で冷媒が循環して冷 凍サイクルが行われる。 その際、 冷媒回路 (100) では、 再生熱交換器 (102) が 凝縮器となり、 第 2熱交換器 (104) が蒸発器となり、 第 1熱交換器 (103) が休 止状態となる (図 8 ( b )参照)。  When the compressor (101) is operated in this state, the refrigerant circulates in the refrigerant circuit (100) to perform a refrigeration cycle. At that time, in the refrigerant circuit (100), the regenerative heat exchanger (102) becomes a condenser, the second heat exchanger (104) becomes an evaporator, and the first heat exchanger (103) is in a rest state ( (See Fig. 8 (b)).
圧縮機 (101) から吐出された冷媒は、 再生熱交換器 (102) へ送られる。 再生 熱交換器 (102) へ流入した冷媒は、 第 2空気との熱交換を行い、 第 2空気に放熱 して凝縮する。 再生熱交換器 (102) で凝縮した冷媒は、 レシーバ (105) を通つ て電動膨張弁 (110) へ送られる。 この冷媒は、 電動膨張弁 (110) を通過する際 に減圧される。 電動膨張弁 (110) で減圧された冷媒は、 四方切換弁 (120) を通 つて第 2熱交換器 (104) へ送られる。 第 2熱交換器 (104) へ流入した冷媒は、 第 1空気との熱交換を行い、 第 1空気から吸熱して蒸発する。 第 2熱交換器 (10 The refrigerant discharged from the compressor (101) is sent to the regenerative heat exchanger (102). The refrigerant flowing into the regenerative heat exchanger (102) exchanges heat with the second air, releases heat to the second air, and condenses. The refrigerant condensed in the regenerative heat exchanger (102) is sent to the electric expansion valve (110) through the receiver (105). This refrigerant is decompressed when passing through the electric expansion valve (110). The refrigerant decompressed by the electric expansion valve (110) is sent to the second heat exchanger (104) through the four-way switching valve (120). The refrigerant flowing into the second heat exchanger (104) exchanges heat with the first air, absorbs heat from the first air, and evaporates. Second heat exchanger (10
4) で蒸発した冷媒は、 圧縮機 (101) へ吸入されて圧縮され、 その後に圧縮機 (1 01) から吐出される。 The refrigerant evaporated in 4) is sucked into the compressor (101), compressed, and then discharged from the compressor (101).
このように、加湿運転時に冷媒回路 (100) で循環する冷媒は、第 2熱交換器(1 04) で第 1空気から吸熱し、再生熱交換器(102) で第 2空気へ放熱する。つまり、 第 2熱交換器 (104) では室外へ排気される第 1空気からの熱回収が行われ、 第 2 熱交換器 (104) で回収された熱が再生熱交換器 (102) における第 2空気の加熱 に利用される。 03 00615 As described above, the refrigerant circulating in the refrigerant circuit (100) during the humidifying operation absorbs heat from the first air in the second heat exchanger (104) and releases heat to the second air in the regenerative heat exchanger (102). That is, heat is recovered from the first air exhausted to the outside in the second heat exchanger (104), and the heat recovered in the second heat exchanger (104) is recovered in the second heat exchanger (102). 2Used for heating air. 03 00615
23 一ドレン水の処理一 23 Treatment of drain water
この調湿装置は、 例えば室外が非常に高湿の状態で除湿運転を行ったときに吸 着素子 (81, 82) で吸着しきれなかった第 1空気中の水分により蒸発器 (第 1熱交 換器) (103) に露が付いたり、 加湿運転時に室外が低温のために蒸発器 (第 2熱 交換器) (104) が着霜し、 これをデフロストしたりしたときに、 ドレン水 (デフ ロス ト水を含む) が発生するのに対して、 このドレン水を液体のままで機外に放 出せずに、 装置内で処理することができるように構成されている。  For example, this humidity control device uses an evaporator (first heat) by the moisture in the first air that could not be completely adsorbed by the adsorption elements (81, 82) when the dehumidification operation was performed in an extremely humid outdoor environment. When the evaporator (second heat exchanger) (104) is defrosted due to dew on the (exchanger) (103) or the outdoor temperature is low during the humidification operation, it is defrosted. (Including defrost water) is generated, but this drain water can be treated in the equipment without discharging it as liquid in the equipment.
このため、 ドレンパン (71)、 ドレンポンプ (72)、 及びドレン配管 (73) 等が 設けられている。  For this purpose, a drain pan (71), a drain pump (72), and a drain pipe (73) are provided.
なお、 デフロス ト運転としては、 ヒータによるデフロス ト運転、 逆サイクルデ フロス ト運転、 ホットガスデフロス ト運転、 あるいはその他のデフロス ト運転を 任意に選択して行うことが可能であるが、 ここではその具体内容については説明 を省略する。  As the defrost operation, it is possible to arbitrarily select a defrost operation using a heater, a reverse cycle defrost operation, a hot gas defrost operation, or any other defrost operation. The description of the specific contents is omitted.
《除湿運転時のドレン水処理》  《Drain water treatment during dehumidification operation》
まず、 除湿運転時のドレン水の処理について説明する。  First, the treatment of the drain water during the dehumidifying operation will be described.
図 9 ( a ) に示すように、 この調湿装置は、 除湿運転時に第 1空気中の水分に より第 1熱交換器 (103) で発生したドレン水 (W) を、 第 2空気の経路中に放出 して蒸発させるように構成されている。  As shown in Fig. 9 (a), this humidity control device transfers the drain water (W) generated in the first heat exchanger (103) by the moisture in the first air during the dehumidifying operation to the second air path. It is configured to release into and evaporate.
具体的には、 上記ドレン水 W を、 符号 (A1) の矢印で示すように、 第 2空気 の経路中で再生熱交換器 (102) と再生動作中の吸着素子 (81,82) の間に供給す ることができるように構成されている。 このように構成すると、 第 1熱交換器(1 03) で発生したドレン水 (W) は、 再生熱交換器 (102) の下流側で、 該再生熱交 換器 (102) により加熱された第 2空気に含まれて、 室外へ排出される。 したがつ て、 ドレン水 (W) が原因で装置に鲭が発生したり、 ドレン水 (W) が室内へ滴下 したりすることはない。  Specifically, as shown by the arrow (A1), the drain water W is transferred between the regenerative heat exchanger (102) and the adsorbing element (81, 82) during the regenerating operation in the second air path. It is configured so that it can be supplied to With this configuration, the drain water (W) generated in the first heat exchanger (103) is heated by the regenerative heat exchanger (102) downstream of the regenerative heat exchanger (102). Contained in the second air and discharged outside the room. Therefore, the drain water (W) does not cause 鲭 in the equipment and the drain water (W) does not drop into the room.
また、 上記ドレン水 (W) は、 符号 (A2) の矢印で示すように、 第 2空気の経路 中で再生熱交換器 (102) に直接供給したり、 符号 (A3) の矢印で示すように、 第 2空気の経路中で再生熱交換器 (102) の上流側 (図では吸着側の吸着素子 (81, 82) の上流側としているが、 その下流側としてもよい) に供給したりすることも 可能である。 さらに、 上記ドレン水 (¾ は、 符号 (A4) の矢印で示すように、 第 2空気の経路中で再生動作中の吸着素子(81, 82) の下流側に供給^"るように構成 してもよい。 これらの場合でも、 ドレン水 (W) が原因で装置に鲭が発生したり、 ドレン水 (W) が室内へ滴下したりすることはない。 The drain water (W) is directly supplied to the regenerative heat exchanger (102) in the second air path as shown by the arrow (A2), or as shown by the arrow (A3). In the second air path, it is supplied to the upstream side of the regenerative heat exchanger (102) (in the figure, it is upstream of the adsorption elements (81, 82) on the adsorption side, but it may be downstream). To do It is possible. Furthermore, the drain water (¾ is supplied to the downstream side of the adsorbing element (81, 82) during the regeneration operation in the path of the second air as indicated by the arrow (A4). Even in these cases, the drain water (W) does not cause 鲭 in the equipment and the drain water (W) does not drop into the room.
《加湿運転時のドレン水処理》  《Drain water treatment during humidification operation》
次に、 加湿運転時のドレン水 (W) の処理について説明する。  Next, the treatment of drain water (W) during the humidification operation will be described.
図 9 ( b ) に示すように、 この調湿装置は、 加湿運転時に第 1空気が第 2熱交 換器 (104) を通過して着霜した際にデフロス ト運転を行って発生したドレン水 (W)を、除湿運転時と同様に第 2空気に含ませて室内に供給するようにしている。 具体的には、 上記ドレン水 (W) を、 符号 (B1) の矢印で示すように、 第 2空気 の経路中で再生熱交換器 (102) と再生動作中の吸着素子 (81, 82) の間に供給す ることができるように構成されている。 このように構成すると、 第 2熱交換器 (1 04) で発生したドレン水 (W) は、 再生熱交換器 (102) の下流側で、 該再生熱交 换器 (102) により加熱された第 2空気に含まれて、 室内へ供給される。 したがつ て、 ドレン水 (W) が原因で装置に鲭が発生したり、 ドレン水 (W) が室内へ滴下 したりすることはない。  As shown in Fig. 9 (b), this humidifier controls the drain generated by performing the defrost operation when the first air passes through the second heat exchanger (104) and forms frost during the humidification operation. Water (W) is contained in the second air and supplied to the room as in the dehumidifying operation. Specifically, as shown by the arrow (B1), the drain water (W) is combined with the regenerative heat exchanger (102) and the adsorption element (81, 82) during the regenerating operation in the second air path. It is configured to be able to supply during. With this configuration, the drain water (W) generated in the second heat exchanger (104) is heated by the regenerative heat exchanger (102) downstream of the regenerative heat exchanger (102). It is contained in the second air and is supplied indoors. Therefore, the drain water (W) does not cause 鲭 in the equipment and the drain water (W) does not drop into the room.
また、 上記ドレン水 (W) は、 符号 (B2) の矢印で示すように、 第 2空気の経路 中で再生熱交換器 (102) に直接供給したり、 符号 (B3) の矢印で示すように、 第 2空気の経路中で再生熱交換器(102) の上流側に供給したりすることも可能であ る。 さらに、 上記ドレン水 (W) は、 符号 (B4) の矢印で示すように、 第 2空気の 経路中で再生動作中の吸着素子(81, 82) の下流側に供給するように構成してもよ い。 これらの場合でも、 ドレン水 (W) が原因で装置に鲭が発生したり、 ドレン水 (W) が室内へ滴下したりすることはない。  The drain water (W) can be directly supplied to the regenerative heat exchanger (102) in the second air path as shown by the arrow (B2), or as shown by the arrow (B3). Alternatively, it can be supplied to the upstream side of the regenerative heat exchanger (102) in the path of the second air. Further, the drain water (W) is configured to be supplied to the downstream side of the adsorption element (81, 82) during the regeneration operation in the path of the second air, as indicated by the arrow (B4). It is good. Even in these cases, the drain water (W) does not cause 鲭 in the equipment and the drain water (W) does not drop into the room.
《加湿運転時のドレン水処理の変形例》  《Modification of drain water treatment during humidification operation》
加湿運転時には、 ドレン水 (W) を吸着側の第 1空気に戻すようにしてもよい。 この場合、 具体的には図 1 0に符号 (C) の矢印で示すように、 第 1空気中の水分 により第 2熱交換器 (104) で発生したドレン水 (W) は、 第 1空気の経路中で吸 着動作中の吸着素子 (81, 82) の上流側に供給される。 そして、 ドレン水 (W) は、 該第 1空気中に含まれて、 吸着素子 (81, 82) に吸着される。 03 00615 During the humidification operation, the drain water (W) may be returned to the first air on the adsorption side. In this case, specifically, as shown by the arrow (C) in FIG. 10, the drain water (W) generated in the second heat exchanger (104) by the moisture in the first air is converted into the first air Is supplied to the upstream side of the adsorption element (81, 82) that is performing the adsorption operation in the path. Then, the drain water (W) is contained in the first air and is adsorbed by the adsorption elements (81, 82 ). 03 00615
25 したがって、 上記と同様に、 ドレン水 (W) が原因で装置に鲭が発生したり、 ド レン水 (W) が室内へ滴下したりすることはない。 また、 この場合には吸着側で用 いている吸着素子 (81, 82) の水分吸着量が増えるため、 該素子 (81,82) を再生 側に切り換えたときの再生量が増えることとなり、 その結果、 加湿能力を高める ことが可能となる。 25 Therefore, in the same way as above, drain water (W) does not cause 鲭 in the equipment and drain water (W) does not drop into the room. Also, in this case, the amount of water adsorbed by the adsorption element (81, 82) used on the adsorption side increases, so that the amount of regeneration when the element (81, 82 ) is switched to the reproduction side increases. As a result, the humidification ability can be increased.
一実施形態 1の効果一  Effect of Embodiment 1
この実施形態 1の調湿装置では、 蒸発器である第 1, 第 2熱交換器 (103, 104) で発生したドレン水(W) を除湿運転時及び加湿運転時に第 2空気の経路に入れて 該第 2空気中で蒸発させるか、 もしくは加湿運転時に第 1空気の経路に入れて吸 着素子 (81, 82) で吸着させるようにしている。 このため、 蒸発器 (103, 10 か らドレン水 W が滴下してケーシング (10) 内に鲭が発生したり、 ケーシング (1In the humidity control apparatus of the first embodiment, the drain water (W) generated in the first and second heat exchangers (103, 104) as evaporators is introduced into the second air path during the dehumidifying operation and the humidifying operation. In the humidifying operation, the liquid is evaporated in the second air, or is introduced into the path of the first air to be adsorbed by the adsorbing elements (81, 82). As a result, drain water W drops from the evaporator (10 3 , 10), causing water to form inside the casing (10) or causing the casing (1
0) から室内ヘドレン水 (W) が滴下したりする問題を防止できる。 0), it is possible to prevent the problem that the indoor drain water (W) drops.
また、 ドレン水(W) を加湿運転時に第 1空気の経路に入れてこれを吸着素子(8 1, 82) で吸着する図 1 0の構成にすると、 吸着側と再生側を切り換えたときにこ の水分を第 2空気に与えることができるので、加湿量を増やすことが可能となる。 また、 本実施形態 1では、 2つの吸着素子 (81, 82) を用いてバッチ式の処理を 行うようにしているので加湿運転及ぴ除湿運転を連続して行うことができ、 さら に第 2空気を第 1空気の冷却用流体として利用しているので除湿運転時の吹き出 し温度が上昇するのも防止できる。  In addition, when the drain water (W) is introduced into the path of the first air during the humidifying operation and is adsorbed by the adsorbing element (81, 82), the configuration shown in Fig. 10 is used. Since this moisture can be given to the second air, the humidification amount can be increased. Further, in the first embodiment, since the batch-type treatment is performed by using the two adsorption elements (81, 82), the humidification operation and the dehumidification operation can be performed continuously. Since the air is used as the cooling fluid for the first air, it is possible to prevent the temperature of the blowout from increasing during the dehumidifying operation.
[実施形態 2 ]  [Embodiment 2]
上記実施形態 1の調湿装置では、 第 1空気の水分を吸着する際に発生する吸着 熱を冷却流体で回収するように構成しているが、 調湿装置は、 図 1 1に示すよう に、 吸着熱の回収を行わない吸着素子 (81,82) を用いた構成としてもよい。 この場合、 吸着素子 (81, 82) は、 図示しないが、 例えば平板部材 (83) と波板 部材 (84) とを交互に積層して直方体プロック状に構成するとともに、 全ての波 板部材 (84) の稜線の方向を揃えることにより調湿側通路 (85) のみが設けられ た構成となる。 そして、 この吸着素子 (81,82) では、 平板部材 (83) の両面と波 板部材 (84) の両面に吸着剤が塗布される。 The humidity control apparatus of the first embodiment is configured so that heat of adsorption generated when adsorbing moisture of the first air is recovered by the cooling fluid, but the humidity control apparatus is configured as shown in FIG. Alternatively, a configuration using an adsorption element (81, 82) that does not recover adsorption heat may be used. In this case, the suction elements (81, 82) are not shown, but, for example, a flat plate member (83) and a corrugated plate member (84) are alternately stacked to form a rectangular parallelepiped block, and all of the corrugated plate members ( By aligning the direction of the ridge line of (84), only the humidity control side passage (85) is provided. Then, in the adsorption element (8 1,82), the adsorbent is applied to both sides of double-sided and corrugated plate members of the plate member (8 3) (84).
この構成において、 図 1 1 ( a ) に示す除湿運転時には第 1空気が吸着素子 (8 1, 82) の一方を通過する際に水分が吸着されて減湿され、 この第 1空気が第 1熱 交換器(103) で冷却されて室内へ供給される。 また、第 2空気は再生熱交換器(1 02) で加熱された後、 吸着素子 (81, 82) の他方を通過し、 該素子 (81, 82) から 水分を脱離させて吸着素子 (81, 82) を再生する。 第 2空気は、 吸着素子を再生し た後、 室外へ放出される。 そして、 吸着側と再生側が交互に切り換えられて連続 運転が行われる。 In this configuration, during the dehumidifying operation shown in FIG. When passing through one of (1, 82), moisture is absorbed and dehumidified, and the first air is cooled by the first heat exchanger (103) and supplied to the room. Further, the second air is heated in the regenerative heat exchanger (102), passes through the other of the adsorption elements (81, 82), desorbs moisture from the elements (81, 82), and removes water from the adsorption elements (81, 82). 81, 82). The second air is released outside the room after regenerating the adsorption element. Then, the adsorption side and the regeneration side are alternately switched, and the continuous operation is performed.
また、 図 1 1 ( b ) に示す加湿運転時には第 2空気が再生熱交換器 (103) で加 熱された後、 吸着素子 (81, 82) の一方を通過し、 該吸着素子 (81,82) の水分を 吸収して加湿され、 室内へ供給される。 また、 第 1空気は、 吸着素子 (81, 82) の 他方を通過する際に水分が該吸着素子(81,82) に吸着され、第 2熱交換器(104) で冷媒と熱交換して冷却され、 室外へ放出される。 Further, after the second air was heated pressurized with regenerative heat exchanger (103) during the humidifying operation shown in FIG. 1 1 (b), passes through one of the adsorption element (81, 82), the adsorption element (8 1 , 82) to be humidified and supplied indoors. In addition, when the first air passes through the other of the adsorption elements (81, 82), moisture is adsorbed by the adsorption elements (81, 82), and the first air exchanges heat with the refrigerant in the second heat exchanger (104). It is cooled and released outside the room.
以上の構成において、 除湿運転時に蒸発器である第 1熱交換器(103) が結露し てドレン水 が発生すると、 該ドレン水 (W) は、 第 2空気の経路中に放出さ れて蒸発する。  In the above configuration, when the first heat exchanger (103), which is an evaporator, forms dew during the dehumidifying operation and drain water is generated, the drain water (W) is discharged into the second air passage and evaporated. I do.
具体的には、 上記ドレン水 (W) は、 符号 (A1)の矢印で示すように、 ドレンパン (71)、 ドレンポンプ (72)、 及びドレン配管 (73) 等によって、 第 2空気の経路 中で再生熱交換器 (102) と再生動作中の吸着素子 (81, 82) の間に供給される。 このよ うに構成すると、 第 1熱交換器 (103) で発生したドレン水 (¾ は、 再生 熱交換器 (102) の下流側で、 該再生熱交換器 (102) により加熱された第 2空気 に含まれて、 室外へ排出される。 したがって、 ドレン水 (W) が原因で装置に鲭が 発生したり、 ドレン水 (W) が室内へ滴下したりすることはない。  Specifically, as shown by the arrow (A1), the drain water (W) flows through the second air path through a drain pan (71), a drain pump (72), and a drain pipe (73). Is supplied between the regeneration heat exchanger (102) and the adsorption element (81, 82) during the regeneration operation. With this configuration, the drain water (¾) generated in the first heat exchanger (103) is the second air heated by the regenerative heat exchanger (102) downstream of the regenerative heat exchanger (102). Therefore, the water is not discharged from the room because of the drain water (W), and the drain water (W) does not drop into the room.
ドレン水 (W) は、 符号 (A2) の矢印で示すように、 第 2空気の経路中で再生熱 交換器 (102) に直接供給したり、 符号 (A3) の矢印で示すように、 第 2空気の経 路中で再生熱交換器 (102) の上流側に供給する.ことも可能であるし、 符号 (A4) の矢印で示すように、 第 2空気の経路中で再生動作中の吸着素子 (81, 82) の下流 側に供給することも可能である。 これらの場合でも、 ドレン水 (W) が原因で装置 に鲭が発生したり、 ドレン水 (¾ が室内へ滴下したりすることはない。  The drain water (W) is supplied directly to the regenerative heat exchanger (102) in the second air path as shown by the arrow (A2) or (2) It can be supplied to the upstream side of the regenerative heat exchanger (102) in the path of air. It is also possible to supply it during the regeneration operation in the path of the second air as shown by the arrow (A4). It can also be supplied downstream of the adsorption element (81, 82). Even in these cases, the drain water (W) does not cause 原因 in the equipment, nor does the drain water (¾) drop into the room.
また、 加湿運転時に蒸発器である第 2熱交換器 (104) でドレン水 (W) が発生 すると、 該ドレン水 W は、 同様に第 2空気の経路中に放出されて蒸発する。 3/00615 Further, when drain water (W) is generated in the second heat exchanger (104), which is an evaporator during the humidification operation, the drain water W is similarly discharged into the path of the second air and evaporated. 3/00615
27 具体的には、 上記ドレン水 (W) は、 符号(B1)の矢印で示すように、 第 2空気の 経路中で再生熱交換器 (102) と再生動作中の吸着素子 (81,82) の間に供給され る。 このように構成すると、 第 2熱交換器 (104) で発生したドレン水 (W) は、 再生熱交換器 (102) の下流側で、 該再生熱交換器 (102) により加熱された第 2 空気に含まれて、 室内へ供給される。 したがって、 ドレン水 が原因で装置に 鲭が発生したり、 ドレン水 (W) が室内へ滴下したりすることはない。 27 Specifically, as shown by the arrow (B1), the drain water (W) is connected to the regenerative heat exchanger (102) and the adsorption element (81, 82) during the regenerating operation in the path of the second air. ). With this configuration, the drain water (W) generated in the second heat exchanger (104) is downstream of the regenerative heat exchanger (102), and is discharged from the second heat exchanger (102). It is contained in air and is supplied indoors. Therefore, no water is generated in the equipment due to the drain water, and the drain water (W) does not drop into the room.
ドレン水 (W) は、 符号 (B2) や符号 (B3) の矢印で示すように、 第 2空気の経 路中で再生熱交換器 (102) に直接供給したり、 第 2空気の経路中で再生熱交換器 ( 102) の上流側に供給したりすることも可能であるし、 符号 (B4) の矢印で示す ように、 第 2空気の経路中で再生動作中の吸着素子 (81, 82) の下流側に供給する ことも可能である。 これらの場合でも、 ドレン水 (W) が原因で装置に鲭が発生し たり、 ドレン水 (W) が室内へ滴下したりすることはない。  The drain water (W) is supplied directly to the regenerative heat exchanger (102) in the path of the second air, as shown by the arrows of the signs (B2) and (B3), or in the path of the second air. It is possible to supply the gas to the upstream side of the regenerative heat exchanger (102) with the adsorber (81, 81) during the regenerating operation in the path of the second air as shown by the arrow (B4). It is also possible to supply to downstream side of (82). Even in these cases, the drain water (W) does not cause 鲭 in the equipment and the drain water (W) does not drop into the room.
さらに、 加湿運転時には、 ドレン水 W を図 1 1 ( b ) の符号 (C) の矢印で 示すように第 1空気の経路中で吸着素子(81, 82) の上流側に供給するようにして もよい。 このようにすると、 吸着側の吸着素子 (81, 82) での水分吸着量が増える ため、該吸着素子 (81, 82) を再生側に切り換えたときに第 2空気の加湿量を増や すことが可能となる。  Furthermore, during the humidification operation, the drain water W is supplied to the upstream side of the adsorption elements (81, 82) in the first air path as shown by the arrow (C) in FIG. 11 (b). Is also good. In this case, the amount of water adsorbed by the adsorbing element (81, 82) on the adsorbing side increases, so that when the adsorbing element (81, 82) is switched to the regenerating side, the amount of humidification of the second air is increased. It becomes possible.
[実施形態 3 ]  [Embodiment 3]
本発明の実施形態 3は、 図 1 2に示すように、 2つの吸着素子 (81, 82) を吸着 側と再生側で交互に切り換えて使用する代わりに、 ロータ状に形成した吸着素子 (以下、 吸着ロータという) (90) を用いるようにした例である。  In Embodiment 3 of the present invention, as shown in FIG. 12, instead of using the two adsorption elements (81, 82) alternately on the adsorption side and the regeneration side and using them, an adsorption element formed in a rotor shape (hereinafter, referred to as the adsorption element) is used. This is an example in which (90) is used.
この吸着ロータ (90) は、 回転軸 (91) を中心として連続的または間欠的に回 転するように構成されている。 吸着ロータ (90) は、 上記実施形態 2の吸着素子 (81, 82) を円板状にしたもので、 空気を除加湿する空気通路をその軸方向に沿つ て有している。 そして、 該吸着ロータ (90) は、 第 1空気側の空気流路と第 2空 気側の空気流路にまたがって配置されている。 なお、図示の例は吸着ロータ (90) に実施形態 1で説明した冷却側通路を設けていないが、 例えば吸着ロータの径方 向に沿って冷却側通路を設けてもよい。  The suction rotor (90) is configured to rotate continuously or intermittently about a rotation axis (91). The suction rotor (90) is formed by making the suction element (81, 82) of the second embodiment into a disk shape, and has an air passage for removing and humidifying air along the axial direction. The suction rotor (90) is disposed so as to extend over the first air side air flow path and the second air side air flow path. In the illustrated example, the cooling-side passage described in the first embodiment is not provided in the suction rotor (90). However, for example, the cooling-side passage may be provided along the radial direction of the suction rotor.
この構成において、 図 1 2 ( a ) に示すように、 除湿運転時には第 1空気が吸 着ロータ (90) の一部を通過する際に水分が吸着されて減湿され、 この第 1空気 が第 1熱交換器 (103) で冷却されて室内へ供給される。 また、 第 2空気 (RA) は 再生熱交換器 (102) で加熱された後、 吸着ロータ (90) の他の一部を通過し、 該 吸着ロータ (90) の水分を脱離させて該吸着ロータ (90) を再生する。 第 2空気 は、 吸着ロータ (90) を再生した後、 室外へ放出される。 In this configuration, as shown in Fig. 12 (a), the first air is sucked during the dehumidifying operation. Moisture is absorbed and dehumidified when passing through a part of the landing rotor (90), and the first air is cooled by the first heat exchanger (103) and supplied to the room. After the second air (RA) is heated in the regenerative heat exchanger (102), it passes through another part of the adsorption rotor (90), and desorbs water from the adsorption rotor (90). Regenerate suction rotor (90). The second air is released outside the room after regenerating the adsorption rotor (90).
上記吸着ロータ (90) は、 回転することにより吸着動作を行う部分と再生動作 を行う部分が連続的または断続的に変化する。 このため、 水分を吸着した部分を 再生した後、 再度吸着に用いることができるので、 連続運転が可能である。  As the suction rotor (90) rotates, the portion performing the suction operation and the portion performing the regeneration operation change continuously or intermittently. For this reason, the portion that has adsorbed moisture can be reused for re-adsorption after regenerating, thereby enabling continuous operation.
この除湿運転時に第 1熱交換器(103) が結露してドレン水(W) が発生すると、 該ドレン水 (W) は、 第 2空気の経路中に放出され、 蒸発する。 このため、 調湿装 置は、 上記各実施形態 1, 2と同様に、 上記ドレン水 (W) を符号 (A1) の矢印で 示すように第 2空気の経路中で再生熱交換器 (102) と吸着ロータ (90) の間に供 給するように構成されている。  During the dehumidifying operation, when the first heat exchanger (103) is dewed to generate drain water (W), the drain water (W) is discharged into the second air path and evaporates. For this reason, as in the first and second embodiments described above, the humidity control device transfers the drain water (W) to the regenerative heat exchanger (102) in the path of the second air as shown by the arrow (A1). ) And the suction rotor (90).
また、 調湿装置は、 ドレン水 W を、 符号 (A2) の矢印で示すように第 2空気 の経路中で再生熱交換器 (102) に直接供給したり、 符号 (A3) の矢印で示すよう に、 第 2空気の経路中で再生熱交換器 (102) の上流側に供給したりすることも可 能である。 さらに、 上記ドレン水 (W) は、 符号 (A4) の矢印で示すように、 第 2 空気の経路中で吸着ロータ (90) の下流側に供給するように構成してもよい。 —方、 加湿運転時には、 図 1 2 ( b ) に示すように第 2空気が再生熱交換器 (1 02) で加熱された後、 吸着ロータ (90) の一部を通過する。 これにより、 第 2空 気が該吸着ロータ (90) の水分を吸収して加湿され、 室内へ供給される。 また、 第 1空気は、 吸着ロータ (90) の他の一部を通過する際に水分が該吸着ロータ (9 0) に吸着され、 さらに第 2熱交換器(104) と熱交換した後に室外へ放出される。 そして、 この調湿装置は、 加湿運転時には、 第 1空気が第 2熱交換器 (104) を 通過することにより発生したドレン水 (W) 力 第 2空気の経路中に放出されて蒸 発するように構成されている。 具体的には、 上記ドレン水 は、 符号 (B1) の 矢印で示すように第 2空気の経路中で再生熱交換器 (102) と吸着ロータ (go) の 間に供給される。 また、 ドレン水 (W) は、 符号 (B2) の矢印で示すように第 2空 気の経路中で再生熱交換器 (102) に直接供給したり、 符号 (B3) の矢印で示すよ 5 In addition, the humidity control device supplies the drain water W directly to the regenerative heat exchanger (102) in the path of the second air as shown by the arrow (A2) or the drain water W as shown by the arrow (A3). In this way, it is also possible to supply to the upstream side of the regenerative heat exchanger (102) in the path of the second air. Further, the drain water (W) may be configured to be supplied to the downstream side of the adsorption rotor (90) in the path of the second air as indicated by an arrow (A4). On the other hand, during the humidification operation, as shown in Fig. 12 (b), the second air is heated by the regenerative heat exchanger (102) and then passes through a part of the adsorption rotor (90). As a result, the second air absorbs the moisture of the suction rotor (90), is humidified, and is supplied indoors. In addition, when the first air passes through another part of the adsorption rotor (90), moisture is adsorbed by the adsorption rotor (90), and after the first air exchanges heat with the second heat exchanger (104), the outdoor air is removed. Released to In the humidifying operation, the humidifier operates such that the first air passes through the second heat exchanger (104), and the drain water (W) generated by the first air passes through the second heat exchanger (104). Is configured. Specifically, the drain water is supplied between the regenerative heat exchanger (102) and the adsorption rotor (go) in the path of the second air as indicated by the arrow (B1). The drain water (W) is supplied directly to the regenerative heat exchanger (102) in the second air path as indicated by the arrow (B2), or may be indicated by the arrow (B3). Five
29 うに再生熱交換器 (102) の上流側に供給したり、 符号 (B4) の矢印で示すように 吸着ロータ (90) の下流側に供給したりすることも可能である。 さらに、 上記ド レン水 (¾ は、 加湿運転時には符号 (C) の矢印で示すように第 1空気の経路中 に放出して蒸発させるようにしてもよい。 29, it is possible to supply to the upstream side of the regenerative heat exchanger (102), or to supply to the downstream side of the adsorption rotor (90) as shown by the arrow (B4). Further, the drain water (¾) may be discharged into the path of the first air and evaporated during the humidification operation as shown by an arrow (C).
本実施形態においても、 除湿運転時に第 1熱交換器 (103) で発生したドレン水 (W) は、 第 2空気に含まれて、 室外へ排出される。 また、 加湿運転時に第 2熱交 換器 (104) で発生したドレン水 は、 第 1空気中または第 2空気中に供給さ れる。 したがって、 ドレン水 (W) が原因で装置に鲭が発生したり、 ドレン水 (W) が室内へ滴下したりすることはない。  Also in the present embodiment, the drain water (W) generated in the first heat exchanger (103) during the dehumidifying operation is included in the second air and discharged outside the room. Drain water generated in the second heat exchanger (104) during the humidification operation is supplied to the first air or the second air. Therefore, the drain water (W) does not cause 鲭 in the equipment and the drain water (W) does not drop into the room.
[その他の実施形態]  [Other embodiments]
本発明は、 上記実施形態について、 以下のような構成としてもよい。  The present invention may be configured as follows in the above embodiment.
例えば、 上記各実施形態は、 除湿運転と加湿運転の両方を行えるように構成し た調湿装置に関するものであるが、 除湿運転のみ、 あるいは加湿運転のみを行う 装置に本発明を適用しても、 ドレン水 (W) に関する問題の発生を防止することは 可能である。 産業上の利用可能性  For example, each of the above embodiments relates to a humidity control device configured to perform both the dehumidifying operation and the humidifying operation. However, the present invention is applicable to a device that performs only the dehumidifying operation or only the humidifying operation. However, it is possible to prevent problems related to drain water (W). Industrial applicability
以上のように、 本発明は、 調湿装置に対して有用である。  As described above, the present invention is useful for a humidity control device.

Claims

請 求 の 範 囲 The scope of the claims
1 . 吸着剤を有して該吸着剤を空気と接触させる吸着素子 (81, 82) (90) と、 冷 媒を循環させて冷凍サイクルを行う冷媒回路 (100) とを備え、 1. An adsorbent element (81, 82) (90) having an adsorbent and bringing the adsorbent into contact with air, and a refrigerant circuit (100) for circulating a refrigerant and performing a refrigeration cycle,
第 1空気を吸着素子 (81, 82) (90) と冷媒回路 (100) の蒸発器 (103, 104) と に通過させる吸着動作と、 第 2空気を冷媒回路 (100) の凝縮器 (102) と吸着素 子 (81, 82) (90) とに通過させる再生動作とを行い、 第 1空気を室内へ供給して 第 2空気を排出する除湿運転と、 第 2空気を室内へ供給して第 1空気を排出する 加湿運転との少なくとも一方が可能に構成された調湿装置であって、  An adsorption operation in which the first air passes through the adsorption element (81, 82) (90) and the evaporator (103, 104) in the refrigerant circuit (100), and a second air flows through the condenser (102) in the refrigerant circuit (100). ) And the adsorbing elements (81, 82) (90) to perform a regeneration operation to supply the first air to the room and discharge the second air, and to supply the second air to the room. A humidifying device configured to be capable of at least one of a humidifying operation and discharging a first air,
第 1空気中の水分により蒸発器 (103, 104) で発生したドレン水 (W) を、 第 2 空気の経路中に放出して蒸発させるように構成されていることを特徴とする調湿  Humidity control characterized in that drain water (W) generated in the evaporator (103, 104) by moisture in the first air is discharged into the second air path and evaporated.
2 . 蒸発器 (103, 104) で発生したドレン水 (W) を、 第 2空気の経路中で凝縮 器 (102) と再生動作中の吸着素子 (81, 82) (90) の間に供給するように構成され ていることを特徴とする請求項 1記載の調湿装置。 2. Drain water (W) generated in the evaporator (103, 104) is supplied between the condenser (102) and the adsorbing elements (81, 82) (90) during regeneration in the second air path. 2. The humidity control apparatus according to claim 1, wherein the humidity control apparatus is configured to perform the humidity control.
3 . 蒸発器 (103, 104) で発生したドレン水 (W) を、 第 2空気の経路中で凝縮 器(102) またはその上流側に供給するように構成されていることを特徴とする請 求項 1記載の調湿装置。 3. A contractor characterized in that drain water (W) generated in the evaporator (103, 104) is supplied to the condenser (102) or the upstream side thereof in the second air path. The humidity control device according to claim 1.
4 . 蒸発器 (103, 104) で発生したドレン水 (W) を、 第 2空気の経路中で再生 動作中の吸着素子 (81, 82) (90) の下流側に供給するように構成されていること を特徴とする請求項 1記載の調湿装置。 4. It is configured to supply the drain water (W) generated in the evaporator (103, 104) to the downstream side of the adsorbing elements (81, 82) (90) during the regeneration operation in the second air path. The humidity control apparatus according to claim 1, wherein:
5 . 吸着剤を有して該吸着剤を空気と接触させる吸着素子 (81, 82) (90) と、 冷媒を循環させて冷凍サイクルを行う冷媒回路 (100) とを備え、 5. An adsorbing element (81, 82) (90) having an adsorbent and bringing the adsorbent into contact with air, and a refrigerant circuit (100) for circulating a refrigerant to perform a refrigeration cycle,
第 1空気を吸着素子 (81, 82) (90) と冷媒回路 (100) の蒸発器 (103, 104) と に通過させる吸着動作と、 第 2空気を冷媒回路 (100) の凝縮器 (102) と吸着素 子 (81, 82) (90) とに通過させる再生動作とを行い、 少なくとも第 2空気を室内 へ供給して第 1空気を排出する加湿運転が可能に構成された調湿装置であって、 第 1空気中の水分により蒸発器 (103, 104) で発生したドレン水 W を、 加湿 運転時に、 第 1空気の経路中に放出して蒸発させるように構成されていることを 特徴とする調湿装置。 An adsorption operation in which the first air passes through the adsorption element (81, 82) (90) and the evaporator (103, 104) in the refrigerant circuit (100), and a second air passes through the condenser (102) in the refrigerant circuit (100). ) And adsorbent And a humidifying operation configured to perform a humidifying operation of supplying at least the second air into the room and discharging the first air, The drainage water W generated in the evaporator (103, 104) by the moisture in the first air is discharged into the first air path and evaporated during the humidification operation. Wet equipment.
6 . 蒸発器 (103, 104) で発生したドレン水 (W) を、 第 1空気の経路中で吸着 動作中の吸着素子 (81, 82) (90) の上流側に供給するように構成されていること を特徴とする請求項 5記載の調湿装置。 6. It is configured to supply the drain water (W) generated in the evaporator (103, 104) to the upstream side of the adsorbing elements (81, 82) (90) in the adsorbing operation in the path of the first air. The humidity control apparatus according to claim 5, wherein:
7 . 第 1吸着素子 (81) と第 2吸着素子 (82) とを備え、 7. Equipped with a first adsorption element (81) and a second adsorption element (82),
第 1吸着素子 (81) で吸着動作を行うとともに第 2吸着素子 (82) で再生動作 を行う第 1動作と、 第 2吸着素子 (82) で吸着動作を行うとともに第 1吸着素子 (81) で再生動作を行う第 2動作とを交互に切り換え、 第 1空気または第 2空気 を室内へ供給するように構成されていることを特徴とする請求項 1から 6のいず れか 1記載の調湿装置。  The first operation in which the first adsorption device (81) performs the adsorption operation and the second adsorption device (82) performs the regeneration operation, and the second adsorption device (82) performs the adsorption operation and the first adsorption device (81) The method according to any one of claims 1 to 6, wherein the first operation or the second operation is performed alternately by switching between the second operation and the first operation. Humidity control device.
8 . 吸着素子 (81, 82) は、 第 1空気または第 2空気が交互に切り換えられて流 れる調湿側通路 (85) と、 冷却用流体が流れる冷却側通路 (86) とを備え、 該吸着素子 (81) は、 第 1空気と冷却用流体とが熱交換を行って、 吸着素子 (8 1, 82) における第 1空気の吸着熱を冷却用流体で回収するように構成されている ことを特徴とする請求項 7記載の調湿装置。 8. The adsorption element (81, 82) includes a humidity control side passageway (85) through which the first air or the second air alternately flows, and a cooling side passageway (86) through which a cooling fluid flows. The adsorbing element (81) is configured to exchange heat between the first air and the cooling fluid, and to recover the heat of adsorption of the first air in the adsorbing element (81, 82) with the cooling fluid. The humidity control apparatus according to claim 7, wherein
9 . 吸着素子 (90) は、 ロータ状に構成されるとともに第 1空気の経路と第 2 空気の経路にまたがって配置され、 9. The adsorbing element (90) is configured in a rotor shape and is disposed across the path of the first air and the path of the second air.
上記吸着素子 (90) を連続的または断続的に回転させながら第 1空気の経路側 での吸着動作と第 2空気の経路側での再生動作とを同時に行い、 第 1空気または 第 2空気を室内へ供給するように構成されていることを特徴とする請求項 1から 6のいずれか 1記載の調湿装置。  While the adsorbing element (90) is continuously or intermittently rotated, the adsorbing operation on the path of the first air and the regenerating operation on the path of the second air are simultaneously performed, and the first air or the second air is discharged. 7. The humidity control device according to claim 1, wherein the humidity control device is configured to be supplied to a room.
PCT/JP2003/000615 2002-02-06 2003-01-23 Humidity controller WO2003067158A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003211885A AU2003211885A1 (en) 2002-02-06 2003-01-23 Humidity controller

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-29065 2002-02-06
JP2002029065A JP3807319B2 (en) 2002-02-06 2002-02-06 Humidity control device

Publications (1)

Publication Number Publication Date
WO2003067158A1 true WO2003067158A1 (en) 2003-08-14

Family

ID=27677877

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/000615 WO2003067158A1 (en) 2002-02-06 2003-01-23 Humidity controller

Country Status (3)

Country Link
JP (1) JP3807319B2 (en)
AU (1) AU2003211885A1 (en)
WO (1) WO2003067158A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007141901A1 (en) * 2006-06-09 2007-12-13 Japan Exlan Company Limited Humidity controller
CN103373002A (en) * 2012-04-16 2013-10-30 深圳门德科技有限公司 Modified wet curtain paper, air purification assembly and air conditioner
CN103512096A (en) * 2012-06-29 2014-01-15 太仓南极风能源设备有限公司 Vertical cabinet type air conditioner

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3646722B2 (en) 2003-08-18 2005-05-11 ダイキン工業株式会社 Humidity control device
JP4225181B2 (en) * 2003-10-21 2009-02-18 ダイキン工業株式会社 Humidity control device
JP4792829B2 (en) * 2005-06-20 2011-10-12 ダイキン工業株式会社 Humidity control device
JP2007198641A (en) * 2006-01-25 2007-08-09 Daikin Ind Ltd Floor-mounted air conditioning indoor unit
JP2011106717A (en) * 2009-11-16 2011-06-02 Mitsubishi Electric Corp Air conditioning device
JP5906708B2 (en) * 2011-12-13 2016-04-20 ダイキン工業株式会社 Humidity control device
JP5496238B2 (en) * 2012-03-29 2014-05-21 三菱電機株式会社 Air conditioner

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001059629A (en) * 1999-08-20 2001-03-06 Mitsubishi Electric Corp Air conditioner
JP2001241693A (en) * 2000-02-25 2001-09-07 Daikin Ind Ltd Air conditioner
JP2002022206A (en) * 2000-07-07 2002-01-23 Daikin Ind Ltd Humidity control device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001059629A (en) * 1999-08-20 2001-03-06 Mitsubishi Electric Corp Air conditioner
JP2001241693A (en) * 2000-02-25 2001-09-07 Daikin Ind Ltd Air conditioner
JP2002022206A (en) * 2000-07-07 2002-01-23 Daikin Ind Ltd Humidity control device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007141901A1 (en) * 2006-06-09 2007-12-13 Japan Exlan Company Limited Humidity controller
JP2007327712A (en) * 2006-06-09 2007-12-20 Japan Exlan Co Ltd Humidity control system
CN103373002A (en) * 2012-04-16 2013-10-30 深圳门德科技有限公司 Modified wet curtain paper, air purification assembly and air conditioner
CN103512096A (en) * 2012-06-29 2014-01-15 太仓南极风能源设备有限公司 Vertical cabinet type air conditioner

Also Published As

Publication number Publication date
AU2003211885A1 (en) 2003-09-02
JP3807319B2 (en) 2006-08-09
JP2003227629A (en) 2003-08-15

Similar Documents

Publication Publication Date Title
KR100742074B1 (en) Humidity controller
WO2003046441A1 (en) Humidity controller
JP3709815B2 (en) Air conditioner
US20230022397A1 (en) Air quality adjustment system
JP3992051B2 (en) Air conditioning system
WO2005036063A1 (en) Air conditioner
WO2005036061A1 (en) Air conditioner
WO2006135068A1 (en) Humidity control device
WO2005095868A1 (en) Moisture conditioning device
JP3695417B2 (en) Humidity control device
JP3807319B2 (en) Humidity control device
JP2003232539A (en) Humidity controller
US7874174B2 (en) Humidity control system
WO2000016016A1 (en) Dehumidifying air conditioner and dehumidifying air conditioning system
JP2005164148A (en) Humidity conditioning device
JP3807320B2 (en) Humidity control device
JP2004060954A (en) Humidity controller
WO2005008140A1 (en) Moisture conditioner
JP3649196B2 (en) Humidity control device
JP2005140372A (en) Air conditioner
JP2002018228A (en) Humidity controlling apparatus
JP2005188915A (en) Humidity controller
JP2003232538A (en) Humidity controller
JP2005164220A (en) Air conditioner
JP4179052B2 (en) Humidity control device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase