JP2004190907A - Desiccant air-conditioner with multistage indirect heat exchanging device - Google Patents

Desiccant air-conditioner with multistage indirect heat exchanging device Download PDF

Info

Publication number
JP2004190907A
JP2004190907A JP2002357543A JP2002357543A JP2004190907A JP 2004190907 A JP2004190907 A JP 2004190907A JP 2002357543 A JP2002357543 A JP 2002357543A JP 2002357543 A JP2002357543 A JP 2002357543A JP 2004190907 A JP2004190907 A JP 2004190907A
Authority
JP
Japan
Prior art keywords
air
passage
water
outside air
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002357543A
Other languages
Japanese (ja)
Inventor
Kenichi Konno
賢一 今野
Original Assignee
Earth Clean Tohoku:Kk
株式会社ア−スクリ−ン東北
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Earth Clean Tohoku:Kk, 株式会社ア−スクリ−ン東北 filed Critical Earth Clean Tohoku:Kk
Priority to JP2002357543A priority Critical patent/JP2004190907A/en
Publication of JP2004190907A publication Critical patent/JP2004190907A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1423Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant with a moving bed of solid desiccants, e.g. a rotary wheel supporting solid desiccants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1032Desiccant wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/104Heat exchanger wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1056Rotary wheel comprising a reheater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1072Rotary wheel comprising two rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1084Rotary wheel comprising two flow rotor segments

Abstract

<P>PROBLEM TO BE SOLVED: To provide a desiccant air-conditioner superior in cooling performance and less in installation costs and running costs. <P>SOLUTION: An introduction part having an introduction passage for introducing outside air to be guided into a room and an exhaust part having an exhaust passage for exhausting the outside air or regenerated outside air mixed with return air from room air after treated are formed with a partition wall. A dehumidifying rotor 3 having the function of dehumidifying the outside air introduced from the introduction part via the introduction passage while sucking the regenerated air in the exhaust passage to decrease its temperature is arranged extending over the introduction passage and the exhaust passage. A sensible heat rotor 9 or a perpendicular heat exchanger 30 having the function of keeping the outside air at a proper temperature and a low humidity is laid on an air supply side of supplying the outside air dehumidified by the dehumidifying rotor, as required. The outside air passing through the introduction passage is supplied into the room via a multistage indirect heat exchanging device 2. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、空調システム等に使用される水の気化熱を利用した多段式間接型熱交換装置を備えたデシカント空調装置に関する。
【0002】
【従来の技術】
近年、太陽熱や排熱をエネルギー源とする空調システムにデシカント空調システムがある。このデシカント空調システムは、除湿ロータと顕熱交換ロータの2つのロータを備えている。除湿ロータは回転面にシリカゲル等の無機吸湿剤を塗布した除湿器であり、顕熱交換ロータは伝熱性の良好な材料を組み込んだ回転式の熱交換器である。
顕熱交換ロータ使用せずに、間接式気化蒸発器を使用する除湿空調装置が提案されている(特許文献1参照)。
【0003】
【特許文献1】特開平11−132500号公報
【0004】
前記特許文献1に記載される方法は、アフタークーラーを使用することは、当然のことながらそのためのエネルギーを使用することであり、不経済であるという問題があった。さらに、顕熱交換ロータを使用することで、再生側より若干の湿度を持ち込むため、せっかく除湿ロータで下げた湿度を上げてしまうという問題もあった。
【0005】
そこで、この問題を解決する手段として、この除湿空調装置は、デシカントロータにより、水分を吸収される処理空気(冷却空気)の経路と熱源によって加熱されたのち水分吸着のデシカントを通過してデシカントの中の水分を着脱して再生する再生空気(除湿乾燥空気)の経路と、デシカント後の処理空気と熱交換して処理空気を冷却する冷却空気の経路を有し、デシカントを処理空気と再生空気が交互に流通するようにした除湿空調装置において、処理空気と冷却空気とを熱交換させる熱交換器の冷却空気側の伝熱面に液状の水分を供給して伝熱面を水分で濡らす手段を設けたもので、顕熱ロータを経由した処理空気をプレート式の直交流形熱交換器を使用して、冷却空気側の伝熱面に液状の水分を供給して冷却するものである。
【0006】
【発明が解決しようとする課題】
しかしながら、特許文献1の従来の気化蒸発器においては、水を霧状にして伝熱面を水分で濡らす手段(アトマイザー装置)が必要とされ、そのための設備費用がかかるという問題があつた。
また、上記アトマイザー装置により、常時霧状の水を噴霧するために、相当量の水を必要とし、ランニングコストか高くなるという問題もあった。
【0007】
本発明は、上述した従来の問題点に鑑みなされたもので、冷却能力に優れ、しかも設備コストやランニングコストが安価な多段式間接型熱交換装置を備えたデシカント空調装置を提供するものである。
【0008】
【課題を解決するための手段】
上記課題を達成するために本発明におけるデシカント空調装置は、外気を導入し室内に導く導入通路を有する導入部と、外気または室内空気からの還気と外気と混合した再生外気を処理して排出する排気通路を有する排気部とを隔壁を設けて形成し、前記導入部から導入された外気が導入通路を経由して除湿すると共に他方、排気通路の再生外気を吸引して温度を下げる機能を有する除湿ロータを前記導入通路と前記排気通路とに跨がって配置し、この除湿ロータによって除湿された外気を室内へ供給する給気側にこの外気を適温、低湿度にする機能を有する顕熱ロータまたは直交型熱交換器を必要に応じて介在し、この導入通路を通過した外気が多段式間接型熱交換装置を経由して室内側に給気され、他方、排出部の排気通路に吸引された外気または室内からの還気と外気と混合した再生外気を加熱する温水コイル、除湿ロータを経由して排気、又は前記顕熱ロータ若しくは前記直交型熱交換器を経由した還気または再生外気をさらに加熱する前記温水コイル、前記除湿ロータを通過させて排気するように形成されている構成である。
【0009】
本発明の前記課題は、多段式間接型熱交換装置が隔壁により互いに隔絶された複数の空気通路が設けられた熱交換部と、前記熱交換部の近傍に配設され水を貯水する水槽部とからなり、複数の前記空気通路a、bを平行な層状に形成し、一方の空気通路aは乾燥した空気を導入し、冷却して排出する供給通路となし、この空気通路aと直行する方向に形成される隣接する他方の空気通路bには水分を吸収し易い吸水性物質が配置され、前記吸水性物質は前記水槽部の水に浸され、前記空気通路aを形成する隔壁には複数の通気孔が形成されている構成によって達成できる。
【0010】
また、前記課題は、直交型熱交換器が、隔壁により互いに隔絶された複数の空気通路a、bが設けられた熱交換部と、この熱交換部の近傍に配設され水を貯水する水槽部と、からなり、複数の前記空気通路a、bを平行な層状に形成し、一方の空気通路aは乾燥した空気を導入し、冷却して排出する供給通路となし、この空気通路aと直行する方向に形成される隣接する他方の空気通路bには水分を吸収し易い吸水性物質が配置され、前記吸水性物質は前記水槽部の水に浸されたものであるデシカント空調装置の構成で達成できる。
【0011】
このように構成されたデシカント空調装置は、冷却が必要な乾燥した高温の空気は、気化する湿気を含んだ空気の気化現象により効率良く顕熱が奪われるので、空調に適合する適正な温度の空気を得ることが可能となり、水槽部の水も気化蒸発で使用されるので、大量に必要とせず、乾燥した空気の一部を湿った空気の通路に流入することにより、気化蒸発現象を促進し、一層冷却効果を高めることが可能となる。
【0012】
このように構成されたデシカント空調装置は、多段式間接型熱交換装置を備えているので、少ない伝熱面積で飛躍的に大きな冷却能力を発揮することができ、省コストでコンパクトに形成することが可能となる。
【0013】
【発明の実施の形態】
本発明に係るデシカンと空調装置の実施の形態を図面に示す実施形態に基づいて詳細に説明する。
図1は本発明係るデシカント空調装置の1つの実施形態を示す概略説明図、図2は第2の実施形態の概略説明図である。図3は第3の実施形態を示す概略説明図、図4は本発明のデシカント空調装置に使用する熱交換装置の概略説明図、図5は図4の多段式間接型熱交換装置の要部を示す斜視図、図6は図5のY−Y断面構造を示す要部拡大説明図、図7は本発明デシカンと空調装置に使用する直交型熱交換器の実施形態の要部拡大側面図である。
【0014】
本発明のデシカント空調装置は、図1に示されるようなデシカント空調装置は、給気送風機4により給気口1から導入された外気を除湿ロータ3にて乾燥し、高温化された空気を多段式間接熱交換装置2にて冷却し室内側に給気する。この室内からの還気と外気と混合した再生外気または100%外気が、フィルタ5を通過して導入され、温水コイル6を経由して除湿ロータ3を通過させ、排気送風機7により排気される。
除湿ロータ3に供給される再生外気を加熱する前記温水コイル6は通常ボイラーを使用した蒸気による加熱した温水を循環させるものであるが、マイクロガスタービン、ディゼルエンジン、発電機などの排熱機器を利用した温水によって再生外気などを加熱してもよい。また、このユニット本体A内にガスバーナを配置して直火で空気を温めるようにしてもよい。
この温水コイル6により加熱された空気を除湿ロータ3に供給し、除湿ロータ3で通過する排気(再生外気)を冷却させて排気送風機7により排気口8より排気される。
【0015】
図2に示す第2の実施形態のデシカント空調装置は、導入通路側で除湿ロータ3を通過した乾燥した給気を適温、適湿にする顕熱ロータ9を配置し、更に、多段式間接型熱交換装置2を導入通路側のみに配置してあり、その他の構成は図1と全く同一である。
この場合は、1100%外気または室内からの還気と外気と混合した再生外気がフィルタ5を通して排気通路に吸引されて、顕熱ロータ9において冷却されて温水コイル6により加熱され除湿ロータ3を経由して排気送風機7によって排気口8より排気される。
【0016】
図3は第3の実施形態を示し、図2の顕熱ロータ9に置き換えて直交型熱交換器30を配置したデシカント空調装置である。この直交型熱交換器30は図6、図7に示されるように隔壁により互いに隔絶された複数の空気通路a,bが設けられた熱交換部と、この熱交換部の近傍に配設され水を貯水する水槽部と、からなり、互に直交した複数の前記空気通路a、bを平行な層状に形成し、一方の空気通路aは乾燥した空気を導入し、冷却して排出する供給通路となし、この空気通路aと直行する方向に形成される隣接する他方の空気通路bには水分を吸収し易い吸水性物質が配置され、前記吸水性物質は前記水槽部の水に浸されたものでこの詳細については後述する。この場合、外気を導入し、除湿ロータ3によって高温化された給気は冷却され、多段式間接型熱交換装置2によって温度が下げられ、適温、適湿の空気を室内に送気することになる。このような多段式間接型熱交換装置2による熱交換によるため電気量やガス消費量を低減することが出来る。
【0017】
本発明のデシカント空調装置に使用する多段式間接型熱交換装置2について説明する。
図4は多段式間接型熱交換装置2の実施例である。上方に配置した熱交換部20と熱交換部20の下部に配設された水槽部21とから構成されている。熱交換部20は、アルミ等の金属ケースの内部に熱伝導率の良好なアルミや銅等の金属やプラスチック等から薄く形成された複数の隔壁22をスタック状に設けたものである。この隔壁22の一方の側には空気通路aである通路23が形成されており、他方の側には水分を吸収し易い不織布等の吸水性物質24が交互に配置され、前記通路23に直交する空気通路bである排気路25を形成している。そしてこの吸水物質24は水槽部21の水に浸されている。
【0018】
また、熱交換部20は、図5に示すように、手前側が外気(または還気)の吸入口となっており、除湿ロータ3を通った高温の乾いた空気が吸入される。そして、吸入口の反対側が吐出口となっており、この吐出口から吐出した空気を室内に供給する給気として利用する。この熱交換部20で温度の下げられた空気が室内に導入されるようになっている。さらに、この熱交換部20の上面には、排気路を通過する排気が排出する蒸発孔が形成されている。そして、この熱交換部20の下部には水槽部21が配置され、これに浸された吸水性物質24が熱交換部20に配置し、排気路25に空気を供給するための供給口が設けられている。
【0019】
排気送風機7により排気路25に空気を供給する。従って、通路23を通る高温の乾燥した空気と排気路25を通る湿気を含んだ空気の方向は、互いに直交する方向となっており、排気路25を通過する排気によって隔壁22は冷却され、この隔壁22に接触して通路23を通過する高温の乾燥した空気は効率よく冷却されるようになっている。
【0020】
熱交換部20の下部に配設された水槽部21は、水道水等の貯水タンクであり、図示しない給水パイプにより水道水等が供給され、図示しないレベルセンサにより常に水面が一定レベルに保たれるようになっている。この水槽部21の水に浸された吸水性物質24は、例えば、フェルト等の不織布から形成されており、水分を吸収し易いので、水槽部21の水は吸水性物質24の毛管現象により、常に上部の熱交換部20に配置した隔壁22の位置まで上昇し、排気路25内の吸水性物質24に達する。
【0021】
このように構成された多段式間接型熱交換装置2は、通路23には除湿ロータを経由した高温(65°C)の乾いた空気(絶対湿度8g/Kg)が通り、排気路5には、水分を含んだ空気が通ることとなる。そして排気路25を通る水分を含んだ湿った空気は、薄い隔壁22を介して通路23の高温で乾燥した空気と間接的に接することとなり、水分を含んだ湿った空気は気化現象を起こして水分が蒸発する。この蒸発気化現象により気化熱が奪われることとなる。この気化熱が奪われることにより隔壁22が冷却され、通路23を通る高温で乾燥した空気が冷却され、温度(顕熱)が下がるものである。
【0022】
また、この状態においては、通路23の乾燥した空気は、排気路25の湿った空気と直接触れないので、その湿度(潜熱)は下がらずそのままの状態が保たれる。従って、この熱交換部1に吸入された高温で乾燥した空気は、この熱交換部20の中を通過する段階で顕熱が下がり、一般の空調に必要な20〜25°Cにすることができる。
【0023】
さらに、熱交換部20は冷却効果を高めるために、図6に示すように、通路3と排気路25の間の隔壁22に複数の通気孔22aが形成されており、乾燥した空気の一部(25〜30%程度)を排気路25に導入されるようになっている。そのため、通路23の乾燥した高温の除湿乾燥空気は、直接湿った吸水性物質24に当たるので、さらに気化現象を促進して冷却効果を高めることが可能となる。また、この状態においても通路23内の乾燥した空気は、排気路25の湿った空気と直接触れることはないので、その湿度(潜熱)は下がらずそのままの状態が保たれる。
【0024】
このように構成されたデシカント空調装置は、水のみを冷媒とする多段式間接型熱交換装置2を備えたことで飛躍的に冷却を向上することができ、このデシカント空調装置は、複雑な機構ユニットを追加する必要がないのでコスト的にも安価となり、熱エネルギーを有効に使用することから熱エネルギーの節約もできる。
【0025】
本発明のデシカント空調装置に用いられる前述の直交型熱交換器30について説明する。
図4に示されるような水槽部21の上側に配置した熱交換部20の構成において、隔壁32(22)によって空気通路33(23)を形成してあり、この空気通路33(23)に直交する方向に外気を導入し、反対側に排気する空気通路35(25)内に吸水性物質34(24)を配置してある。
【0026】
このような直交型熱交換器30を顕熱ロータ9の代わりに利用することにより水の気化熱を利用するから廉価なデシカント空調装置を製造することができる。特に、前記多段式間接型熱交換装置との併用は好ましい。
【0027】
本発明のデシカント空調装置は、多段式間接型熱交換装置を一体化してユニットにおいて説明したが、該多段式間接型熱交換装置を分離して、接続管によって連結して配置し、従来のデシカント空調装置に連結して使用することもできる。例えば、ダクトによって連結して相互に空気を循環するようにして利用することができる。このように多段式間接型熱交換装置を併設することにより空調コストを低減することができる。
【0028】
【発明の効果】
以上説明したように、本発明に係わる多段式間接型熱交換装置を備えたデシカンと空調装置は、隔壁により互いに隔絶された複数の空気通路が設けられた熱交換部と、前記熱交換部の下部に配設され水を貯水する水槽部とから構成され、隣接する一方の空気通路は乾燥した空気の通路となし、隣接する他方の空気通路には水分を吸収し易い吸水性物質が配置され、前記吸水性物質は前記水槽部の水に浸され、前記通路の隔壁には複数の孔が穿孔される構成にしたことにより、冷却に必要な乾燥した高温の空気は、気化する湿気を含んだ空気が直接触れ合うことなく気化現象により顕熱のみが効率良く奪われるのでデシカント空調装置として廉価に製造することができる。
【0029】
更に、本発明におけるデシカント空調装置は、前記隣接する空気通路の空気の流れは、互いに直交する方向なので、乾燥した高温の空気と気化蒸発する湿気を含んだ空気とは互いに直交する方向に動くので、効率よく冷却することができる。
【図面の簡単な説明】
【図1】本発明係る多段式間接型熱交換装置を備えたデシカント空調装置の1つの実施形態を示す概略説明図である。
【図2】第2の実施形態の概略説明図である。
【図3】第3の実施形態を示す概略説明図である。
【図4】本発明のデシカント空調装置に使用する熱交換装置の概略説明図である。
【図5】図4の多段式間接型熱交換装置の要部を示す斜視図である。
【図6】図5のY−Y線断面構造を示す要部拡大説明図である。
【図7】本発明デシカンと空調装置に使用する直交型熱交換器の実施形態の要部拡大側面図である。
【符号の説明】
1 給気口
2 多段式間接型熱交換装置
3 除湿ロータ
4 給気送風機
5 フィルター
6 温水コイル
7 排気送風機
8 排気口
9 顕熱ロータ
20 熱交換部
21 水槽部
22 隔壁
22a 通気孔
23,33 通路
24、34 吸水性物質
25 排気路
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a desiccant air conditioner provided with a multi-stage indirect heat exchange device utilizing heat of vaporization of water used in an air conditioning system or the like.
[0002]
[Prior art]
In recent years, there is a desiccant air conditioning system as an air conditioning system using solar heat or exhaust heat as an energy source. This desiccant air conditioning system includes two rotors, a dehumidification rotor and a sensible heat exchange rotor. The dehumidifying rotor is a dehumidifier having a rotating surface coated with an inorganic desiccant such as silica gel, and the sensible heat exchange rotor is a rotary heat exchanger incorporating a material having good heat conductivity.
A dehumidifying air conditioner using an indirect evaporator without using a sensible heat exchange rotor has been proposed (see Patent Document 1).
[0003]
[Patent Document 1] JP-A-11-132500
The method described in Patent Document 1 has a problem that using an aftercooler naturally uses energy for that purpose, which is uneconomical. Furthermore, since the use of the sensible heat exchange rotor brings a little humidity from the regeneration side, there is also a problem that the humidity lowered by the dehumidification rotor is increased.
[0005]
Therefore, as a means for solving this problem, this dehumidifying air conditioner uses a desiccant rotor to heat the treated air (cooling air) path through which heat is absorbed by a heat source, and then passes through a desiccant for adsorbing moisture to remove the desiccant. It has a path for regeneration air (dehumidified dry air) for removing and regenerating moisture inside, and a path for cooling air for cooling the processing air by heat exchange with the processing air after desiccant. In a dehumidifying air-conditioning system in which air flows alternately, means for supplying liquid moisture to the heat transfer surface on the cooling air side of the heat exchanger for exchanging heat between processing air and cooling air to wet the heat transfer surface with moisture The processing air that has passed through the sensible heat rotor is cooled by using a plate-type cross-flow heat exchanger to supply liquid moisture to the heat transfer surface on the cooling air side.
[0006]
[Problems to be solved by the invention]
However, the conventional vaporization evaporator disclosed in Patent Document 1 requires a means (atomizer device) for atomizing water and wetting the heat transfer surface with moisture, which has a problem that the equipment cost is high.
Further, there is a problem that a considerable amount of water is required in order to constantly spray mist-like water by the above-mentioned atomizer device, and the running cost is increased.
[0007]
The present invention has been made in view of the above-described conventional problems, and provides a desiccant air conditioner having a multi-stage indirect heat exchange device that has excellent cooling capacity, and has low equipment costs and running costs. .
[0008]
[Means for Solving the Problems]
In order to achieve the above object, a desiccant air conditioner according to the present invention has an introduction portion having an introduction passage for introducing outside air and leading it into a room, and processing and discharging regenerated outside air mixed with outside air or return air from room air and outside air. An exhaust portion having an exhaust passage to be formed is formed by providing a partition, and the outside air introduced from the introduction portion is dehumidified through the introduction passage, and on the other hand, a function of lowering the temperature by sucking the regenerated outside air in the exhaust passage. A dehumidifying rotor having a function of adjusting the temperature of the outside air to an appropriate temperature and low humidity on the air supply side for supplying the outside air dehumidified by the dehumidification rotor to a room, disposed over the introduction passage and the exhaust passage. A heat rotor or an orthogonal heat exchanger is interposed as necessary, and the outside air passing through the introduction passage is supplied to the indoor side via a multi-stage indirect heat exchange device, while the outside air is supplied to an exhaust passage of a discharge unit. Sucked Hot water coil for heating the regenerated outside air mixed with the returned air from the room or the outside air and the outside air, exhausted through the dehumidifying rotor, or returned air or regenerated outside air via the sensible heat rotor or the orthogonal heat exchanger. The hot water coil to be heated and the dehumidification rotor are configured to pass through and exhaust air.
[0009]
The object of the present invention is to provide a heat exchange unit in which a multistage indirect heat exchange device is provided with a plurality of air passages separated from each other by a partition, and a water tank unit arranged near the heat exchange unit for storing water. A plurality of the air passages a and b are formed in parallel layers, and one of the air passages a serves as a supply passage for introducing dry air, cooling and discharging the same, and is orthogonal to the air passage a. A water-absorbing substance that easily absorbs moisture is disposed in the other adjacent air passage b formed in the direction, and the water-absorbing substance is immersed in the water in the water tank section, and a partition wall that forms the air passage a This can be achieved by a configuration in which a plurality of ventilation holes are formed.
[0010]
In addition, the problem is that an orthogonal heat exchanger is provided with a heat exchange section provided with a plurality of air passages a and b separated from each other by a partition, and a water tank arranged near the heat exchange section to store water. A plurality of the air passages a and b are formed in parallel layers, and one of the air passages a is a supply passage for introducing dry air, cooling and discharging the air passage, and the air passage a In the other air passage b formed in the direction perpendicular to the air passage b, a water-absorbing substance that easily absorbs water is arranged, and the water-absorbing substance is immersed in the water in the water tank. Can be achieved.
[0011]
In the desiccant air conditioner configured as described above, the dry high-temperature air that needs to be cooled efficiently loses sensible heat due to the vaporization phenomenon of the air containing the vaporized moisture. Air can be obtained, and the water in the water tank is also used for vaporization and evaporation.Thus, a large amount is not required, and a part of the dry air flows into the passage of the humid air to promote the vaporization and evaporation phenomenon. In addition, the cooling effect can be further enhanced.
[0012]
Since the desiccant air conditioner thus configured has a multi-stage indirect heat exchange device, it can exhibit a remarkably large cooling capacity with a small heat transfer area, and can be made compact at low cost. Becomes possible.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of a desiccant and an air conditioner according to the present invention will be described in detail based on an embodiment shown in the drawings.
FIG. 1 is a schematic explanatory diagram showing one embodiment of a desiccant air conditioner according to the present invention, and FIG. 2 is a schematic explanatory diagram of a second embodiment. 3 is a schematic explanatory diagram showing a third embodiment, FIG. 4 is a schematic explanatory diagram of a heat exchange device used in a desiccant air conditioner of the present invention, and FIG. 5 is a main part of the multistage indirect heat exchange device of FIG. FIG. 6 is an enlarged explanatory view of a main part showing a cross-sectional structure taken along line YY of FIG. 5, and FIG. 7 is an enlarged side view of a main part of an embodiment of the orthogonal heat exchanger used in the desiccant and air conditioner of the present invention. It is.
[0014]
The desiccant air conditioner according to the present invention is a desiccant air conditioner as shown in FIG. 1, in which the outside air introduced from the air supply port 1 by the air supply blower 4 is dried by the dehumidifying rotor 3, and the high temperature air is multistaged. The air is cooled by the indirect heat exchange device 2 and supplied to the indoor side. Regenerated outside air or 100% outside air mixed with return air and outside air from the room is introduced through the filter 5, passed through the dehumidifying rotor 3 via the hot water coil 6, and exhausted by the exhaust blower 7.
The hot water coil 6 for heating the regeneration outside air supplied to the dehumidifying rotor 3 is for circulating hot water heated by steam using a normal boiler. However, exhaust heat devices such as a micro gas turbine, a diesel engine, and a generator are used. The regenerated outside air or the like may be heated by the used hot water. Further, a gas burner may be arranged in the unit main body A to heat the air by direct fire.
The air heated by the hot water coil 6 is supplied to the dehumidification rotor 3, and the exhaust gas (regeneration outside air) passing through the dehumidification rotor 3 is cooled and exhausted from the exhaust port 8 by the exhaust blower 7.
[0015]
The desiccant air conditioner according to the second embodiment shown in FIG. 2 is provided with a sensible heat rotor 9 for adjusting the temperature of the dry air supplied through the dehumidifying rotor 3 to an appropriate temperature and an appropriate humidity on the introduction passage side. The heat exchange device 2 is arranged only on the introduction passage side, and the other configuration is exactly the same as that of FIG.
In this case, 1100% outside air or regenerated outside air mixed with outside air from the room and outside air is sucked into the exhaust passage through the filter 5, cooled in the sensible heat rotor 9, heated by the hot water coil 6, and passed through the dehumidification rotor 3. Then, the air is exhausted from the exhaust port 8 by the exhaust blower 7.
[0016]
FIG. 3 shows a third embodiment, which is a desiccant air conditioner in which an orthogonal heat exchanger 30 is arranged in place of the sensible heat rotor 9 of FIG. As shown in FIGS. 6 and 7, the orthogonal heat exchanger 30 is provided with a heat exchange section provided with a plurality of air passages a and b separated from each other by a partition wall, and is disposed near the heat exchange section. A plurality of air passages a and b, which are orthogonal to each other, are formed in a parallel layer, and one of the air passages a introduces dry air, and cools and discharges the air. A water-absorbing substance that easily absorbs moisture is arranged in the other air path b adjacent to the air path a and formed in a direction perpendicular to the air path a, and the water-absorbing substance is immersed in the water in the water tank section. The details will be described later. In this case, the outside air is introduced, the supply air heated by the dehumidification rotor 3 is cooled, the temperature is reduced by the multi-stage indirect heat exchanger 2, and the air of the appropriate temperature and humidity is supplied to the room. Become. Since heat is exchanged by the multistage indirect heat exchange device 2, the amount of electricity and gas consumption can be reduced.
[0017]
The multistage indirect heat exchanger 2 used in the desiccant air conditioner of the present invention will be described.
FIG. 4 shows an embodiment of the multistage indirect heat exchange device 2. It comprises a heat exchange section 20 disposed above and a water tank section 21 disposed below the heat exchange section 20. The heat exchanging section 20 is formed by stacking a plurality of thin partitions 22 made of a metal such as aluminum or copper or a plastic having good thermal conductivity inside a metal case such as aluminum. On one side of the partition wall 22, passages 23, which are air passages a, are formed. On the other side, water-absorbing substances 24 such as nonwoven fabrics which easily absorb moisture are alternately arranged. An exhaust passage 25 which is an air passage b is formed. The water absorbing substance 24 is immersed in the water in the water tank 21.
[0018]
As shown in FIG. 5, the heat exchange section 20 has a suction port for outside air (or return air) on the front side, and high-temperature dry air passing through the dehumidification rotor 3 is sucked. The opposite side of the suction port is a discharge port, and the air discharged from the discharge port is used as air supply for supplying indoors. The air whose temperature has been lowered in the heat exchange section 20 is introduced into the room. Further, on the upper surface of the heat exchange section 20, there is formed an evaporation hole through which the exhaust gas passing through the exhaust path is discharged. A water tank section 21 is arranged below the heat exchange section 20, and a water absorbing substance 24 immersed in the water tank section 21 is arranged in the heat exchange section 20, and a supply port for supplying air to an exhaust path 25 is provided. Have been.
[0019]
Air is supplied to the exhaust path 25 by the exhaust blower 7. Therefore, the directions of high-temperature dry air passing through the passage 23 and moisture-containing air passing through the exhaust passage 25 are orthogonal to each other, and the exhaust gas passing through the exhaust passage 25 cools the partition wall 22. High-temperature dry air passing through the passage 23 in contact with the partition wall 22 is efficiently cooled.
[0020]
A water tank section 21 provided below the heat exchange section 20 is a water storage tank for tap water or the like. Tap water or the like is supplied by a water supply pipe (not shown), and the water level is always maintained at a constant level by a level sensor (not shown). It is supposed to be. The water-absorbing substance 24 immersed in the water of the water tank 21 is formed of, for example, a nonwoven fabric such as felt, and easily absorbs moisture. It always rises to the position of the partition wall 22 arranged in the upper heat exchange section 20 and reaches the water absorbing substance 24 in the exhaust path 25.
[0021]
In the multistage indirect heat exchanger 2 configured as described above, high-temperature (65 ° C.) dry air (absolute humidity 8 g / Kg) passes through the passage 23 through the dehumidification rotor, and the exhaust passage 5 Therefore, air containing moisture will pass through. Then, the moist air containing moisture passing through the exhaust passage 25 comes into indirect contact with the high-temperature dry air in the passage 23 via the thin partition wall 22, and the moist air containing moisture causes a vaporization phenomenon. The water evaporates. Heat of vaporization is deprived by this vaporization phenomenon. The removal of the heat of vaporization cools the partition wall 22, cools the high-temperature dried air passing through the passage 23, and lowers the temperature (sensible heat).
[0022]
In this state, the dry air in the passage 23 does not directly contact the humid air in the exhaust passage 25, so that the humidity (latent heat) does not decrease and the state is maintained. Accordingly, the high-temperature and dry air sucked into the heat exchange unit 1 has a reduced sensible heat when passing through the heat exchange unit 20, and the temperature may be reduced to 20 to 25 ° C. necessary for general air conditioning. it can.
[0023]
Further, as shown in FIG. 6, a plurality of ventilation holes 22a are formed in the partition wall 22 between the passage 3 and the exhaust passage 25 so as to enhance the cooling effect. (About 25 to 30%) is introduced into the exhaust path 25. Therefore, the dry high-temperature dehumidified dry air in the passage 23 directly hits the moist water-absorbing substance 24, so that the vaporization phenomenon can be further promoted and the cooling effect can be enhanced. Further, even in this state, the dry air in the passage 23 does not directly contact the humid air in the exhaust passage 25, so that the humidity (latent heat) does not decrease and the state is maintained.
[0024]
The desiccant air conditioner configured as described above can dramatically improve cooling by including the multi-stage indirect heat exchange device 2 using only water as a refrigerant, and the desiccant air conditioner has a complicated mechanism. Since there is no need to add a unit, the cost is low, and thermal energy can be saved by effectively using thermal energy.
[0025]
The above-described orthogonal heat exchanger 30 used in the desiccant air conditioner of the present invention will be described.
In the configuration of the heat exchange unit 20 disposed above the water tank unit 21 as shown in FIG. 4, an air passage 33 (23) is formed by the partition 32 (22), and is orthogonal to the air passage 33 (23). A water-absorbing substance 34 (24) is arranged in an air passage 35 (25) for introducing outside air in a direction to be exhausted and exhausting the air to the opposite side.
[0026]
By using such an orthogonal heat exchanger 30 instead of the sensible heat rotor 9, the heat of vaporization of water is used, so that an inexpensive desiccant air conditioner can be manufactured. Particularly, the combined use with the multi-stage indirect heat exchanger is preferable.
[0027]
Although the desiccant air conditioner of the present invention has been described as a unit by integrating a multi-stage indirect heat exchanger, the multi-stage indirect heat exchanger is separated and connected and connected by a connection pipe, and a conventional desiccant air conditioner is used. It can also be used in connection with an air conditioner. For example, they can be used by being connected by a duct and circulating air with each other. By providing the multi-stage indirect heat exchanger in this manner, the cost of air conditioning can be reduced.
[0028]
【The invention's effect】
As described above, the desiccant and the air conditioner including the multi-stage indirect heat exchange device according to the present invention include a heat exchange unit provided with a plurality of air passages separated from each other by a partition, A water tank disposed at a lower portion for storing water, one of the adjacent air passages serves as a dry air passage, and a water-absorbing substance that easily absorbs moisture is disposed in the other adjacent air passage. The water-absorbing substance is immersed in the water in the water tank section, and a plurality of holes are formed in the partition wall of the passage, so that the dry high-temperature air required for cooling contains moisture that evaporates. Since only the sensible heat is efficiently removed by the vaporization phenomenon without direct contact with the air, the desiccant air conditioner can be manufactured at low cost.
[0029]
Further, in the desiccant air conditioner according to the present invention, since the air flows in the adjacent air passages are orthogonal to each other, the dry high-temperature air and the air containing the moisture that evaporates and evaporate move in the orthogonal directions. , Can be cooled efficiently.
[Brief description of the drawings]
FIG. 1 is a schematic explanatory view showing one embodiment of a desiccant air conditioner equipped with a multistage indirect heat exchange device according to the present invention.
FIG. 2 is a schematic explanatory diagram of a second embodiment.
FIG. 3 is a schematic explanatory view showing a third embodiment.
FIG. 4 is a schematic explanatory view of a heat exchange device used in the desiccant air conditioner of the present invention.
FIG. 5 is a perspective view showing a main part of the multistage indirect heat exchanger of FIG. 4;
FIG. 6 is an enlarged explanatory view of a main part showing a cross-sectional structure taken along line YY of FIG. 5;
FIG. 7 is an enlarged side view of a main part of an embodiment of the orthogonal heat exchanger used for the desiccant and the air conditioner of the present invention.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 air supply port 2 multi-stage indirect heat exchanger 3 dehumidification rotor 4 air supply blower 5 filter 6 hot water coil 7 exhaust air blower 8 exhaust port 9 sensible heat rotor 20 heat exchange unit 21 water tank unit 22 partition wall 22a ventilation holes 23, 33 passage 24, 34 water absorbing substance 25 exhaust path

Claims (4)

  1. 外気を導入し室内に導く導入通路を有する導入部と、外気または室内空気からの還気と混合した再生外気を処理して排出する排気通路を有する排気部とを隔壁を設けて形成し、前記導入部から導入された外気が導入通路を経由して除湿すると共に他方、排気通路の再生外気を吸引して温度を下げる機能を有する除湿ロータを前記導入通路と前記排気通路とに跨がって配置し、この除湿ロータによって除湿された外気を室内へ供給する給気側にこの外気を適温、低湿度にする機能を有する顕熱ロータまたは直交型熱交換器を必要に応じて介在し、この導入通路を通過した外気が多段式間接型熱交換装置を経由して室内側に給気され、他方、排出部の排気通路に吸引された外気または室内からの還気と外気と混合した再生外気とを加熱する温水コイル、除湿ロータを経由して排気、又は前記顕熱ロータ若しくは前記直交型熱交換器を経由した還気または再生外気をさらに加熱する前記温水コイル、前記除湿ロータを通過させて排気するようにしたことを特徴とする多段式間接型熱交換装置を備えたデシカント空調装置。An introduction portion having an introduction passage for introducing outside air and leading to the inside of the room, and an exhaust portion having an exhaust passage for processing and discharging the regeneration outside air mixed with the return air from the outside air or the room air, are formed by providing a partition wall, The outside air introduced from the introduction unit is dehumidified via the introduction passage, and on the other hand, a dehumidification rotor having a function of lowering the temperature by sucking the regenerated outside air in the exhaust passage straddles the introduction passage and the exhaust passage. A sensible heat rotor or an orthogonal heat exchanger having a function of adjusting the temperature of the outside air to an appropriate temperature and a low humidity on the air supply side for supplying the outside air dehumidified by the dehumidification rotor to the room is provided as necessary. Outside air that has passed through the introduction passage is supplied to the room interior via the multistage indirect heat exchange device, and on the other hand, regenerated outside air mixed with the outside air sucked into the exhaust passage of the discharge unit or the return air from the room and the outside air And to heat the hot water Exhaust air via the dehumidification rotor, or the hot water coil for further heating the return air or regeneration outside air via the sensible heat rotor or the orthogonal heat exchanger, and the exhaust gas is exhausted through the dehumidification rotor. A desiccant air conditioner equipped with a multi-stage indirect heat exchanger.
  2. 前記多段式間接型熱交換装置が、隔壁により互いに隔絶された複数の空気通路を平行な層状に形成し、一方の空気通路は乾燥した空気を導入し、冷却して排出する供給通路となし、この空気通路aと直行する方向に形成される隣接する他方の空気通路bには水分を吸収し易い吸水性物質が配置され、前記吸水性物質は水槽部の水に浸され、前記空気通路aを形成する隔壁には複数の通気孔が形成されている構成であることを特徴とする請求項1に記載の多段式間接型熱交換装置を備えたデシカント空調装置。The multi-stage indirect heat exchange device forms a plurality of air passages separated from each other by partition walls in parallel layers, and one of the air passages is a supply passage for introducing dry air, cooling and discharging, A water-absorbing substance that easily absorbs water is arranged in the other air path b adjacent to the air path a and formed in a direction perpendicular to the air path a. The water-absorbing substance is immersed in water in a water tank, and the air path a The desiccant air conditioner provided with a multi-stage indirect heat exchange device according to claim 1, wherein a plurality of ventilation holes are formed in a partition wall forming the air conditioner.
  3. 前記直交型熱交換器が、隔壁により互いに隔絶された複数の空気通路が設けられた熱交換部と、この熱交換部の近傍に配設され水を貯水する水槽部と、からなり、複数の前記空気通路を平行な層状に形成し、一方の空気通路a乾燥した空気を導入し、冷却して排出する供給通路となし、この空気通路aと直行する方向に形成される隣接する他方の空気通路bには水分を吸収し易い吸水性物質が配置され、前記吸水性物質は前記水槽部の水に浸されたものであることを特徴する請求項1に記載の多段式間接型熱交換装置を備えたデシカント空調装置。The orthogonal heat exchanger includes a heat exchange unit provided with a plurality of air passages separated from each other by a partition, and a water tank unit that is disposed near the heat exchange unit and stores water. The air passage is formed in a parallel layer, and one of the air passages a serves as a supply passage for introducing dry air, cooling and discharging the air, and the other air adjacent to the air passage a formed in a direction perpendicular to the air passage a. 2. The multi-stage indirect heat exchanger according to claim 1, wherein a water-absorbing substance that easily absorbs water is disposed in the passage b, and the water-absorbing substance is immersed in water in the water tank. Desiccant air conditioner equipped with.
  4. 前記空気通路B内に配置する吸水性物質が不織布であることを特徴とする請求項2または請求項3に記載の多段式間接型熱交換装置を備えたデシカント空調装置。The desiccant air conditioner provided with the multi-stage indirect heat exchange device according to claim 2 or 3, wherein the water-absorbing substance disposed in the air passage B is a nonwoven fabric.
JP2002357543A 2002-12-10 2002-12-10 Desiccant air-conditioner with multistage indirect heat exchanging device Pending JP2004190907A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002357543A JP2004190907A (en) 2002-12-10 2002-12-10 Desiccant air-conditioner with multistage indirect heat exchanging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002357543A JP2004190907A (en) 2002-12-10 2002-12-10 Desiccant air-conditioner with multistage indirect heat exchanging device

Publications (1)

Publication Number Publication Date
JP2004190907A true JP2004190907A (en) 2004-07-08

Family

ID=32757515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002357543A Pending JP2004190907A (en) 2002-12-10 2002-12-10 Desiccant air-conditioner with multistage indirect heat exchanging device

Country Status (1)

Country Link
JP (1) JP2004190907A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007255780A (en) * 2006-03-23 2007-10-04 Earth Clean Tohoku:Kk Desiccant air conditioning system utilizing solar energy
JP2007315712A (en) * 2006-05-26 2007-12-06 Max Co Ltd Air conditioning system and building
JP2010145007A (en) * 2008-12-18 2010-07-01 Kansai Electric Power Co Inc:The Desiccant air conditioning system, and method for desiccant air conditioning using the same
CN104896623A (en) * 2015-06-11 2015-09-09 南京迪泽尔空调设备有限公司 Structure of solution humidity adjusting fresh air unit
JP2015190633A (en) * 2014-03-27 2015-11-02 大阪瓦斯株式会社 Air-cooling and dehumidification system
CN105202657A (en) * 2015-10-17 2015-12-30 南京迪泽尔空调设备有限公司 Non-water-replenishing solution dehumidifier and dehumidification regeneration method thereof
CN112032883A (en) * 2020-08-14 2020-12-04 上海交通大学 Fresh air conditioning system driven by condensation waste heat and operation method thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007255780A (en) * 2006-03-23 2007-10-04 Earth Clean Tohoku:Kk Desiccant air conditioning system utilizing solar energy
JP2007315712A (en) * 2006-05-26 2007-12-06 Max Co Ltd Air conditioning system and building
JP4645529B2 (en) * 2006-05-26 2011-03-09 マックス株式会社 Air conditioner and building
JP2010145007A (en) * 2008-12-18 2010-07-01 Kansai Electric Power Co Inc:The Desiccant air conditioning system, and method for desiccant air conditioning using the same
JP2015190633A (en) * 2014-03-27 2015-11-02 大阪瓦斯株式会社 Air-cooling and dehumidification system
CN104896623A (en) * 2015-06-11 2015-09-09 南京迪泽尔空调设备有限公司 Structure of solution humidity adjusting fresh air unit
CN104896623B (en) * 2015-06-11 2019-04-05 南京迪泽尔空调设备有限公司 A kind of structure of solution humidifying Fresh air handling units
CN105202657A (en) * 2015-10-17 2015-12-30 南京迪泽尔空调设备有限公司 Non-water-replenishing solution dehumidifier and dehumidification regeneration method thereof
CN112032883A (en) * 2020-08-14 2020-12-04 上海交通大学 Fresh air conditioning system driven by condensation waste heat and operation method thereof

Similar Documents

Publication Publication Date Title
US9518784B2 (en) Indirect evaporative cooler using membrane-contained, liquid desiccant for dehumidification
JP4816267B2 (en) Humidity control device
US20130340449A1 (en) Indirect evaporative cooler using membrane-contained liquid desiccant for dehumidification and flocked surfaces to provide coolant flow
JP2004190907A (en) Desiccant air-conditioner with multistage indirect heat exchanging device
KR101071350B1 (en) Hybrid desiccant cooling oac system for cleanroom
KR101749194B1 (en) Air-conditioner capable of heating and humidity control and the method thereof
JP3559255B2 (en) Desiccant air conditioner with indirect heat exchanger
JP2007255780A (en) Desiccant air conditioning system utilizing solar energy
JP4077251B2 (en) Dehumidifier
KR100611645B1 (en) Desiccant cooling system using desiccant rotor and heat pipe
JP3635295B2 (en) Air conditioner
JP2002235933A (en) Air conditioner
KR101782839B1 (en) Air-conditioner capable of cooling and humidity control and the method thereof
WO2004081462A1 (en) Air conditioning method using liquid desiccant
JP2002147794A (en) Dehumidifying air conditioner
KR20090121618A (en) Dehumidifying air conditioner
JPH10176842A (en) Air conditioner
JP2000257907A (en) Dehumidifying apparatus
JP2006145092A (en) Air conditioning system and building
CN210197589U (en) Fresh air dehumidifier air duct system
JP2004116856A (en) Multistage indirect heat exchanger and desiccant air conditioner provided therewith
KR100947617B1 (en) Dehumidifying air conditioner
JP2980603B1 (en) Dehumidifying air conditioner and dehumidifying method
JPH11132681A (en) Air-conditioning equipment
JP2007253060A (en) Dehumidifier rotor and desiccant air-conditioner equipped with dehumidifier rotor

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20050616

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050628

A521 Written amendment

Effective date: 20050829

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051018