JP2003171544A - Lactic acid resin composition, peroxide-modified lactic acid resin composition, and their molded items - Google Patents

Lactic acid resin composition, peroxide-modified lactic acid resin composition, and their molded items

Info

Publication number
JP2003171544A
JP2003171544A JP2002088378A JP2002088378A JP2003171544A JP 2003171544 A JP2003171544 A JP 2003171544A JP 2002088378 A JP2002088378 A JP 2002088378A JP 2002088378 A JP2002088378 A JP 2002088378A JP 2003171544 A JP2003171544 A JP 2003171544A
Authority
JP
Japan
Prior art keywords
lactic acid
resin composition
based resin
peroxide
acid resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002088378A
Other languages
Japanese (ja)
Other versions
JP4503215B2 (en
Inventor
Jun Takagi
潤 高木
Tomoyuki Nemoto
友幸 根本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Plastics Inc
Original Assignee
Mitsubishi Plastics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Plastics Inc filed Critical Mitsubishi Plastics Inc
Priority to JP2002088378A priority Critical patent/JP4503215B2/en
Publication of JP2003171544A publication Critical patent/JP2003171544A/en
Application granted granted Critical
Publication of JP4503215B2 publication Critical patent/JP4503215B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lactic acid resin composition and a peroxide-modified lactic acid resin composition, both excellent in processability and physical properties in addition to biodegradability inherent in a lactic acid resin; and molded items obtained from them. <P>SOLUTION: The lactic acid resin composition comprises 100 pts.mass lactic acid resin and 0.05-5.0 pts.mass organic peroxide having a 1-hr half-life temperature (Th1) of 70-200°C and, preferably, a hydrogen abstraction coefficient (ε) of 10-60. The peroxide-modified lactic acid resin composition is prepared by subjecting the lactic acid resin composition to a reaction by a specific means so as to satisfy the relation represented by the equation: D2/D1=1.10-3.0 (wherein D1 is the polydispersity of the composition before the reaction; and D2 is that after the reaction). Molded items are prepared from these compositions. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、成形性に優れた乳
酸系樹脂組成物、過酸化物変性乳酸系樹脂組成物、およ
び、それらを原料として成形加工した成形体に関する。
TECHNICAL FIELD The present invention relates to a lactic acid-based resin composition excellent in moldability, a peroxide-modified lactic acid-based resin composition, and a molded product obtained by molding and processing them.

【0002】[0002]

【従来の技術】近年、環境問題の高まりから、プラスチ
ック製品が自然環境中に棄却された場合、経時的に分解
・消失し、最終的に自然環境に悪影響を及ぼさないこと
が求められ始めている。従来のプラスチックは、自然環
境中で長期にわたって安定であり、しかも嵩比重が小さ
いため、廃棄物埋め立て地の短命化を促進したり、自然
の景観や野生動植物の生活環境を損なうといった問題点
が指摘されていた。
2. Description of the Related Art In recent years, due to an increase in environmental problems, it has been demanded that when a plastic product is discarded in a natural environment, it is decomposed / disappeared with time and finally does not adversely affect the natural environment. Conventional plastics are stable in the natural environment for a long period of time and have a low bulk specific gravity, so problems such as promoting the shortening of the life of waste landfills and impairing the natural landscape and living environment of wild animals and plants are pointed out. It had been.

【0003】そこで、今日注目を集めているのは、生分
解性プラスチック材料である。生分解性プラスチック
は、土壌中や水中で、加水分解や生分解により、徐々に
崩壊・分解が進行し、最終的に微生物の作用により無害
な分解物となることが知られている。実用化され始めて
いる生分解性プラスチックとしては、ポリ乳酸、脂肪族
ポリエステル、変性PVA、セルロースエステル化合
物、デンプン変性体、およびこれらのブレンド体等があ
る。生分解性プラスチック材料はそれぞれ固有の特徴を
有し、これらに応じた用途展開が図られるが、この中で
乳酸系樹脂は、数少ない硬質系の樹脂であり、ポリエチ
レンテレフタレート(PET)や、ポリスチレン(P
S)、ABS等の硬質系樹脂の代替が期待されている。
Therefore, biodegradable plastic materials are attracting attention today. It is known that biodegradable plastics gradually disintegrate / decompose in soil or water due to hydrolysis or biodegradation, and finally become harmless decomposition products by the action of microorganisms. Examples of biodegradable plastics that have been put into practical use include polylactic acid, aliphatic polyester, modified PVA, cellulose ester compounds, starch modified products, and blends thereof. Each biodegradable plastic material has its own unique characteristics, and its application can be expanded according to these characteristics. Among them, lactic acid-based resin is one of the few hard resins, and polyethylene terephthalate (PET) and polystyrene ( P
Substitution of hard resin such as S) and ABS is expected.

【0004】ところが、乳酸系樹脂は、溶融張力が相対
的に低く、また、歪み硬化性も乏しく、加工性に劣ると
いう欠点があった。溶融張力と歪み硬化性が相対的に低
いために、例えば、インフレーションフィルム成形にお
いてはバブルが安定しなかったり、シート成形において
は予熱時にシートのドローダウンが起きたり、ブロー成
形においてはパリソンが変形したり、発泡成形において
は破泡が多く発生したり等の問題点があった。
However, lactic acid-based resins have the drawbacks of relatively low melt tension, poor strain hardening, and poor workability. Due to the relatively low melt tension and strain hardening, for example, bubbles are not stable in blown film molding, drawdown of the sheet occurs during preheating in sheet molding, and parison is deformed in blow molding. In addition, there have been problems such as a large amount of foam breakage in foam molding.

【0005】溶融張力を上げるには、分子量を上げる、
分岐性の多官能モノマーを共重合する等の改良法が考え
られるが、分子量の上昇は溶融粘度が必要以上に上が
り、押出吐出量等の生産性が低下し、一方、分岐性の多
官能モノマーは、工業的な入手が容易でない。
To increase the melt tension, increase the molecular weight,
An improved method such as copolymerizing a branching polyfunctional monomer may be considered, but an increase in the molecular weight increases the melt viscosity more than necessary, and the productivity such as the extrusion discharge amount decreases, while the branching polyfunctional monomer is used. Is not easy to obtain industrially.

【0006】過酸化物の添加により溶融張力を上げる試
みに関して、発泡成形においては特開平11−2865
70号公報に、乳酸系樹脂と他の脂肪族ポリエステル樹
脂のブレンドにおいては特開平01−26658号公報
に組成物の開示があるが、これらは、過酸化物の種類や
反応変性物の形を特定しておらず、必ずしも、成形性改
良に効果のあるものではなかった。
Regarding the attempt to increase the melt tension by adding a peroxide, in JP-A-11-2865 in foam molding.
No. 70 discloses a composition of a blend of a lactic acid-based resin and another aliphatic polyester resin, which is disclosed in Japanese Patent Application Laid-Open No. 01-26658. It was not specified, and it was not necessarily effective in improving moldability.

【0007】[0007]

【発明が解決しようとする課題】すなわち、本発明の課
題は、乳酸系樹脂が本来有している生分解性に加え、優
れた加工性や物性を有する乳酸系樹脂組成物、過酸化物
変性乳酸系樹脂組成物、および、それらからなる成形体
を提供するものである。
That is, the object of the present invention is to provide a lactic acid-based resin composition having excellent processability and physical properties in addition to the biodegradability inherent to the lactic acid-based resin, and peroxide modification. The present invention provides a lactic acid-based resin composition and a molded product made of them.

【0008】[0008]

【課題を解決するための手段】本発明者らは、このよう
な現状に鑑み、鋭意検討を重ねた結果、効果の高い本発
明を完成するに至った。本出願に係る発明は、以下の
(1)〜(5)に記載する発明である。 (1)乳酸系樹脂100質量部と、1時間半減期温度T
h1が70〜200℃である有機過酸化物0.05〜
5.0質量部からなる乳酸系樹脂組成物。 (2)乳酸系樹脂100質量部と、1時間半減期温度T
h1が70〜200℃、水素引き抜き係数εが10〜6
0である有機過酸化物0.05〜5.0質量部からなる
乳酸系樹脂組成物。 (3)上記乳酸系組成物を所定の手段により反応させ、
過酸化物反応前の乳酸系樹脂の多分散度をD1とし、過
酸化物反応後の乳酸系樹脂の多分散度をD2とした時
に、D2/D1=1.10〜3.0である過酸化物変性
乳酸系樹脂。本発明において、所定の手段とは、加熱、
放射線照射等の手段をいう。 (4)上記過酸化物変性乳酸系樹脂からなるフィルム、
シート、シート成形体、発泡シート、発泡シート成形
体、ブロー成形体、射出成形体、型発泡体、繊維、パイ
プ、プレート、プレート成形体等の成形体。 (5)乳酸系樹脂50〜97質量部と、ガラス転移温度
Tgが0℃以下の脂肪族ポリエステル、または/および
脂肪族芳香族ポリエステル3〜50質量部と、1時間半
減期温度Th1が70〜200℃、水素引き抜き係数ε
が10〜60である有機過酸化物0.05〜5.0質量
部からなる組成物。 (6)上記乳酸系樹脂組成物を加熱、放射線照射等の所
定の手段により反応させた後、成形加工したフィルム、
シート、シート成形体、発泡シート、発泡シート成形
体、ブロー成形体、射出成形体、型発泡体、繊維、パイ
プ、プレート、プレート成形体等の成形体。
DISCLOSURE OF THE INVENTION The inventors of the present invention have made intensive studies in view of the present situation as a result, and as a result, completed the invention of high effect. The invention according to the present application is the invention described in the following (1) to (5). (1) 100 parts by mass of lactic acid-based resin and 1 hour half-life temperature T
Organic peroxide having h1 of 70 to 200 ° C. of 0.05 to
A lactic acid-based resin composition comprising 5.0 parts by mass. (2) 100 parts by mass of lactic acid resin and 1 hour half-life temperature T
h1 is 70 to 200 ° C., hydrogen abstraction coefficient ε is 10 to 6
A lactic acid-based resin composition comprising 0.05 to 5.0 parts by mass of an organic peroxide that is 0. (3) reacting the lactic acid-based composition by a predetermined means,
When the polydispersity of the lactic acid resin before the peroxide reaction is D1 and the polydispersity of the lactic acid resin after the peroxide reaction is D2, D2 / D1 = 1.10 to 3.0. Oxide-modified lactic acid resin. In the present invention, the predetermined means is heating,
Means such as radiation irradiation. (4) A film made of the above peroxide-modified lactic acid resin,
Molded bodies such as sheets, sheet molded bodies, foamed sheets, foamed sheet molded bodies, blow molded bodies, injection molded bodies, mold foamed bodies, fibers, pipes, plates and plate molded bodies. (5) 50 to 97 parts by mass of lactic acid-based resin, 3 to 50 parts by mass of aliphatic polyester having glass transition temperature Tg of 0 ° C. or lower, and / or aliphatic aromatic polyester, and 1-hour half-life temperature Th1 of 70 to 200 ℃, Hydrogen abstraction coefficient ε
A composition comprising 0.05 to 5.0 parts by mass of an organic peroxide having a content of 10 to 60. (6) A film formed by reacting the lactic acid-based resin composition by a predetermined means such as heating or irradiation with radiation,
Molded bodies such as sheets, sheet molded bodies, foamed sheets, foamed sheet molded bodies, blow molded bodies, injection molded bodies, mold foamed bodies, fibers, pipes, plates and plate molded bodies.

【0009】[0009]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明における乳酸系樹脂とは、構造単位がL−乳酸で
あるポリ(L−乳酸)、構造単位がD−乳酸であるポリ
(D−乳酸)、構造単位がL−乳酸及びD−乳酸であ
る、ポリ(DL−乳酸)やこれらの混合体をいい、さら
には、α−ヒドロキシカルボン酸やジオール/ジカルボ
ン酸との共重合体であってもよい。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below.
The lactic acid-based resin in the present invention means poly (L-lactic acid) whose structural unit is L-lactic acid, poly (D-lactic acid) whose structural unit is D-lactic acid, and L-lactic acid and D-lactic acid whose structural unit is L-lactic acid. It refers to certain poly (DL-lactic acid) or a mixture thereof, and may be a copolymer with α-hydroxycarboxylic acid or diol / dicarboxylic acid.

【0010】乳酸系樹脂の重合法としては、縮重合法、
開環重合法など公知のいずれの方法をも採用することが
できる。例えば、縮重合法ではL−乳酸またはD−乳
酸、あるいはこれらの混合物を直接脱水縮重合して任意
の組成を持った乳酸系樹脂を得ることができる。
The lactic acid-based resin can be polymerized by condensation polymerization,
Any known method such as ring-opening polymerization method can be adopted. For example, in the polycondensation method, L-lactic acid, D-lactic acid, or a mixture thereof can be directly dehydrated and polycondensed to obtain a lactic acid resin having an arbitrary composition.

【0011】また、開環重合法では乳酸の環状二量体で
あるラクチドを、必要に応じて重合調整剤等を用いなが
ら、選ばれた触媒を使用してポリ乳酸系重合体を得るこ
とができる。ラクチドにはL−乳酸の2量体であるL−
ラクチド、D−乳酸の2量体であるD−ラクチド、さら
にL−乳酸とD−乳酸からなるDL−ラクチドがあり、
これらを必要に応じて混合して重合することにより任意
の組成、結晶性をもつ乳酸系樹脂を得ることができる。
In the ring-opening polymerization method, a polylactic acid-based polymer can be obtained by using lactide, which is a cyclic dimer of lactic acid, and a catalyst selected as necessary while using a polymerization regulator and the like. it can. L-lactide is a dimer of L-lactic acid.
Lactide, D-lactide, which is a dimer of D-lactic acid, and DL-lactide composed of L-lactic acid and D-lactic acid,
A lactic acid-based resin having an arbitrary composition and crystallinity can be obtained by mixing these as required and polymerizing.

【0012】さらに、耐熱性を向上させるなどの必要に
応じ、少量共重合成分として、テレフタル酸のような非
脂肪族ジカルボン酸及び/又はビスフェノールAのエチ
レンオキサイド付加物のような非脂肪族ジオールを用い
てもよい。さらにまた、分子量増大を目的として少量の
鎖延長剤、例えば、ジイソシアネート化合物、エポキシ
化合物、酸無水物などを使用することができる。
Furthermore, if necessary, for example, to improve heat resistance, a small amount of a non-aliphatic dicarboxylic acid such as terephthalic acid and / or a non-aliphatic diol such as an ethylene oxide adduct of bisphenol A is used as a copolymerization component. You may use. Furthermore, a small amount of a chain extender such as a diisocyanate compound, an epoxy compound or an acid anhydride can be used for the purpose of increasing the molecular weight.

【0013】乳酸系樹脂に共重合される上記の他のヒド
ロキシ−カルボン酸単位としては、乳酸の光学異性体
(L−乳酸に対してはD−乳酸、D−乳酸に対してはL
−乳酸)、グリコール酸、3−ヒドロキシ酪酸、4−ヒ
ドロキシ酪酸、2−ヒドロキシ−n−酪酸、2−ヒドロ
キシ−3,3−ジメチル酪酸、2−ヒドロキシ−3−メ
チル酪酸、2−メチル乳酸、2−ヒドロキシカプロン酸
等の2官能脂肪族ヒドロキシ−カルボン酸やカプロラク
トン、ブチロラクトン、バレロラクトン等のラクトン類
が挙げられる。
The above-mentioned other hydroxy-carboxylic acid units copolymerized with the lactic acid-based resin include optical isomers of lactic acid (D-lactic acid for L-lactic acid and L-lactic acid for D-lactic acid).
-Lactic acid), glycolic acid, 3-hydroxybutyric acid, 4-hydroxybutyric acid, 2-hydroxy-n-butyric acid, 2-hydroxy-3,3-dimethylbutyric acid, 2-hydroxy-3-methylbutyric acid, 2-methyllactic acid, Examples thereof include bifunctional aliphatic hydroxy-carboxylic acids such as 2-hydroxycaproic acid and lactones such as caprolactone, butyrolactone and valerolactone.

【0014】乳酸系樹脂に共重合される上記脂肪族ジオ
ールとしては、エチレングリコール、1,4−ブタンジ
オール、1,4−シクロヘキサンジメタノール等があげ
られる。また、上記脂肪族ジカルボン酸としては、コハ
ク酸、アジピン酸、スベリン酸、セバシン酸およびドデ
カン二酸等が挙げられる。
Examples of the aliphatic diol copolymerized with the lactic acid resin include ethylene glycol, 1,4-butanediol, 1,4-cyclohexanedimethanol and the like. Examples of the aliphatic dicarboxylic acid include succinic acid, adipic acid, suberic acid, sebacic acid and dodecanedioic acid.

【0015】乳酸系樹脂の重量平均分子量の好ましい範
囲としては、5万〜40万であり、好ましくは10万〜
25万である。乳酸系樹脂の重量平均分子量が5万より
下回る場合には実用物性が発現され難く、25万より上
回る場合には、溶融粘度が高すぎて成形加工性に劣るこ
とがある。
The weight-average molecular weight of the lactic acid resin is preferably in the range of 50,000 to 400,000, preferably 100,000 to
It is 250,000. When the weight average molecular weight of the lactic acid resin is less than 50,000, practical physical properties are difficult to be expressed, and when it exceeds 250,000, the melt viscosity may be too high, resulting in poor moldability.

【0016】本発明の第1の態様に係る乳酸系樹脂組成
物は、乳酸系樹脂100質量部に対して、1時間半減期
温度(Th1)が70〜200℃である有機過酸化物
0.05〜5.0質量部を添加した樹脂組成物である。
The lactic acid-based resin composition according to the first aspect of the present invention contains an organic peroxide having a 1-hour half-life temperature (Th1) of 70 to 200 ° C. relative to 100 parts by mass of the lactic acid-based resin. This is a resin composition containing 05 to 5.0 parts by mass.

【0017】本発明の第2の態様に係る乳酸系樹脂組成
物は、乳酸系樹脂100質量部に対して、1時間半減期
温度(Th1)が70〜200℃、水素引き抜き係数
(ε)が10〜60である有機過酸化物0.05〜5.
0質量部を添加した樹脂組成物である。
The lactic acid-based resin composition according to the second aspect of the present invention has a one-hour half-life temperature (Th1) of 70 to 200 ° C. and a hydrogen abstraction coefficient (ε) with respect to 100 parts by mass of the lactic acid-based resin. Organic peroxide of 10 to 60 0.05 to 5.
It is a resin composition containing 0 parts by mass.

【0018】有機過酸化物とは、過酸化水素(H−O−
O−H)の誘導体で、過酸化水素の水素原子1個または
2個を、有機の遊離基で置換した構造を有しており、そ
の分子内に1個以上の過酸化物結合(O−O)を持つこ
とを特徴とする化合物である。
Organic peroxide means hydrogen peroxide (HO--
It is a derivative of OH) and has a structure in which one or two hydrogen atoms of hydrogen peroxide are replaced by organic free radicals, and one or more peroxide bonds (O- It is a compound characterized by having O).

【0019】過酸化物の種類としては、ケトンパーオキ
サイド系、ジアシルパーオキサイド系、ハイドロパーオ
キサイド系、ジアルキルパーオキサイド系、パーオキシ
ケタール系、アルキルパーエステル系、パーカーボネー
ト系等、広く知られている。
Known types of peroxides include ketone peroxides, diacyl peroxides, hydroperoxides, dialkyl peroxides, peroxyketals, alkyl peresters, and carbonates. There is.

【0020】ところが、乳酸系樹脂の成形性を改良する
ためには、これらのうち、特定の性能を持った化合物を
選択する必要がある。すなわち、1時間半減期温度(T
h1)が70〜200℃、好ましくは、100〜160
℃である有機過酸化物を選択することが必須である。ま
た、さらに水素引き抜き係数(ε)が10〜70、好ま
しくは10〜60、さらに好ましくは20〜60である
有機過酸化物を選択することが好ましい。
However, in order to improve the moldability of the lactic acid-based resin, it is necessary to select a compound having a specific performance among them. That is, the one-hour half-life temperature (T
h1) is 70 to 200 ° C., preferably 100 to 160
It is essential to choose an organic peroxide that is in ° C. Further, it is preferable to select an organic peroxide having a hydrogen abstraction coefficient (ε) of 10 to 70, preferably 10 to 60, and more preferably 20 to 60.

【0021】ここで、1時間半減期温度(Th1)と
は、過酸化物が熱により1時間で初期重量の半分が分解
する温度である。1時間半減期温度(Th1)が、70
℃を下回ると、過酸化物が室温でも分解し、安全上や製
品寿命上好ましくない。また、乳酸系樹脂と反応させる
場合においても、発熱反応が急すぎて、樹脂を熱分解し
たり、局所的に反応して樹脂中にゲルを生成したり、逆
に樹脂と反応する前に失活するなど好ましくない。20
0℃より上回る場合には、変性反応が一般的な条件では
進みにくくなる。1時間半減期温度(Th1)が70〜
200℃の有機過酸化物としては、市販品の中からかか
る条件を満たすものを適宜選択してもよい。例えば化薬
アクゾ(株)製の商品名「PERKADOX BC」
(Th1=132℃)を商業的に入手することができ
る。
Here, the one-hour half-life temperature (Th1) is the temperature at which half of the initial weight of the peroxide decomposes in 1 hour due to heat. 1 hour half-life temperature (Th1) is 70
If the temperature is lower than 0 ° C, the peroxide decomposes even at room temperature, which is not preferable for safety and product life. Also, when reacting with a lactic acid-based resin, the exothermic reaction is too rapid, causing thermal decomposition of the resin, local reaction to form a gel in the resin, and conversely loss of heat before reaction with the resin. It is not preferable to use it. 20
When the temperature is higher than 0 ° C, the denaturing reaction is difficult to proceed under general conditions. 1-hour half-life temperature (Th1) is 70-
As the organic peroxide having a temperature of 200 ° C., those which satisfy such a condition may be appropriately selected from commercial products. For example, the product name “PERKADOX BC” manufactured by Kayaku Akzo Co., Ltd.
(Th1 = 132 ° C.) is commercially available.

【0022】乳酸系樹脂に1時間半減期温度(Th1)
が70〜200℃の有機過酸化物を混練することにより
成形加工性を向上させることができる。乳酸系樹脂に所
定の有機過酸化物を混練することで架橋的な反応が起こ
り、その結果として線形領域の粘度が上昇するためと考
えられる。
1-hour half-life temperature (Th1) for lactic acid resin
Moldability can be improved by kneading an organic peroxide having a temperature of 70 to 200 ° C. It is considered that when a predetermined organic peroxide is kneaded with the lactic acid resin, a cross-linking reaction occurs, and as a result, the viscosity in the linear region increases.

【0023】本発明において水素引き抜き係数(ε)と
は、n−ペンタデカン中、0.2mol/Lの濃度で有
機過酸化物を、15分半減期温度で30分加熱して分解
させた時に、生成するn−ペンタデカンダイマーの量の
相対比較数値である。ただし、2,2'−アゾビス(イ
ソブチロニトリル)を用いたときの量を1とした。水素
引き抜き係数(ε)が、10より下回ると、乳酸系樹脂
の成形性改良効果が得られ難い。また、70より上回る
有機過酸化物は、合成が難しく、コスト面を含め入手が
容易でない。
In the present invention, the hydrogen abstraction coefficient (ε) means that when an organic peroxide at a concentration of 0.2 mol / L in n-pentadecane is decomposed by heating at a half-life temperature of 15 minutes for 30 minutes. It is a relative comparison numerical value of the amount of n-pentadecane dimer produced. However, the amount when 2,2′-azobis (isobutyronitrile) was used was 1. When the hydrogen abstraction coefficient (ε) is less than 10, it is difficult to obtain the effect of improving the moldability of the lactic acid resin. In addition, organic peroxides exceeding 70 are difficult to synthesize and are not easily available including cost.

【0024】1時間半減期温度(Th1)が70〜20
0℃、水素引き抜き係数(ε)が10〜70である有機
過酸化物としては、以下のような化合物が代表的に例示
できる。 1,1−ジ−t−ブチルパーオキシシクロヘキサン(T
h1=113℃、ε=24℃)、t−ブチルパーオキシ
−3,5,5−トリメチルヘキサノエート(Th1=1
14℃、ε=33)、2,2−ジ−t−ブチルパーオキ
シブタン(Th1=116℃、ε=24)、t−ブチル
パーオキシイソプロピルカーボネート(Th1=117
℃、ε=40)、t−ブチルパーオキシ−2−エチルヘ
キシルカーボネート(Th1=117℃、ε=40)、
t−アミルパーオキシベンゾエート(Th1=118
℃、ε=39)、t−ブチルパーオキシアセテート(T
h1=119℃、ε=43)、4,4−ジ−t−ブチル
パーオキシ吉草酸−n−ブチルエステル(Th1=12
1℃、ε=24)、t−ブチルパーオキシベンゾエート
(Th1=122℃、ε=49)、2,5−ジメチル−
2,5−ジ−(t−ブチルパーオキシ)ヘキサン(Th
1=134℃、ε=41)、1,3−ビス−(t−ブチ
ルパーオキシイソプロピル)ベンゼン(Th1=134
℃、ε=55)、t−ブチルクミルパーオキサイド(T
h1=136℃、ε=41)、ジ−t−ブチルパーオキ
サイド(Th1=141℃、ε=49)、2,5−ジメ
チル−2,5−ジ−(t−ブチルパーオキシ)ヘキシン
−3(Th1=141℃、ε=30) 1時間半減期温度(Th1)が70〜200℃、水素引
き抜き係数(ε)が10〜70である有機過酸化物とし
ては、市販品の中からかかる条件を満たすものを適宜選
択してもよい。例えば、化薬アクゾ(株)製の商品名
「トリゴノックス22」、「トリゴノックス42」、
「トリゴノックスD」等を商業的に入手することができ
る。
1-hour half-life temperature (Th1) is 70 to 20
Typical examples of the organic peroxide having a hydrogen abstraction coefficient (ε) of 10 to 70 at 0 ° C. include the following compounds. 1,1-di-t-butylperoxycyclohexane (T
h1 = 113 ° C., ε = 24 ° C.), t-butylperoxy-3,5,5-trimethylhexanoate (Th1 = 1
14 ° C, ε = 33), 2,2-di-t-butylperoxybutane (Th1 = 116 ° C, ε = 24), t-butylperoxyisopropyl carbonate (Th1 = 117).
C, ε = 40), t-butylperoxy-2-ethylhexyl carbonate (Th1 = 117 ° C., ε = 40),
t-amyl peroxybenzoate (Th1 = 118
C, ε = 39), t-butyl peroxyacetate (T
h1 = 119 ° C., ε = 43), 4,4-di-t-butylperoxyvaleric acid-n-butyl ester (Th1 = 12)
1 ° C, ε = 24), t-butylperoxybenzoate (Th1 = 122 ° C, ε = 49), 2,5-dimethyl-
2,5-di- (t-butylperoxy) hexane (Th
1 = 134 ° C., ε = 41), 1,3-bis- (t-butylperoxyisopropyl) benzene (Th1 = 134)
° C, ε = 55), t-butylcumyl peroxide (T
h1 = 136 ° C., ε = 41), di-t-butyl peroxide (Th1 = 141 ° C., ε = 49), 2,5-dimethyl-2,5-di- (t-butylperoxy) hexyne-3. (Th1 = 141 ° C., ε = 30) As an organic peroxide having a one-hour half-life temperature (Th1) of 70 to 200 ° C. and a hydrogen abstraction coefficient (ε) of 10 to 70, commercially available products may be used. You may select suitably what satisfy | fills. For example, Kayaku Akzo Co., Ltd. product name "Trigonox 22", "Trigonox 42",
"Trigonox D" etc. can be obtained commercially.

【0025】ここでは、乳酸系樹脂100質量部に対
し、有機過酸化物0.05〜5.0質量部、好ましく
は、0.1〜3.0質量部が添加される。有機化酸化物
の添加量が0.05質量部より小さいと、乳酸系樹脂の
成形性は改良され難く、5.0より大きい場合には、樹
脂全体が架橋し可塑性が乏しくなり、逆に加工性を失
う。
Here, 0.05 to 5.0 parts by mass, preferably 0.1 to 3.0 parts by mass of organic peroxide is added to 100 parts by mass of the lactic acid resin. When the amount of the organic oxide added is less than 0.05 parts by mass, it is difficult to improve the moldability of the lactic acid-based resin, and when it is greater than 5.0, the resin as a whole becomes crosslinked and the plasticity becomes poor, and conversely the processing is performed. Lose sex.

【0026】上記乳酸系樹脂組成物を反応させる方法と
しては、押出機やバッチ式ニーダーで、130〜240
℃に加熱しながら溶融混練する方法が一般的であるが、
80〜130℃の低温溶融混練、または、溶液混練した
後に、型に固定して熱風炉で再加熱したり、放射線照射
によって反応させることもできる。この方法において
は、中間成形体に成形した後、過酸化物と乳酸系樹脂を
反応させても構わない。中間成形体とは、シートからの
真空成形品やプレス成形品を得る場合の押出シートのよ
うなものを指す。
As a method for reacting the lactic acid-based resin composition, an extruder or a batch kneader is used, and the amount is 130 to 240.
It is common to melt knead while heating to ℃,
After low-temperature melt kneading at 80 to 130 ° C. or solution kneading, the mixture can be fixed in a mold and reheated in a hot-air stove, or can be reacted by irradiation with radiation. In this method, the peroxide and the lactic acid-based resin may be reacted after molding into an intermediate molded body. The intermediate molded product refers to a product such as an extruded sheet for obtaining a vacuum-formed product or a press-formed product from a sheet.

【0027】次に、本発明では、上記組成物を加熱、放
射線照射等の手段により反応させるが、この時、過酸化
物反応前の乳酸系樹脂の多分散度をD1とし、過酸化物
反応後の乳酸系樹脂の多分散度をD2とすると、D2/
D1=1.10〜3.0、好ましくは、1.3〜2.2
の範囲に制御することが重要である。
Next, in the present invention, the above composition is reacted by means such as heating and radiation irradiation. At this time, the polydispersity of the lactic acid resin before the peroxide reaction is set to D1, and the peroxide reaction is performed. If the polydispersity of the latter lactic acid-based resin is D2, D2 /
D1 = 1.10 to 3.0, preferably 1.3 to 2.2
It is important to control in the range of.

【0028】上記D2/D1が、かかる範囲を下回る
と、乳酸系樹脂の成形性が改良され難く、上回ると、大
小のゲル状物が発生し外観を損なったり、機械物性の低
下をもたらすことがある。さらには、溶融張力は増大し
ても歪み硬化性が低下したり、オリゴマーのブリードが
発生する場合もある。
When D2 / D1 is less than the above range, it is difficult to improve the moldability of the lactic acid-based resin, and when it exceeds the above range, large and small gel-like substances are generated, which may impair the appearance and deteriorate the mechanical properties. is there. Further, even if the melt tension is increased, the strain-hardening property may be lowered, or bleeding of the oligomer may occur.

【0029】D2/D1をかかる範囲に制御するために
は、1時間半減期温度(Th1)が70〜200℃、水
素引き抜き係数(ε)が10〜60である有機過酸化物
0.05〜5.0質量部使用することが、最も重要であ
るが、それ以外に、加熱時間、剪断速度、含有水分率、
特定金属の存在、過酸化物の反応残渣の性質等の影響も
強く受けるので、D2を見ながら適宜調整される。
In order to control D2 / D1 within such a range, an organic peroxide having a one-hour half-life temperature (Th1) of 70 to 200 ° C. and a hydrogen abstraction coefficient (ε) of 10 to 60 is used. It is most important to use 5.0 parts by mass, but other than that, heating time, shear rate, moisture content,
The presence of a specific metal, the nature of the reaction residue of the peroxide, and the like are also strongly influenced, so that it is adjusted appropriately while observing D2.

【0030】例えば、押出機の中での長時間加熱、水分
の存在、過酸化物の残渣が酸性物質になる場合などは、
D2/D1は大きくなる傾向にある。また、高剪断、短
時間加熱、放射線照射では、小さくなる傾向にある。
For example, when heating in an extruder for a long time, the presence of water, or the residue of peroxide becoming an acidic substance,
D2 / D1 tends to increase. In addition, there is a tendency for it to become smaller with high shear, heating for a short time, and radiation irradiation.

【0031】以上のように、過酸化物によって変性され
た乳酸系樹脂樹脂組成物(過酸化物変成乳酸系樹脂組成
物)は、溶融張力が上昇し、歪み硬化性が発現し、良好
な成形性を有するようになる。したがって、過酸化物乳
酸系樹脂組成物は、成形時に溶融張力を必要とするフィ
ルム、シート、シート成形体、発泡シート、発泡シート
成形体、ブロー成形体、射出成形体、型発泡体、繊維、
パイプ、プレート、プレート成形体等に好適に用いられ
る。
As described above, the lactic acid-based resin resin composition modified with peroxide (peroxide-modified lactic acid-based resin composition) has an increased melt tension, exhibits strain hardening properties, and is excellent in molding. To have sex. Therefore, the peroxide lactic acid-based resin composition is a film, sheet, sheet molded body, foamed sheet, foamed sheet molded body, blow molded body, injection molded body, mold foamed body, fiber, which requires melt tension during molding.
It is preferably used for pipes, plates, plate molded bodies and the like.

【0032】例えば、次のような効果が期待される。 1)インフレーションフィルムでは、バブルが安定す
る。 2)シートでは、押出キャスト時のネックダウンを防
ぐ。 3)シート成形体では、予熱時のドローダウンを防止
し、成形体の厚み分布を向上させる。 4)発泡シートでは、セル構造を均一、緻密にし、破泡
を防ぐ。 5)発泡シート成形体では、予熱時のドローダウンを防
止し、成形体の厚み分布を向上させる。 6)ブロー成形体では、パリソンのドローダウンを防
ぎ、成形体の厚み分布を向上させる。 7)射出成形体では、バリを防止する。 8)型発泡体では、セル構造を均一、緻密にし、破泡を
防ぐ。 9)繊維では、紡糸時の曳糸性を向上させ、糸切れを防
ぐ。 10)パイプでは、押出時の形状安定性を向上させる。 11)プレートでは、水平押出時のドローダウンを防
ぐ。 12)プレート成形体では、予熱時のドローダウンを防
止し、成形体の厚み分布を向上させる。
For example, the following effects are expected. 1) Bubbles are stable in blown film. 2) For sheets, prevent neckdown during extrusion casting. 3) The sheet molded body prevents drawdown during preheating and improves the thickness distribution of the molded body. 4) In the foamed sheet, the cell structure is made uniform and dense to prevent foam breakage. 5) In the foamed sheet molded body, drawdown at the time of preheating is prevented and the thickness distribution of the molded body is improved. 6) In the blow molded product, drawdown of the parison is prevented and the thickness distribution of the molded product is improved. 7) Prevent burr in the injection molded body. 8) In the foamed product, the cell structure is made uniform and dense, and foam breakage is prevented. 9) Fibers improve the spinnability during spinning and prevent yarn breakage. 10) For pipes, the shape stability during extrusion is improved. 11) The plate prevents drawdown during horizontal extrusion. 12) The plate molded body prevents drawdown during preheating and improves the thickness distribution of the molded body.

【0033】本発明においては、乳酸系樹脂組成物にガ
ラス転移温度Tgが0℃以下の脂肪族ポリエステル樹脂
や脂肪族芳香族ポリエステル樹脂をブレンドすることも
できる。
In the present invention, the lactic acid-based resin composition may be blended with an aliphatic polyester resin or an aliphatic aromatic polyester resin having a glass transition temperature Tg of 0 ° C. or lower.

【0034】上記脂肪族ポリエステル樹脂としては、例
えば、脂肪族ジオールと脂肪族ジカルボン酸を縮合して
得られる脂肪族ポリエステル、環状ラクトン類を開環重
合した脂肪族ポリエステル、合成系脂肪族ポリエステル
等が挙げられる。
Examples of the above-mentioned aliphatic polyester resin include an aliphatic polyester obtained by condensing an aliphatic diol and an aliphatic dicarboxylic acid, an aliphatic polyester obtained by ring-opening polymerization of a cyclic lactone, and a synthetic aliphatic polyester. Can be mentioned.

【0035】上記肪族ジオールと脂肪族ジカルボン酸を
縮合して得られる脂肪族ポリエステルは、脂肪族ジオー
ルであるエチレングリコール、1,4−ブタンジオール
および1,4−シクロヘキサンジメタノール等と、脂肪
族ジカルボン酸であるコハク酸、アジピン酸、スベリン
酸、セバシン酸およびドデカン二酸等の中から、それぞ
れ1種類以上選んで縮合重合して得られる。必要に応じ
てイソシアネート化合物等でジャンプアップして所望の
ポリマーを得ることができる。市販の原料ペレットとし
ては、昭和高分子(株)製のビオノーレ、等が例示され
る。
The aliphatic polyester obtained by condensing the above aliphatic diol with an aliphatic dicarboxylic acid is an aliphatic diol such as ethylene glycol, 1,4-butanediol and 1,4-cyclohexanedimethanol, and an aliphatic polyester. It can be obtained by condensation polymerization of one or more selected from succinic acid, adipic acid, suberic acid, sebacic acid, dodecanedioic acid and the like which are dicarboxylic acids. If desired, the desired polymer can be obtained by jumping up with an isocyanate compound or the like. Examples of commercially available raw material pellets include Bionore manufactured by Showa High Polymer Co., Ltd., and the like.

【0036】また、耐熱性や機械強度を高めるために、
ジカルボン酸成分として、50mol%以下のテレフタ
ル酸等の芳香族モノマー成分を共重合することもでき
る。このような形で共重合された樹脂は、本発明でいう
脂肪族芳香族ポリエステルに該当する。市販の原料ペレ
ットとしては、イーストマンケミカル社製のイースター
バイオや、BASF社製のエコフレックス等が例示され
る。
In order to improve heat resistance and mechanical strength,
As the dicarboxylic acid component, 50 mol% or less of an aromatic monomer component such as terephthalic acid may be copolymerized. The resin copolymerized in such a form corresponds to the aliphatic aromatic polyester in the present invention. Examples of commercially available raw material pellets include Easter Bio manufactured by Eastman Chemical Co., and Ecoflex manufactured by BASF.

【0037】上記環状ラクトン類を開環重合した脂肪族
ポリエステルとしては、環状モノマーであるε−カプロ
ラクトン、δ−バレロラクトン、β−メチル−δ−バレ
ロラクトン等が代表的に挙げられ、これらから1種類以
上選ばれて重合される。
Typical examples of the aliphatic polyester obtained by ring-opening polymerization of the above cyclic lactones include cyclic monomers ε-caprolactone, δ-valerolactone, β-methyl-δ-valerolactone and the like. More than one kind is selected and polymerized.

【0038】上記合成系脂肪族ポリエステルとしては、
環状酸無水物とオキシラン類、例えば、無水コハク酸と
エチレンオキサイド、プロピレンオキサイド等との共重
合体等が挙げられる。
Examples of the synthetic aliphatic polyester include
Examples thereof include cyclic acid anhydrides and oxiranes, for example, copolymers of succinic anhydride and ethylene oxide, propylene oxide and the like.

【0039】乳酸系樹脂組成物に脂肪族ポリエステル樹
脂等をブレンドする場合には、乳酸系樹脂と、ガラス転
移温度(Tg)が0℃以下の脂肪族ポリエステルおよび
/または脂肪族芳香族ポリエステルと、有機過酸化物と
からなる乳酸系樹脂組成物とすることにより、乳酸系樹
脂の加工性のみならず、耐衝撃性や耐寒性を改良するこ
とができる。また、有機過酸化物を添加することによ
り、乳酸系樹脂と脂肪族ポリエステルおよび/または脂
肪族芳香族ポリエステルとの単純ブレンド系に比べる
と、機械強度や透明性が改良される
When an aliphatic polyester resin or the like is blended with the lactic acid-based resin composition, the lactic acid-based resin and an aliphatic polyester and / or an aliphatic aromatic polyester having a glass transition temperature (Tg) of 0 ° C. or less, By using a lactic acid-based resin composition including an organic peroxide, not only the processability of the lactic acid-based resin but also the impact resistance and cold resistance can be improved. Further, addition of an organic peroxide improves mechanical strength and transparency as compared with a simple blend system of a lactic acid resin and an aliphatic polyester and / or an aliphatic aromatic polyester.

【0040】各成分の配合比(質量部で示す)として
は、乳酸系樹脂:(脂肪族ポリエステル、および/また
は、芳香族脂肪族ポリエステル ):有機過酸化物=5
0〜97:3〜50:0.05〜5.0(質量部)が好
ましい。乳酸系樹脂の配合量がかかる範囲より多いと、
所望とする耐衝撃性、耐寒性の改良効果が乏しく、少な
いと、剛性や耐擦傷性に劣る。
The compounding ratio of each component (shown in parts by mass) is as follows: lactic acid resin: (aliphatic polyester and / or aromatic-aliphatic polyester): organic peroxide = 5
0 to 97: 3 to 50: 0.05 to 5.0 (parts by mass) is preferable. If the amount of lactic acid-based resin is greater than the range,
The desired effect of improving impact resistance and cold resistance is poor, and when it is small, rigidity and scratch resistance are poor.

【0041】また、本発明の効果を損なわない範囲で、
熱安定剤、抗酸化剤、UV吸収剤、光安定剤、顔料、着
色剤、滑剤、核剤、加水分解防止剤、無機フィラー等の
添加剤を処方することもできる。
Further, within a range not impairing the effects of the present invention,
Additives such as heat stabilizers, antioxidants, UV absorbers, light stabilizers, pigments, colorants, lubricants, nucleating agents, hydrolysis inhibitors, and inorganic fillers can also be formulated.

【0042】組成物を得る方法としては、あらかじめ、
同方向2軸押出機、ニーダー、ヘンシェルミキサー等を
用い、プレコンパウンドしても構わないし、各原料をド
ライブレンドし、直接成形機に投入しても構わない。成
形機は、本発明を達成するために特に限定されない。
As a method of obtaining the composition,
Pre-compounding may be performed using a co-direction twin-screw extruder, kneader, Henschel mixer, or the like, or each raw material may be dry blended and directly charged into a molding machine. The molding machine is not particularly limited to achieve the present invention.

【0043】[0043]

【実施例】以下に実施例を示すが、これらにより本発明
は何ら制限を受けるものではない。なお、実施例中に示
す測定値は次に示すような条件で測定を行ない、算出し
た。
EXAMPLES Examples will be shown below, but the present invention is not limited thereto. The measured values shown in the examples were calculated by measuring under the following conditions.

【0044】1)有機過酸化物の1時間半減期温度(T
h) 溶媒としてベンゼンを用い、有機過酸化物、0.2mo
l/Lの溶液を調製する。試料溶液を15mLずつ耐圧
試験管に4本採取する。4本の耐圧容器をあらかじめ窒
素で置換して、試料溶液を入れた試験管を各耐圧容器に
入れ、密栓をする。DSCでの測定結果から想定される
測定温度に設定しておいたグリセリン浴中に耐圧容器を
同時に入れる。15分後、耐圧容器1本をグリセリン浴
中から取り出し、直ちに氷水中に浸漬し、冷却する。冷
却後耐圧容器より試験管を取り出し、ヨードメトリー法
により、活性酸素量(A.O%)を測定し、これを0時
間とする。その後も、一定時間(2時間、4時間、6時
間)ごとに、同じ要領で活性酸素量(A.O%)を測定
し、各温度での半減時間をもとめる。横軸に温度、縦軸
に半減時間をプロットし、そのグラフより、1時間半減
期温度Thを求める。また、下記に示す水素引き抜き係
数を求めるために、15分半減期温度も同グラフから読
みとった。
1) 1-hour half-life temperature (T
h) Benzene as a solvent, organic peroxide, 0.2mo
Prepare a 1 / L solution. Four 15 mL each of the sample solution is collected in a pressure resistance test tube. The four pressure vessels are replaced with nitrogen in advance, and the test tube containing the sample solution is placed in each pressure vessel and sealed. At the same time, the pressure vessel is placed in the glycerin bath which has been set to the measurement temperature assumed from the DSC measurement results. After 15 minutes, one pressure vessel is taken out of the glycerin bath, immediately immersed in ice water, and cooled. After cooling, the test tube was taken out from the pressure resistant container, and the active oxygen amount (A.O%) was measured by the iodometry method, and this is set to 0 hour. After that, the amount of active oxygen (A.O.%) is measured in the same manner at regular intervals (2 hours, 4 hours, 6 hours) to find the half-life at each temperature. The temperature is plotted on the horizontal axis and the half-life time is plotted on the vertical axis, and the one-hour half-life temperature Th is determined from the graph. The 15-minute half-life temperature was also read from the graph in order to determine the hydrogen abstraction coefficient shown below.

【0045】2)有機過酸化物の水素引き抜き係数
(ε) 0.2mol/L濃度で有機過酸化物をn−ペンタデカ
ンに溶解させ、試料溶液とした。この試料溶液を20m
L試験管に採取し、グリセリンに浸漬し、15分半減期
温度で30分加熱した。この時生成するn−ペンタデカ
ンダイマーの量を測定し、2,2'−アゾビス(イソブ
チロニトリル)を用いた時に生成するn−ペンタデカン
ダイマー量を1として、相対数値化した。
2) Hydrogen abstraction coefficient (ε) of organic peroxide An organic peroxide was dissolved in n-pentadecane at a concentration of 0.2 mol / L to prepare a sample solution. 20m of this sample solution
The mixture was collected in an L test tube, immersed in glycerin, and heated at a 15-minute half-life temperature for 30 minutes. The amount of n-pentadecane dimer produced at this time was measured, and the amount of n-pentadecane dimer produced when 2,2′-azobis (isobutyronitrile) was used was set to 1, and a relative numerical value was obtained.

【0046】3)D2/D1 東ソー(株)製ゲルパーミエーションクロマトグラフィ
ーHLC−8120GPCに、(株)島津製作所製クロ
マトカラムShim−PackシリーズのGPC−80
0CPを装着し、溶媒クロロホルム、溶液濃度0.2w
t/vol%、溶液注入量200μL、溶媒流速1.0
mL/分、溶媒温度40℃で測定を行った。ポリスチレ
ン換算で、反応前後の乳酸系樹脂の数平均分子量、並び
に重量平均分子量を算出した。用いた標準ポリスチレン
の重量平均分子量は、2000000、670000、
110000、35000、10000、4000、6
00である。重量平均分子量を、数平均分子量で除した
値が、多分散度である。有機過酸化物反応前の多分散度
をD1、反応後の多分散をD2とし、D2/D1を算出
した。
3) D2 / D1 Gel permeation chromatography HLC-8120GPC manufactured by Tosoh Corporation, and GPC-80 of a chromatography column Shim-Pack series manufactured by Shimadzu Corporation.
0CP attached, solvent chloroform, solution concentration 0.2w
t / vol%, solution injection amount 200 μL, solvent flow rate 1.0
The measurement was performed at mL / min and a solvent temperature of 40 ° C. The number average molecular weight and weight average molecular weight of the lactic acid resin before and after the reaction were calculated in terms of polystyrene. The weight average molecular weight of the standard polystyrene used was 2,000,000, 670000,
110000, 35000, 10000, 4000, 6
00. The value obtained by dividing the weight average molecular weight by the number average molecular weight is the polydispersity index. The polydispersity before the organic peroxide reaction was D1, and the polydispersity after the reaction was D2, and D2 / D1 was calculated.

【0047】4)歪み硬化性 乳酸系樹脂組成物を栗本製作所(株)製SK KRCニ
ーダー N90−1を用い、190℃、200rpmで
混練し、その混練物を100tプレスで、190℃に
て、10分プレスし、徐冷した。プレス板を、幅×長さ
×厚み=7×55×1.5mmに切り出し、1軸伸張粘
度測定用の試料とした。この試料を、レオメトリックス
(株)製RMEを用い、窒素雰囲気下、190℃で、歪
み速度一定(0.5sec−1)で、1軸伸張粘度の測
定を行った。そのグラフより、歪み硬化度を以下の式に
より算出した。 歪み硬化度=(η5−η1)/η1 ここで、η1=測定時間1秒後の伸張粘度 η5=測定時間5秒後の伸張粘度
4) The strain-curable lactic acid-based resin composition was kneaded using SK KRC Kneader N90-1 manufactured by Kurimoto Seisakusho Co., Ltd. at 190 ° C. and 200 rpm, and the kneaded product was pressed with a 100 t press at 190 ° C. It was pressed for 10 minutes and gradually cooled. The press plate was cut into a size of width × length × thickness = 7 × 55 × 1.5 mm to obtain a sample for uniaxial extensional viscosity measurement. Using a RME manufactured by Rheometrics Co., Ltd., the uniaxial extensional viscosity of this sample was measured at 190 ° C. in a nitrogen atmosphere at a constant strain rate (0.5 sec −1 ). From the graph, the strain hardening degree was calculated by the following formula. Strain hardening degree = (η5-η1) / η1 where η1 = extension viscosity after 1 second of measurement time η5 = extension viscosity after 5 seconds of measurement time

【0048】5)押出シートのネックイン率 乳酸系樹脂組成物を、混練ゾーンを備えた三菱重工社製
30mmφ単軸押出機(l/d=22)に供し、設定温
度190℃、回転数30rpm、吐出量3Kg/hで、
幅200mm、リップギャップ1mmの口金から厚み1
00μmのシート押出を行った。引き取り速度を調整し
て、シートの厚みを100μm(引き取り速度=約4
m)にした時の、口金出口直後のシート幅をL1とし、
口金から20cm離れた所のシート幅をL2とし、ネッ
クイン率を下記式により算出した。一般のシート成形に
おいては、ネックイン率は10%以下であることが好ま
しい。 ネックイン率(%)= (L1−L2)/L1 ×10
5) Neck-in rate of extruded sheet The lactic acid-based resin composition was subjected to a 30 mmφ single screw extruder (l / d = 22) manufactured by Mitsubishi Heavy Industries, Ltd. equipped with a kneading zone, set temperature 190 ° C., rotation speed 30 rpm. With a discharge rate of 3 kg / h,
Width 200 mm, lip gap 1 mm from base to thickness 1
Sheet extrusion of 00 μm was performed. Adjust the take-up speed to make the sheet thickness 100 μm (take-off speed = about 4
m1), the seat width immediately after the mouth of the mouthpiece is set to L1,
The sheet width at a distance of 20 cm from the mouthpiece was L2, and the neck-in rate was calculated by the following formula. In general sheet molding, the neck-in rate is preferably 10% or less. Neck-in rate (%) = (L1-L2) / L1 × 10
0

【0049】6)発泡シートのセル径 乳酸系樹脂組成物に、発泡剤ACDA(アゾジカルボン
アミド)1質量部を添加したものを、混練ゾーンを備え
た三菱重工社製30mmφ単軸押出機(l/d=22)
に供し、設定温度190℃、回転数30rpm、吐出量
3Kg/hで、幅200mm、リップギャップ1mmの
口金から厚み500μmのシート押出を行った。押出し
たシートを、流れ方向にカッターで切断して、光学顕微
鏡による観察を行った。発泡セルの粒子径を目視で測定
し、視野内の10個の発泡セルについて平均して算出し
た。また、発泡セルの全体的な状態も観察した。通常の
発泡押出シート成形においては、セル径が100μm以
下で、均一で、破泡がないことが好ましい。
6) Cell diameter of foamed sheet A lactic acid-based resin composition containing 1 part by mass of a foaming agent ACDA (azodicarbonamide) was added to a 30 mmφ single-screw extruder (l) manufactured by Mitsubishi Heavy Industries, Ltd. equipped with a kneading zone. / D = 22)
Then, a sheet having a thickness of 500 μm was extruded from a die having a width of 200 mm and a lip gap of 1 mm at a set temperature of 190 ° C., a rotation speed of 30 rpm, and a discharge rate of 3 Kg / h. The extruded sheet was cut with a cutter in the flow direction and observed with an optical microscope. The particle size of the foam cells was visually measured, and the average was calculated for 10 foam cells in the visual field. The overall state of the foam cells was also observed. In ordinary foamed extrusion sheet molding, it is preferable that the cell diameter is 100 μm or less, that the cell diameter is uniform and that there is no breakage.

【0050】7)シャルピー衝撃強度 パイプの長手方向に、試料を幅10mm×長さ80mm
×厚み4mmに切り出し、JIS−K7111に基づ
き、安田精機製作所製シャルピー衝撃試験機を用い、ノ
ッチ付(ノッチタイプA)、エッジワイズで試験を行っ
た。単位は、KJ/m2である。
7) Charpy impact strength A sample was placed 10 mm wide and 80 mm long in the longitudinal direction of the pipe.
Cut to a thickness of 4 mm, and a test was performed with a notch (notch type A) and edgewise using a Charpy impact tester manufactured by Yasuda Seiki Seisakusho based on JIS-K7111. The unit is KJ / m 2 .

【0051】(実施例1)乳酸系樹脂として、ホモのポ
リ乳酸である、島津製作所(株)製ラクティ5000
(重量平均分子量20万、多分散度2.0)を用いた。
この乳酸系樹脂100質量部に、有機過酸化物としてラ
ウロイルパーオキサイド(日本化薬社製、商品名「ラウ
ロックス」)(Th1=79℃、ε=8)を0.4部添
加し、栗本製作所(株)製SK KRCニーダー N9
0−1を用い、190℃、200rpmで混練し、スト
ランドを押出し、水槽で急冷後、ストランドカットし
て、ペレットを得た。得られたペレットを用いて、歪み
硬化度、ネックイン率、発泡セル径を求めたところ、歪
み硬化度は4.8、ネックイン率は12%、発泡セル径
は120μm(均一)であった。
Example 1 Lacty 5000 manufactured by Shimadzu Corporation, which is homopolylactic acid as a lactic acid resin.
(Weight average molecular weight 200,000, polydispersity 2.0) was used.
To 100 parts by mass of this lactic acid resin, 0.4 part of lauroyl peroxide (manufactured by Nippon Kayaku Co., Ltd., trade name “Laurox”) (Th1 = 79 ° C., ε = 8) was added as an organic peroxide, and Kurimoto Seisakusho SK KRC Kneader N9 manufactured by Co., Ltd.
0-1 was kneaded at 190 ° C. and 200 rpm, the strand was extruded, quenched in a water tank, and then cut into strands to obtain pellets. The strain hardening degree, neck-in rate, and foam cell diameter were determined using the obtained pellets. The strain hardening degree was 4.8, the neck-in rate was 12%, and the foam cell diameter was 120 μm (uniform). .

【0052】(実施例2〜4、比較例1〜3)乳酸系樹
脂として、ホモのポリ乳酸である、島津製作所(株)製
ラクティ5000(重量平均分子量20万、多分散度
2.0)を用いた。この乳酸系樹脂に、表1に示す有機
過酸化物を添加し、栗本製作所(株)製SK KRCニ
ーダーN90−1を用い、190℃、200rpmで混
練し、ストランドを押出し、水槽で急冷後、ストランド
カットして、ペレットを得た。得られたペレットを用い
て上記評価を行った。これらの評価結果を表1に示す。
(Examples 2 to 4, Comparative Examples 1 to 3) As a lactic acid resin, homopolylactic acid, Lacty 5000 manufactured by Shimadzu Corporation (weight average molecular weight 200,000, polydispersity 2.0) Was used. To this lactic acid-based resin, the organic peroxides shown in Table 1 were added, and using Kurimoto Seisakusho's SK KRC Kneader N90-1, kneading was performed at 190 ° C. and 200 rpm, the strands were extruded, and after rapid cooling in a water tank, Strand cut to obtain pellets. The above evaluation was performed using the obtained pellets. The results of these evaluations are shown in Table 1.

【0053】[0053]

【表1】 [Table 1]

【0054】(比較例4)有機過酸化物として、t−ブ
チルパーオキシベンゾエート(Th1=122℃、ε=
49)を、5.5部添加する以外は、実施例1と同様の
方法で、ペレット化を試みた。しかし、有機過酸化物に
よる樹脂の変性が進みすぎ、押出溶融体がゲル状にな
り、安定したストランドが得られなかったため、ペレッ
ト化できなかった。ストランドのD2/D1=3.6で
あった。
Comparative Example 4 As an organic peroxide, t-butyl peroxybenzoate (Th1 = 122 ° C., ε =
Pelletization was tried in the same manner as in Example 1 except that 5.5 parts of 49) was added. However, the modification of the resin by the organic peroxide proceeded too much, the extruded melt became a gel, and stable strands could not be obtained, so that pelletization could not be performed. The strand D2 / D1 was 3.6.

【0055】(比較例5)島津製作所(株)製ラクティ
5000と、Tgが−30℃であるイーストマンケミカ
ル社製イースターバイオを、8/2でドライブレンド
し、25mmφ口金と、Batten社製DISKタイ
プフォーマーを備えた、クラウスマッファイ社製45m
mφ単軸押出機に供し、押出樹脂温度190℃、スクリ
ュー回転数70rpmで、外径25mmφ、肉厚4mm
のパイプを押し出した。口金出口で水冷せずに、整形具
で円管に支持させるのみで、引き取ったが、溶融張力が
不足し、パイプ外観が、自重で歪んだ。シャルピー衝撃
強度は、3.5KJ/mであった。
Comparative Example 5 Lacty 5000 manufactured by Shimadzu Corporation and Easter Bio manufactured by Eastman Chemical Co. having a Tg of −30 ° C. were dry-blended at 8/2, a 25 mmφ base and DISK manufactured by Batten. Klaus Maffei 45m with type former
Subjected to mφ single screw extruder, extruded resin temperature 190 ° C, screw rotation speed 70 rpm, outer diameter 25 mmφ, wall thickness 4 mm
Extruded the pipe. The pipe was distorted due to its own weight, because the melt tension was insufficient and the pipe was distorted due to insufficient melt tension without being cooled with water at the mouth of the mouthpiece and only supported by a circular pipe with a shaping tool. The Charpy impact strength was 3.5 KJ / m 2 .

【0056】(実施例5)有機過酸化物として、2,2
−ジ−t−ブチルパーオキシブタン(Th1=116
℃、ε=24)を、0.5質量部添加する以外は、比較
例4と同様の方法で、パイプを押出したところ、溶融張
力が高く、パイプ外観が変形することなく、丸く良好で
あった。また、シャルピー衝撃強度は、4.2KJ/m
2であり、有機過酸化物を入れないときに比べ向上し
た。
Example 5 As the organic peroxide, 2,2
-Di-t-butylperoxybutane (Th1 = 116
C., .epsilon. = 24) was extruded in the same manner as in Comparative Example 4 except that 0.5 part by mass was added. As a result, the melt tension was high, the appearance of the pipe was not deformed, and it was round and good. It was The Charpy impact strength is 4.2 KJ / m
2 , which was improved compared to the case where no organic peroxide was added.

【0057】[0057]

【発明の効果】以上、詳しく説明したように、本発明に
よれば、乳酸系樹脂が本来有している生分解性に加え、
優れた加工性や物性を有する乳酸系樹脂組成物、過酸化
物変性乳酸系樹脂組成物、および、それらからなる成形
体を提供することができる。
As described above in detail, according to the present invention, in addition to the biodegradability which lactic acid resin originally has,
It is possible to provide a lactic acid-based resin composition having excellent processability and physical properties, a peroxide-modified lactic acid-based resin composition, and a molded article made of them.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4F071 AA43 AC08 AE02 AF52 BB06 BC01 BC07 4J002 CF032 CF181 CF192 EK036 EK046 EK056 EK086 FD146 GK00 GT00    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 4F071 AA43 AC08 AE02 AF52 BB06                       BC01 BC07                 4J002 CF032 CF181 CF192 EK036                       EK046 EK056 EK086 FD146                       GK00 GT00

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 乳酸系樹脂100質量部と、1時間半減
期温度(Th1)が70〜200℃である有機過酸化物
0.05〜5.0質量部からなることを特徴とする乳酸
系樹脂組成物。
1. A lactic acid-based resin comprising 100 parts by weight of a lactic acid-based resin and 0.05 to 5.0 parts by weight of an organic peroxide having a 1-hour half-life temperature (Th1) of 70 to 200 ° C. Resin composition.
【請求項2】 乳酸系樹脂100質量部と、1時間半減
期温度(Th1)が70〜200℃、水素引き抜き係数
(ε)が10〜60である有機過酸化物0.05〜5.
0質量部からなることを特徴とする乳酸系樹脂組成物。
2. 100 parts by mass of a lactic acid-based resin and an organic peroxide having a 1-hour half-life temperature (Th1) of 70 to 200 ° C. and a hydrogen abstraction coefficient (ε) of 10 to 60.
A lactic acid-based resin composition comprising 0 parts by mass.
【請求項3】 乳酸系樹脂50〜97質量部と、ガラス
転移温度(Tg)が0℃以下の脂肪族ポリエステル、ま
たは/および脂肪族芳香族ポリエステル3〜50質量部
と、1時間半減期温度(Th1)が70〜200℃、水
素引き抜き係数εが10〜60である有機過酸化物0.
05〜5.0質量部とからなることを特徴とする乳酸系
樹脂組成物。
3. A lactic acid resin in an amount of 50 to 97 parts by mass, an aliphatic polyester having a glass transition temperature (Tg) of 0 ° C. or less, and / or an aliphatic aromatic polyester in an amount of 3 to 50 parts by mass, and a 1-hour half-life temperature. Organic peroxide having a (Th1) of 70 to 200 ° C. and a hydrogen abstraction coefficient ε of 10 to 60.
A lactic acid-based resin composition, characterized in that it is composed of 05 to 5.0 parts by mass.
【請求項4】 請求項1または2記載の乳酸系樹脂組成
物を所定の手段により反応させ、過酸化物反応前の乳酸
系樹脂の多分散度をD1とし、過酸化物反応後の乳酸系
樹脂の多分散度をD2とした時に、D2/D1=1.1
0〜3.0であることを特徴とする過酸化物変性乳酸系
樹脂組成物。
4. The lactic acid-based resin composition according to claim 1 or 2 is reacted by a predetermined means, and the polydispersity of the lactic acid-based resin before the peroxide reaction is set to D1, and the lactic acid-based resin after the peroxide reaction. When the polydispersity of the resin is D2, D2 / D1 = 1.1
A peroxide-modified lactic acid-based resin composition, which is 0 to 3.0.
【請求項5】 請求項4記載の過酸化物変性乳酸系樹脂
組成物を成形して形成されたことを特徴とする成形体。
5. A molded article, which is formed by molding the peroxide-modified lactic acid-based resin composition according to claim 4.
【請求項6】 請求項3記載の乳酸系樹脂組成物を所定
の手段により反応させた後、成形加工して形成されたこ
とを特徴とする成形体。
6. A molded article, which is formed by reacting the lactic acid-based resin composition according to claim 3 by a predetermined means and then molding.
JP2002088378A 2001-09-28 2002-03-27 Lactic acid-based resin composition, peroxide-modified lactic acid-based resin composition, and molded articles thereof Expired - Fee Related JP4503215B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002088378A JP4503215B2 (en) 2001-09-28 2002-03-27 Lactic acid-based resin composition, peroxide-modified lactic acid-based resin composition, and molded articles thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-302048 2001-09-28
JP2001302048 2001-09-28
JP2002088378A JP4503215B2 (en) 2001-09-28 2002-03-27 Lactic acid-based resin composition, peroxide-modified lactic acid-based resin composition, and molded articles thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007272095A Division JP2008063582A (en) 2001-09-28 2007-10-19 Lactic acid resin composition, peroxide-modified lactic acid resin composition and their molded products

Publications (2)

Publication Number Publication Date
JP2003171544A true JP2003171544A (en) 2003-06-20
JP4503215B2 JP4503215B2 (en) 2010-07-14

Family

ID=26623341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002088378A Expired - Fee Related JP4503215B2 (en) 2001-09-28 2002-03-27 Lactic acid-based resin composition, peroxide-modified lactic acid-based resin composition, and molded articles thereof

Country Status (1)

Country Link
JP (1) JP4503215B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005036179A (en) * 2003-06-25 2005-02-10 Mitsubishi Chemicals Corp Aliphatic polyester-based resin composition
JP2005120118A (en) * 2003-10-14 2005-05-12 Mitsubishi Plastics Ind Ltd Flame-retardant injection-molded body
JP2006233217A (en) * 2006-02-27 2006-09-07 Daiki Shoji Kk Biodegradable resin composition and its molded product
JP2006249212A (en) * 2005-03-10 2006-09-21 Riken Technos Corp Flame-retardant resin composition
JP2008056851A (en) * 2006-09-01 2008-03-13 Toyo Seikan Kaisha Ltd Aliphatic polyester resin composition and method for producing the same
JP2008063582A (en) * 2001-09-28 2008-03-21 Mitsubishi Plastics Ind Ltd Lactic acid resin composition, peroxide-modified lactic acid resin composition and their molded products
WO2008056737A1 (en) * 2006-11-09 2008-05-15 Dainichiseika Color & Chemicals Mfg. Co., Ltd. Polyester resin composition, process for production of the composition, agent for promotion of crystallization of polyester resin, and molded article
US7393590B2 (en) * 2004-02-27 2008-07-01 Cereplast, Inc. Biodegradable poly(lactic acid) polymer composition and films, coatings and products comprising Biodegradable poly(lactic acid) polymer compositions
JP2009528416A (en) * 2006-03-03 2009-08-06 アクゾ ノーベル ナムローゼ フェンノートシャップ Method for modifying biodegradable polymers
JP2009221336A (en) * 2008-03-14 2009-10-01 Mitsubishi Chemicals Corp Resin composition, and molded article and film comprising the resin composition
KR101113551B1 (en) 2003-10-14 2012-02-24 소니 주식회사 Flame-retardant injection-molded object
JP2019183098A (en) * 2018-03-30 2019-10-24 積水化成品工業株式会社 Method for producing modified polylactic resin, polylactic resin and polylactic resin foam sheet

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008063582A (en) * 2001-09-28 2008-03-21 Mitsubishi Plastics Ind Ltd Lactic acid resin composition, peroxide-modified lactic acid resin composition and their molded products
JP2005036179A (en) * 2003-06-25 2005-02-10 Mitsubishi Chemicals Corp Aliphatic polyester-based resin composition
JP4659351B2 (en) * 2003-10-14 2011-03-30 三菱樹脂株式会社 Flame retardant injection molded body
JP2005120118A (en) * 2003-10-14 2005-05-12 Mitsubishi Plastics Ind Ltd Flame-retardant injection-molded body
KR101113551B1 (en) 2003-10-14 2012-02-24 소니 주식회사 Flame-retardant injection-molded object
US7393590B2 (en) * 2004-02-27 2008-07-01 Cereplast, Inc. Biodegradable poly(lactic acid) polymer composition and films, coatings and products comprising Biodegradable poly(lactic acid) polymer compositions
JP2006249212A (en) * 2005-03-10 2006-09-21 Riken Technos Corp Flame-retardant resin composition
JP4584741B2 (en) * 2005-03-10 2010-11-24 リケンテクノス株式会社 Flame retardant resin composition
JP2006233217A (en) * 2006-02-27 2006-09-07 Daiki Shoji Kk Biodegradable resin composition and its molded product
JP2009528416A (en) * 2006-03-03 2009-08-06 アクゾ ノーベル ナムローゼ フェンノートシャップ Method for modifying biodegradable polymers
JP2008056851A (en) * 2006-09-01 2008-03-13 Toyo Seikan Kaisha Ltd Aliphatic polyester resin composition and method for producing the same
WO2008056737A1 (en) * 2006-11-09 2008-05-15 Dainichiseika Color & Chemicals Mfg. Co., Ltd. Polyester resin composition, process for production of the composition, agent for promotion of crystallization of polyester resin, and molded article
JP2009221336A (en) * 2008-03-14 2009-10-01 Mitsubishi Chemicals Corp Resin composition, and molded article and film comprising the resin composition
JP2019183098A (en) * 2018-03-30 2019-10-24 積水化成品工業株式会社 Method for producing modified polylactic resin, polylactic resin and polylactic resin foam sheet

Also Published As

Publication number Publication date
JP4503215B2 (en) 2010-07-14

Similar Documents

Publication Publication Date Title
JP4063856B2 (en) Method for producing biodegradable polyester resin composition
JP4672409B2 (en) Aliphatic polyester resin composition
JPH06502676A (en) Biodegradable polymer compositions based on starch and thermoplastic polymers
HUT64576A (en) Thermoplastic materials to be produced from lactides and method for it&#39;s production, method for producing of degradable polyolefinic - compound, compound for replacing polystyrene, method for producing of degradable, thermoplastic compound
WO1992004413A1 (en) Packaging thermoplastics from lactic acid
JP4503215B2 (en) Lactic acid-based resin composition, peroxide-modified lactic acid-based resin composition, and molded articles thereof
JP2021102669A (en) Aliphatic polyester resin composition and its usage
JP4200340B2 (en) Resin composition and molded body
CN102007182B (en) Ethylene alkyl acrylate toughened poly(hydroxyalkanoic acid) compositions
JP2021091866A (en) Poly(3-hydroxybutyrate) resin tube and method for producing the same
JP2008063582A (en) Lactic acid resin composition, peroxide-modified lactic acid resin composition and their molded products
JP2000327847A (en) Resin composition
US20230145613A1 (en) Poly(3-hydroxybutyrate)-based resin tube and method for producing same
JP3860163B2 (en) Aliphatic polyester resin composition and film
JP2001031853A (en) Polylactic acid-based polymer composition
JP2006045366A (en) Poly(3-hydroxybutylate-co-3-hydroxyhexanoate) composition and its molding
JP2005239932A (en) Polylactic acid resin composition and molded article using the same
JP2004359730A (en) Resin composition
JP4534806B2 (en) Aliphatic polyester composition and method for producing the same
JP3653184B2 (en)   Biodegradable injection molded helmet
JP4366848B2 (en) Method for producing crosslinked soft lactic acid polymer and composition thereof
WO2012025907A1 (en) Copolymers based on polyester and aromatic polycarbonate
JP5170359B2 (en) Resin composition and molded body
JP5022257B2 (en) Method for producing compatible aliphatic polyester
JP2006342361A (en) Polylactic acid-based polymer composition and molded article

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070501

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071206

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20071213

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080411

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100421

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees