JP2001179112A - Method of sticking/fixing titanium dioxide to three- dimensional and two-dimensional structures and contact method - Google Patents

Method of sticking/fixing titanium dioxide to three- dimensional and two-dimensional structures and contact method

Info

Publication number
JP2001179112A
JP2001179112A JP37711799A JP37711799A JP2001179112A JP 2001179112 A JP2001179112 A JP 2001179112A JP 37711799 A JP37711799 A JP 37711799A JP 37711799 A JP37711799 A JP 37711799A JP 2001179112 A JP2001179112 A JP 2001179112A
Authority
JP
Japan
Prior art keywords
dimensional
titanium dioxide
dimensional structure
contact
contact material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP37711799A
Other languages
Japanese (ja)
Inventor
Tsuneo Sugito
恒夫 杉戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP37711799A priority Critical patent/JP2001179112A/en
Publication of JP2001179112A publication Critical patent/JP2001179112A/en
Pending legal-status Critical Current

Links

Landscapes

  • Aftertreatments Of Artificial And Natural Stones (AREA)
  • Press-Shaping Or Shaping Using Conveyers (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a photocatalyst contact material by fixing titanium dioxide fine powdery material onto the surface of a curved filament of a thermoplastic polypropylene or the flat surface of a two-dimensional structure with a binder or the binder and cement so that the titanium oxide fine powdery material is exposed, and to decompose harmful substances contained in the natural atmosphere by strong oxidation power of the photocatalytic reaction. SOLUTION: A method of producing the photocatalyst contact material comprises sticking/fixing titanium dioxide fine powdery material onto the surface of a three-dimensional permeable contact material composed of curved filaments of a thermoplastic polypropylene or the surface of an inorganic two-dimensional structure. The contact method comprises bringing the natural atmosphere or the like into contact with the photocatalyst contact material and oxidizing/decomposing organic compounds, organic chlorine compounds, volatile hydrocarbons, NOx, SOx, oil content, exhaust gases from automobiles, or the like contained in the atmosphere by the photocatalytic reaction of the titanium dioxide.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、二酸化チタン(6)の
光触媒反応の三次元透過性接触材の製造に係わり、複数
の線条(1)を湾曲させて点接着させて不規則な立体空
間(2)を造る三次元構造体の線条表面に粉体の二酸化
チタン(6)を接着剤(4)で露出固定して三次元透過
性Tio2接触材(8)の製造に関する。及び接着剤で
セメント(5)固定してそのセメントを固定床として二
酸化チタンを前記三次元構造体の線条表面にし露出固定
する前記三次元透過性Tio2接触材(8)の製造に関
する。前記三次元透過性Tio2接触材(8)を水、自
然大気等を浸透、接触、透過させ、露出固定した二酸化
チタン(6)の光触媒反応の三次元透過性接触材(8)
とすることに関する。及びの二酸化チタン(6)を露出
固定した前記三次元透過性Tio2接触材(8)を水、
自然大気を浸透、接触、透過させ、広い比表面積と高い
空隙率からなる三次元構造体の優れた接触性から、より
効率のよい光触媒反応を得る接触手法及び接触材として
の配置、設置に関する。接着剤(4)とセメント(5)
を用いて、平板状二次元構造の無機質のコンクリート、
鉄材、アルミ材などの金属製、及び樹脂製の面に二酸化
チタン(6)を固着する手法に関する。及び二酸化チタ
ン(6)を固定した前記二次元構造体を光触媒反応の接
触材とすることに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the production of a three-dimensional permeable contact material for the photocatalytic reaction of titanium dioxide (6), in which a plurality of filaments (1) are curved and point-adhered to form an irregular solid. The present invention relates to the production of a three-dimensionally transparent TiO2 contact material (8) by exposing and fixing powdery titanium dioxide (6) to the surface of the three-dimensional structure forming a space (2) with an adhesive (4). The present invention also relates to the production of the three-dimensionally permeable TiO2 contact material (8) in which the cement (5) is fixed with an adhesive, and the cement is used as a fixed bed, and titanium dioxide is exposed and fixed to the linear surface of the three-dimensional structure. The three-dimensional permeable TiO2 contact material (8) penetrates, contacts, and permeates water, natural atmosphere, and the like, and is exposed and fixed to a three-dimensional permeable contact material (8) of a photocatalytic reaction of titanium dioxide (6).
And that. The three-dimensional permeable TiO2 contact material (8) having the titanium dioxide (6) exposed and fixed to water,
The present invention relates to a contact method for obtaining a more efficient photocatalytic reaction from the excellent contact property of a three-dimensional structure having a large specific surface area and a high porosity by permeating, contacting, and transmitting natural atmosphere, and an arrangement and installation as a contact material. Adhesive (4) and cement (5)
Using a two-dimensional structure of inorganic concrete,
The present invention relates to a method of fixing titanium dioxide (6) to a metal or resin surface such as an iron material or an aluminum material. And using the two-dimensional structure to which titanium dioxide (6) is fixed as a contact material for a photocatalytic reaction.

【0002】[0002]

【発明の属する技術分野】本発明は、熱可塑性原料の複
数の線条を湾曲させて立体網状に点接着してなる、湾曲
した不規則な立体空間(2)からなる前記三次元構造体
の製造に係わる。湾曲線条(1)表面全面に接着剤
(4)で微細粉体の二酸化チタン(6)を大量に露出固
定した三次元透過性構造体(8)の製造に係わる。二酸
化チタンを露出固定した前記三次元透過性Tio2構造
体(8)を水、自然大気を浸透、接触、透過させる光触
媒反応の三次元透過性接触材とすることに関する。及び
の二酸化チタンを露出固定した前記三次元透過性Tio
2接触材(8)を水、自然大気を浸透、接触、透過さ
せ、光触媒反応をより効率的するための接触手法及び接
触材の配置、設置、及び紫外線を当てる手法等に関す
る。接着剤(4)とセメント(5)を用いて、平板状二
次元構造の無機質のコンクリート、鉄材、アルミ材など
の金属製、及び樹脂製の面に二酸化チタン(6)を固定
することを特徴とする二次元構造体の製造に関する。及
び二酸化チタン(6)を固定した前記二次元構造体を光
触媒の接触材とすることに関する。
The present invention relates to a three-dimensional structure comprising a curved irregular three-dimensional space (2) formed by curving a plurality of filaments of a thermoplastic material and bonding them in a three-dimensional network. Related to manufacturing. The present invention relates to the production of a three-dimensionally permeable structure (8) in which a large amount of fine powdered titanium dioxide (6) is exposed and fixed on the entire surface of a curved filament (1) with an adhesive (4). The present invention relates to a photocatalytic three-dimensionally permeable contact material that allows the three-dimensionally permeable TiO2 structure (8) to which titanium dioxide is exposed and fixed to permeate, contact, and transmit water and natural atmosphere. And the above-mentioned three-dimensional permeable TiO having titanium dioxide exposed and fixed
(2) The present invention relates to a contact method for permeating, contacting, and permeating water and natural air through a contact material (8) to make photocatalytic reaction more efficient, a method of arranging and installing the contact material, and a method of applying ultraviolet light. Using an adhesive (4) and cement (5), titanium dioxide (6) is fixed to metal and resin surfaces such as inorganic concrete, iron material, and aluminum material having a flat two-dimensional structure. And manufacturing a two-dimensional structure. And using the two-dimensional structure to which titanium dioxide (6) is fixed as a contact material for a photocatalyst.

【0003】[0003]

【従来の技術】紫外線をエネルギーとして二酸化チタン
の光触媒反応の強い酸化力で水、空気中の有機化合物、
有機塩素化合物、揮発性炭化水素、NOx、SOx、油
膜、自動車排気ガス等を水と炭酸ガスに酸化分解する環
境浄化技術は十数年前に日本で発見された技術で、よう
やくその実用化が見られるところである。その中で、二
酸化チタンを固定した接触材に係わる従来の技術は、主
に無機性の金属、ガラス、コンクリート、タイル等の二
次元的な素材に二酸化チタンのゾルを吹き付けた薄膜を
500〜800℃高温焼き付け固定、60〜120℃の
低温焼き付け固定、その他スプレー塗布、ディップ浸漬
法、グラビア印刷法等の塗布方法がある。この場合二次
元構造の素材表面に平面的に担持した接触材が大半であ
ること。平滑表面に紫外線が当たる露出した状態に固定
される二酸化チタンの量が極端に少なく、それらのうち
実用化したものは光触媒蛍光灯、ガラスコップ、NOx
の低減を計るための路側帯に設置したコンクリート二次
製品、或いは二酸化チタンを表面に焼き付けたタイルな
どがある。また、一部活性炭、無機繊維、パルプを組み
込み厚さ2cmのハニカム状に成形した平面板状接触材
等で、光触媒反応が発見されて、環境浄化の最先端技術
として注目、期待されながら長い年月を掛けた割にその
実用化は僅かなものに過ぎないのが現状である。特に、
二酸化チタンを接触材に固定する技術は、現在までに実
用化された手法ではコンクリートに二酸化チタンを塗布
して薄く、広くのばす、或いはガラス表面に担持させた
蛍光灯で高速道路のトンネル内に取り付ける、ガラスに
混入させたグラス、タイルに焼き付けてトイレ、壁材の
建材に使う、又、ハニカム状接触材を空気清浄機内に設
置して売り出した大手メーカー、及び塗料に5%程度練
り込む塗布する等であり、光触媒反応を長期間、あるい
は半永久的に成果を継続する担持手法が大半である。
2. Description of the Related Art Titanium dioxide uses organic energy in water and air due to the strong oxidative power of photocatalytic reaction using ultraviolet light as energy.
Environmental purification technology that oxidizes and decomposes organic chlorine compounds, volatile hydrocarbons, NOx, SOx, oil slicks, automobile exhaust gas, and the like into water and carbon dioxide is a technology discovered in Japan more than 10 years ago. I can see it. Among them, the conventional technology relating to a contact material having titanium dioxide fixed thereon is mainly a thin film obtained by spraying a sol of titanium dioxide onto a two-dimensional material such as an inorganic metal, glass, concrete, or a tile. There is a coating method such as a high temperature baking fixation at 60 ° C., a low temperature baking fixation at 60 to 120 ° C., and other spray coating, dip dipping, and gravure printing. In this case, most of the contact material is supported in a plane on the surface of the material having the two-dimensional structure. The amount of titanium dioxide fixed in an exposed state where ultraviolet light hits the smooth surface is extremely small. Among them, those that have been put into practical use include photocatalytic fluorescent lamps, glass cups, and NOx.
There is a concrete secondary product installed on the roadside zone to reduce the amount of waste, or a tile with titanium dioxide baked on the surface. In addition, a photocatalytic reaction was discovered with a flat plate-shaped contact material formed into a honeycomb shape with a thickness of 2 cm incorporating some activated carbon, inorganic fibers, and pulp. At present, the practical application is only a fraction of the cost of the month. In particular,
The technique of fixing titanium dioxide to the contact material is a technique that has been put to practical use until now, which is applied to concrete by applying titanium dioxide to the thin and wide area, or mounted inside a highway tunnel with a fluorescent lamp supported on the glass surface. Bake on glass mixed with glass, tiles, and use it for building materials for toilets and wall materials. Also, install a honeycomb-shaped contact material in an air purifier and sell it to a major manufacturer. In most cases, the method of carrying out the photocatalytic reaction for a long time or semipermanently continues.

【0004】二酸化チタンを担持する接触材に紫外線を
当て光触媒反応を期待する場合、接触する表面に露出し
て固定した微細粉体の二酸化チタンの量は多いほど、二
酸化チタン本来の光触媒反応の成果を得ることができ
る。ガラス、タイル、コンクリート、塗料等の表面に薄
く、広く引き延ばして担持した二酸化チタンの混入量は
塗布量の数%で、二次元構造の平面体の表面に薄く、広
く、不均等にのばした二酸化チタンの露出量が極めて少
ない二次元構造の平面体の接触材が大半である。二次元
構造の平面に水、大気等の接触させる場合には二次元構
造の平面を滑るだけで、僅かに露出している二酸化チタ
ンに水、空気が平均的に全て接触することは不可能であ
り、接触にはばらつきがでることで、分解成果にも大幅
なばらつきがでることは明白である。この事は、表面積
の数%にも満たない二酸化チタンを露出固定した二次元
構造の接触材と、二酸化チタンそのものの成果を比較す
ると、その成果は途方もない差がでることから実用化が
遅れるていることになる。更に、平面状の二次元構造体
を水、空気等の接触材とした場合には、その流動にる粘
性抵抗、摩擦抵抗等でその構造強度を求められることに
なる。
[0004] When a photocatalytic reaction is expected by applying ultraviolet rays to a contact material supporting titanium dioxide, the larger the amount of titanium dioxide in the fine powder exposed and fixed to the contacting surface, the larger the result of the original photocatalytic reaction of titanium dioxide. Can be obtained. The amount of titanium dioxide supported on the surface of glass, tile, concrete, paint, etc. thinly and widely stretched is a few percent of the applied amount, and it spreads thinly, widely, and unevenly on the surface of a two-dimensional structure. Most of the contact material is a two-dimensionally structured flat body having a very small amount of exposed titanium dioxide. When contacting the plane of the two-dimensional structure with water, the atmosphere, etc., it is not possible for water and air to contact the slightly exposed titanium dioxide on average only by sliding on the plane of the two-dimensional structure. It is clear that the variation in the contact results in a significant variation in the decomposition results. This is due to the fact that the results of titanium dioxide itself, when compared with the two-dimensional structure of contact material with titanium dioxide exposed and fixed to less than a few percent of the surface area, have a tremendous difference. Will be. Further, when a planar two-dimensional structure is used as a contact material such as water or air, the structural strength of the two-dimensional structure can be obtained by viscous resistance, frictional resistance or the like.

【0005】[0005]

【発明が解決しようとする課題】本発明で、課題の1つ
として、製造した有機性化合物であるポリプロピレン製
の湾曲した線条(1)が造る透過性接触材に、微細粉体
の二酸化チタン(6)をどのように線表面(1)に固着
させること。二酸化チタンの光触媒反応で有機物を分解
して剥離・脱落をどれだけ長く担持することを考案する
こと。課題2は、透過性接触材に求められる機能として
水流、気流の粘性抵抗、摩擦抵抗等の加圧に耐える強い
耐水抵抗性、耐摩擦性を備えた構造強度、塵埃などを貯
留する広い比表面積、それによる目詰まり性、接触性、
透過性等を確保する空隙率、この相反する構造条件をク
リアーするポリプロピレンの湾曲した線条が造る三次元
構造透過性接触材(8)を造ること。前記有機化合物ポ
リプロピレンの湾曲した線条が造る三次元構造体透過性
接触材の、線条表面に微細粉体の二酸化チタン(6)を
大量に露出した状態で固定する手法を接着剤(4)とす
ること。透過性三次元接触材(8)は有機化合物の熱可
塑性ポリプロピレンが原料であり、その有機化合物の線
条表面に接着剤(4)で二酸化チタン(6)を大量に露
出固定した三次元透過性Tio2接触材(8)とするこ
と。更に、前記三次元透過性構造体の線条表面に接着剤
で無機性のセメントを固定床のとして微細粉体の二酸化
チタン大量に露出固定して、二酸化チタンが剥離、脱落
しない三次元透過性Tio2接触材(8)を造ること。
二酸化チタンを大量に露出固定した三次元透過性Tio
2接触材(8)に、紫外線が当たる状態で水、自然大気
を浸透、接触、透過させて、二酸化チタン(6)の光触
媒反応で接触する有機化合物、有機塩素化合物、揮発性
炭化水素、NOx、SOx、油膜、自動車排ガス等を酸
化分解させること。前記三次元透過性Tio2接触材
(8)を水、自然大気等を浸透、接触、透過させる前記
三次元透過性Tio2接触材(8)の配置、設置、及び
紫外線を照射する手法。平板状二次元構造の無機質のコ
ンクリート、鉄材、アルミ材などの金属製、及び樹脂製
の面に二酸化チタン(6)を固定する手法及びその二次
元構造体を光触媒の接触材とすること。
One of the problems to be solved by the present invention is that a fine powder of titanium dioxide is added to a permeable contact material formed by a curved filament (1) made of polypropylene, which is an organic compound produced. How to fix (6) to the wire surface (1). The idea is to decompose the organic matter by the photocatalytic reaction of titanium dioxide to support the peeling and falling off for as long as possible. The second problem is that the permeable contact material is required to have strong water resistance to withstand pressure such as water flow, viscous resistance of air flow and frictional resistance, structural strength with friction resistance, and a large specific surface area for storing dust and the like. , Thereby clogging, contact,
To produce a three-dimensional structurally permeable contact material (8) formed by a curved line of polypropylene which satisfies the porosity which secures the permeability and the contradictory structural conditions. Adhesive (4) is a method of fixing a large amount of fine powder of titanium dioxide (6) on the surface of the three-dimensional structure permeable contact material formed by a curved line of the organic compound polypropylene. And The permeable three-dimensional contact material (8) is made of a thermoplastic polypropylene of an organic compound as a raw material, and a large amount of titanium dioxide (6) is exposed and fixed to the surface of the striated organic compound with an adhesive (4). TiO2 contact material (8). In addition, a large amount of fine powder of titanium dioxide is exposed and fixed on the surface of the three-dimensionally permeable structure with an adhesive with an inorganic cement as a fixed bed so that the titanium dioxide does not peel off or fall off. Making the TiO2 contact material (8).
Three-dimensional permeable TiO with a large amount of titanium dioxide exposed and fixed
(2) Organic compounds, organic chlorine compounds, volatile hydrocarbons, NOx that penetrate, contact, and permeate water and natural atmosphere in a state where ultraviolet light is applied to the contact material (8) to cause a photocatalytic reaction of titanium dioxide (6). Oxidative decomposition of SOx, SOx, oil film, automobile exhaust gas, etc. A method of arranging and installing the three-dimensionally permeable TiO2 contacting material (8) for permeating, contacting, and transmitting the three-dimensionally permeable TiO2 contacting material (8) with water, natural atmosphere, and the like, and irradiating ultraviolet rays. A method of fixing titanium dioxide (6) to a metal or resin surface such as an inorganic concrete, iron material, or aluminum material having a flat two-dimensional structure, and using the two-dimensional structure as a contact material for a photocatalyst.

【0006】[0006]

【課題を解決する手段】この発明は、上記目的を達成す
るために次のように構成した。請求項1に係わる、金型
に削孔した大、中、小の異なる線径の複数個のノズルよ
り、熱可塑性原料を溶融した線条で押しだし、前記線条
を固化する前に冷却液面で曲がりくねらせて(線径の太
さにより湾曲する径が異なり大、中、小の弧を描いて相
互に溶着する)隣接する他の線条(1)表面に接触して
溶着し、湾曲した線条が造る不規則な立体空間(2)か
らなる三次元構造をなす線条立体空隙構造体の製造を特
徴とする手法。上記三次元構造をなす線条立体空隙構造
体を規正型枠で円筒状、平板状、及び箱形状等に規正し
て、引き取り装置で一定の速度で引き取り、線条(1)
が冷却水で冷却固化してなる立体網状態をなしたる円筒
状(図1)、平板状(図2)、箱形状(図3)をした線
条がなす三次元立体空隙構造体を成形することを特徴と
する。前記円筒状(図1)、平板状(図2)、箱形状
(図3)に規正した線条(1)がなす三次元立体空隙構
造体(以下、前記三次元構造体と云う)を水、自然大気
等を構造体内を浸透、透過させる透過性接触材とするこ
とを特徴とする前記三次元構造体。前記円筒状(図
1)、平板状(図2)、箱形状(図3)に規正してなる
立体網状態をなす前記三次元構造体は、引き取り速度を
変えることにより比表面積60m/m〜100m
/m、空隙率80.0%〜95.0%程度の任意に規
正する事が出来ることを特徴とする前記三次元構造体。
前記円筒状(図1)、平板状(図2)、箱形状(図3)
に規正して、線条(1)の広い比表面積、高い空隙率か
ら成るなる立体網状態をなす前記三次元構造体に粉体の
二酸化チタン(6)を固定することを特徴とする前記三
次元構造体。
Means for Solving the Problems The present invention is configured as follows to achieve the above object. A thermoplastic material is extruded from a plurality of nozzles having different wire diameters of large, medium, and small holes drilled in a mold, and the cooling liquid level is solidified before the wires are solidified. (The diameters of the wires vary depending on the thickness of the wire diameter and are welded to each other by drawing large, medium and small arcs). A method characterized by the production of a three-dimensional linear void structure having a three-dimensional structure composed of an irregular three-dimensional space (2) created by a formed linear filament. The linear three-dimensional void structure forming the three-dimensional structure is defined in a cylindrical shape, a flat shape, a box shape, or the like by a setting form, and is taken out at a constant speed by a take-off device.
Forms a three-dimensional three-dimensional void structure consisting of a cylindrical (FIG. 1), flat (FIG. 2), and box-shaped (FIG. 3) filaments that form a three-dimensional network formed by cooling and solidifying with cooling water. It is characterized by doing. The three-dimensional three-dimensional void structure (hereinafter referred to as the three-dimensional structure) formed by the filament (1) defined in the cylindrical shape (FIG. 1), the flat shape (FIG. 2), and the box shape (FIG. 3) is water. The three-dimensional structure, wherein the three-dimensional structure is a permeable contact material that allows natural air or the like to penetrate and permeate the structure. The three-dimensional structure in a three-dimensional network state defined by the cylindrical shape (FIG. 1), the flat shape (FIG. 2), and the box shape (FIG. 3) has a specific surface area of 60 m 2 / m by changing the take-up speed. 3 ~100m 2
/ M 3 , and a porosity of about 80.0% to 95.0%.
The cylindrical shape (FIG. 1), flat plate shape (FIG. 2), box shape (FIG. 3)
Wherein the powdery titanium dioxide (6) is fixed to the three-dimensional structure having a three-dimensional network consisting of a wide specific surface area and a high porosity of the filament (1). Original structure.

【0008】請求項2に係わる、請求項1に示す、広い
比表面積と高い空隙率を任意に規正した前記三次元構造
体をなす湾曲した線条表面全面(1)に接着剤(4)を
塗布して、前記塗布した接着剤(4)表面に粉体のアナ
ターゼ型二酸化チタン(6)を露出した状態で接着固化
(図4,5)する。或いは水に浸した二酸化チタン
(6)を攪拌して接着剤(4)を塗布した前記三次元構
造体の線表面全面(1)に露出した状態で接着固化する
ことを特徴とする二酸化チタン(4)を固定した湾曲し
た線条から成る光触媒透過性三次元構造体(図1,図
2)。
The adhesive (4) is applied to the entire surface (1) of the curved linear surface forming the three-dimensional structure, wherein the wide specific surface area and the high porosity are arbitrarily defined. It is applied and solidified (FIGS. 4 and 5) while the powdered anatase type titanium dioxide (6) is exposed on the surface of the applied adhesive (4). Alternatively, the titanium dioxide (6) immersed in water is stirred and solidified while being exposed on the entire surface (1) of the three-dimensional structure coated with the adhesive (4). 4) A photocatalyst-permeable three-dimensional structure composed of curved filaments fixed to (4) (FIGS. 1 and 2).

【0009】請求項3に係わる、前記三次元構造体を構
成をなす線条表面全面(1)に接着剤(4)を塗布し
て、接着剤が固化する前に水と混練したセメント(5)
を接着剤面(4)に付け接着固化する。セメント(5)
が固化する前に粉体の二酸化チタン(6)をセメント面
全面(5)に吹付け露出した状態で固化させる。或いは
セメント(5)二酸化チタン(5)を水で混練して線表
面に接着固化させて成る(図6、図7)ことを特徴とす
る、二酸化チタンを露出した状態で固定した光触媒三次
元透過性接触材(8)。
An adhesive (4) is applied to the entire surface (1) of the filaments constituting the three-dimensional structure according to claim 3, and the cement (5) kneaded with water before the adhesive is solidified. )
To the adhesive surface (4) to solidify the adhesive. Cement (5)
Before the powder is solidified, the powdered titanium dioxide (6) is sprayed on the entire cement surface (5) and solidified in a state of being exposed. Alternatively, a three-dimensional photocatalyst having titanium dioxide exposed and fixed, characterized in that cement (5) titanium dioxide (5) is kneaded with water and adhered and solidified on the wire surface (FIGS. 6 and 7). Contact material (8).

【0010】請求項4に係わる、平板状二次元構造をな
すコンクリート、鉄材、アルミ材等金属類、樹脂類等の
面に接着剤(4)を塗布して、接着剤が固化する前に水
と混練したセメント(5)を付けて接着固化する。セメ
ント(5)が固化する前に二酸化チタン(6)をセメン
ト面全面に吹付けて露出した状態で固化・担持させる。
或いはセメント(5)二酸化チタン(6)を水で混練し
て線表面に接着固化させて成ることを特徴とする平板状
二次元構造体をなすコンクリート、鉄材、アルミ材等金
属類及び樹脂製品類の面に固定した光触媒二次元構造接
触材。(図8,図9,図10)
[0010] An adhesive (4) is applied to a surface of a metal, resin, or the like, such as concrete, iron material, aluminum material, etc., having a flat two-dimensional structure according to claim 4, and water is applied before the adhesive solidifies. The cement (5) kneaded with the above is attached and solidified. Before the cement (5) is solidified, titanium dioxide (6) is sprayed over the entire surface of the cement and solidified and supported in an exposed state.
Alternatively, a metal and resin product such as concrete, iron material, aluminum material and the like, which form a plate-shaped two-dimensional structure, characterized in that cement (5) titanium dioxide (6) is kneaded with water and adhered and solidified on the wire surface. Photocatalyst two-dimensional structure contact material fixed on the surface of. (FIGS. 8, 9, and 10)

【0011】請求項5に係わる、前記三次元透過性Ti
o2接触材(8)を構成する、二酸化チタン(6)を表
面に露出した状態で固定する湾曲した線条(1)が造る
不規則な立体空間(2)を水、自然大気を浸透、接触、
透過させる場合、前記三次元透過性Tio2接触材
(8)の片面を不透過壁面(9)に触れた状態で浸透、
接触、透過させる前記三次元透過性TIO2接触材
(8)の配置、設置、及び紫外線を当てる手法に係わる
ことを特徴とする接触手法(図11)。前記三次元透過
性Tio2接触材(8)に紫外線を当て水、自然大気を
浸透、接触、透過させる場合、構造体を構成する二酸化
チタン(6)を固定した湾曲線条(1)がつくる不規則
な立体空間(2)を、一方から浸透、接触させて自由な
方向に透過させる接触手法(図12)。前記三次元透過
性TIO2接触材(8)を斜めに配置して、その横から
蛍光灯から紫外線を効率的に三次元構造体に照射する手
法に係わることを特徴とする接触手法(図13)。
The three-dimensionally transparent Ti according to claim 5
The irregular solid space (2) formed by the curved filaments (1) that fix the titanium dioxide (6) in a state where it is exposed on the surface of the o2 contact material (8) penetrates and contacts water and natural atmosphere. ,
In the case of transmission, the one-sided surface of the three-dimensional permeable TiO2 contact material (8) penetrates while touching the impermeable wall (9),
A contact method (FIG. 11), which relates to a method of arranging and installing the three-dimensionally permeable TIO2 contact material (8) to be contacted and transmitted, and applying ultraviolet light. When ultraviolet rays are applied to the three-dimensionally transparent TiO2 contact material (8) to permeate, contact, and transmit water and natural atmosphere, the curved filament (1) to which the titanium dioxide (6) constituting the structure is fixed cannot be formed. A contact method of permeating and contacting a regular three-dimensional space (2) from one side and allowing it to penetrate in a free direction (FIG. 12). The contact method (FIG. 13), which relates to a method of arranging the three-dimensionally permeable TIO2 contact material (8) obliquely and efficiently irradiating the three-dimensional structure with ultraviolet light from a fluorescent lamp from the side thereof (FIG. 13). .

【0012】[0012]

【発明の効果】前記三次元構造体は大、中、小の異なる
線径の複数個のノズルより、熱可塑性原料を溶融した線
条〈1)で押しだし、前記線条を固化する前に冷却液面
で曲がりくねらせて(線径の太さにより湾曲する径が異
なり大、中、小の弧を描いて相互に溶着して不規則な立
体空間を造ることが出来る)隣接する他の線条表面に接
触して溶着し、引き取り装置で一定の速度で引き取り、
線条(1)が冷却固化してなる立体網状態をなしたる円
筒状(図1)、平板状(図2)、箱形状(図3)に規正
されている。円筒状(図1)、平板状(図2)、箱形状
(図3)に規正した前記構造体は引き取り装置の速度を
調整して比表面積50m〜100m/m、空隙率
80%〜95.5%程度の任意の線条立体空隙構造体を
成形することができる。
According to the present invention, the thermoplastic material is extruded from a plurality of nozzles having different wire diameters of large, medium and small with a melted wire <1> and cooled before the wire is solidified. Adjacent other lines that bend at the liquid surface (the diameter of the curve varies depending on the diameter of the wire, and can be welded together by drawing large, medium, and small arcs to create an irregular three-dimensional space) It comes into contact with the strip surface and welds, and it is taken off at a constant speed by a take-off device.
The wire (1) is fixed to a cylindrical shape (FIG. 1), a flat plate shape (FIG. 2), and a box shape (FIG. 3) that form a three-dimensional net formed by cooling and solidifying. The structure defined as a cylinder (FIG. 1), a flat plate (FIG. 2), and a box (FIG. 3) is adjusted to the speed of the take-off device to have a specific surface area of 50 m 2 to 100 m 2 / m 3 and a porosity of 80%. An arbitrary linear three-dimensional void structure of about 9595.5% can be formed.

【0013】比表面積60m〜100m/m、空
隙率80%〜95.5%程度の円筒状(図1)、平板状
(図2)、箱形状(図3)に規正した前記三次元構造体
に水流、気流を浸透、接触、透過させる接触材とした場
合、水流、気流は線条の1本々々で2分割されて不規則
な立体空間に衝突して流れが次々と崩れて線表面に接触
する機会が多くり接触効率が揚がることになる。又水、
空気の流動からの粘性抵抗、摩擦抵抗、衝撃等の加圧
は、弾性のある湾曲した線条の溶着接点を基点にした個
々の線振動に変形して、極端に耐粘性、耐摩擦抵抗性、
耐衝撃性を備えた三次元透過性接触材は水、空気等の流
動による加圧に充分耐える特異な構造体である。
[0013] The tertiary shape defined as a cylindrical shape (FIG. 1), a flat plate shape (FIG. 2), and a box shape (FIG. 3) having a specific surface area of 60 m 2 to 100 m 2 / m 3 and a porosity of about 80% to 95.5%. If a water flow or air flow is used as a contact material that penetrates, contacts, or permeates the original structure, the water flow or air flow is split into two by each line and collides with an irregular three-dimensional space, causing the flow to collapse one after another. This increases the chances of contact with the wire surface and increases the contact efficiency. Water,
Pressurization of viscous resistance, frictional resistance, impact, etc. from the flow of air is transformed into individual line vibrations based on the welded contacts of elastic curved filaments, resulting in extreme viscosity and friction resistance. ,
The three-dimensional permeable contact material having impact resistance is a unique structure that can sufficiently withstand pressurization due to the flow of water, air, or the like.

【0014】比表面積50m〜100m/m、空
隙率83%〜95.5%程度の円筒状(図1)、平板状
(図2)、箱形状(図3)に規正した前記三次元透過性
Tio2接触材に水及び自然大気を浸透、接触・透過さ
せる場合、その広い比表面積は接触性、貯留性を、高い
空隙率は目詰まり性、透過性を補完するものである。こ
の事は、広い線表面積は数ミクロンの微細粉体の二酸化
チタンを線条表面に大量に露出固定してその付着性、接
触性、分解性そのものになることである。高い空隙率は
水流、気流が浸透、接触、透過する場合の付着物による
空隙部の目詰まり性、透過性を保持するとともに、三次
元構造の深部の線表面の二酸化チタンまで紫外線を照射
することができ、これらは前記三次元構造体が創り出し
た特異な構造機能である。
The above-mentioned tertiary shape is defined as a cylindrical shape (FIG. 1), a flat plate shape (FIG. 2), and a box shape (FIG. 3) having a specific surface area of 50 m 2 to 100 m 2 / m 3 and a porosity of about 83% to 95.5%. When water and natural atmosphere penetrate, contact and permeate the original permeable TiO2 contact material, its large specific surface area complements the contact and storage properties, and the high porosity complements the clogging property and the permeability. This means that the large surface area of the line is that a large amount of fine powder of titanium dioxide having a size of several microns is exposed and fixed on the surface of the striated wire, and its adhesion, contactability and decomposability itself are obtained. The high porosity maintains the clogging and permeability of the voids due to the attachment when water and air flow penetrates, contacts, and penetrates, and irradiates ultraviolet rays to titanium dioxide on the deep line surface of the three-dimensional structure. These are unique structural functions created by the three-dimensional structure.

【0015】熱可塑性ポリプロピレンを原料とする前記
三次元透過性Tio2接触材の線条表面に接着剤(1)
で露出固定した二酸化チタンは、人工光源の紫外線では
18ヶ月経過した段階でも、線表面の接着剤(4)から
剥離・脱落は見られない。セメントを固定床として線条
表面に大量に露出固定した二酸化チタンは、太陽の自然
光にベランダで露出した状態で1年間放置して、二酸化
チタンの剥離は僅かに見られるが固定床のセメントはそ
の線条表面に充分固定されている。
An adhesive (1) is applied to the surface of the striated line of the three-dimensionally permeable TiO2 contact material made of thermoplastic polypropylene.
The titanium dioxide exposed and fixed in step (1) does not peel or fall off from the adhesive (4) on the wire surface even after 18 months with the ultraviolet light of the artificial light source. A large amount of titanium dioxide exposed and fixed on the surface of the striated cement as a fixed floor is left for one year in a state of being exposed to the sun's natural light on a veranda, and the titanium dioxide is slightly peeled off. Sufficiently fixed to the surface of the filament.

【0016】熱可塑性ポリプロピレンの有機化合物であ
る線条表面に、接着剤(4)で二酸化チタンを露出した
状態で大量固定した前記三次元透過性構造体は、人工光
源の紫外線で18ヶ月経過しても二酸化チタンは剥離・
脱落しないことは、蛍光灯からの紫外線照射であれば
水、自然大気等の接触材として充分利用することができ
る経済性を持つことになる。又、前記三次元透過性Ti
o2接触材の接触性、分解性は二酸化チタンそのものの
成果を示し、従来からの二酸化チタンを担持する二次元
構造の素材と比較してその差は途方もなく大きなものが
あることを示している。
The three-dimensionally permeable structure, which has been fixed in a large amount on the surface of a filament, which is an organic compound of thermoplastic polypropylene, with the titanium dioxide exposed by an adhesive (4), has passed 18 months with the ultraviolet light of an artificial light source. Even if titanium dioxide is peeled off
Not falling off means that if it is irradiated with ultraviolet rays from a fluorescent lamp, it will be economical that it can be sufficiently used as a contact material for water, natural atmosphere and the like. The three-dimensional transparent Ti
The contactability and decomposability of the o2 contact material show the results of titanium dioxide itself, indicating that there is a tremendous difference as compared with the conventional two-dimensional structure material supporting titanium dioxide. .

【0017】60m〜100m/m程度の広い表
面積の線条表面に、微細粉体の二酸化チタンを大量に露
出固定した前記三次元透過性Tio2接触材に紫外線を
当て水・自然大気を浸透、接触、透過させるて浮遊する
有機化合物、有機塩素化合物、揮発性炭化水素、NO
x、SOx、油分、自動車排ガス等を光触媒反応の強い
酸化力で酸化分解する接触材として充分機能する。
Ultraviolet rays are applied to the three-dimensional permeable TiO2 contact material in which a large amount of fine powder of titanium dioxide is exposed and fixed on the surface of the filament having a large surface area of about 60 m 2 to 100 m 2 / m 3 , and water and natural atmosphere are exposed. Organic compounds, organic chlorine compounds, volatile hydrocarbons, NO
It functions well as a contact material that oxidizes and decomposes x, SOx, oil, automobile exhaust gas, etc. with strong oxidizing power of photocatalytic reaction.

【0018】二次元構造の平面の鉄材、アルミなどの金
属、タイル、ガラス、コンクリート二次製品など無機性
素材の表面に二酸化チタンを担持させる従来の手法は、
素材表面に僅かな量が露出した状態であり、水・自然大
気等の接触材の場合は気流、水流は面に衝突して跳ね返
り、面を滑る接触で、僅かに露出する二酸化チタンに触
れる機会、比率は当然少なく、その接触性、分解性は二
酸化チタン露出量と紫外線の照射機会にしはいされる。
Conventional methods for supporting titanium dioxide on the surface of an inorganic material such as a two-dimensionally structured flat iron material, metal such as aluminum, tile, glass, and secondary concrete products are as follows:
A small amount is exposed on the surface of the material.In the case of a contact material such as water or natural atmosphere, the air current and the water flow will bounce off the surface and rebound. The ratio is naturally small, and its contact property and decomposability depend on the amount of titanium dioxide exposed and the opportunity for UV irradiation.

【0019】二次元構造の平面の鉄材、アルミなどの金
属、タイル、ガラス、コンクリート二次製品など無機性
素材の表面に、接着剤を塗布してその表面に無機性のセ
メントを吹き付け二酸化チタンの固定床として接着さ
せ、その上に二酸化チタンを固着させる。或いはセメン
ト・二酸化チタンを水で混練して接着剤表面に吹付けて
接着固化させる手法は、二酸化チタンの光触媒反応用途
を大きく拡大することができる。その理由として1、表
面に固定する二酸化チタンの露出量が大量であること、
2、簡便に二次構造物の面に二酸化チタンを担持するこ
とができる、3、接着剤は平滑な面、凹凸の面などに容
易に塗布することできること、4、無機性のセメントを
二酸化チタンの固定床とすることで接着剤まで紫外線が
到達することがなく、二酸化チタンの分解反応が生じな
いことから、長期間安定して二酸化チタンを担持するこ
とができる。
An adhesive is applied to the surface of an inorganic material such as a two-dimensionally planar iron material, metal such as aluminum, tile, glass, and a secondary product of concrete, and an inorganic cement is sprayed onto the surface to spray titanium dioxide. Adhere as a fixed bed, on which titanium dioxide is fixed. Alternatively, a method of kneading cement / titanium dioxide with water and spraying it onto the surface of the adhesive to solidify the adhesive can greatly expand the photocatalytic reaction application of titanium dioxide. The reason is that the amount of titanium dioxide fixed on the surface is large,
2. Titanium dioxide can be easily supported on the surface of the secondary structure. 3. Adhesive can be easily applied to smooth surface, uneven surface, etc. 4. Inorganic cement is made of titanium dioxide. With the fixed bed, no ultraviolet rays reach the adhesive and no decomposition reaction of titanium dioxide occurs, so that titanium dioxide can be stably supported for a long period of time.

【0020】前記三次元透過性Tio2接触材を空気活
性装置の接触材として設置し、黄色ブドウ状球菌の除菌
効果確認試験を行った。 1.試験機関:北里環境利学センター生物研究室 2.試験名:空気活性装置の除菌効果確認試験 3.試験装置:二酸化チタンを固定した接触材とブラッ
クランプの組み合わせからなる空気活性装置 4.試験菌種:Staphylococcus aur
eus IFO 12732黄色ブドウ状球菌 5.試験方法:1m×1m×1の箱に試験装置を入れ、
以下の作用時間・稼働条件にて試験を行う。 6.作用時間 7.稼働条件 菌の噴霧は噴霧粒子が1.0〜3.0μmで最も高い分
布を示す噴霧器を用い、0.5kg/cmの圧力で菌
懸濁液を箱内に噴霧する。菌の採取にはインビジャー法
を用いる。10リットル/分の流速で10分間(空気1
00リットル)空気をインビジャーに吸引、捕集した菌
をトリプチケースソイ寒天培地(BBL)で36℃・7
2時間培養し、発生集落を数えて空気100リットル当
たりの浮遊細菌数を求める。 8.試験結果:菌数測定の結果を以下に示す。 9.高負荷試験の結果 空気中に浮遊する最も強いウイルスの分解試験を行った
もので、1mの限られた空間内に噴霧した菌数6.7
×10は、一般大気中に浮遊する菌数の2オーダー程
度も高い負荷量であり、Tio2セメントの接触材とし
ての優れた分解能力を示している。
The above three-dimensional permeable TiO2 contact material was installed as a contact material for an air activation device, and a test for confirming the bactericidal effect of Staphylococcus aureus was performed. 1. Testing organization: Kitasato Center for Environmental Studies Biology Laboratory 2. Test name: Bactericidal effect confirmation test of air activation device Test equipment: Air activation equipment consisting of a combination of black lamp and contact material with titanium dioxide fixed Test strain: Staphylococcus aur
4. eus IFO 12732 Staphylococcus aureus Test method: Put the test equipment in a 1m x 1m x 1 box,
The test is performed under the following operation time and operating conditions. 6. Action time 7. Operating conditions The spray of the bacteria is performed by spraying the bacterial suspension into the box at a pressure of 0.5 kg / cm 2 using a sprayer having a spray particle having the highest distribution of 1.0 to 3.0 μm. The bacteria method is used for the collection of bacteria. 10 liter / min flow rate for 10 minutes (air 1
(00 liters) Air is sucked into the Inviger, and the collected bacteria are collected on a trypticase soy agar medium (BBL) at 36 ° C for 7 hours.
After culturing for 2 hours, the number of colonies generated is counted, and the number of suspended bacteria per 100 liters of air is determined. 8. Test results: The results of the bacterial count measurement are shown below. 9. Which was subjected to results strongest virus degradation test airborne high load test, a few bacteria were sprayed into the limited space of 1 m 3 6.7
× 10 4 is a load that is as high as about two orders of the number of bacteria suspended in the general atmosphere, and shows excellent decomposition ability as a contact material for TiO2 cement.

【0021】前記三次元透過性Tio2接触材を自然大
気中の窒素酸化物を酸化分解する接触材としての能力を
検証した。 1.試験名:大気中の窒素酸化物の低減性能に関する試
験 2.試験方法:厚さ2.0cmの試験体に、一般大気の
通気試験をした。紫外線は自然光照射 3.試験方法:厚さ2.0cmの試験体の表入り口、裏
出口の二ヶ所で同時測定し、濃度差から評価した。 4.試験結果 厚さ2.0cmの立体網状態をなす平板状前記三次元透
過性Tio2接触材の面内方向に自然大気が透過させ、
浮遊している窒素酸化物(NOx)を平均26.3%を
分解したことを示し、三次元透過性Tio2接触材が自
然大気中の窒素酸化物(NOx)を酸化分解する優れた
能力があることを示している。
The ability of the three-dimensionally permeable TiO2 contact material as a contact material for oxidatively decomposing nitrogen oxides in natural atmosphere was verified. 1. Test name: Test on the performance of reducing nitrogen oxides in the atmosphere Test method: A test specimen having a thickness of 2.0 cm was subjected to a general air permeability test. 2. UV light is irradiated with natural light. Test method: Simultaneous measurement was performed at two points at the front entrance and the rear exit of a 2.0 cm thick test specimen, and the evaluation was made based on the concentration difference. 4. Test result: Natural air permeates in the in-plane direction of the flat three-dimensional permeable TiO2 contact material in a three-dimensional net state having a thickness of 2.0 cm,
It shows that suspended nitrogen oxides (NOx) decomposed on average 26.3%, and the three-dimensional permeable TiO2 contact material has excellent ability to oxidatively decompose nitrogen oxides (NOx) in natural atmosphere It is shown that.

【0022】[0022]

【発明実施の形態】以下に、この発明の実施形態につい
て詳細に説明する。
Embodiments of the present invention will be described below in detail.

【図面の簡単な説明】[Brief description of the drawings]

図1は、立体網状態をなす前記三次元構造体を外周面、
内部中空部を規正した、円筒状をなす透過性三次元構造
体の断面を示す。図2は、立体網状態をなす前記三次元
構造体を板状に規正した透過性接触材の断面を示す。図
3は、立体網状態をなす前記三次元構造体を箱型状に規
正した透過性接触材の断面を示す。図4は、線条本体
(1)の周面に接着剤(4)を塗布し、線条全表面に微
細粉体の二酸化チタン(6)を露出した状態で固化させ
た模式断面図。図5は、図4のA−A’断面図。図6
は、立体網状態をなす前記三次元構造体を造る線条
(1)周面に接着剤(4)を塗布して、接着剤(4)が
固化する前に水と混練したセメントを接着固化して、そ
のセメント表面に微細粉体の二酸化チタンを付け、セメ
ントが固化することで表面に二酸化チタンを露出した状
態で大量に固定した模式断面図である。図7は、図6の
A−A’断面図。図8、図9、図10は、コンクリー
ト、鉄材、アルミ材等金属類、樹脂類等二次元構造体面
に二酸化チタンを接着剤、セメントで固定する模式断面
図。図11は、二酸化チタンを露出固定した三次元透過
性構造体を片面は不透壁面に密着させて水、自然大気を
浸透、接触、透過させる1接触手法の模式断面図。図1
2は、二酸化チタンを露出固定した三次元透過性構造体
を水、自然大気空を浸透、接触、透過させる場合、その
浸透、接触、透過を制限しない手法の断面図。図13
は、二酸化チタンを露出固定した三次元透過性構造体を
斜めに配置して、蛍光灯からの紫外線を効率的に照射す
る手法の断面図。
FIG. 1 shows an outer peripheral surface of the three-dimensional structure forming a three-dimensional network,
2 shows a cross section of a cylindrical permeable three-dimensional structure in which an internal hollow portion is defined. FIG. 2 shows a cross-section of a permeable contact material in which the three-dimensional structure forming a three-dimensional network is fixed in a plate shape. FIG. 3 is a cross-sectional view of a permeable contact material in which the three-dimensional structure forming a three-dimensional network is defined in a box shape. FIG. 4 is a schematic cross-sectional view in which an adhesive (4) is applied to the peripheral surface of the filament main body (1) and solidified in a state where fine powder titanium dioxide (6) is exposed on the entire surface of the filament. FIG. 5 is a sectional view taken along line AA ′ of FIG. FIG.
Is to apply an adhesive (4) to the peripheral surface of the filament (1) forming the three-dimensional structure in a three-dimensional network state, and to bond and cement cement kneaded with water before the adhesive (4) solidifies. FIG. 4 is a schematic cross-sectional view in which a fine powder of titanium dioxide is applied to the cement surface, and the cement is solidified to fix the titanium dioxide in a large amount with the titanium dioxide exposed on the surface. FIG. 7 is a sectional view taken along the line AA ′ of FIG. FIGS. 8, 9, and 10 are schematic cross-sectional views in which titanium dioxide is fixed to the surface of a two-dimensional structure such as metals, resins, and the like, such as concrete, iron, and aluminum, with an adhesive and cement. FIG. 11 is a schematic cross-sectional view of a one-contact method in which a three-dimensional permeable structure having titanium dioxide exposed and fixed is adhered on one side to an opaque wall surface to permeate, contact, and transmit water and natural atmosphere. FIG.
2 is a cross-sectional view of a method in which the penetration, contact, and transmission of a three-dimensional permeable structure having titanium dioxide exposed and fixed to water and the natural atmosphere are not restricted. FIG.
3 is a cross-sectional view of a method in which a three-dimensionally permeable structure on which titanium dioxide is exposed and fixed is arranged obliquely and efficiently irradiates ultraviolet rays from a fluorescent lamp.

【符号の説明】[Explanation of symbols]

1.線条 2.不規則な立体空間 3.中空部 4.接着剤 5.セメント 6.二酸化チタン 7.二次元不透壁面 8.三次元透過性Tio2接触材 1. Streak 2. Irregular three-dimensional space Hollow part 4. Adhesive 5. Cement 6. 6. titanium dioxide 7. Two-dimensional opaque wall surface Three-dimensional permeable TiO2 contact material

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C04B 41/65 C04B 41/65 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C04B 41/65 C04B 41/65

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 金型に削孔した大、中、小の異なる線径
の複数個のノズルより、熱可塑性原料を溶融した線条で
押しだし、前記線条を固化する前に冷却液面で曲がりく
ねらせて(線径の太さにより湾曲する径が異なり大、
中、小の弧を描いて相互に溶着する)隣接する他の線条
(1)表面に接触して溶着し、湾曲した線条が造る不規
則な立体空間(2)からなる三次元構造をなす線条立体
空隙構造体の製造を特徴とする手法。上記三次元構造を
なす線条立体空隙構造体を規正型枠で円筒状、平板状、
及び箱形状等に規正して、引き取り装置で一定の速度で
引き取り、線条(1)が冷却水で冷却固化してなる立体
網状態をなしたる円筒状(図1)、平板状(図2)、箱
形状(図3)をした線条がなす三次元立体空隙構造体を
成形することを特徴とする。前記円筒状(図1)、平板
状(図2)、箱形状(図3)に規正した線条(1)がな
す三次元立体空隙構造体(以下、前記三次元構造体と云
う)を水、自然大気等を構造体内を浸透、透過させる透
過性接触材とすることを特徴とする前記三次元構造体。
前記円筒状(図1)、平板状(図2)、箱形状(図3)
に規正してなる立体網状態をなす前記三次元構造体は、
引き取り速度を変えることにより比表面積60m/m
〜100m/m、空隙率80.0%〜95.0%
程度の任意に規正する事が出来ることを特徴とする前記
三次元構造体。前記円筒状(図1)、平板状(図2)、
箱形状(図3)に規正して、線条(1)の広い比表面
積、高い空隙率から成るなる立体網状態をなす前記三次
元構造体に粉体の二酸化チタン(6)を固定することを
特徴とする前記三次元構造体。
1. A thermoplastic raw material is extruded from a plurality of nozzles having different wire diameters of large, medium, and small holes drilled in a mold, and the thermoplastic raw material is extruded by a cooling liquid level before solidifying the wire. Make it meander (the diameter varies depending on the wire diameter,
A three-dimensional structure consisting of an irregular three-dimensional space (2), which is welded in contact with the surface of other adjacent filaments (1) which are welded to each other by drawing small and medium arcs, and which are formed by curved filaments A method characterized by the production of the formed linear three-dimensional void structure. The linear three-dimensional void structure forming the three-dimensional structure is cylindrical, flat,
In a cylindrical shape (FIG. 1) and a flat plate shape (FIG. 1), the wire (1) is solidified by cooling water and solidified by cooling water. 2), characterized in that a three-dimensional three-dimensional void structure formed by box-shaped (FIG. 3) filaments is formed. The three-dimensional three-dimensional void structure (hereinafter referred to as the three-dimensional structure) formed by the filament (1) defined in the cylindrical shape (FIG. 1), the flat shape (FIG. 2), and the box shape (FIG. 3) is water. The three-dimensional structure, wherein the three-dimensional structure is a permeable contact material that allows natural air or the like to penetrate and permeate the structure.
The cylindrical shape (FIG. 1), flat plate shape (FIG. 2), box shape (FIG. 3)
The three-dimensional structure forming a three-dimensional network state as defined in
By changing the take-off speed, the specific surface area is 60 m 2 / m
3 to 100 m 2 / m 3 , porosity 80.0% to 95.0%
The three-dimensional structure, wherein the degree can be arbitrarily determined. The cylindrical shape (FIG. 1), the flat shape (FIG. 2),
Fixing the powdered titanium dioxide (6) to the three-dimensional structure having a three-dimensional network consisting of a large specific surface area and a high porosity of the filaments (1) in a box shape (FIG. 3). The three-dimensional structure described above.
【請求項2】請求項1に示す、広い比表面積と高い空隙
率を任意に規正した前記三次元構造体をなす湾曲した線
条表面全面(1)に接着剤(4)を塗布して、前記塗布
した接着剤(4)表面に粉体のアナターゼ型二酸化チタ
ン(6)を露出した状態で接着固化(図4,5)する。
或いは水に浸した二酸化チタン(6)を攪拌して接着剤
(4)を塗布した前記三次元構造体の線表面全面(1)
に露出した状態で接着固化することを特徴とする二酸化
チタン(4)を固定した湾曲した線条から成る光触媒透
過性三次元構造体(図1,図2)(以下三次元透過性T
io2接触材(8)と云う)。
2. An adhesive (4) is applied to the entire surface (1) of the curved striated line forming the three-dimensional structure in which a large specific surface area and a high porosity are arbitrarily defined. The powdered anatase-type titanium dioxide (6) is bonded and solidified in a state where the powdered anatase-type titanium dioxide (6) is exposed on the surface of the applied adhesive (4) (FIGS. 4 and 5).
Alternatively, the entire surface of the three-dimensional structure on which the adhesive (4) is applied by stirring the titanium dioxide (6) soaked in water (1)
A photocatalyst-permeable three-dimensional structure (FIG. 1 and FIG. 2) comprising curved filaments to which titanium dioxide (4) is fixed, wherein the three-dimensionally transparent T
io2 contact material (8)).
【請求項3】前記三次元構造体を構成をなす線条表面全
面(1)に接着剤(4)を塗布して、接着剤が固化する
前に水と混練したセメント(5)を接着剤面(4)に付
け接着固化する。セメント(5)が固化する前に粉体の
二酸化チタン(6)をセメント面全面(5)に吹付け露
出した状態で固化させる。或いはセメント(5)二酸化
チタン(5)を水で混練して線表面に接着固化させて成
る(図6、図7)ことを特徴とする、二酸化チタンを露
出した状態で固定した光触媒三次元透過性接触材(8)
(以下三次元透過性Tio2接触材と云う)。
3. An adhesive (4) is applied to the entire surface (1) of the striated surface constituting the three-dimensional structure, and a cement (5) kneaded with water before the adhesive solidifies. Adhere to surface (4) and solidify. Before the cement (5) is solidified, powdery titanium dioxide (6) is sprayed onto the entire surface (5) of the cement and solidified in a state of being exposed. Alternatively, a three-dimensional photocatalyst having titanium dioxide exposed and fixed, characterized in that cement (5) titanium dioxide (5) is kneaded with water and adhered and solidified on the wire surface (FIGS. 6 and 7). Contact material (8)
(Hereinafter referred to as three-dimensional permeable TiO2 contact material).
【請求項4】平板状二次元構造をなすコンクリート、鉄
材、アルミ材等金属類、樹脂類等の面に接着剤(4)を
塗布して、接着剤が固化する前に水と混練したセメント
(5)を付けて接着固化する。セメント(5)が固化す
る前に二酸化チタン(6)をセメント面全面に吹付けて
露出した状態で固化・担持させる。或いはセメント
(5)二酸化チタン(6)を水で混練して線表面に接着
固化させて成ることを特徴とする平板状二次元構造体を
なすコンクリート、鉄材、アルミ材等金属類及び樹脂製
品類の面に固定した光触媒二次元構造接触材。(図8,
図9,図10)
4. An adhesive (4) applied to a surface of a metal, resin, etc., such as concrete, iron material, aluminum material, etc., having a flat two-dimensional structure, and kneaded with water before the adhesive solidifies. (5) is attached and solidified. Before the cement (5) is solidified, titanium dioxide (6) is sprayed over the entire surface of the cement and solidified and supported in an exposed state. Alternatively, a metal and resin product such as concrete, iron material, aluminum material and the like, which form a plate-shaped two-dimensional structure, characterized in that cement (5) titanium dioxide (6) is kneaded with water and adhered and solidified on the wire surface. Photocatalyst two-dimensional structure contact material fixed on the surface of. (FIG. 8,
(FIGS. 9 and 10)
【請求項5】前記三次元透過性Tio2接触材(8)を
構成する、二酸化チタン(6)を表面に露出した状態で
固定する湾曲した線条(1)が造る不規則な立体空間
(2)を水、自然大気を浸透、接触、透過させる場合、
前記三次元透過性Tio2接触材(8)の片面を不透過
壁面(9)に触れた状態で浸透、接触、透過させる前記
三次元透過性TIO2接触材(8)の配置、設置、及び
紫外線を当てる手法に係わることを特徴とする接触手法
(図11)。前記三次元透過性Tio2接触材(8)に
紫外線を当て水、自然大気を浸透、接触、透過させる場
合、構造体を構成する二酸化チタン(6)を固定した湾
曲線条(1)がつくる不規則な立体空間(2)を、一方
から浸透、接触させて自由な方向に透過させる接触手法
(図12)。前記三次元透過性TIO2接触材(8)を
斜めに配置して、その横から蛍光灯から紫外線を効率的
に前記三次元透過性TIO2接触材に照射する手法に係
わることを特徴とする接触手法(図13)。
5. An irregular three-dimensional space (2) formed by a curved filament (1) that constitutes the three-dimensional permeable TiO2 contact material (8) and fixes the titanium dioxide (6) in an exposed state on the surface. ) Permeates, contacts, and permeates water and the natural atmosphere,
Arrangement and installation of the three-dimensionally permeable TIO2 contacting material (8), which penetrates, contacts, and transmits the three-dimensionally permeable TiO2 contacting material (8) while one side thereof is in contact with the non-transparent wall surface (9); A contact method (FIG. 11), which relates to a method to be applied. When ultraviolet rays are applied to the three-dimensionally transparent TiO2 contact material (8) to permeate, contact, and transmit water and natural atmosphere, the curved filament (1) to which the titanium dioxide (6) constituting the structure is fixed cannot be formed. A contact method of permeating and contacting a regular three-dimensional space (2) from one side and allowing it to penetrate in a free direction (FIG. 12). The contact method according to the present invention relates to a method of arranging the three-dimensionally permeable TIO2 contact material (8) obliquely and irradiating the three-dimensionally permeable TIO2 contact material with ultraviolet light from a fluorescent lamp from the side thereof. (FIG. 13).
JP37711799A 1999-12-24 1999-12-24 Method of sticking/fixing titanium dioxide to three- dimensional and two-dimensional structures and contact method Pending JP2001179112A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP37711799A JP2001179112A (en) 1999-12-24 1999-12-24 Method of sticking/fixing titanium dioxide to three- dimensional and two-dimensional structures and contact method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP37711799A JP2001179112A (en) 1999-12-24 1999-12-24 Method of sticking/fixing titanium dioxide to three- dimensional and two-dimensional structures and contact method

Publications (1)

Publication Number Publication Date
JP2001179112A true JP2001179112A (en) 2001-07-03

Family

ID=18508277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP37711799A Pending JP2001179112A (en) 1999-12-24 1999-12-24 Method of sticking/fixing titanium dioxide to three- dimensional and two-dimensional structures and contact method

Country Status (1)

Country Link
JP (1) JP2001179112A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003064606A (en) * 2001-08-27 2003-03-05 National Institute Of Advanced Industrial & Technology Sintered block
JP2003112055A (en) * 2001-10-05 2003-04-15 Tobishima Corp Method for forming photocatalyst layer
JP2003202191A (en) * 2002-01-09 2003-07-18 Tadahiro Omi Air cooling method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003064606A (en) * 2001-08-27 2003-03-05 National Institute Of Advanced Industrial & Technology Sintered block
JP2003112055A (en) * 2001-10-05 2003-04-15 Tobishima Corp Method for forming photocatalyst layer
JP2003202191A (en) * 2002-01-09 2003-07-18 Tadahiro Omi Air cooling method

Similar Documents

Publication Publication Date Title
US8435446B2 (en) Surfaces and coatings for the removal of carbon dioxide
WO1997031703A1 (en) Glass material for carrying a photocatalyst, filter device using the same and light irradiating method
EP0911078A1 (en) Photocatalyst-supporting body and photocatalytic apparatus
JP5742837B2 (en) Photocatalyst-coated body and photocatalyst coating liquid
JP2012501842A (en) Photocatalyst derived from structured three-dimensional carbon or carbon foam
US20160250372A1 (en) Device for photocatalytic removal of volatile organic and inorganic contamination as well as microorganisms especially from automobile air conditioning systems
EP2319603B2 (en) Honeycomb filter
CN102728412A (en) Porous ceramic plate photocatalyst carrier
JP2001303276A (en) Enamel material
JP2001179112A (en) Method of sticking/fixing titanium dioxide to three- dimensional and two-dimensional structures and contact method
JP3776263B2 (en) NOx removal material
WO2021224358A1 (en) A filter and a method for manufacturing thereof
RU2151632C1 (en) Photocatalytic element and method for manufacture thereof
JP2005254128A (en) Photocatalyst particle and method of immobilizing it, and photocatalytic member
EP1797936B1 (en) Covering for air pollution abatement and method for making the covering
JPH1133413A (en) Production of structure for air cleaning
JP2002115176A (en) Porous fiber board supporting photocatalyst and method for producing the same
JP2004114669A (en) Manufacturing method for three dimensional permeable photo-catalyst filter, and cleaning method and equipment for water and air
JP2005052713A (en) Carbon fiber supported porous titanium oxide photocatalyst and filter
WO2005115614A1 (en) Decomposer/purifier using photocatalyst, method for producing same, and decomposing/purifying method using same
JPH10216528A (en) Photocatalyst and apparatus using the same, and heat exchange fin
JPH10272367A (en) Air purifying material and its manufacture
JP2000262903A (en) Photocatalyst carrier
JP4207413B2 (en) Metal material for photocatalyst product and method for producing the metal material and product
JP2002215171A (en) Sound insulation wall having excellent decomposition removal characteristic of hazardous component of nox and the like