JP4330843B2 - Gas-liquid contact device - Google Patents

Gas-liquid contact device Download PDF

Info

Publication number
JP4330843B2
JP4330843B2 JP2002135293A JP2002135293A JP4330843B2 JP 4330843 B2 JP4330843 B2 JP 4330843B2 JP 2002135293 A JP2002135293 A JP 2002135293A JP 2002135293 A JP2002135293 A JP 2002135293A JP 4330843 B2 JP4330843 B2 JP 4330843B2
Authority
JP
Japan
Prior art keywords
water
gas
liquid contact
contact
honeycomb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002135293A
Other languages
Japanese (ja)
Other versions
JP2003326102A (en
Inventor
忠弘 大見
泰雪 白井
功 寺田
智 美濃部
稔久 岡部
直樹 森
宏 伊藤
恵英 若山
秀夫 花岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Nichias Corp
Original Assignee
Taisei Corp
Nichias Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=29697657&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP4330843(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Taisei Corp, Nichias Corp filed Critical Taisei Corp
Priority to JP2002135293A priority Critical patent/JP4330843B2/en
Publication of JP2003326102A publication Critical patent/JP2003326102A/en
Application granted granted Critical
Publication of JP4330843B2 publication Critical patent/JP4330843B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、斜行ハニカムを用いた空気冷却装置、空気清浄装置及び加湿装置等の気液接触装置に関するものである。
【0002】
【従来の技術】
従来より、冷却塔や気液接触塔等においては、気液接触板を多数並設した気液接触ユニットに散水管から散水して、水を気液接触板の表面に流す方法が知られている。
【0003】
例えば、特開平8−219684号公報には、散水管から気液接触手段に散水する方法としては、散水管に複数の散水穴を設けて散水穴から吐出した棒状の水流が当たる位置に平面または曲面を有する面状体を設け、面状体で水流を膜状に広げた状態で充填材等の気液接触手段に流下させる冷却塔の散水装置が開示されている。また、散水管からの水流を無数の散水穴を有する目皿に当て、そこで水流を広げると共に無数の散水穴から水を流下させる方法等も知られている。
【0004】
【発明が解決しようとする課題】
しかしながら、これらの装置や方法は、水の流下量の場所によるばらつきが大きく、気液接触手段へ水を均一に流下できないため、気液気液接触効率がよくなかった。
【0005】
従って、本発明の目的は、気液接触効率が高い気液接触装置を提供することにある。
【0006】
【課題を解決するための手段】
かかる実情において、本発明者は鋭意検討を行った結果、斜行ハニカム、所定の散水手段及び受水部を有する気液接触ユニットと、送風手段とを備える気液接触装置であれば、気液接触を効率よく行えることを見出し、本発明を完成するに至った。
【0007】
すなわち、本発明は、前後両面と上下両面とが開口し、前面開口部から接触用空気が導入されると共に後面開口部から接触後空気が排出されるように配置される斜行ハニカム、該斜行ハニカムの上面開口部へ接触用水を供給する散水手段、及び該斜行ハニカムの下面開口部から排出される接触後水を受ける受水部を有する気液接触ユニットと、前記斜行ハニカムの前面開口部に接触用空気を導入し該斜行ハニカムの後面開口部から接触後空気を排出する送風手段とを備える気液接触装置であって、
前記散水手段は、水平方向が壁面で囲まれる枠体、複数の上部透水孔が穿設されると共に前記枠体の上部に前記壁面と隙間なく配置される上部孔空板、及び複数の下部透水孔が穿設されると共に前記枠体の下部に前記壁面と隙間なく且つ前記上部孔空板と略平行に離間して配置される下部孔空板からなる水分配部と、前記上部孔空板に水を供給する散水管とを有し、
前記上部透水孔1個当りの面積が、前記下部透水孔1個当りの面積の10〜95%であること、
を特徴とする気液接触装置を提供するものである。
【0008】
【発明の実施の形態】
まず、本発明の第1の実施の形態における気液接触装置について図1及び図2を参照して説明する。図1は本発明に係る気液接触装置の第1の実施形態を模式的に示す斜視図であり、図2は図1においてA−A線で切断した断面を模式的に示す断面図である。図1及び図2中、1は気液接触装置、2は散水手段、3は斜行ハニカム、4は受水パン(受水部)、5は気液接触ユニット、101は斜行ハニカム上面開口部、102は斜行ハニカム後面開口部、103は斜行ハニカム前面開口部、104は斜行ハニカム下面開口部である。第1の実施形態において気液接触装置1は、散水手段2、斜行ハニカム3及び受水パン4を有する気液接触ユニット5と図示しない送風手段とを備えるものである。
【0009】
気液接触ユニット5に用いられる斜行ハニカム3は、一方向に向かって伝播する波形形状を有する波形シート21、22(以下、「コルゲート状シート」ともいう。)が複数積層されてハニカム形状を呈するものであって、積層されるコルゲート状シート21、22は波の伝播方向が一枚おきに斜めに交差するように積層され、且つ、二層おきのシートの波の伝播方向がそれぞれ略同一方向になるように配置されたハニカム状体である。
【0010】
該斜行ハニカム3は、コルゲート状シート21、22に平行な面に対して垂直な4面101〜104で切断して直方体を形成し、且つ、該切断面がコルゲート状シートの波の伝播方向と平行でなく、且つ、垂直でもないようにした場合、該直方体を切断面の1つ104を下面にし、且つ、コルゲート状シートの最外層105、106をそれぞれ左右面にして載置すると、切断面である前後両面102、103及び上下両面101、104の4面は全てハニカムセルが開口し、左右面105、106はコルゲート状シートで閉じられた構造を有する。すなわち、斜行ハニカム3は、前後両面102、103と、上下両面101、104とが開口する構造を有するものである。また、該切断面の、例えば前後両面102、103は、斜め上方向に延設されるセルと斜め下方向に延設されるセルとが一層おきに形成される。斜め方向に延設されるセルの前後両面からみた場合の空気の流入、流出方向(水平方向)に対する斜め角度(図1中、符号X)は、通常15〜45度、好ましくは25〜35度の範囲内にする。上記斜め角度が該範囲内にあると、流下速度が適度の範囲となり気液接触効率が向上するため好ましい。
【0011】
上記斜行ハニカム3において、積層されたコルゲート状シートの一層おきの波の伝播方向が互いに交差する角度(図1中、符号Y)は、通常30〜90度、好しくは50〜70度である。このようにコルゲート状シートを上記角度範囲内で交差するように積層すると、上記のように斜め角度(図1中、符号X)を上記の15〜45度とした場合に、接触用空気及び接触用水がハニカムセルと実質的に接触する面積が大きくなるため、接触用空気と接触用水との気液接触効率が高くなるため好ましい。すなわち、後述のように、本発明において、接触用空気は斜行ハニカム3の前面開口部103から導入され、また、接触用水は上面開口部101から散水手段2により供給され斜行ハニカムのコルゲート状シートに浸透し、且つ、該コルゲート状シートの極く表面をゆっくりと下方に流下するため、接触用空気の通気方向と浸透壁面の接触用水の流下方向とが適度の角度を保持し、気液接触効率が高くなる。なお、本発明において、接触用空気又は接触用水とは、気液接触前及び気液接触中の空気又は水を意味し、接触後空気又は接触後水とは、気液接触後の空気又は水を意味する。
【0012】
本発明で用いられる斜行ハニカムのセルの高さ、すなわち、波形の山と谷間の寸法を示すセルの山高寸法は、通常2.5〜8.0mm、好ましくは3〜5mmである。セルの山高寸法が2.5mm未満であると製造が困難であり、圧力損失が大きくなるため好ましくない。また、セルの山高寸法が8.0mmを越えると気液接触効率が低下するため好ましくない。
【0013】
斜行ハニカムのコルゲート状シートの状態におけるセルの幅、すなわち、セルピッチは、通常6〜16mm、好ましくは7〜10mmである。また、斜行ハニカムの前面開口部と後面開口部との間の寸法、すなわち、斜行ハニカムの厚さ(t)は、通常100〜1000mm、好ましくは200〜800mmである。該厚さが100mm未満であると、気液接触効率が低下するため好ましくなく、該厚さが1000mmを越えると気液接触効率がこれ以上向上せず、圧力損失が大きくなるため好ましくない。なお、本発明において、斜行ハニカムの厚さは、斜行ハニカムを複数枚使用する場合には、この合計の厚さが上記範囲内のものであればよい。例えば、厚さが300mmの斜行ハニカムを用いる場合には、厚さが100mmの斜行ハニカムを3枚厚さ方向に重ねて合計の厚さを300mmとしてもよい。なお、気液接触手段として斜行ハニカムを用いると、体積当りの熱交換率が従来用いられていたフィンコイルよりも高いため、斜行ハニカムの厚さを小さくすることができ、装置の設置スペースを小さくすることができる。さらに、水の循環量が、従来のフィンコイルのものと比較すると格段に少なくて済み、大幅な省エネルギー化をも図ることができる。
【0014】
斜行ハニカムを構成するシート状部材は、表面に凹凸があり、内部が多孔質であるものであることが、エレメントの表面積を大きく採れ、エレメントに浸透して流下する水と空気との接触面積が高まる点で好ましい。このようなシート状部材としては、例えば、アルミナ、シリカ及びチタニアからなる群より選択される1又は2以上の充填材又は結合材と、ガラス繊維、セラミック繊維又はアルミナ繊維等の繊維基材とからなるものが挙げられる。この内、チタニアを配合したものは酸性の化学汚染物質の除去効率が向上するため好ましい。また、シート状部材は、通常、充填材又は結合材を60〜93重量%、繊維基材を7〜40重量%含み、好ましくは充填材又は結合材を70〜88重量%、繊維基材を12〜30重量%含む。シート状部材の配合比率が該範囲内にあると、シート状部材の水浸透性及び強度が高いため好ましい。
【0015】
上記シート状部材は、公知の方法で作製でき、例えば、ガラス繊維、セラミック繊維又はアルミナ繊維で作製されたペーパーを、アルミナゾル等の結合材とアルミナ水和物等の充填材を混合したスラリーに浸漬した後、乾燥し、コルゲート加工し、その後、乾燥処理と熱処理を行い、水分と有機分を除去すれば得ることができる。アルミナ以外にシリカやチタニアを含有する場合、例えば、シリカ及びチタニアの配合量は、アルミナ100重量部に対してそれぞれ、通常5〜40重量部である。
【0016】
また、斜行ハニカムは、シート状部材の厚さが通常200〜1000μm 、好ましくは300〜800μm である。また、斜行ハニカムの空隙率は、通常50〜80%、好ましくは60〜75%である。空隙率を該範囲内とすることにより、ほどよい浸透性を実現でき、空気と水との気液接触効率を高めることができる。該シート状部材が、上記厚さと空隙率を有すると、液ガス比及び水の浸透速度が適度な範囲となり、水と空気の気液接触効率を高めると共に、強度的にも十分となる。
【0017】
斜行ハニカム3の高さは、特に限定されない。しかし、気液接触装置が接触用水として冷却水を用いた冷却装置である場合には、通常200〜800mm、好ましくは400〜600mmとする。高さが200mm未満であると、斜行ハニカム最下部に流下した接触後水、すなわち流下後の冷却水の温度がまだ低く、冷却水として有効利用されないまま排出されるため好ましくない。また、高さが800mmを越えると、斜行ハニカム最下部に流下した冷却水の温度と接触用空気の温度との差が小さくなり、斜行ハニカム下部での熱交換効率が低下するため好ましくない。
【0018】
上記シート状部材をコルゲート状シートに成形する方法としては、径方向に振幅する波形の凹凸が表面に形成された複数の幅広の歯車間に平板状シートを通すような公知のコルゲーターを用いる方法が挙げられる。得られたコルゲート状シートから上記斜行ハニカムを成形する方法としては、例えば、まず、上記コルゲート状シートを縦100mm(斜行ハニカム成形後の厚み寸法)×横800mm(斜行ハニカム成形後の幅方向又は高さ方向の寸法)程度の矩形の裁断型に対し、波の伝播方向が矩形型の一辺に対して15〜45度になるように配置して裁断して矩形のコルゲート状シートを作製し、次いで、得られた矩形のコルゲート状シートを1枚おきの波の伝播方向が斜交するように配置し、これらを接着して積層する方法が挙げられる。なお、このようにして製造した場合、斜行ハニカム1枚の厚さは上記裁断型の縦の長さとなる。このため、例えば、気液接触ユニット1個に組込まれる斜行ハニカムの厚さ、すなわち、斜行ハニカムの前面開口部と後面開口部との間の寸法が300mm必要である場合に、縦100mmの裁断型で作製した厚さ100mmの斜行ハニカムを用いるときは、斜行ハニカムを厚さ方向に3枚重ねて使用すればよい。また、高さ方向又は幅方向に1個の斜行ハニカムでは寸法が不足するときは、斜行ハニカムを高さ方向に複数個重ねて又は幅方向に複数個並べて使用してもよい。なお、このように複数個重ねて又は並べて使用する場合、斜行ハニカム同士は、接着しても接着しなくてもどちらでもよい。接着しない場合には、複数個の斜行ハニカムを重ねて又は並べて配置するだけでよい。
【0019】
次に、気液接触ユニット5に用いられる散水手段について図3〜図6を参照して説明する。図3は、本発明で用いる散水手段の実施形態を模式的に示す斜視図であり、図4は水分配部の一部を切り欠いて模式的に示す斜視図であり、図5は水分配部の一部を拡大して模式的に示す斜視図であり、図6は水分配部の一部を上部孔空板側から見た模式的な平面図である。図中、30は水分配部、31は上部透水孔、32は上部孔空板、33は下部透水孔、34は下部孔空板、35は滞留部、40は散水管、50は枠体、51は枠体を構成する壁面である。また、図3〜図6中、図1及び図2と同一構成要素には同一符号を付してその説明を省略する。
【0020】
図3において、散水手段2は、水分配部30とこの上方に配置される散水管40とからなる。水分配部30は、水平方向が壁面51で囲まれた枠体50と、壁面51との間に隙間なく枠体50に配置される上部孔空板32と、上部孔空板32の下方において壁面51との間に隙間なく且つ上部孔空板32と略平行に離間して枠体50に配置される下部孔空板34とからなる。
【0021】
枠体50は、上部孔空板32から供給された水の全量を下部孔空板34から排出するものである。枠体50の材質としては、水を透過又は浸透しない材質のものが用いられ、例えば、ステンレス、アルミニウム、銅等が挙げられる。このうち、ステンレスは、水中に金属イオンが溶出し難いため好ましい。なお、枠体50の形態としては特に限定されず、図3のように上下方向が開口し、且つ、壁面51の配置が上方からみて矩形を形成するもの以外に、例えば、上下方向が開口し、且つ、壁面51の配置が上方からみて円形を形成するものが挙げられる。また、枠体50の上部は図3のように開放されたままでもよいが、埃等が散水手段内に入らないように、適宜、該開放部に蓋等を設けてもよい。
【0022】
上部孔空板32には、図4に示すように、複数の上部透水孔31が穿設される。上部透水孔31は、散水管40から供給される供給水17を下方に透過させるものである。上部透水孔31の数は、上部孔空板32の面積や供給される水量により異なるため特に限定されないが、上部透水孔31の合計面積が同じ場合であれば、数の多いほうが水分配部から排出される水が分散し易いため好ましい。なお、本発明で用いられる上部透水孔31の形状としては、図4に示すような円形に限定されず、他に例えば、楕円形や長円が挙げられる。このうち、楕円形であると、表面張力の影響を受け難く透水性がよいため好ましい。また、上部透水孔31の形状は、円形等の形状を1種又は2種以上組み合わせて用いることができる。例えば、円形の上部透水孔31が一定のピッチで一列に穿設されると共に、これに隣接して楕円形の上部透水孔31が一定のピッチで一列に穿設されており、これらの列が交互に形成されるものであってもよい。
【0023】
上部透水孔31の大きさは、孔の形状が円形である場合の直径が、通常1〜5mm、好ましくは1〜3mmである。また、孔の形状が円形以外である場合は、同一面積の円形に換算したときの孔の直径が上記範囲になるようにすればよい。上部透水孔31の大きさが1mm未満であると水が通過し難くなり、また5mmを越えると水の分散性が悪くなり易いため好ましくない。
【0024】
上部透水孔31の配列形態は特に限定されず、例えば、上部孔空板32の長手方向や該長手方向と所定の角度を有する方向のうちの一方向又は二方向以上に一定のピッチで穿設されていてもよいし、ランダムに穿設されていてもよい。また、上部透水孔31が二方向以上に一定のピッチで穿設される場合は、いわゆる格子状や千鳥状であってもよい。ここで、格子状とは図7(a)のように直近の4個の上部透水孔31a、31b、31d、31cが略正方形を形成するように少なくとも略直交する二方向に一定のピッチで穿設される態様を意味し、千鳥状とは図7(b)のように直近の3個の上部透水孔31e、31f、31gが略正三角形の頂点を形成するように少なくとも三方向に一定のピッチで穿設される態様を意味する。千鳥状であると、上部孔空板32に均一に上部透水孔31を穿設し易いため好ましい。
【0025】
上部透水孔31が少なくとも一方向に一定のピッチを有して穿設されている場合、最小のピッチ幅を有する方向のピッチの大きさは、通常1〜10mm、好ましくは1.5〜5mmである。最小のピッチ幅を有する方向のピッチとは、例えば、図7(a)のように上部透水孔31の配列形態が格子状である場合には、略正方形を形成する直近の4個の上部透水孔31のうちの31aと31bのように隣接する2個の上部透水孔31で形成されるピッチを意味し、31aと31dのように対角線方向にある2個の上部透水孔31で形成されるピッチを含まない意味である。上部透水孔31のピッチの大きさが該範囲内にあると、水の分散性が良いため好ましい。なお、上部透水孔31のピッチの大きさが10mmを越えると水の分散性が悪くなり易いため好ましくない。
【0026】
上部孔空板32の材質は、枠体50と同様のものが用いられる。上部孔空板32の厚さは、通常0.3〜3.0mm、好ましくは0.5〜2.0mmである。厚さが該範囲内にあると、加工し易いため好ましい。
【0027】
上部孔空板32は、壁面51との間に隙間なく枠体50に配置される。ここで、上部孔空板32を隙間なく配置するとは、上部孔空板32上に供給される水が上部透水孔31のみを通過する状態にすることを意味する。このように上部孔空板32を配置することにより、上部孔空板32と下部孔空板34との間の空間に水を滞留させる等の制御が可能になり、水分配部30から排出される接触用水の分散性を良好にすることができる。上部孔空板32が、枠体50に配置される態様としては、例えば、別部材として作製された上部孔空板32と枠体50とをパッキン等を介して圧着したり、接着したりする態様や、上部孔空板32と枠体50とを一体のものとして作製する態様が挙げられる。
【0028】
下部孔空板34は、上部孔空板32と同様のものが用いられ、下部孔空板34の材質や厚さ、下部透水孔33の数、大きさや配列形態は、上部孔空板32と同様である。また、下部孔空板34が壁面51との間に隙間なく枠体50に配置される態様も上部孔空板32と同様である。
【0029】
上部孔空板32と下部孔空板34とは、略平行に離間して配置される。このため、水分配部30には、図5に示すように、上部孔空板32と下部孔空板34との間の離間距離Lを高さとし、上部孔空板32、下部孔空板34及び枠体50で囲まれる滞留部35が形成される。本発明において離間距離Lは、通常0.1〜2.5mm、好ましくは0.5〜2.0mmである。離間距離Lが該範囲内にあると、水が滞留部35の上部孔空板32と下部孔空板34とに接触するように滞留するため水分配部30の下部透水孔33から流下される水量を水分配部30の全体において略均一にすることができ、水分配部30から流下される接触用水の分散性がよい。なお、離間距離Lが2.5mmを越えると水が均一に流下し難くなり、また0.1mm未満であると上部孔空板32と下部孔空板34との間を水が移動し難くなるためそれぞれ好ましくない。
【0030】
水分配部30は、水分配部30における同一方向に対する上部透水孔31のピッチと下部透水孔33のピッチとが異なることが好ましい。ここで、水分配部30における同一方向とは、上部孔空板32面内における方向と下部孔空板34面内における方向とが同一になる方向の意味である。このような方向としては、例えば、上部孔空板32及び下部孔空板34に共通する長手方向や、上部孔空板32面内又は下部孔空板34面内であって且つ該長手方向に対し60度や90度等の所定の角度を有する方向等が挙げられる。このように、上部透水孔31のピッチと下部透水孔33のピッチとが異なると、滞留部35に水が十分に滞留して水分配部30から流下される水の分散性がよくなるため好ましい。また、ピッチは、上部透水孔31のピッチと下部透水孔33のピッチとの全てのものが異なる必要はなく、少なくとも一方向のピッチが異なっていればよい。
【0031】
水分配部30は、上部透水孔31の大きさが全て実質的に同一であると共に下部透水孔33の大きさが全て実質的に同一である場合は、上部透水孔31の1個当りの面積と下部透水孔33の1個当りの面積とが異なると、水分配部30から流下される水の分散性がよくなるため好ましい。また、上部透水孔31の1個当りの面積は、下部透水孔33の1個当りの面積の10〜95%、好ましくは20〜50%であると望ましい。このように、上部透水孔31の1個当りの面積が下部透水孔33の1個当りの面積よりも小さいと、水分配部30から流下される水の分散性がよくなるため好ましい。
【0032】
また、水分配部30は、上部透水孔31のピッチと下部透水孔33のピッチとが異なると共に、上部透水孔31の1個当りの面積が下部透水孔33の1個当りの面積より上記範囲内を採るように小さいと、水分配部30から流下される水の分散性がさらによくなるため好ましい。
【0033】
本発明において、水分配部30は、図5又は図6に示すように、水分配部30を上部孔空板32側から見たときの上部透水孔31と下部透水孔33との鉛直方向の孔の重なり部分36を、上部透水孔31及び下部透水孔33それぞれの一部分に形成する。ここで、上部透水孔31及び下部透水孔33それぞれの一部分に形成するとは、鉛直方向の孔の重なり部分36の全てが上部透水孔31の全部又は下部透水孔33の全部と完全に一致することがないように形成することを意味する。例えば、上部透水孔31と下部透水孔33とが全く同じ形態で穿設されている場合、上部孔空板32と下部孔空板34とを上部孔空板32側又は下部孔空板34側からみて上部透水孔31と下部透水孔33とが完全に重なるように配置した場合は、孔の重なり部分36の全てが上部透水孔31全部及び下部透水孔33全部と完全に一致するため好ましくない。しかし、これらの上部孔空板32と下部孔空板34とをずらして配置した場合は、孔の重なり部分36の全てが上部透水孔31全部又は下部透水孔33全部と完全に一致することがなくなるため好ましい。
【0034】
本発明においては、孔の重なり部分36の総面積を、上部孔空板32又は下部孔空板34のうち総孔面積の小さい方の孔空板の総孔面積の67%以下、好ましくは5〜40%とすることが望ましい。ここで、孔の重なり部分36の総面積とは、例えば、図6に示す孔の重なり部分36a、36b、36c等の孔の重なり部分全部の合計値を意味する。また、総孔面積とは、上部孔空板32における上部透水孔31の合計面積又は下部孔空板34における下部透水孔33の合計面積である。本発明では、上部透水孔31の合計面積又は下部透水孔33の合計面積の小さい方の孔空板の総孔面積に対する孔の重なり部分36の総面積の比率を上記範囲内にすると、水を滞留部35に十分に滞留させることができるため、水分配部30から分散性よく水を流下させることができるため好ましい。
【0035】
散水管40は、水分配部30の上部孔空板32に散水孔から水を供給するものであり、水を供給できるものであれば形状等は特に限定されないが、通常は、図8に示すように筒状体41に散水孔42が穿設されたものが用いられる。また、散水孔42の形状や配置は、流下する水の水量や散水する範囲により適宜定めればよく特に限定されるものでないが、例えば、図8(a)のように筒状体41の表面に一列に散水孔42aを穿設したものや、図8(b)のように筒状体41の表面に散水孔42bの一列と散水孔42cの一列とを、散水孔42bと散水孔42cとが互い違いに並ぶように穿設したものが挙げられる。本発明において散水孔は一定のピッチで穿設されていることが好ましい。散水孔のピッチは、散水管内部の水の流量や、流下する水量により適宜選択すればよく、特に限定されるものではないが、通常10〜70mmである。また、散水孔の大きさもピッチと同様の理由で特に限定されるものではないが、通常1〜5mmである。
【0036】
なお、図3に示す散水手段2においては、水分配部30を構成する枠体50が、散水管40を囲うことができるように上方まで延設され且つ下部孔空板34より下部まで延設されているが、枠体50の上限は滞留部35を形成できるように少なくとも上部孔空板32と面一であればよく、枠体50の下限は滞留部35を形成できるように少なくとも下部孔空板34と面一であればよい。なお、枠体50の上限が上部孔空板32の上面よりも上部まで延設されていると、散水管40から流下される水が多い場合でも枠体50の上限の壁部51でせき止められるため、散水管40から流下される水の流量変化に影響されず水分配部30から略一定の流量で水を流下できるため好ましい。また、水分配部30は、枠体50、上部孔空板32及び下部孔空板34からなるユニットを予め作製しておき、これを単独で又は散水管40と共に他の筐体に収納することにより散水手段2を形成してもよい。また、散水手段2は、水量調整が可能なものであることが好ましい。
【0037】
気液接触ユニット5に用いられる受水部4は、斜行ハニカム3の下面開口部104から排出される接触後水を受けるものである。受水部4の形態としては特に限定されないが、例えば、図3に示す雨どい形状の受水パン等が挙げられ、受水部4には、接触後水を受水部4外に排出する排出管41を設けてもよい。気液接触ユニット5は、通常、図示しない枠体に組み込まれて固定される。この際、給水ダクト23と斜行ハニカムの上面開口部101とは少しの隙間を形成することが、斜行ハニカムの上面開口部101全体に給水を均一分散下することができる点で好ましい。また、斜行ハニカムの下面開口部104と受水部4はできるだけ近接するように配置することが、省スペース化が図れる点で好ましい。
【0038】
気液接触装置1は、さらに、斜行ハニカム3の前面開口部103に接触用空気を導入し該斜行ハニカム3の後面開口部102から冷却空気を排出する送風手段を備えるものである。送風手段としては、例えば、ファンを備えた送風機等が挙げられる。また、気液接触装置1は、接触後水を散水手段2に供給する図示しない水循環手段を設けると、斜行ハニカム3を流下した接触後水を接触用水として再利用することができるため好ましい。水循環手段としては、例えば、循環ポンプが挙げられる。また、気液接触装置1は、接触後水を再利用可能に処理する図示しない水再処理手段を設けると、斜行ハニカム3を流下した接触後水を接触用水として再利用することができるため好ましい。水再処理手段としては、例えば、熱交換器等の冷却手段が挙げられる。さらに、気液接触装置1は、水循環手段及び水再処理手段を設けると、斜行ハニカム3を流下した接触後水をこのまま接触用水として再利用することができるため好ましい。
【0039】
次に、第1の実施の形態における気液接触装置の使用方法について、気液接触装置が冷却装置である場合を例に図1〜図2を参照して説明する。まず、水16が散水手段2の散水管40に供給され、散水管40の散水孔42から水分配板30を構成する上部孔空板32上に供給水17が流下される。供給水17は、上部孔空板32上に広がって滞留すると共に上部透水孔31を通過して滞留部35全体を満たし、接触用水12が下部孔空板34の下部透水孔33の各孔から略均一な流量で広範囲に分散して流下し、斜行ハニカム3の上面開口部101等に供給される。この際、接触用水12の供給水量を適宜調整して、斜行ハニカム3全体を濡れた状態とする。次に、図示しない送風手段等により接触用空気を斜行ハニカム3の前面開口部103から図1中の矢印9の方向に導入する。斜行ハニカム3内のセルでは、流下される接触用水12と導入される接触用空気とが直接気液接触する。この際、接触用空気が接触用水12で冷却されると共に、接触用空気中に化学汚染物質等が存在する場合は該化学汚染物質等が接触用水12に取り込まれる。熱交換して温まり且つ場合により化学汚染物質を取り込んだ接触用水12は、斜行ハニカム3を流下し切ったところで接触後水13となり、受水部4に移動する。受水部4中の接触後水13は、排水管41を通って図示しない循環ポンプで熱交換器に供給されて所定温度まで冷却され、冷却された接触後水13は、再び散水手段2に供給され、接触用水12として再利用される。一方、斜行ハニカム3の後面開口部102からは冷却された接触後空気が得られる。
【0040】
第1の実施の形態に係る気液接触装置を使用する方法は、接触用空気と接触用水とが直接接触する斜行ハニカムを含む気液接触ユニットを用い、特定の散水手段を用いるため、気液接触効率がよく、液ガス比が小さく、圧損が小さく、省スペース及び省エネルギーを図れ、さらに、低コストである。
【0041】
また、本発明の気液接触装置においては、気液接触ユニット5を少なくとも1個用いることができる。この場合の気液接触ユニット5の配置の態様としては、例えば、斜行ハニカム3の上下方向に複数個配置する態様(多段配置)、接触用空気の流れ方向に複数個配置する態様(多列配置)、斜行ハニカム3の幅方向に複数個配置する態様、及び、これらの配置を1又は2以上組み合わせた複合配置の態様等が挙げられる。斜行ハニカム3の上下方向とは斜行ハニカム3の上面開口部と下面開口部とを結ぶ方向であり、接触用空気の流れ方向とは斜行ハニカム3の前面開口部と後面開口部とを結ぶ方向であり、斜行ハニカム3の幅方向とは上下方向及び接触用空気の流れ方向それぞれに略直交する方向である。そこで、気液接触ユニット5を複数用いる気液接触装置を第2の実施の形態として図9及び図10を参照して説明する。図9は本発明に係る気液接触装置の第2の実施形態の概略図、図10は本発明に係る気液接触装置の第2の実施形態を被処理空気の流れ方向に直交する側から見た概略図である。なお、図10において、接触用空気の流れ方向の互いに隣接する斜行ハニカム間に隙間が見られるが、これは図面を理解し易くするためのものであり、実際は前方の斜行ハニカムの後面開口部102とその後方の斜行ハニカムの前面開口部103とは当接又は近接している。
【0042】
第2の実施の形態における気液接触装置において、図9及び図10中、図1及び図2と同一構成要素には同一符号を付してその説明を省略し、異なる点についてのみ主に説明する。図9及び図10において、図1及び図2に示す第1の実施形態と異なる点は、気液接触ユニット5を12個使用し、上下方向に3段配置、且つ接触用空気の流れ方向に4列配置した点、及び接触後水系及び接触前水系を循環系とした点にある。すなわち、第2の実施の形態において、気液接触装置1Aは、接触用空気の流れ方向の前方から第1列が、上下方向に上から気液接触ユニット5a1、5a2、5a3を配置し、次いで、同方向の第2列が、上下方向に上から気液接触ユニット5b1、5b2、5b3を配置し、次いで、同方向の第3列が、上下方向に上から気液接触ユニット5c1、5c2、5c3を配置し、次いで、同方向の第4列が、上下方向に上から気液接触ユニット5d1、5d2、5d3を配置する。更に、水循環系は、受水部4から排出管15を通して排出される接触後水を、送水管10を通して散水手段2に供給する水循環手段6と、水再処理手段として接触後水を冷却する冷却手段7とを備える。
【0043】
送水管10から分岐し、各段毎に一括送水する分岐送水管111、112及び113は、上段の気液接触ユニット5a1、5b1、5c1、5d1の散水手段2、2、2、2、中段の気液接触ユニット5a2、5b2、5c2、5d2の散水手段2、2、2、2及び下段の気液接触ユニット5a3、5b3、5c3、5d3の散水手段2、2、2、2にそれぞれ接続されている。一方、上段の気液接触ユニット5a1、5b1、5c1、5d1の受水部4、4、4、4、中段の気液接触ユニット5a2、5b2、5c2、5d2の受水部4、4、4、4及び下段の気液接触ユニット5a3、5b3、5c3、5d3の受水部4、4、4、4と排水管15の分岐排水管151、152、153とがそれぞれ接続され、各段毎に排水を一括回収している。
【0044】
個々の気液接触ユニット5において、斜行ハニカム3は幅方向に複数個配置してもよい。すなわち、斜行ハニカム3は分割された斜行ハニカムの横並び形態であってもよい。また、気液接触装置1Aにおける個々の気液接触ユニット5の設置形態としては、特に制限されず、第1の実施の形態における気液接触ユニット5を、例えば上下方向に積み重ね、前後方向に並べて枠体上に固定する方法が挙げられる。この場合、受水部4の前後方向幅は斜行ハニカム3の厚みと同程度とし、前後方向の組み付けの際、前方の斜行ハニカムの後面開口部102とその後方の斜行ハニカムの前面開口部103とが当接又は近接するように行うことが、省スペース化の点で好ましい。
【0045】
なお、気液接触装置1Aは、第1の実施の形態と同様に、循環ポンプや熱交換器を設けずに受水部4の接触後水13を廃棄してもよいし、また、冷却水中の不純物を除去する純水化装置を組込んでもよい。また、気液接触ユニット5は、例えば、左右両側及び上下両面が壁部の筐体14に収納して、接触用空気が斜行ハニカム3の前面開口部のみを通過するようにすることが好ましい。筐体14の形態としては特に限定されるものでないが、気液接触ユニットと筐体との間の隙間が全くないか又は実質的に存在しないものであると熱効率が高いため好ましい。また、送風機の吐出口と筐体14の前面開口部をダクトで接続し、該ダクトを通して接触用空気を供給することが、送風効率の点で好ましい。
【0046】
次に、第2の実施の形態の気液接触装置の使用方法について、気液接触装置が冷却装置である場合を例に図9及び図10を参照して説明する。まず、第1の実施の形態と同様に、接触用水12が散水手段2の下部透水孔33の各孔から略均一な流量で広範囲に分散して流下し、上段の4個、中段の4個及び下段の4個の斜行ハニカム3のそれぞれの上面開口部101に同時に供給される。この際、接触用水12の供給水量や散水方法を適宜調整して、12個の斜行ハニカム3全体を濡れた状態とする。次に、図示しない送風手段等により接触用空気を前方の3個の斜行ハニカム3の全面開口部103から図9中の矢印の方向に導入する。12個の斜行ハニカム3内のセルでは、流下される接触用水12と導入される接触用空気とが直接気液接触して、接触用空気が冷却されると共に、接触用空気中に化学汚染物質等が存在する場合は該化学汚染物質等が接触用水12に取り込まれる。熱交換して温まり且つ場合により化学汚染物質を取り込んだ接触用水12は、それぞれの斜行ハニカム3を流下し切ったところで接触後水となり、受水部4に移動する。受水部4中の接触後水は、各段毎に配設される分岐排水管151、152、153及び排水管15を通って循環ポンプ6で熱交換器7に供給されて所定温度まで冷却され、冷却された接触後水13は、再び散水手段2に供給され、接触用水12として再利用される。一方、最後列の斜行ハニカム5d1、5d2、5d3の後面開口部102からは冷却された接触後空気が得られる。
【0047】
第2の実施の形態における気液接触装置によれば、第1の実施の形態における気液接触装置と同様の効果を奏する他、気液接触装置が冷却装置である場合には、上下方向に複数段としたことにより、1個の斜行ハニカムの高さを短くとれ、斜行ハニカムの下方においても接触用水の温度が低いままであり、熱効率が向上する。更に、接触用空気の流れ方向に複数列としたことにより、接触用空気の流速を高めることができる。従って、省スペース且つ省エネルギーとすることができる。
【0048】
本発明において、接触用空気としては、特に限定されないが、清浄な空気に加え、高性能(ULPA)フィルターの編み目を通過するような微細な化学汚染物質を含んだ空気も用いることができる。ここで化学汚染物質としては、例えば、ナトリウム、カリウム、カルシウム、ホウ素等の無機質の金属元素、フッ素イオン、塩化物イオン、硝酸イオン、亜硝酸イオン、硫酸イオン、亜硫酸イオン等のアニオン類や、アンモニウムイオン等のカチオン類等が挙げられる。
【0049】
本発明に係る気液接触装置は、接触用空気と接触用水とが直接に接触するため、これらの化学汚染物質を接触用水に取り込んで清浄な接触後空気を得ることができる。なお、接触用空気中の化学汚染物質量が多い場合等には、必要により、受水部4と散水手段2との間に、接触後水中の化学汚染物質を除去可能な手段として、例えば、イオン交換樹脂等を組込んだ純水化装置を介するようにすると、接触用水を清浄に保つことができるため好ましい。
【0050】
被処理空気の温度としては、特に限定されないが、例えば、20℃以上、好ましくは25℃以上、さらに好ましくは30℃以上である。接触用空気の温度が高いほど一般的に熱効率が向上するため好ましい。また、気液接触ユニット5に供給する斜行ハニカムの上面開口部101における接触用水の水温は通常7〜10℃であり、且つ、第1列目に配置した斜行ハニカムの下面開口部104における接触後水の水温より通常2.5℃以上、さらに好ましくは5.0℃以上低くする。このような条件で装置を稼動させると、熱効率が高くなるため好ましい。
【0051】
また、本発明において、気液接触ユニット1個当りの接触用水の供給量と接触用空気の供給量との液ガス比L/G400-200は、通常0.1〜0.5kg/kg、好ましくは0.2〜0.4kg/kgである。ここで、L/G400-200とは、気液接触ユニット中の前記斜行ハニカム1個当りの高さ400mm、厚さ200mmの場合における単位時間当りの供給空気量に対する供給水量の重量比である。なお、斜行ハニカム1個当りの大きさが高さ400mm、厚さ200mmでない場合における斜行ハニカム1個当りの単位時間当りの供給空気量に対する供給水量の重量比L/Gは、L/G400-200の値に対して、斜行ハニカム1個当りの高さの増加に反比例して減少し、厚さの増加に比例して増加する。例えば、L/G400-200が0.3のときに、斜行ハニカム1個の大きさを高さ800mm、厚さ200mmとすると該斜行ハニカムのL/Gは0.15となり、また高さ400mm、厚さ600mmとするとL/Gは0.9となる。本発明では、気液接触効率効率がよいため、上記範囲内程度のように液ガス比が小さくても十分に気液接触することができる。
【0052】
気液接触ユニットを複数個使用する場合、気液接触ユニットの数は、上記実施の形態に限定されず、適宜定めればよいが、例えば、ファン動力と斜行ハニカムを通過する接触用空気の空間速度とから必要な開口面積(Ao)を求め、Aoを満たす数にすればよい。この際の接触用空気の空間速度は、例えば、1.5〜3.0m/secである。また、散水手段や受水部は各気液接触ユニットに各々独立して設けられていてもいなくてもどちらでもよい。すなわち、幅方向に複数個配置した気液接触ユニットが、各段で散水手段又は受水部を共用していてもよい。例えば、気液接触ユニットが斜行ハニカムの前面開口部の幅方向に2列、且つ高さ方向に3段形成される場合は、各段の散水手段や受水部を幅方向の2列の気液接触ユニットで共用してもよい。このように、各段で散水手段等を共用すると、低コスト化できるため好ましい。
【0053】
本発明に係る気液接触装置は、例えば、オフィスビル、病院、生産工場の空気や水の冷却装置、空気清浄装置又は加湿装置として使用できる。
【0054】
【実施例】
次に、実施例を挙げて本発明をさらに具体的に説明するが、本発明はこれに限定されるものではない。
【0055】
実施例1
長さ1020mm×幅200mm×厚さ1.0mmのステンレス板に、直径1mmの孔を、図7(b)に示すように31e−31f方向、31f−31g方向及び31g−31e方向の3方向のピッチがそれぞれ2mmになるように千鳥状に穿設して上部孔空板を作製した。また、直径及びピッチを表1に示すようにした以外は上部孔空板と同様にして、下部透水孔が千鳥状に形成された下部孔空板を作製した。次に、4面が壁面で囲われると共に上下方向の2面が開放した壁の高さ80mm×長さ1025mm×幅202mmの枠体の底部に、上部孔空板と下部孔空板とを平行に且つ0.5mm離間させて2枚配置し、上部孔空板及び下部孔空板と枠体との間に隙間が生じないように固定して水分配部を形成した。なお、水分配部は、上部孔空板の隅部に穿設された上部透水孔31eと、これに対応する下部孔空板の隅部に穿設された下部透水孔とが、上部孔空板の上方から見て孔の中心が一致し、且つ、枠体の壁部が上部孔空板の上方及び下部孔空板の下方まで延設されるように配置したものである。さらに、上部孔空板の上方に、直径2mm、ピッチ40mmで一列に穿設された散水孔を有する直径25mm、長さ1050mmの散水管を、散水管が上部孔空板の長手方向と平行且つ幅方向の中心に位置し、さらに、散水孔と上部孔空板との距離が30mmになるように配置して、高さ80mm×長さ1025mm×幅202mmの散水手段を作製した。
【0056】
一方、Eガラス繊維と有機バインダで形成したガラス不織布を、充填材であるアルミナ水和物と結合材であるアルミナゾルとを含むスラリに浸漬した後に乾燥し、波付け加工して波形状物を得た。該波形状物を、波の伝播方向が交差するように交互に重ね合わせた後に500℃で熱処理して、アルミナとアルミナゾル硬化物との合計量80重量%及びEガラス繊維20重量%からなり、空隙率が65%であり、山高が4.8mm、ピッチ10mmの斜行ハニカムを作製した。この斜行ハニカムは空気の通気方向に対して幅500mm、高さ500mm、奥行き200mmとなるものであり、コルゲート状シートの一層おきの波の伝播方向が互いに交差する角度(図1中、符号Y)が60度、斜め方向に延設されるセルの前後両面からみた場合の空気の流入、流出方向(水平方向)に対する斜め角度(図1中、符号X)は30度である。次にこの斜行ハニカムを幅方向に2個並べて保持可能な大きさで、且つ前面、後面、上面及び下面が通気可能なケースに組み込み、この上部に接触用水をハニカムに供給する前記散水手段と、この下部にハニカムを通過した接触用水を受ける排水パンとを付設し、1個の気液接触ユニットとした。この気液接触ユニットは、高さが前記散水手段及び排水パンを含め660mmであり、幅1050mm、奥行き200mmである。次に、この気液接触ユニットを幅1050mm、高さ660mm、奥行き200mmで前面及び後面が開口した筐体に組み込んだ(気液接触ユニットの1段1列配置。合計1ユニット。)。また、排水パンで受けた温度の上昇した接触用水は送水ポンプを経て、水冷却用熱交換器に送られ、冷却され、ハニカム上部の前記散水手段に循環供給されるようにした。気液接触ユニット等の条件について表3に示す。
【0057】
上記気液接触装置に、25℃、70rh%の空気を流量4500m3/時間で通風するとともに、散水管に7℃の冷水を水量23.5L/分(液ガス比L/G=0.27kg/kg、L/G400-200=0.33kg/kg)供給し、散水手段の下部透水孔から流下する水の分散状況を目視で評価した。結果を表1に示す。また、この際の出口空気の温度を測定した。結果を表2に示す。
【0058】
実施例2〜25
上部透水孔又は下部透水孔を表1のように穿設した以外は実施例1と同様にして気液接触装置を作製し、流下する水の分散状況を目視で評価し、出口空気の温度を測定した。結果を表1及び表2に示す。
【0059】
比較例1
下部孔空板を取り付けない以外は実施例1と同様にして気液接触装置を作製し、流下する水の分散状況を目視で評価し、出口空気の温度を測定した。結果を表1及び表2に示す。
【0060】
比較例2〜5
表1に示す上部孔空板を用いた以外は比較例1と同様にして気液接触装置を作製し、流下する水の分散状況を目視で評価し、出口空気の温度を測定した。結果を表1及び表2に示す。
【0061】
【表1】

Figure 0004330843
【0062】
【表2】
Figure 0004330843
【0063】
【表3】
Figure 0004330843
【0064】
【発明の効果】
本発明に係る気液接触装置を用いると、水が散水手段の下面から略均一な流量で広範囲に分散して斜行ハニカムの上面に流下するため、効率よく気液接触を行うことができる。
【図面の簡単な説明】
【図1】本発明に係る気液接触装置の第1の実施形態を模式的に示す斜視図である。
【図2】図1においてA−A線で切断した断面を模式的に示す断面図である。
【図3】本発明で用いる散水手段の実施形態を模式的に示す斜視図である。
【図4】水分配部の一部を切り欠いて模式的に示す斜視図である。
【図5】水分配部の一部を拡大して模式的に示す斜視図である。
【図6】水分配部の一部を上部孔空板側から見た模式的な平面図である。
【図7】上部透水孔の配列態様を説明する図である。
【図8】本発明で用いる散水管の一例を示す斜視図である。
【図9】本発明に係る気液接触装置の第2の実施形態の概略図である。
【図10】本発明に係る気液接触装置の第2の実施形態を被処理空気の流れ方向に直交する側から見た概略図である。
【符号の説明】
1、1A 気液接触装置
2 散水手段
3 斜交ハニカム
4 受水パン(受水部)
5、5a1、5a2、5a3、5b1、5b2、5b3、5c1、5c2、5c3、5d1、5d2、5d35 気液接触ユニット
6 循環ポンプ(水循環手段)
7 熱交換器
8 接触後水冷却用の冷却水
9 空気の流れ方向を示す矢印
10 送水管
11 補給水を示す矢印
12 接触用水
13 接触後水
14 筐体
15 排水管
16 水
17 供給水
21、22 互いに隣接するコルゲート状シート
23 給水ダクト
30 水分配部
31 上部透水孔
32 上部孔空板
33 下部透水孔
34 下部孔空板
35 滞留部
36、36a、36b、36c 孔の重なり部分
40 散水管
41 筒状体
42a、42b、42c 散水孔
50 枠体
51 壁面
101 斜行ハニカム上面開口部
102 斜行ハニカム後面開口部
103 斜行ハニカム前面開口部
104 斜行ハニカム下面開口部
111、112、113 分岐送水管
151、152、153 分岐排水管[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a gas-liquid contact device such as an air cooling device, an air cleaning device, and a humidifying device using a skewed honeycomb.
[0002]
[Prior art]
Conventionally, in a cooling tower, a gas-liquid contact tower, etc., there is known a method of spraying water from a sprinkling pipe to a gas-liquid contact unit in which a large number of gas-liquid contact plates are juxtaposed to flow water to the surface of the gas-liquid contact plate. Yes.
[0003]
For example, in JP-A-8-219684, as a method of spraying water from the water spray pipe to the gas-liquid contact means, a plurality of water spray holes are provided in the water spray pipe, and a plane or a position where a rod-like water flow discharged from the water spray hole hits is provided. A watering device for a cooling tower is disclosed in which a planar body having a curved surface is provided, and the water stream is spread in a film shape by the planar body and flows down to a gas-liquid contact means such as a filler. There is also known a method in which a water flow from a water spray pipe is applied to an eye plate having an infinite number of water spray holes, where the water flow is widened and water is allowed to flow down from the innumerable water spray holes.
[0004]
[Problems to be solved by the invention]
However, these devices and methods have a large variation depending on the location of the amount of water flowing down, and water cannot flow uniformly to the gas-liquid contact means, so the gas-liquid gas-liquid contact efficiency is not good.
[0005]
Accordingly, an object of the present invention is to provide a gas-liquid contact device having high gas-liquid contact efficiency.
[0006]
[Means for Solving the Problems]
In this situation, as a result of intensive studies, the present inventor has found that the gas-liquid contact device includes a slanted honeycomb, a gas-liquid contact unit having a predetermined water sprinkling means and a water receiving portion, and a blower means. The present inventors have found that the contact can be performed efficiently and have completed the present invention.
[0007]
  That is, the present invention provides a skewed honeycomb arranged such that both front and rear surfaces and upper and lower surfaces are open, contact air is introduced from the front surface opening, and discharged after contact is discharged from the rear surface opening, Sprinkling means for supplying contact water to the upper surface opening of the row honeycomb, a gas-liquid contact unit that receives water after contact discharged from the lower surface opening of the skew honeycomb, and the front surface of the skew honeycomb A gas-liquid contact device comprising a blowing means for introducing contact air into the opening and discharging the air after contact from the rear opening of the skewed honeycomb,
The watering means includes a frame body that is surrounded by a wall surface in the horizontal direction, a plurality of upper water-permeable holes, an upper hole plate that is disposed above the frame body without gaps, and a plurality of lower water-permeable materials. A water distribution part comprising a lower hole plate which is provided with a hole and is spaced apart from the wall surface at a lower portion of the frame and substantially parallel to the upper hole plate; and the upper hole plate With watering pipe to supply water toAnd
The area per one upper water-permeable hole is 10 to 95% of the area per one lower water-permeable hole,
The gas-liquid contact apparatus characterized by the above is provided.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
First, the gas-liquid contact apparatus in the 1st Embodiment of this invention is demonstrated with reference to FIG.1 and FIG.2. FIG. 1 is a perspective view schematically showing a first embodiment of a gas-liquid contact device according to the present invention, and FIG. 2 is a cross-sectional view schematically showing a cross section taken along line AA in FIG. . 1 and 2, 1 is a gas-liquid contact device, 2 is a sprinkling means, 3 is a skewed honeycomb, 4 is a water receiving pan (water receiving portion), 5 is a gas-liquid contact unit, and 101 is a top opening of the skewed honeycomb. , 102 is an opening in the rear surface of the skew honeycomb, 103 is an opening in the front surface of the skew honeycomb, and 104 is an opening in the lower surface of the skew honeycomb. In the first embodiment, the gas-liquid contact device 1 includes a gas-liquid contact unit 5 having a water sprinkling means 2, a skewed honeycomb 3 and a water receiving pan 4, and a blower means (not shown).
[0009]
The skewed honeycomb 3 used in the gas-liquid contact unit 5 has a honeycomb shape in which a plurality of corrugated sheets 21 and 22 (hereinafter also referred to as “corrugated sheets”) having a corrugated shape propagating in one direction are laminated. The corrugated sheets 21 and 22 to be laminated are laminated so that the wave propagation directions are obliquely intersected with each other, and the wave propagation directions of every two layers are substantially the same. It is a honeycomb-like body arranged in a direction.
[0010]
The skew honeycomb 3 is cut by four planes 101 to 104 perpendicular to the plane parallel to the corrugated sheets 21 and 22 to form a rectangular parallelepiped, and the cut plane is a wave propagation direction of the corrugated sheet. If the rectangular parallelepiped is placed with one of the cut surfaces 104 as the lower surface and the outermost layers 105 and 106 of the corrugated sheet as the left and right surfaces, respectively, The four surfaces of the front and rear surfaces 102, 103 and the upper and lower surfaces 101, 104 are all open on the honeycomb cells, and the left and right surfaces 105, 106 are closed with corrugated sheets. That is, the skew honeycomb 3 has a structure in which the front and rear surfaces 102 and 103 and the upper and lower surfaces 101 and 104 are opened. In addition, for example, the front and rear surfaces 102 and 103 of the cut surface are formed with cells extending obliquely upward and cells extending obliquely downward. The oblique angle (X in FIG. 1) with respect to the inflow and outflow directions (horizontal direction) of air when viewed from both the front and rear surfaces of the cell extending in the oblique direction is usually 15 to 45 degrees, preferably 25 to 35 degrees. Within the range. It is preferable that the oblique angle is within this range because the flow velocity is in an appropriate range and the gas-liquid contact efficiency is improved.
[0011]
In the skewed honeycomb 3, the angle at which every other wave propagation direction of the laminated corrugated sheets intersects (reference numeral Y in FIG. 1) is usually 30 to 90 degrees, preferably 50 to 70 degrees. is there. When the corrugated sheets are laminated so as to intersect within the above angle range, the contact air and the contact are obtained when the oblique angle (in FIG. 1, symbol X) is set to 15 to 45 degrees as described above. Since the area where the water is substantially in contact with the honeycomb cell is increased, the gas-liquid contact efficiency between the contact air and the contact water is increased, which is preferable. That is, as will be described later, in the present invention, the contact air is introduced from the front opening 103 of the skewed honeycomb 3, and the contact water is supplied from the upper surface opening 101 by the water spraying means 2 and corrugated in the skewed honeycomb. Since it penetrates into the sheet and slowly flows down on the very surface of the corrugated sheet, the aeration direction of the contact air and the flow direction of the contact water on the permeation wall maintain an appropriate angle, Contact efficiency is increased. In the present invention, contact air or contact water means air or water before gas-liquid contact and during gas-liquid contact, and post-contact air or post-contact water means air or water after gas-liquid contact. Means.
[0012]
The height of the cells of the skewed honeycomb used in the present invention, that is, the peak height of the cell showing the dimension between the corrugated peaks and valleys is usually 2.5 to 8.0 mm, preferably 3 to 5 mm. If the height of the cell is less than 2.5 mm, it is difficult to manufacture and the pressure loss increases, which is not preferable. In addition, if the height of the cell exceeds 8.0 mm, the gas-liquid contact efficiency decreases, which is not preferable.
[0013]
The cell width in the state of the corrugated sheet of the skewed honeycomb, that is, the cell pitch is usually 6 to 16 mm, preferably 7 to 10 mm. The dimension between the front opening and the rear opening of the skewed honeycomb, that is, the thickness (t) of the skewed honeycomb is usually 100 to 1000 mm, preferably 200 to 800 mm. If the thickness is less than 100 mm, the gas-liquid contact efficiency decreases, which is not preferable. If the thickness exceeds 1000 mm, the gas-liquid contact efficiency does not improve any more and the pressure loss increases, which is not preferable. In the present invention, the thickness of the skew honeycomb is not particularly limited as long as the total thickness is within the above range when a plurality of skew honeycombs are used. For example, when a skewed honeycomb having a thickness of 300 mm is used, three skewed honeycombs having a thickness of 100 mm may be stacked in the thickness direction so that the total thickness is 300 mm. If a skewed honeycomb is used as the gas-liquid contact means, the heat exchange rate per volume is higher than that of a fin coil that has been used in the past, so the thickness of the skewed honeycomb can be reduced, and the installation space of the apparatus is reduced. Can be reduced. Furthermore, the circulation amount of water is much smaller than that of the conventional fin coil, and a significant energy saving can be achieved.
[0014]
The sheet-like member that constitutes the skewed honeycomb has an uneven surface and is porous, so that the surface area of the element can be increased, and the contact area between water and air that permeates and flows down the element Is preferable from the viewpoint of increasing. As such a sheet-like member, for example, from one or more fillers or binders selected from the group consisting of alumina, silica and titania, and a fiber substrate such as glass fiber, ceramic fiber or alumina fiber The thing which becomes. Among these, those containing titania are preferable because the removal efficiency of acidic chemical contaminants is improved. The sheet-like member usually contains 60 to 93% by weight of filler or binder and 7 to 40% by weight of fiber base material, preferably 70 to 88% by weight of filler or binder and fiber base material. Contains 12-30% by weight. It is preferable that the blending ratio of the sheet-like member is within the above range because the water permeability and strength of the sheet-like member are high.
[0015]
The sheet-like member can be produced by a known method, for example, a paper made of glass fiber, ceramic fiber or alumina fiber is immersed in a slurry in which a binder such as alumina sol and a filler such as alumina hydrate are mixed. Then, it can be obtained by drying and corrugating, followed by drying and heat treatment to remove moisture and organic components. When silica or titania is contained in addition to alumina, for example, the blending amount of silica and titania is usually 5 to 40 parts by weight with respect to 100 parts by weight of alumina.
[0016]
Further, in the skew honeycomb, the thickness of the sheet-like member is usually 200 to 1000 μm, preferably 300 to 800 μm. Further, the porosity of the skewed honeycomb is usually 50 to 80%, preferably 60 to 75%. By setting the porosity within the above range, moderate permeability can be realized, and the gas-liquid contact efficiency between air and water can be increased. When the sheet-like member has the above thickness and porosity, the liquid-gas ratio and the water permeation rate are in an appropriate range, the gas-liquid contact efficiency between water and air is increased, and the strength is sufficient.
[0017]
The height of the skew honeycomb 3 is not particularly limited. However, when the gas-liquid contact device is a cooling device using cooling water as contact water, it is usually 200 to 800 mm, preferably 400 to 600 mm. If the height is less than 200 mm, the temperature of the water after contact flowing down to the lowest part of the skewed honeycomb, that is, the temperature of the cooling water after flowing down is still low, and it is not preferable because it is discharged without being effectively used as cooling water. On the other hand, if the height exceeds 800 mm, the difference between the temperature of the cooling water flowing down to the lowermost part of the skewed honeycomb and the temperature of the contact air becomes small, and the heat exchange efficiency at the lower part of the skewed honeycomb is lowered, which is not preferable. .
[0018]
As a method of forming the sheet-like member into a corrugated sheet, there is a method using a known corrugator in which a flat sheet is passed between a plurality of wide gears having corrugated irregularities that oscillate in the radial direction. Can be mentioned. As a method of forming the above skewed honeycomb from the obtained corrugated sheet, for example, first, the corrugated sheet is 100 mm long (thickness dimension after forming the skewed honeycomb) × 800 mm wide (width after forming the skewed honeycomb) A rectangular corrugated sheet is produced by arranging and cutting so that the wave propagation direction is 15 to 45 degrees with respect to one side of the rectangular shape with respect to a rectangular cutting die having a size of about the direction or height direction). Then, a method of arranging the obtained rectangular corrugated sheets so that every other wave propagation direction is oblique and adhering them is mentioned. In addition, when manufactured in this way, the thickness of one skewed honeycomb is the vertical length of the cutting die. For this reason, for example, when the thickness of the skewed honeycomb incorporated in one gas-liquid contact unit, that is, the dimension between the front opening and the rear opening of the skewed honeycomb is 300 mm, the length is 100 mm. When a skewed honeycomb having a thickness of 100 mm manufactured by a cutting die is used, three skewed honeycombs may be stacked in the thickness direction. In addition, when the size of one skewed honeycomb in the height direction or the width direction is insufficient, a plurality of skewed honeycombs may be stacked in the height direction or arranged in the width direction. In addition, in the case of using a plurality of such stacked layers or arranged side by side, the skewed honeycombs may or may not be bonded. In the case of not bonding, it is only necessary to arrange a plurality of skew honeycombs in a stacked or juxtaposed manner.
[0019]
Next, the watering means used for the gas-liquid contact unit 5 will be described with reference to FIGS. FIG. 3 is a perspective view schematically showing an embodiment of the watering means used in the present invention, FIG. 4 is a perspective view schematically showing a part of the water distribution part, and FIG. 5 is a water distribution. FIG. 6 is a schematic plan view of a part of the water distribution part as viewed from the upper hole plate side. In the figure, 30 is a water distribution part, 31 is an upper permeation hole, 32 is an upper perforation board, 33 is a lower permeation hole, 34 is a lower perforation board, 35 is a retention part, 40 is a water spray pipe, 50 is a frame, Reference numeral 51 denotes a wall surface constituting the frame. 3 to 6, the same components as those in FIGS. 1 and 2 are denoted by the same reference numerals, and the description thereof is omitted.
[0020]
In FIG. 3, the water sprinkling means 2 includes a water distributor 30 and a sprinkler pipe 40 disposed above the water distributor 30. The water distribution unit 30 includes a frame 50 surrounded by a wall surface 51 in the horizontal direction, an upper perforated plate 32 disposed in the frame 50 without a gap between the wall surface 51, and a lower portion of the upper perforated plate 32. The lower perforated plate 34 is disposed in the frame body 50 so as to be spaced apart from the wall surface 51 and spaced substantially parallel to the upper perforated plate 32.
[0021]
The frame 50 discharges the entire amount of water supplied from the upper perforated plate 32 from the lower perforated plate 34. As the material of the frame body 50, a material that does not transmit or permeate water is used, and examples thereof include stainless steel, aluminum, copper, and the like. Of these, stainless steel is preferred because metal ions are unlikely to elute in water. The form of the frame body 50 is not particularly limited. For example, the frame body 50 has an opening in the vertical direction other than the shape in which the vertical direction is open as shown in FIG. In addition, there is one in which the arrangement of the wall surface 51 forms a circle when viewed from above. The upper portion of the frame 50 may remain open as shown in FIG. 3, but a lid or the like may be provided on the open portion as appropriate so that dust or the like does not enter the water sprinkling means.
[0022]
As shown in FIG. 4, a plurality of upper water permeable holes 31 are formed in the upper hole empty plate 32. The upper water permeable hole 31 allows the supply water 17 supplied from the water spray pipe 40 to pass downward. The number of the upper water permeable holes 31 is not particularly limited because it differs depending on the area of the upper hole empty plate 32 and the amount of supplied water. However, if the total area of the upper water permeable holes 31 is the same, the larger number is from the water distributor. The discharged water is preferable because it is easy to disperse. In addition, as a shape of the upper water permeable hole 31 used by this invention, it is not limited to circular as shown in FIG. 4, For example, an ellipse and an ellipse are mentioned. Among these, an elliptical shape is preferable because it is less affected by surface tension and has good water permeability. Moreover, the shape of the upper water-permeable hole 31 can be used combining 1 type, or 2 or more types, such as circular shape. For example, the circular upper water-permeable holes 31 are formed in a line at a constant pitch, and the oval upper water-permeable holes 31 are formed in a line at a constant pitch adjacent to the circular upper water-permeable holes 31. It may be formed alternately.
[0023]
The diameter of the upper water-permeable hole 31 is usually 1 to 5 mm, preferably 1 to 3 mm when the hole shape is circular. In addition, when the hole has a shape other than a circle, the diameter of the hole when converted into a circle having the same area may be set in the above range. If the size of the upper water permeable hole 31 is less than 1 mm, it becomes difficult for water to pass through, and if it exceeds 5 mm, the dispersibility of water tends to deteriorate.
[0024]
The arrangement form of the upper water-permeable holes 31 is not particularly limited. For example, the upper water-permeable holes 32 are drilled at a constant pitch in one direction or two or more directions of the longitudinal direction of the upper hole hollow plate 32 and the direction having a predetermined angle with the longitudinal direction. It may be made or may be made at random. Further, when the upper water permeable holes 31 are formed at a constant pitch in two or more directions, a so-called lattice shape or zigzag shape may be used. Here, as shown in FIG. 7 (a), the lattice shape is formed at a constant pitch in at least two substantially orthogonal directions so that the four nearest upper water-permeable holes 31a, 31b, 31d, and 31c form a substantially square shape. As shown in FIG. 7 (b), the staggered pattern means that the three upper water-permeable holes 31e, 31f, 31g closest to each other form a vertex of a substantially equilateral triangle. It means a mode of drilling at a pitch. The zigzag shape is preferable because the upper water-permeable holes 31 can be easily formed uniformly in the upper hole empty plate 32.
[0025]
When the upper water permeable holes 31 are formed with a constant pitch in at least one direction, the size of the pitch in the direction having the minimum pitch width is usually 1 to 10 mm, preferably 1.5 to 5 mm. is there. The pitch in the direction having the minimum pitch width is, for example, when the arrangement form of the upper water permeable holes 31 is a lattice shape as shown in FIG. It means a pitch formed by two adjacent upper water-permeable holes 31 such as 31a and 31b of the holes 31, and is formed by two upper water-permeable holes 31 in a diagonal direction, such as 31a and 31d. This means that the pitch is not included. It is preferable that the pitch of the upper water permeable holes 31 is in the range because water dispersibility is good. If the pitch of the upper water permeable holes 31 exceeds 10 mm, the water dispersibility tends to deteriorate, which is not preferable.
[0026]
The material of the upper hole plate 32 is the same as that of the frame 50. The thickness of the upper perforated plate 32 is usually 0.3 to 3.0 mm, preferably 0.5 to 2.0 mm. It is preferable that the thickness is within this range because it is easy to process.
[0027]
The upper perforated plate 32 is disposed in the frame body 50 without a gap between the upper wall plate 32 and the wall surface 51. Here, the arrangement of the upper perforated plate 32 without a gap means that the water supplied onto the upper perforated plate 32 passes through only the upper water permeable hole 31. By arranging the upper perforated plate 32 in this way, it becomes possible to control the water to stay in the space between the upper perforated plate 32 and the lower perforated plate 34, and the water is distributed from the water distribution unit 30. The dispersibility of the contact water can be improved. As an aspect in which the upper perforated plate 32 is disposed on the frame 50, for example, the upper perforated plate 32 and the frame 50 manufactured as separate members are pressure-bonded or bonded via packing or the like. Examples include an aspect and an aspect in which the upper perforated plate 32 and the frame body 50 are manufactured as a single unit.
[0028]
The lower perforated plate 34 is the same as the upper perforated plate 32. The material and thickness of the lower perforated plate 34, the number, size, and arrangement of the lower water permeable holes 33 are the same as those of the upper perforated plate 32. It is the same. Further, the mode in which the lower hole plate 34 is arranged in the frame 50 without a gap between the wall surface 51 and the upper hole plate 32 is the same.
[0029]
The upper hole plate 32 and the lower hole plate 34 are spaced apart from each other in substantially parallel. For this reason, as shown in FIG. 5, the water distribution section 30 has a distance L between the upper hole plate 32 and the lower hole plate 34 as the height, and the upper hole plate 32 and the lower hole plate 34. And the residence part 35 enclosed by the frame 50 is formed. In the present invention, the separation distance L is usually 0.1 to 2.5 mm, preferably 0.5 to 2.0 mm. When the separation distance L is within this range, water stays in contact with the upper perforated plate 32 and the lower perforated plate 34 of the staying part 35 and flows down from the lower permeation hole 33 of the water distributing part 30. The amount of water can be made substantially uniform throughout the water distributor 30 and the dispersibility of the contact water flowing down from the water distributor 30 is good. If the separation distance L exceeds 2.5 mm, it is difficult for water to flow uniformly, and if it is less than 0.1 mm, it is difficult for water to move between the upper hole plate 32 and the lower hole plate 34. Therefore, it is not preferable respectively.
[0030]
In the water distribution unit 30, it is preferable that the pitch of the upper water-permeable holes 31 and the pitch of the lower water-permeable holes 33 in the same direction in the water distribution unit 30 are different. Here, the same direction in the water distribution unit 30 means a direction in which the direction in the surface of the upper hole plate 32 and the direction in the surface of the lower hole plate 34 are the same. As such a direction, for example, the longitudinal direction common to the upper hole plate 32 and the lower hole plate 34, the surface of the upper hole plate 32 or the surface of the lower hole plate 34, and the longitudinal direction For example, a direction having a predetermined angle such as 60 degrees or 90 degrees may be used. Thus, it is preferable that the pitch of the upper water-permeable holes 31 and the pitch of the lower water-permeable holes 33 are different because water sufficiently stays in the stay part 35 and dispersibility of the water flowing down from the water distribution part 30 is improved. Further, it is not necessary that the pitches of the upper water-permeable holes 31 and the pitches of the lower water-permeable holes 33 are all different, and it is sufficient that the pitches are different in at least one direction.
[0031]
In the water distribution part 30, when the sizes of the upper water-permeable holes 31 are substantially the same and the sizes of the lower water-permeable holes 33 are substantially the same, the area per one of the upper water-permeable holes 31 is the same. If the area per one of the lower water permeable holes 33 is different, the dispersibility of the water flowing down from the water distributor 30 is improved, which is preferable. The area of the upper water-permeable holes 31 is 10 to 95%, preferably 20 to 50% of the area of the lower water-permeable holes 33. As described above, it is preferable that the area per one of the upper water permeable holes 31 is smaller than the area per one of the lower permeable holes 33 because the dispersibility of the water flowing down from the water distributing unit 30 is improved.
[0032]
Further, the water distribution unit 30 has a different pitch between the upper water-permeable holes 31 and the pitch of the lower water-permeable holes 33, and the area of each upper water-permeable hole 31 is in the above range than the area of each of the lower water-permeable holes 33. It is preferable that the inside is small so that the dispersibility of the water flowing down from the water distributor 30 is further improved.
[0033]
In the present invention, as shown in FIG. 5 or FIG. 6, the water distribution unit 30 has a vertical direction between the upper water permeation hole 31 and the lower water permeation hole 33 when the water distribution unit 30 is viewed from the upper hole empty plate 32 side. A hole overlapping portion 36 is formed in a part of each of the upper water-permeable hole 31 and the lower water-permeable hole 33. Here, forming in a part of each of the upper water-permeable hole 31 and the lower water-permeable hole 33 means that all the overlapping parts 36 of the vertical holes completely coincide with all of the upper water-permeable holes 31 or all of the lower water-permeable holes 33. It means to form so that there is no. For example, when the upper water permeable hole 31 and the lower water permeable hole 33 are formed in exactly the same form, the upper hole vacant plate 32 and the lower hole vacant plate 34 are connected to the upper hole vacant plate 32 side or the lower hole vacant plate 34 side. From the viewpoint of arrangement, when the upper water-permeable hole 31 and the lower water-permeable hole 33 are completely overlapped with each other, it is not preferable because all the overlapping portions 36 of the holes completely coincide with all the upper water-permeable holes 31 and all the lower water-permeable holes 33. . However, when the upper hole plate 32 and the lower hole plate 34 are arranged so as to be shifted, all the overlapping portions 36 of the holes may completely coincide with the whole upper water passage hole 31 or the whole lower water passage hole 33. Since it disappears, it is preferable.
[0034]
In the present invention, the total area of the overlapping portions 36 of the holes is 67% or less of the total hole area of the hole plate with the smaller total hole area of the upper hole plate 32 or the lower hole plate 34, preferably 5 It is desirable to set it to ˜40%. Here, the total area of the hole overlapping portions 36 means the total value of all the hole overlapping portions such as the hole overlapping portions 36a, 36b, 36c shown in FIG. The total hole area is the total area of the upper water-permeable holes 31 in the upper hole plate 32 or the total area of the lower water-permeable holes 33 in the lower hole plate 34. In the present invention, when the ratio of the total area of the overlapping portion 36 of the holes to the total hole area of the smaller hole perforated plate having the smaller total area of the upper water-permeable holes 31 or the lower water-permeable holes 33 is within the above range, water is supplied. Since the water can be sufficiently retained in the retention part 35, water can be allowed to flow down from the water distribution part 30 with good dispersibility, which is preferable.
[0035]
The water sprinkling pipe 40 supplies water from the water sprinkling holes to the upper hole empty plate 32 of the water distribution section 30, and the shape and the like are not particularly limited as long as water can be supplied. In this way, a cylindrical body 41 having water spray holes 42 is used. Further, the shape and arrangement of the water spray holes 42 are not particularly limited as long as they are appropriately determined depending on the amount of water flowing down and the range of water spray. For example, the surface of the cylindrical body 41 as shown in FIG. A row of water spray holes 42a, a row of water spray holes 42b and a row of water spray holes 42c on the surface of the cylindrical body 41 as shown in FIG. 8B, and a water spray hole 42b and a water spray hole 42c. Are drilled so that they are arranged in a staggered manner. In the present invention, the water spray holes are preferably formed at a constant pitch. The pitch of the sprinkling holes may be appropriately selected depending on the flow rate of water inside the sprinkling pipe and the amount of water flowing down, and is not particularly limited, but is usually 10 to 70 mm. Further, the size of the watering holes is not particularly limited for the same reason as the pitch, but is usually 1 to 5 mm.
[0036]
In the watering means 2 shown in FIG. 3, the frame body 50 constituting the water distribution unit 30 is extended upward so as to be able to surround the watering pipe 40 and extends below the lower perforated plate 34. However, the upper limit of the frame 50 may be at least flush with the upper hole empty plate 32 so that the staying portion 35 can be formed, and the lower limit of the frame 50 is at least the lower hole so that the staying portion 35 can be formed. It only needs to be flush with the empty plate 34. In addition, when the upper limit of the frame 50 is extended to the upper part from the upper surface of the upper perforated plate 32, even when there is a lot of water flowing down from the sprinkling pipe 40, the upper limit wall portion 51 of the frame 50 is blocked. Therefore, it is preferable because the water can flow down from the water distributor 30 at a substantially constant flow rate without being affected by the flow rate change of the water flowing down from the sprinkling pipe 40. In addition, the water distribution unit 30 prepares a unit composed of the frame body 50, the upper hole plate 32, and the lower hole plate 34 in advance, and stores this unit alone or together with the water spray tube 40 in another housing. The watering means 2 may be formed by Moreover, it is preferable that the watering means 2 can adjust water quantity.
[0037]
The water receiving portion 4 used in the gas-liquid contact unit 5 receives the water after contact discharged from the lower surface opening 104 of the skewed honeycomb 3. Although it does not specifically limit as a form of the water receiving part 4, For example, the gutter-shaped water receiving pan etc. which are shown in FIG. 3, etc. are mentioned, and the water receiving part 4 discharges water after the contact outside the water receiving part 4 A discharge pipe 41 may be provided. The gas-liquid contact unit 5 is usually fixed by being incorporated in a frame (not shown). At this time, it is preferable that a small gap be formed between the water supply duct 23 and the upper surface opening 101 of the skewed honeycomb because water supply can be uniformly dispersed throughout the upper surface opening 101 of the skewed honeycomb. In addition, it is preferable to arrange the lower surface opening 104 and the water receiving portion 4 of the skewed honeycomb as close as possible to save space.
[0038]
The gas-liquid contact device 1 further includes blower means for introducing contact air into the front opening 103 of the skewed honeycomb 3 and discharging cooling air from the rear opening 102 of the skewed honeycomb 3. As a ventilation means, the air blower provided with the fan etc. are mentioned, for example. The gas-liquid contact device 1 is preferably provided with a water circulation means (not shown) for supplying water after contact to the water spray means 2 because the contact water that has flowed down the skew honeycomb 3 can be reused as contact water. An example of the water circulation means is a circulation pump. Further, if the gas-liquid contact device 1 is provided with a water reprocessing means (not shown) for processing the water after contact so that it can be reused, the water after contact flowing down the skewed honeycomb 3 can be reused as contact water. preferable. Examples of the water reprocessing means include cooling means such as a heat exchanger. Furthermore, the gas-liquid contact device 1 is preferably provided with a water circulation means and a water reprocessing means because the water after contact flowing down the skew honeycomb 3 can be reused as contact water.
[0039]
Next, a method of using the gas-liquid contact device in the first embodiment will be described with reference to FIGS. 1 to 2 by taking as an example the case where the gas-liquid contact device is a cooling device. First, the water 16 is supplied to the sprinkling pipe 40 of the sprinkling means 2, and the supply water 17 flows down from the sprinkling holes 42 of the sprinkling pipe 40 onto the upper perforated plate 32 constituting the water distribution plate 30. The supply water 17 spreads and stays on the upper perforated plate 32 and passes through the upper water-permeable hole 31 to fill the entire staying portion 35, and the contact water 12 flows from each hole of the lower water-permeable hole 33 of the lower perforated plate 34. It flows down in a wide range at a substantially uniform flow rate, and is supplied to the upper surface opening 101 or the like of the skewed honeycomb 3. At this time, the supply water amount of the contact water 12 is appropriately adjusted so that the entire skewed honeycomb 3 is wet. Next, contact air is introduced from the front opening 103 of the skewed honeycomb 3 in the direction of the arrow 9 in FIG. In the cells in the skewed honeycomb 3, the contact water 12 flowing down and the introduced contact air are in direct gas-liquid contact. At this time, the contact air is cooled by the contact water 12, and when a chemical contaminant or the like is present in the contact air, the chemical contaminant or the like is taken into the contact water 12. The contact water 12 warmed by heat exchange and possibly taking in chemical pollutants becomes the post-contact water 13 after flowing down the oblique honeycomb 3 and moves to the water receiving portion 4. The water 13 after contact in the water receiving section 4 is supplied to a heat exchanger through a drain pipe 41 with a circulation pump (not shown) and cooled to a predetermined temperature. The cooled water 13 after contact is again supplied to the water spray means 2. Supplied and reused as contact water 12. On the other hand, cooled post contact air is obtained from the rear opening 102 of the skewed honeycomb 3.
[0040]
The method of using the gas-liquid contact device according to the first embodiment uses a gas-liquid contact unit including a skewed honeycomb in which contact air and contact water are in direct contact, and uses a specific watering means. The liquid contact efficiency is good, the liquid gas ratio is small, the pressure loss is small, space and energy can be saved, and the cost is low.
[0041]
In the gas-liquid contact device of the present invention, at least one gas-liquid contact unit 5 can be used. As an arrangement mode of the gas-liquid contact unit 5 in this case, for example, an arrangement in which a plurality of the honeycombs 3 are arranged in the vertical direction (multi-stage arrangement), and an arrangement in which a plurality of arrangements are made in the flow direction of the contact air (multi-row) Arrangement), a mode in which a plurality of the honeycombs 3 are arranged in the width direction, and a mode of composite arrangement in which one or more of these arrangements are combined. The vertical direction of the skewed honeycomb 3 is a direction connecting the upper surface opening and the lower surface opening of the skewed honeycomb 3, and the flow direction of contact air is the front opening and the rear surface opening of the skewed honeycomb 3. It is a direction to connect, and the width direction of the skewed honeycomb 3 is a direction substantially orthogonal to the vertical direction and the flow direction of the contact air. Therefore, a gas-liquid contact device using a plurality of gas-liquid contact units 5 will be described as a second embodiment with reference to FIG. 9 and FIG. FIG. 9 is a schematic view of a second embodiment of the gas-liquid contact device according to the present invention, and FIG. 10 shows the second embodiment of the gas-liquid contact device according to the present invention from the side orthogonal to the flow direction of the air to be treated. FIG. In FIG. 10, a gap is observed between the adjacent skewed honeycombs in the flow direction of the contact air, but this is for easy understanding of the drawing. The part 102 and the front opening 103 of the oblique honeycomb behind the part 102 are in contact with or close to each other.
[0042]
In the gas-liquid contact device according to the second embodiment, in FIGS. 9 and 10, the same components as those in FIGS. 1 and 2 are denoted by the same reference numerals, description thereof is omitted, and only differences are mainly described. To do. 9 and 10 are different from the first embodiment shown in FIGS. 1 and 2 in that twelve gas-liquid contact units 5 are used, arranged in three stages in the vertical direction, and in the flow direction of the contact air. There are four rows, and a post-contact water system and a pre-contact water system as a circulation system. That is, in the second embodiment, the gas-liquid contact device 1A has the first row from the front in the flow direction of the contact air, and the gas-liquid contact unit 5a from the top in the vertical direction.15a25aThreeNext, the second row in the same direction is the gas-liquid contact unit 5b from above in the vertical direction.15b25bThreeThen, the third row in the same direction is the gas-liquid contact unit 5c from above in the vertical direction.15c25cThreeNext, the fourth row in the same direction is the gas-liquid contact unit 5d from above in the vertical direction.15d25dThreePlace. Further, the water circulation system includes a water circulation means 6 for supplying post-contact water discharged from the water receiving section 4 through the discharge pipe 15 to the sprinkling means 2 through the water supply pipe 10, and cooling for cooling the post-contact water as a water reprocessing means. Means 7.
[0043]
The branched water supply pipes 111, 112, and 113 that branch from the water supply pipe 10 and collectively supply water for each stage are the upper gas-liquid contact unit 5a.15b15c15d1Water spray means 2, 2, 2, 2, middle gas-liquid contact unit 5a25b25c25d2Watering means 2, 2, 2, 2 and lower gas-liquid contact unit 5aThree5bThree5cThree5dThreeAre connected to the watering means 2, 2, 2, 2 respectively. On the other hand, the upper gas-liquid contact unit 5a15b15c15d1Water-receiving part 4, 4, 4, 4, middle gas-liquid contact unit 5a25b25c25d2Water receiving parts 4, 4, 4, 4 and lower gas-liquid contact unit 5aThree5bThree5cThree5dThreeAre connected to the branch drain pipes 151, 152, 153 of the drain pipe 15, respectively, and collects the waste water for each stage.
[0044]
In each gas-liquid contact unit 5, a plurality of the skew honeycombs 3 may be arranged in the width direction. That is, the skewed honeycomb 3 may be in a side-by-side form of divided skewed honeycombs. In addition, the installation form of the individual gas-liquid contact units 5 in the gas-liquid contact apparatus 1A is not particularly limited, and the gas-liquid contact units 5 in the first embodiment are stacked, for example, in the vertical direction and arranged in the front-rear direction. The method of fixing on a frame is mentioned. In this case, the width in the front-rear direction of the water receiving portion 4 is approximately the same as the thickness of the skewed honeycomb 3, and the rear opening 102 of the front skewed honeycomb and the front opening of the skewed honeycomb behind it when assembled in the front-rear direction. It is preferable from the viewpoint of space saving that the portion 103 is in contact with or close to the portion 103.
[0045]
As in the first embodiment, the gas-liquid contact device 1A may discard the water 13 after contact with the water receiving unit 4 without providing a circulation pump or a heat exchanger, A pure water purifier for removing impurities may be incorporated. Moreover, it is preferable that the gas-liquid contact unit 5 is housed in the wall case 14 on both the left and right sides and the upper and lower sides so that the contact air passes only through the front opening of the skewed honeycomb 3. . Although it does not specifically limit as a form of the housing | casing 14, Since a thermal efficiency is high, it is preferable that there is no clearance gap between a gas-liquid contact unit and a housing | casing at all. Further, it is preferable in terms of blowing efficiency that the discharge port of the blower and the front opening of the housing 14 are connected by a duct and the contact air is supplied through the duct.
[0046]
Next, the usage method of the gas-liquid contact apparatus of 2nd Embodiment is demonstrated with reference to FIG.9 and FIG.10 for the case where a gas-liquid contact apparatus is a cooling device as an example. First, as in the first embodiment, the contact water 12 is dispersed in a wide range at a substantially uniform flow rate from each hole of the lower water permeation hole 33 of the sprinkling means 2, and the upper four pieces and the middle four pieces. And it supplies simultaneously to each upper surface opening part 101 of the four skewed honeycombs 3 of a lower stage. At this time, the amount of water supplied and the watering method of the contact water 12 are appropriately adjusted so that the entire twelve skew honeycombs 3 are wet. Next, contact air is introduced in the direction of the arrow in FIG. 9 from the entire openings 103 of the three oblique honeycombs 3 in front by a blower (not shown). In the cells in the twelve oblique honeycombs 3, the contact water 12 flowing down and the contact air introduced are in direct gas-liquid contact, the contact air is cooled, and chemical contamination occurs in the contact air. When a substance or the like is present, the chemical pollutant or the like is taken into the contact water 12. The contact water 12 heated by heat exchange and possibly taking in chemical contaminants becomes water after contact when it has flowed down the respective slanted honeycombs 3 and moves to the water receiving part 4. The water after contact in the water receiving section 4 is supplied to the heat exchanger 7 by the circulation pump 6 through the branch drain pipes 151, 152, 153 and the drain pipe 15 arranged for each stage and cooled to a predetermined temperature. Then, the cooled post-contact water 13 is supplied again to the water spraying means 2 and reused as the contact water 12. On the other hand, the oblique honeycomb 5d in the last row15d25dThreeFrom the rear opening 102, cooled post-contact air is obtained.
[0047]
According to the gas-liquid contact device in the second embodiment, in addition to the same effect as the gas-liquid contact device in the first embodiment, when the gas-liquid contact device is a cooling device, it is By using a plurality of stages, the height of one skewed honeycomb can be shortened, and the temperature of the contact water remains low even below the skewed honeycomb, so that the thermal efficiency is improved. Furthermore, the flow velocity of the contact air can be increased by providing a plurality of rows in the flow direction of the contact air. Therefore, space and energy can be saved.
[0048]
In the present invention, the contact air is not particularly limited. In addition to clean air, air containing fine chemical contaminants that pass through the stitches of a high performance (ULPA) filter can also be used. Examples of chemical pollutants include inorganic metal elements such as sodium, potassium, calcium, and boron, anions such as fluorine ion, chloride ion, nitrate ion, nitrite ion, sulfate ion, and sulfite ion, and ammonium. And cations such as ions.
[0049]
In the gas-liquid contact device according to the present invention, the contact air and the contact water are in direct contact with each other, so that these chemical contaminants can be taken into the contact water to obtain clean post-contact air. In addition, when the amount of chemical pollutants in the contact air is large, as a means for removing chemical pollutants in the water after contact between the water receiving unit 4 and the water sprinkling means 2 as necessary, for example, It is preferable to use a dewatering apparatus incorporating an ion exchange resin or the like because the contact water can be kept clean.
[0050]
Although it does not specifically limit as temperature of to-be-processed air, For example, it is 20 degreeC or more, Preferably it is 25 degreeC or more, More preferably, it is 30 degreeC or more. The higher the temperature of the contact air, the better because generally the thermal efficiency is improved. Further, the temperature of the contact water in the upper surface opening 101 of the skewed honeycomb supplied to the gas-liquid contact unit 5 is usually 7 to 10 ° C., and in the lower surface opening 104 of the skewed honeycomb arranged in the first row. After contact, the temperature is usually 2.5 ° C. or more, more preferably 5.0 ° C. or more lower than the water temperature. It is preferable to operate the apparatus under such conditions because the thermal efficiency becomes high.
[0051]
In the present invention, the liquid gas ratio L / G between the supply amount of contact water and the supply amount of contact air per gas-liquid contact unit.400-200Is usually 0.1 to 0.5 kg / kg, preferably 0.2 to 0.4 kg / kg. Where L / G400-200Is the weight ratio of the amount of supplied water to the amount of supplied air per unit time when the height of the slanted honeycomb in the gas-liquid contact unit is 400 mm and the thickness is 200 mm. The weight ratio L / G of the supplied water amount to the supplied air amount per unit time per skewed honeycomb when the size per skewed honeycomb is not 400 mm in height and 200 mm in thickness is L / G400-200The value decreases in inverse proportion to the increase in height per skewed honeycomb and increases in proportion to the increase in thickness. For example, L / G400-200Is 0.3 mm, when the height of one skewed honeycomb is 800 mm and the thickness is 200 mm, L / G of the skewed honeycomb is 0.15, and the height is 400 mm and the thickness is 600 mm. L / G is 0.9. In the present invention, since the gas-liquid contact efficiency is good, the gas-liquid contact can be sufficiently achieved even if the liquid gas ratio is small as in the above range.
[0052]
In the case of using a plurality of gas-liquid contact units, the number of gas-liquid contact units is not limited to the above embodiment, and may be determined as appropriate. For example, fan power and contact air passing through a skewed honeycomb may be used. The required opening area (Ao) is obtained from the space velocity and may be set to a number satisfying Ao. The space velocity of the contact air at this time is, for example, 1.5 to 3.0 m / sec. Further, the watering means and the water receiving part may or may not be provided independently in each gas-liquid contact unit. That is, a plurality of gas-liquid contact units arranged in the width direction may share the water sprinkling means or the water receiving part at each stage. For example, when the gas-liquid contact units are formed in two rows in the width direction of the front opening of the skewed honeycomb and three steps in the height direction, the water spray means and the water receiving portion in each step are arranged in two rows in the width direction. You may share with a gas-liquid contact unit. Thus, it is preferable to share the watering means at each stage because the cost can be reduced.
[0053]
The gas-liquid contact device according to the present invention can be used, for example, as an air or water cooling device, an air cleaning device or a humidifying device in an office building, a hospital, or a production factory.
[0054]
【Example】
Next, the present invention will be described more specifically with reference to examples, but the present invention is not limited thereto.
[0055]
Example 1
A stainless steel plate having a length of 1020 mm, a width of 200 mm and a thickness of 1.0 mm is provided with holes having a diameter of 1 mm in three directions 31e-31f, 31f-31g and 31g-31e as shown in FIG. An upper perforated plate was prepared by punching in a zigzag pattern so that each pitch was 2 mm. Further, a lower perforated plate in which lower water-permeable holes were formed in a staggered manner was produced in the same manner as the upper perforated plate except that the diameter and pitch were as shown in Table 1. Next, the upper perforated plate and the lower perforated plate are parallel to the bottom of the frame body having a height of 80 mm, a length of 1025 mm, and a width of 202 mm. The two water-dispersing parts were formed by arranging two sheets spaced apart by 0.5 mm and fixing them so that no gaps were formed between the upper and lower perforated plates and the frame. The water distribution section includes an upper perforated hole 31e drilled in a corner of the upper perforated plate and a lower perforated hole drilled in a corresponding corner of the lower perforated plate. The center of the hole coincides when viewed from above the plate, and the wall portion of the frame is arranged so as to extend to above the upper hole plate and below the lower hole plate. Further, above the upper perforated plate, a sprinkling tube having a diameter of 2 mm and a pitch of 40 mm and having a sprinkling hole drilled in a row and having a diameter of 25 mm and a length of 1050 mm, the sprinkling tube is parallel to the longitudinal direction of the upper perforated plate. A watering means having a height of 80 mm, a length of 1025 mm, and a width of 202 mm was prepared by being positioned so that the distance between the watering hole and the upper hole plate was 30 mm.
[0056]
On the other hand, a glass nonwoven fabric formed of E glass fibers and an organic binder is dipped in a slurry containing alumina hydrate as a filler and alumina sol as a binder, then dried and corrugated to obtain a corrugated product. It was. The corrugated product is alternately superposed so that the wave propagation directions intersect, and then heat treated at 500 ° C., and consists of a total amount of alumina and alumina sol cured product of 80% by weight and E glass fiber of 20% by weight, A skewed honeycomb having a porosity of 65%, a peak height of 4.8 mm, and a pitch of 10 mm was produced. This slanted honeycomb has a width of 500 mm, a height of 500 mm, and a depth of 200 mm with respect to the direction of air flow, and the angle at which the wave propagation directions of the corrugated sheet intersect each other (in FIG. ) Is 60 degrees, and the oblique angle (symbol X in FIG. 1) with respect to the inflow and outflow direction (horizontal direction) of air when viewed from both the front and rear sides of the cell extending in the oblique direction is 30 degrees. Next, the sprinkling means that has a size that can hold two skew honeycombs arranged in the width direction and that has a front surface, a rear surface, an upper surface, and a lower surface that can be vented, and supplies contact water to the honeycomb on the upper portion. In addition, a drain pan for receiving contact water that has passed through the honeycomb is attached to the lower portion to form one gas-liquid contact unit. This gas-liquid contact unit has a height of 660 mm including the watering means and the drain pan, a width of 1050 mm, and a depth of 200 mm. Next, this gas-liquid contact unit was assembled in a casing having a width of 1050 mm, a height of 660 mm, and a depth of 200 mm, with the front and rear surfaces opened (one-stage arrangement of gas-liquid contact units, one unit in total). Further, the contact water having an increased temperature received by the drain pan is sent to a water cooling heat exchanger through a water feed pump, cooled, and circulated and supplied to the watering means above the honeycomb. It shows in Table 3 about conditions, such as a gas-liquid contact unit.
[0057]
The above gas-liquid contact device was supplied with air at 25 ° C. and 70 rh% at a flow rate of 4500 mThreeVentilation at a time / hour, and cold water of 7 ° C. in the watering pipe 23.5L / min (liquid / gas ratio L / G = 0.27kg / kg, L / G400-200= 0.33 kg / kg), and the state of dispersion of water flowing down from the lower water transmission holes of the watering means was visually evaluated. The results are shown in Table 1. Further, the temperature of the outlet air at this time was measured. The results are shown in Table 2.
[0058]
Examples 2-25
A gas-liquid contact device was prepared in the same manner as in Example 1 except that the upper water-permeable hole or the lower water-permeable hole was formed as shown in Table 1, and the dispersion state of the flowing water was visually evaluated to determine the temperature of the outlet air. It was measured. The results are shown in Tables 1 and 2.
[0059]
Comparative Example 1
A gas-liquid contact device was produced in the same manner as in Example 1 except that the lower perforated plate was not attached, the dispersion state of the flowing water was visually evaluated, and the temperature of the outlet air was measured. The results are shown in Tables 1 and 2.
[0060]
Comparative Examples 2-5
A gas-liquid contact device was produced in the same manner as in Comparative Example 1 except that the upper perforated plate shown in Table 1 was used, and the state of dispersion of the flowing water was visually evaluated, and the temperature of the outlet air was measured. The results are shown in Tables 1 and 2.
[0061]
[Table 1]
Figure 0004330843
[0062]
[Table 2]
Figure 0004330843
[0063]
[Table 3]
Figure 0004330843
[0064]
【The invention's effect】
When the gas-liquid contact device according to the present invention is used, water is dispersed in a wide range from the lower surface of the sprinkling means at a substantially uniform flow rate and flows down to the upper surface of the skewed honeycomb, so that gas-liquid contact can be performed efficiently.
[Brief description of the drawings]
FIG. 1 is a perspective view schematically showing a first embodiment of a gas-liquid contact device according to the present invention.
FIG. 2 is a cross-sectional view schematically showing a cross section taken along line AA in FIG.
FIG. 3 is a perspective view schematically showing an embodiment of watering means used in the present invention.
FIG. 4 is a perspective view schematically showing a part of the water distributor cut out.
FIG. 5 is a perspective view schematically showing an enlarged part of a water distributor.
FIG. 6 is a schematic plan view of a part of the water distributor as viewed from the upper hole plate side.
FIG. 7 is a diagram illustrating an arrangement mode of upper water-permeable holes.
FIG. 8 is a perspective view showing an example of a watering pipe used in the present invention.
FIG. 9 is a schematic view of a second embodiment of the gas-liquid contact device according to the present invention.
FIG. 10 is a schematic view of a second embodiment of the gas-liquid contact device according to the present invention as viewed from the side orthogonal to the flow direction of the air to be treated.
[Explanation of symbols]
1, 1A Gas-liquid contact device
2 watering means
3 Oblique honeycomb
4 Receiving pan (receiving section)
5, 5a15a25aThree5b15b25bThree5c15c25cThree5d15d25dThree5 Gas-liquid contact unit
6 Circulation pump (water circulation means)
7 Heat exchanger
8 Cooling water for water cooling after contact
9 Arrows indicating the direction of air flow
10 Water pipe
11 Arrow indicating makeup water
12 Water for contact
13 Water after contact
14 Case
15 Drain pipe
16 water
17 Supply water
21, 22 Corrugated sheets adjacent to each other
23 Water supply duct
30 Water distribution section
31 Upper permeability hole
32 Upper perforated plate
33 Lower permeability hole
34 Lower hole plate
35 Retention part
36, 36a, 36b, 36c Hole overlap
40 Watering pipe
41 Tubular body
42a, 42b, 42c Watering hole
50 frame
51 wall surface
101 Opening on top of skewed honeycomb
102 Opening portion on the rear surface of the skew honeycomb
103 Skewed honeycomb front opening
104 Skew honeycomb bottom surface opening
111, 112, 113 Branch water pipe
151, 152, 153 Branch drainage pipe

Claims (4)

前後両面と上下両面とが開口し、前面開口部から接触用空気が導入されると共に後面開口部から接触後空気が排出されるように配置される斜行ハニカム、該斜行ハニカムの上面開口部へ接触用水を供給する散水手段、及び該斜行ハニカムの下面開口部から排出される接触後水を受ける受水部を有する気液接触ユニットと、前記斜行ハニカムの前面開口部に接触用空気を導入し該斜行ハニカムの後面開口部から接触後空気を排出する送風手段とを備える気液接触装置であって、
前記散水手段は、水平方向が壁面で囲まれる枠体、複数の上部透水孔が穿設されると共に前記枠体の上部に前記壁面と隙間なく配置される上部孔空板、及び複数の下部透水孔が穿設されると共に前記枠体の下部に前記壁面と隙間なく且つ前記上部孔空板と略平行に離間して配置される下部孔空板からなる水分配部と、前記上部孔空板に水を供給する散水管とを有し、
前記上部透水孔1個当りの面積が、前記下部透水孔1個当りの面積の10〜95%であること、
を特徴とする気液接触装置。
A skewed honeycomb disposed such that both front and rear surfaces and upper and lower surfaces are opened, contact air is introduced from the front surface opening, and after contact air is discharged from the rear surface opening, an upper surface opening of the skewed honeycomb Water spray means for supplying contact water to the gas, a gas-liquid contact unit that receives water after contact discharged from the lower surface opening of the skewed honeycomb, and contact air to the front opening of the skewed honeycomb A gas-liquid contact device comprising a blowing means for introducing air and discharging air after contact from the rear opening of the skewed honeycomb,
The water sprinkling means includes a frame body that is surrounded by a wall surface in the horizontal direction, a plurality of upper water-permeable holes, an upper hole plate that is disposed above the frame body without any gaps, and a plurality of lower water-permeability holes. A water distribution part comprising a lower hole plate which is provided with a hole in the lower part of the frame body and spaced apart from the wall surface and substantially parallel to the upper hole plate; and the upper hole plate A watering pipe for supplying water to
The area per one upper water-permeable hole is 10 to 95% of the area per one lower water-permeable hole,
A gas-liquid contact device characterized by.
前記斜行ハニカムを構成するシート状部材は、アルミナ、シリカ及びチタニアからなる群より選択される1又は2以上の充填材又は結合材と、ガラス繊維、セラミック繊維又はアルミナ繊維とからなるものであることを特徴とする請求項記載の気液接触装置。The sheet-like member constituting the skewed honeycomb is composed of one or more fillers or binders selected from the group consisting of alumina, silica and titania, and glass fibers, ceramic fibers or alumina fibers. The gas-liquid contact apparatus according to claim 1 . 前記斜行ハニカムは、空隙率が50〜80%であることを特徴とする請求項1又は2のいずれか1項記載の気液接触装置。The gas-liquid contact device according to any one of claims 1 and 2 , wherein the skew honeycomb has a porosity of 50 to 80%. 前記気液接触ユニットを少なくとも1個備えると共に、該気液接触ユニット中の前記斜行ハニカム1個当りの高さが200〜800mmであることを特徴とする請求項1〜のいずれか1項記載の気液接触装置。Together comprising at least one said gas-liquid contact unit, any one of claims 1 to 3, wherein the oblique honeycomb per height in the gas-liquid contact unit is characterized by a 200~800mm The gas-liquid contact device described.
JP2002135293A 2002-05-10 2002-05-10 Gas-liquid contact device Expired - Fee Related JP4330843B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002135293A JP4330843B2 (en) 2002-05-10 2002-05-10 Gas-liquid contact device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002135293A JP4330843B2 (en) 2002-05-10 2002-05-10 Gas-liquid contact device

Publications (2)

Publication Number Publication Date
JP2003326102A JP2003326102A (en) 2003-11-18
JP4330843B2 true JP4330843B2 (en) 2009-09-16

Family

ID=29697657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002135293A Expired - Fee Related JP4330843B2 (en) 2002-05-10 2002-05-10 Gas-liquid contact device

Country Status (1)

Country Link
JP (1) JP4330843B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101804280A (en) * 2010-04-26 2010-08-18 山西润禾环保工程集团有限公司 Honeycomb type water film deduster

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4878836B2 (en) * 2005-12-28 2012-02-15 三洋電機株式会社 Floor-standing air sanitizer
JP4878865B2 (en) * 2006-02-21 2012-02-15 三洋電機株式会社 Air sanitizer
JP4908871B2 (en) * 2006-02-21 2012-04-04 三洋電機株式会社 Air sanitizer
JP4827828B2 (en) * 2007-12-07 2011-11-30 ダイダン株式会社 Method and apparatus for removing gas impurities
JP2009066434A (en) * 2008-11-28 2009-04-02 Sanyo Electric Co Ltd Floor-standing air disinfecting apparatus
JP5438541B2 (en) * 2010-02-12 2014-03-12 東京電力株式会社 Air humidification method
US8662150B2 (en) * 2010-08-09 2014-03-04 General Electric Company Heat exchanger media pad for a gas turbine
JP5573690B2 (en) * 2011-01-14 2014-08-20 三洋電機株式会社 Air sanitizer
JP6180704B2 (en) 2011-12-12 2017-08-16 日本リファイン株式会社 Gas-liquid contact device
JP5961398B2 (en) * 2012-02-09 2016-08-02 旭化成ホームズ株式会社 Transpiration
CN103017599B (en) * 2012-11-26 2014-08-13 南京大洋冷却塔股份有限公司 Layered converting combined-type energy-saving packing
JP6028673B2 (en) * 2013-04-30 2016-11-16 株式会社デンソー Gas-liquid contact device for engine wet aftertreatment device
US9359914B2 (en) * 2014-08-19 2016-06-07 General Electric Company Silencing and cooling assembly with fibrous medium
KR101532269B1 (en) * 2014-11-27 2015-07-06 주식회사 세정이엔티 Natural vaporizing vacreator
CN117046283A (en) * 2017-07-25 2023-11-14 史汉祥 Flue gas purifying reactor
JP6427648B1 (en) * 2017-09-28 2018-11-21 ニチアス株式会社 Air-liquid contactor
FR3073367B1 (en) * 2017-11-15 2021-08-13 Xeda International METHOD AND UNIT FOR TREATMENT OF THE ATMOSPHERE OF A STORAGE OF PLANT PRODUCTS AT HIGH RELATIVE HUMIDITY
JP6473533B1 (en) * 2018-04-03 2019-02-20 ニチアス株式会社 Gas-liquid contact
KR102230599B1 (en) 2018-11-14 2021-03-23 주식회사 코레드 Filter module for gas-liquid contact
CN111521036B (en) * 2020-04-16 2021-07-27 常州大学 High-efficiency water-saving cooling tower
CN113996079B (en) * 2021-11-18 2022-12-27 重庆格林嘉科技有限公司 Structure and installation method of flow-through type section tower plate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101804280A (en) * 2010-04-26 2010-08-18 山西润禾环保工程集团有限公司 Honeycomb type water film deduster
CN101804280B (en) * 2010-04-26 2011-12-28 山西润禾环保工程集团有限公司 Honeycomb type water film deduster

Also Published As

Publication number Publication date
JP2003326102A (en) 2003-11-18

Similar Documents

Publication Publication Date Title
JP4330843B2 (en) Gas-liquid contact device
KR100963343B1 (en) Air cooling apparatus and air cooling method
KR100568093B1 (en) Method and device for cleaning air
US6854278B2 (en) Method of evaporative cooling of a fluid and apparatus therefor
KR101072119B1 (en) Heat exchange element, method of producing the heat exchange element, heat exchanger, and heat exchange and ventilation device
JP2009180433A (en) Wet desiccant air conditioner
JP4033677B2 (en) Air cooling method
CH640748A5 (en) FILLED BODY FOR USE IN A PROCESSING APPARATUS AND USE THEREOF.
JP3750800B2 (en) Air purifier
CN109569198B (en) Gas-liquid contact body
JP3848896B2 (en) Sprinkler
JP2018179317A (en) Sprinkling tray, three-fluid heat exchanger, and wet humidity controller
JP6794481B2 (en) Spray tray, three-fluid heat exchanger, and wet humidity controller
KR101442082B1 (en) Air Cooling-Cleaning Apparatus for Air-Conditioner
JP3716926B2 (en) Air cleaning method
JP2005195231A (en) Air cooling device and its method
JP2004245428A (en) Air cooling device and its method
KR20030021408A (en) Waste water heat collector by using heat exchange way
EP1864071B1 (en) Contact body for an evaporation humidifier or material exchanger
JP2005274075A (en) Air cooling device and its method
CN2611788Y (en) Filtering material for humidifying air and lowering temp
JP2023531419A (en) Contactor modules and contactor panels containing contactor modules
JP2003126625A (en) Parallel flow air filter
EP4211416A1 (en) Recuperator module for ventilation systems
JP2004245429A (en) Air cooling device and its method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070920

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090107

AA91 Notification of revocation by ex officio

Free format text: JAPANESE INTERMEDIATE CODE: A971091

Effective date: 20090120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090521

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090617

R150 Certificate of patent or registration of utility model

Ref document number: 4330843

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130626

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371