JP2003136199A - Method of manufacturing half-melted molding billet of aluminum alloy for transportation machine - Google Patents

Method of manufacturing half-melted molding billet of aluminum alloy for transportation machine

Info

Publication number
JP2003136199A
JP2003136199A JP2001343072A JP2001343072A JP2003136199A JP 2003136199 A JP2003136199 A JP 2003136199A JP 2001343072 A JP2001343072 A JP 2001343072A JP 2001343072 A JP2001343072 A JP 2001343072A JP 2003136199 A JP2003136199 A JP 2003136199A
Authority
JP
Japan
Prior art keywords
temperature
less
aluminum alloy
semi
billet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001343072A
Other languages
Japanese (ja)
Other versions
JP4121266B2 (en
Inventor
Shigeru Mikubo
滋 三久保
Masafumi Mizouchi
政文 溝内
Yasuyuki Murayama
康幸 村山
Tsunaki Iwashita
綱樹 岩下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu Mitsui Aluminum Industries Inc
Original Assignee
Kyushu Mitsui Aluminum Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Mitsui Aluminum Industries Inc filed Critical Kyushu Mitsui Aluminum Industries Inc
Priority to JP2001343072A priority Critical patent/JP4121266B2/en
Publication of JP2003136199A publication Critical patent/JP2003136199A/en
Application granted granted Critical
Publication of JP4121266B2 publication Critical patent/JP4121266B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a half-melted molding billet of an aluminum alloy for transporting machines, in which the process is simple, the cost reduction is promoted and obtained products are uniform in quality. SOLUTION: An aluminum alloy is manufactured, which contains at least one or more kinds selected from among 0.40-5.5 wt.% Cu, 10.0-25.0 wt.% Si, 1.0 wt.% or less Zn, 1.5 wt.% or less Fe, 0.65 wt.% or less Mn 0.005-0.5 wt.% Ti and 0.0001-0.5 wt.% B, and 0.40-1.8 wt.%, the balance comprises a composition of an Al substantially, primary crystal of Si has an average particle diameter of 300 μm or less and dendrite branch distance is 200 μm or less. Subsequently, work strain is introduced by cold form forging at a strain ratio of 5-50% at a work introducing rate of not more than 50 mm/s at 200 deg.C or less, and then, the temperature of the billet rises at the eutectic temperature or higher, and the billet is half-melted while being held at a temperature in which a liquid phase ratio is 20-80%.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、輸送機器用として
用いるアルミニウム合金の半溶融成型ビレットの製造方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a semi-molten molded billet of an aluminum alloy used for transportation equipment.

【0002】[0002]

【従来の技術】半溶融ビレットを用いるチクソキャスト
法は、従来の金型鋳造法と比較し鋳造偏析・欠陥が少な
く、金型寿命が長いなどの利点があり最近注目されてい
る技術である。これに用いるビレットの鋳造方法として
は、ペシネー・アルマックス方式として知られているビ
レット段階で初晶α(Al)相を球状化するため、半溶
融温度域で電磁・機械撹拌を行う方法(方式A)や、鋳
造時に通常添加されている量よりも多量のAl−Ti−
Bを添加し、その後半溶融温度域まで昇温し初晶α(A
l)相を球状化させる方法(方式B)がある。また、押
出・圧延にて歪みを導入後、方式Bのように昇温し球状
化させる方法(方式C)が広く知られている。
2. Description of the Related Art The thixocasting method using a semi-molten billet has recently attracted attention because it has advantages such as less casting segregation / defects and longer die life than the conventional die casting method. As a billet casting method used for this, a method of performing electromagnetic / mechanical stirring in the semi-melting temperature range in order to sphericalize the primary α (Al) phase in the billet stage known as the Pescine-Almax method (method) A) or a larger amount of Al-Ti- than is usually added during casting.
B was added, and the temperature was raised to the melting temperature range in the latter half and the primary crystal α (A
1) There is a method of making the phase spherical (method B). Further, a method (method C) in which the temperature is raised to spherical as in method B after introducing strain by extrusion / rolling is widely known.

【0003】[0003]

【発明が解決しようとする課題】従来の半溶融製造法の
場合、方式Aでは工程が非常に煩雑で、製造コストが高
くつく不具合があった。また、方式Bでは、多量のAl
−Ti−Bを添加するため溶融炉内でのTiB 沈降に
よる品質不安定が発生し、更に方式Cの圧延により歪み
を導入する方法は均一な歪みの導入が難しく、また押出
では常温押出により作業工程が煩雑で、しかも均一な歪
み導入が難しいし、両歪み導入法とも加工後の製品加工
が必要となり、量産化や低コスト化が図れないという問
題があった。
[Problems to be Solved by the Invention]
In case of method A, the process is very complicated and the manufacturing cost is high.
There was a problem of sticking. In the method B, a large amount of Al
-TiB in the melting furnace to add Ti-B TwoFor settling
Quality instability occurs, and distortion occurs due to rolling of method C.
It is difficult to introduce uniform strain in the method of introducing
At room temperature extrusion, the work process is complicated, and the strain is uniform.
It is difficult to introduce only the product, and both strain introduction methods are product processing after processing
Is required, and mass production and cost reduction cannot be achieved.
There was a problem.

【0004】特許第2976073号には、改良された
方法が開示されている。即ち、そこには第1項中に「完
全に固化した金属または金属合金材料をその再結晶温度
未満の温度で変形する工程、該材料の微小構造の再結晶
を起こさせるために変形材料を加熱する工程、および該
材料の温度をその固相線温度を上回る温度に上昇させる
ことによりチキソトロピック的な挙動を呈する液状マト
リックス中に独立した粒子を形成させるために、再結晶
構造を部分的に融解させる工程を備えた方法」である。
この方法は、該材料の微小構造の再結晶を起こさせるた
めに変形材料を加熱する工程、および該材料の温度をそ
の固相線温度を上回る温度に上昇させるといういわば2
段階加熱とも言うべき加熱が行われる。このような方法
は、従来の技術に比べれば、改善された技術と言える
が、やはり2段階の加熱を必要とし、工程が複雑で加熱
制御が難しいという問題があった。
Japanese Patent No. 2976073 discloses an improved method. That is, there is a step in the first paragraph "a step of deforming a completely solidified metal or metal alloy material at a temperature lower than its recrystallization temperature, and heating the deformable material to cause recrystallization of the microstructure of the material. And partially melting the recrystallized structure to form free-standing particles in a liquid matrix that behaves thixotropically by raising the temperature of the material above its solidus temperature. A method including a step of
This method comprises heating a deformed material to cause recrystallization of the microstructure of the material, and raising the temperature of the material above its solidus temperature, so to speak 2.
The heating which should be called stepwise heating is performed. Although such a method can be said to be an improved technique as compared with the conventional technique, it still requires two steps of heating, and has a problem that the process is complicated and heating control is difficult.

【0005】本発明は、上記従来技術の欠点を解消し、
工程が簡素で低コスト化を促進でき、得られる製品が均
質な輸送機器用アルミニウム合金の半溶融成型ビレット
の製造方法を提供することを目的とするものである。
The present invention solves the above-mentioned drawbacks of the prior art,
It is an object of the present invention to provide a method for manufacturing a semi-molten cast billet of an aluminum alloy for transportation equipment, which has a simple process, can promote cost reduction, and has a homogeneous product.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するた
め、本願の輸送機器用アルミニウム合金の半溶融成型ビ
レットの製造方法は、Cu0.40〜5.5wt%、S
i13.6〜25.0wt%、Zn1.0wt%以下、
Fe1.5wt%以下、Mn0.65wt%以下、Ti
0.005〜0.5wt%及びB0.0001〜0.5
wt%の少なくとも1種以上、Mg0.40〜1.8w
t%を含み、残部が実質的にAlの組成から成り、初晶
Siの平均粒径が300μm以下で、しかもデンドライ
ト枝間隔(DAS)が200μm以下であるアルミニウ
ム合金を製造し、次いで歪み率5〜50%、加工導入速
度50mm/sec.以下で再結晶温度未満の温度で、
冷間型枠鍛造にて加工歪みを導入し、その後共晶温度以
上に昇温し、液相率が20〜80%となる温度で保持し
て半溶融加工する方法である。
In order to achieve the above object, a method for manufacturing a semi-molten cast billet of an aluminum alloy for transportation equipment according to the present invention is Cu 0.40 to 5.5 wt%, S
i13.6 to 25.0 wt%, Zn 1.0 wt% or less,
Fe 1.5 wt% or less, Mn 0.65 wt% or less, Ti
0.005-0.5 wt% and B 0.0001-0.5
wt% of at least one or more, Mg 0.40 to 1.8w
An aluminum alloy containing t%, the balance being substantially composed of Al, having an average grain size of primary crystal Si of 300 μm or less and a dendrite branch spacing (DAS) of 200 μm or less, and then having a strain rate of 5 ˜50%, processing introduction speed 50 mm / sec. Below the recrystallization temperature,
It is a method of introducing a processing strain by cold mold forging, then raising the temperature to a temperature higher than the eutectic temperature, and maintaining the liquid phase ratio at a temperature of 20 to 80% to perform semi-melt processing.

【0007】この場合に、成分偏析の均質化及び鋳造応
力の解放のために、加工歪みを導入する前に、450〜
550℃の温度で1〜10時間の均質化処理を行うと好
ましい。
In this case, in order to homogenize the segregation of the components and release the casting stress, 450 to 450% before introducing the working strain.
It is preferable to perform the homogenization treatment at a temperature of 550 ° C. for 1 to 10 hours.

【0008】また、上記目的を達成するために、本願の
輸送機器用アルミニウム合金の半溶融成型ビレットの製
造方法は、Cu0.40〜5.5wt%、Si10.0
〜25.0wt%、Zn1.0wt%以下、Fe1.5
wt%以下、Mn0.65wt%以下、Ti0.005
〜0.5wt%及びB0.0001〜0.5wt%の少
なくとも1種以上、Mg0.40〜1.8wt%、Ni
0.05〜1.7wt%を含み、残部が実質的にAlの
組成から成り、初晶Siの平均粒径が300μm以下
で、しかもデンドライト枝間隔(DAS)が200μm
以下であるアルミニウム合金を製造し、次いで歪み率5
〜50%、加工導入速度50mm/sec.以下で再結
晶温度未満の温度で、冷間型枠鍛造にて加工歪みを導入
し、その後共晶温度以上に昇温し、液相率が20〜80
%となる温度で保持して半溶融加工する方法である。
In order to achieve the above object, the method of manufacturing the semi-molten cast billet of the aluminum alloy for transportation equipment of the present invention is Cu 0.40 to 5.5 wt%, Si 10.0.
~ 25.0 wt%, Zn 1.0 wt% or less, Fe1.5
wt% or less, Mn 0.65 wt% or less, Ti 0.005
-0.5 wt% and B 0.0001-0.5 wt%, at least one or more, Mg 0.40-1.8 wt%, Ni
0.05% to 1.7% by weight, the balance substantially consisting of Al, the average grain size of primary Si is 300 μm or less, and the dendrite branch spacing (DAS) is 200 μm.
The following aluminum alloy is manufactured and then strain rate 5
˜50%, processing introduction speed 50 mm / sec. At the temperature below the recrystallization temperature, a working strain is introduced by cold mold forging, and then the temperature is raised to the eutectic temperature or higher, and the liquid phase ratio is 20 to 80.
This is a method of holding at a temperature of 10% and performing semi-melt processing.

【0009】この場合に、成分偏析の均質化及び鋳造応
力の解放のために、加工歪みを導入する前に、450〜
550℃の温度で1〜10時間の均質化処理を行うと好
ましい。
In this case, in order to homogenize the segregation of the components and release the casting stress, 450 to 450% before introducing the working strain.
It is preferable to perform the homogenization treatment at a temperature of 550 ° C. for 1 to 10 hours.

【0010】さらに、上記目的を達成するために、本願
の輸送機器用アルミニウム合金の半溶融成型ビレットの
製造方法は、上述した方法で用いた合金に、更にP0.
003〜0.150wt%含有するアルミニウム合金を
用いる場合もある。
Further, in order to achieve the above-mentioned object, the method of manufacturing the semi-molten cast billet of the aluminum alloy for transportation equipment of the present invention is the same as the alloy used in the above-mentioned method.
An aluminum alloy containing 003 to 0.150 wt% may be used.

【0011】この場合にも、成分偏析の均質化及び鋳造
応力の解放のために、加工歪みを導入する前に、450
〜550℃の温度で1〜10時間の均質化処理を行うと
好ましい。
In this case as well, in order to homogenize the segregation of the components and release the casting stress, 450 before the introduction of working strain.
It is preferable to carry out the homogenization treatment at a temperature of ˜550 ° C. for 1 to 10 hours.

【0012】[0012]

【発明の実施の形態】以下本発明で用いるアルミニウム
合金成分量の数値限定等種々の数値限定理由について詳
述する。
BEST MODE FOR CARRYING OUT THE INVENTION Various reasons for limiting numerical values such as limiting the numerical values of the amounts of aluminum alloy components used in the present invention will be described in detail below.

【0013】Cu成分は、機械的性質の向上のみなら
ず、硬度・切削性・鋳造性を良くするが、0.40wt
%未満ではその効果は小さく、一方5.5wt%を越え
ると耐食性の低下をまねくので、0.40〜5.5wt
%とした。
The Cu component improves not only mechanical properties but also hardness, machinability and castability, but 0.40 wt.
%, The effect is small. On the other hand, if it exceeds 5.5 wt%, the corrosion resistance is deteriorated, so 0.40 to 5.5 wt%
%.

【0014】Si成分は、耐摩耗性を向上させる効果が
あるが、10.0wt%未満ではその効果は小さく、一
方25.0wt%を越えると伸び・靭性が劣化し冷間鍛
造加工性が悪くなるので、10.0〜25.0wt%と
した。
The Si component has an effect of improving wear resistance, but if it is less than 10.0 wt%, its effect is small, while if it exceeds 25.0 wt%, elongation and toughness deteriorate and cold forgeability is poor. Therefore, it is set to 10.0 to 25.0 wt%.

【0015】Mg成分は、MgSiを析出し機械的性
質の向上に寄与するが、0.40wt%未満ではその効
果は小さく、一方1.8wt%を超えると冷間鍛造加工
性が悪くなるため、0.40〜1.8wt%とした。
The Mg component precipitates Mg 2 Si and contributes to the improvement of mechanical properties, but if it is less than 0.40 wt%, its effect is small, while if it exceeds 1.8 wt%, cold forgeability deteriorates. Therefore, it is set to 0.40 to 1.8 wt%.

【0016】Fe成分は、Al成分と金属間化合物をつ
くり、多く含有されるとAl−Fe−Si系化合物とな
り伸び・靭性・耐食性に悪影響を及ぼすため、1.5w
t%以下とした。
The Fe component forms an intermetallic compound with the Al component, and if it is contained in a large amount, it becomes an Al-Fe-Si compound, which adversely affects elongation, toughness and corrosion resistance.
It was set to t% or less.

【0017】Ti成分は、鋳塊の組織を微細化し、鋳塊
割れの発生を防止するが、0.005wt%未満ではそ
の効果は小さく、一方0.5wt%を越えるとTiAl
の巨大な晶出物の発生を促進させ、冷間鍛造加工時の
割れや輸送機器部品の機械的性質の低下をまねくので、
0.005〜0.5wt%とした。
The Ti component refines the structure of the ingot and prevents the occurrence of ingot cracking, but if it is less than 0.005 wt%, its effect is small, while if it exceeds 0.5 wt%, TiAl.
3 It promotes the generation of huge crystallized substances, leading to cracking during cold forging and deterioration of mechanical properties of transportation equipment parts.
It was set to 0.005 to 0.5 wt%.

【0018】B成分もまたTi成分と共に鋳塊の組織を
微細化し、鋳塊割れの発生を防止するが、0.0001
wt%未満ではその効果は小さく、一方0.5wt%を
越えると冷間鍛造加工時の割れや輸送機器部品の機械的
性質の低下をまねくので、0.0001〜0.5wt%
とした。
The B component, together with the Ti component, also refines the structure of the ingot and prevents the occurrence of ingot cracking.
If less than 0.5% by weight, the effect is small. On the other hand, if more than 0.5% by weight, cracking during cold forging and deterioration of mechanical properties of transportation equipment parts are caused, so 0.0001 to 0.5% by weight.
And

【0019】Zn成分は、鋳造性を改善するが、耐食性
を劣化させるため、1.0wt%以下とした。
The Zn component improves the castability but deteriorates the corrosion resistance, so the content of Zn is set to 1.0 wt% or less.

【0020】Mn成分は、粗大金属間化合物の生成によ
る靭性低下を起こすことから0.65wt%以下とし
た。
The Mn component is set to 0.65 wt% or less because the toughness decreases due to the formation of coarse intermetallic compounds.

【0021】Ni成分は、高温強度の向上に寄与する
が、0.05wt%未満ではその効果は小さく、一方
1.7wt%を越えると耐食性を劣化させるため、0.
05〜1.7wt%とした。
The Ni component contributes to the improvement of high temperature strength, but its effect is small when it is less than 0.05 wt%, while it deteriorates the corrosion resistance when it exceeds 1.7 wt%.
It was set to 05 to 1.7 wt%.

【0022】P成分は、高Si合金の初晶Siを微細化
し、機械的性質の向上に寄与するが、0.003wt%
未満ではその効果は小さく、一方0.015wt%を超
えるとアルミニウム合金溶湯の流動性や充填性を低下し
鋳造性を害することから、0.003〜0.015wt
%とした。
The P component makes primary Si of a high Si alloy finer and contributes to the improvement of mechanical properties, but 0.003 wt%
If it is less than 0.015 wt%, on the other hand, if it exceeds 0.015 wt%, the fluidity and filling property of the molten aluminum alloy are deteriorated and the castability is impaired, so 0.003 to 0.015 wt
%.

【0023】デンドライト枝間隔(DAS)が200μ
m以下であるビレットを鋳造するが、デンドライト枝間
隔(DAS)が200μmを越えると、半溶融温度域に
加熱した際に初晶α(Al)相の均一微細球状化が難し
くなるし、また均質化処理を行う場合には均質化処理に
時間を要するので、デンドライト枝間隔(DAS)を2
00μm以下とした。また、初晶Siの平均粒径が30
0μmを越えると、機械的性質が低下するため、300
μm以下とした。
The dendrite branch spacing (DAS) is 200μ
Although the billet having a diameter of m or less is cast, if the dendrite branch spacing (DAS) exceeds 200 μm, it becomes difficult to make the primary α (Al) phase into a uniform fine spheroid when heated to a semi-melting temperature range. When the homogenization process is performed, it takes time for the homogenization process, so the dendrite branch interval (DAS) is set to 2
It was set to be not more than 00 μm. Further, the average grain size of primary Si is 30
If it exceeds 0 μm, the mechanical properties deteriorate, so 300
It was set to not more than μm.

【0024】鋳造で得られたビレットを均質化処理する
ことにより、鋳造時に結晶粒界に晶出したAlCu、
MgSi等の晶出物がマトリックスに固溶する。また
共晶Siや初晶Siを球状化し冷間鍛造加工時の変形抵
抗を小さくする。均質化処理温度が450℃未満や1時
間に達しない加熱時間では、固溶化が充分得られず、ま
た共晶Siや初晶Siの球状化や鋳造歪の除去も不充分
である。しかし550℃を越える処理温度では、共晶融
解が発生し鍛造時の加工性を損う。また10時間を越え
る加熱時間では、加熱時間の長時間に見合った均質化の
効果上昇が見られず、加熱エネルギーの損失となる。こ
のため、均質化処理条件は450〜550℃の温度で1
〜10時間加熱とした。
By subjecting the billet obtained by casting to homogenization treatment, Al 2 Cu crystallized at grain boundaries during casting,
Crystallized substances such as Mg 2 Si dissolve in the matrix. Further, the eutectic Si and the primary crystal Si are spheroidized to reduce the deformation resistance during cold forging. When the homogenization treatment temperature is lower than 450 ° C. or the heating time does not reach 1 hour, solid solution cannot be sufficiently obtained, and eutectic Si and primary crystal Si are spheroidized and casting strain is not sufficiently removed. However, at a processing temperature exceeding 550 ° C., eutectic melting occurs and impairs workability during forging. Further, when the heating time exceeds 10 hours, the effect of homogenization corresponding to the long heating time is not increased, resulting in a loss of heating energy. Therefore, the homogenization treatment condition is 1 at a temperature of 450 to 550 ° C.
It was heated for 10 hours.

【0025】次に加工歪みの導入は、工程が簡素化で
き、かつ少ない加工率で歪みが有効に導入されるように
冷間鍛造で行い、なおかつ鍛造用ビレットの全体に均一
に歪みが導入されるように型枠鍛造とする。歪み率は、
5%未満の場合には歪み導入が少ないため半溶融温度域
まで昇温しても初晶α(Al)相の均一な球状化は図れ
ず、一方50%を越えると初晶α(Al)相サイズに変
化は見られないのみならず冷間鍛造時に割れが発生する
ため、5〜50%とした。ここでの歪み率は、鍛造用ビ
レットの元の長さをLとし、鍛造後のビレットの長さ
をLとした時、(L−L)/L×100(%)
で定義した。
Next, the working strain is introduced by cold forging so that the process can be simplified and the strain can be effectively introduced with a small working rate, and the strain is uniformly introduced into the entire forging billet. The frame is forged so that The distortion rate is
If it is less than 5%, the introduction of strain is small, and even if the temperature is raised to the semi-melting temperature range, the primary spheroidal α (Al) phase cannot be made uniform spheroidization, while if it exceeds 50%, the primary crystal α (Al) is spheroidized. The phase size does not change, and cracks occur during cold forging, so the content was set to 5 to 50%. The strain rate here is (L 1 −L 2 ) / L 1 × 100 (%) when the original length of the forging billet is L 1 and the length of the forged billet is L 2.
Defined in.

【0026】加工導入速度は、ビレット鋳塊の結晶粒微
細化や共晶Siの微細化や初晶Siの微細化と均質化処
理を加えることにより大幅にアップできる。生産性から
言えば加工導入速度はできるだけ早い方が好ましい。し
かしながら、50mm/sec.を越えると鍛造時に割
れが生じたり、鍛造デッドゾーンが歪みが均一に導入さ
れないため50mm/sec.以下とした。また冷間型
枠鍛造の際のビレット温度は、再結晶温度以上では所定
の加工率に対する歪み導入が不充分となり、半溶融温度
に昇温しても初晶α(Al)相が粒状組織とならないた
め再結晶温度未満とした。
The process introduction speed can be greatly increased by refining the crystal grains of the billet ingot, refining the eutectic Si, refining the primary Si and homogenizing treatment. From the viewpoint of productivity, it is preferable that the processing introduction speed is as fast as possible. However, 50 mm / sec. If it exceeds 50 mm / sec., Cracking will occur during forging, and strain will not be uniformly introduced into the forging dead zone. Below. When the billet temperature during cold form forging is above the recrystallization temperature, the introduction of strain is insufficient for a given processing rate, and even if the temperature is raised to the semi-melting temperature, the primary crystal α (Al) phase has a grain structure. Therefore, the temperature was lower than the recrystallization temperature.

【0027】その後ビレットを共晶温度以上に昇温し、
液相率が20〜80%となる温度で保持して半溶融成型
するが、液相率が20%未満では初晶α(Al)相の均
一な球状化は図れず、半溶融成型の変形抵抗が大きく加
圧成型が困難となる。また、80%を越えると均一な組
織を有する成型品が得られない。このため、共晶温度以
上の半溶融温度域での液相率は20〜80%とした。
Then, the billet is heated to a temperature higher than the eutectic temperature,
Semi-melt molding is performed by maintaining the liquid phase rate at 20-80%, but if the liquid phase rate is less than 20%, uniform spheroidization of the primary crystal α (Al) phase cannot be achieved, resulting in deformation of the semi-melt molding. The resistance is high and pressure molding becomes difficult. Further, if it exceeds 80%, a molded product having a uniform structure cannot be obtained. Therefore, the liquid phase ratio in the semi-melting temperature range above the eutectic temperature is set to 20 to 80%.

【0028】[0028]

【実施例】以下本発明の具体的な実施例を示す。図1は
本発明方法で用いる冷間型枠鍛造の模式図であり、図中
符号1は鍛造用金型、2は鍛造用金型ポンチ、3はアル
ミニウム合金ビレットを示す。
EXAMPLES Specific examples of the present invention will be described below. FIG. 1 is a schematic view of cold formwork forging used in the method of the present invention. In the figure, reference numeral 1 is a forging die, 2 is a forging die punch, and 3 is an aluminum alloy billet.

【0029】Cu、Si、Mg、Zn、Fe、Ti、
B、Ni及びPをそれぞれ下記表1に示すような組成と
なるように溶湯を調整し、連続鋳造にてアルミニウム合
金ビレットを鋳造した。
Cu, Si, Mg, Zn, Fe, Ti,
The molten alloy was adjusted so that B, Ni and P had the compositions shown in Table 1 below, and an aluminum alloy billet was cast by continuous casting.

【0030】[0030]

【表1】 [Table 1]

【0031】上記表1に示すアルミニウム合金ビレット
を、表2に示す条件で処理し、半溶融成型の成型性、半
溶融成型後の初晶α(Al)相の形状を評価した結果も
表2に併記した。
The aluminum alloy billets shown in Table 1 above were treated under the conditions shown in Table 2 to evaluate the formability of semi-melt molding and the shape of the primary α (Al) phase after semi-melt molding. Also described in.

【0032】[0032]

【表2】 [Table 2]

【0033】表2に示した加工歪み導入時の成型性は、
表2で示す成型条件で成型した際に割れが発生せず成型
性が良好なものを○とし、割れが見られるものを×で判
定した。半溶融成型の成型性は、良好なものを○とし、
成型性の悪いものを×と判定した。半溶融成型後の初晶
α(Al)相の形状は、球状化が認められるものを○と
し、球状化が不充分であるものを×と判定した。半溶融
成型後の初晶α(Al)相の微細均一化では初晶α(A
l)相のサイズが100μm以下を○とし、100μm
を越えるサイズのものを×と判定した。
The formability shown in Table 2 when the processing strain is introduced is
When the molding was performed under the molding conditions shown in Table 2, cracking did not occur and the moldability was good, the result was evaluated as ◯, and when cracking was found, the result was evaluated as x. For the moldability of semi-melt molding, the good one is ○.
Those with poor moldability were judged as x. The shape of the primary crystal α (Al) phase after semi-melt molding was judged as ◯ when spheroidization was recognized, and as x when spheroidization was insufficient. In the homogenization of the primary α (Al) phase after semi-melt molding, the primary α (A
l) A phase size of 100 μm or less is defined as ◯, and 100 μm
Those having a size exceeding 0.1 were judged as x.

【0034】図2は、初晶α(Al)相の微細均一化が
○評価の代表例写真を示す。
FIG. 2 shows a photograph of a typical example in which the fine homogenization of the primary crystal α (Al) phase was evaluated as ◯.

【0035】[0035]

【発明の効果】以上述べて来た如く、本発明によれば、
従来の半溶融ビレットよりも工程が簡素化され低コスト
化が図れる。また、得られる組織も初晶α(Al)相サ
イズが平均100μm以下で、かつ初晶α(Al)相の
面積率50%の均一球状化組織となっており、自動車部
材等の輸送機器用として使用が可能である。
As described above, according to the present invention,
The process can be simplified and the cost can be reduced as compared with the conventional semi-molten billet. Further, the obtained structure is a uniform spheroidized structure in which the primary crystal α (Al) phase size is 100 μm or less on average and the primary crystal α (Al) phase has an area ratio of 50%. It can be used as

【図面の簡単な説明】[Brief description of drawings]

【図1】冷間型枠鍛造の模式図である。FIG. 1 is a schematic view of cold formwork forging.

【図2】初晶α(Al)相の微細均一化が○評価の代表
例の顕微鏡組織写真であり、倍率は50倍である。
FIG. 2 is a photomicrograph of a typical example in which fine homogenization of primary crystal α (Al) phase is evaluated as ◯, and the magnification is 50 times.

【符号の説明】[Explanation of symbols]

1 鍛造用金型 2 鍛造用金型ポンチ 3 アルミニウム合金ビレット 1 Forging die 2 Forging die punch 3 Aluminum alloy billet

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B22D 21/04 B22D 21/04 A C22C 21/02 C22C 21/02 C22F 1/043 C22F 1/043 // C22F 1/00 610 1/00 610 620 620 630 630A 630B 682 682 683 683 691 691B 691C 694 694A 694Z (72)発明者 村山 康幸 福岡県大牟田市四山町80番地 九州三井ア ルミニウム工業株式会社内 (72)発明者 岩下 綱樹 福岡県大牟田市四山町80番地 九州三井ア ルミニウム工業株式会社内 Fターム(参考) 4E087 AA02 BA04 BA14 CB03 DB15 DB22 GA02 GA08 HB17 ─────────────────────────────────────────────────── ─── Continued Front Page (51) Int.Cl. 7 Identification Code FI Theme Coat (Reference) B22D 21/04 B22D 21/04 A C22C 21/02 C22C 21/02 C22F 1/043 C22F 1/043 // C22F 1/00 610 1/00 610 620 620 630 630A 630B 682 682 683 683 693 691 691B 691C 694 694A 694Z (72) Inventor Murayama Yasuyuki Fukuoka Prefecture Omuta city 80 Miyamai, Kyushu Mitsui Co., Ltd. ) Inventor Tsunaki Iwashita 80 Yoyama-cho, Omuta City, Fukuoka Prefecture F-term in Mitsui Aluminum Industry Co., Ltd. Kyushu (reference) 4E087 AA02 BA04 BA14 CB03 DB15 DB22 GA02 GA08 HB17

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 Cu0.40〜5.5wt%、Si1
0.0〜25.0wt%、Zn1.0wt%以下、Fe
1.5wt%以下、Mn0.65wt%以下、Ti0.
005〜0.5wt%及びB0.0001〜0.5wt
%の少なくとも1種以上、Mg0.40〜1.8wt%
を含み、残部が実質的にAlの組成から成り、初晶Si
の平均粒径が300μm以下で、しかもデンドライト枝
間隔が200μm以下であるアルミニウム合金を製造
し、次いで歪み率5〜50%、加工導入速度50mm/
sec.以下で再結晶温度未満の温度で、冷間型枠鍛造
にて加工歪みを導入し、その後共晶温度以上に昇温し、
液相率が20〜80%となる温度で保持して半溶融加工
することを特徴とする輸送機器用アルミニウム合金の半
溶融成型ビレットの製造方法。
1. Cu 0.40 to 5.5 wt%, Si1
0.0-25.0 wt%, Zn 1.0 wt% or less, Fe
1.5 wt% or less, Mn 0.65 wt% or less, Ti0.
005 to 0.5 wt% and B 0.0001 to 0.5 wt
%, At least one kind, Mg 0.40 to 1.8 wt%
And the balance consists essentially of Al composition.
Of aluminum having an average particle size of 300 μm or less and a dendrite branch interval of 200 μm or less, and then a strain rate of 5 to 50% and a processing introduction speed of 50 mm /
sec. At a temperature lower than the recrystallization temperature below, a working strain is introduced by cold die forging, and then the temperature is raised to the eutectic temperature or higher,
A method for producing a semi-molten molded billet of an aluminum alloy for transportation equipment, characterized by holding at a temperature at which a liquid phase ratio is 20 to 80% and performing semi-melt processing.
【請求項2】 アルミニウム合金を製造し、加工歪みを
導入する前に、450〜550℃の温度で1〜10時間
均質化処理を行うことを特徴とする請求項1記載の輸送
機器用アルミニウム合金の半溶融成型ビレットの製造方
法。
2. The aluminum alloy for transportation equipment according to claim 1, wherein the aluminum alloy is produced and subjected to a homogenizing treatment at a temperature of 450 to 550 ° C. for 1 to 10 hours before introducing a working strain. Method for producing semi-molten molded billet.
【請求項3】 Cu0.40〜5.5wt%、Si1
0.0〜25.0wt%、Zn1.0wt%以下、Fe
1.5wt%以下、Mn0.65wt%以下、Ti0.
005〜0.5wt%及びB0.0001〜0.5wt
%の少なくとも1種以上、Mg0.40〜1.8wt
%、Ni0.05〜1.7wt%を含み、残部が実質的
にAlの組成から成り、初晶Siの平均粒径が300μ
m以下で、しかもデンドライト枝間隔が200μm以下
であるアルミニウム合金を製造し、次いで歪み率5〜5
0%、加工導入速度50mm/sec.以下で再結晶温
度未満の温度で、冷間型枠鍛造にて加工歪みを導入し、
その後共晶温度以上に昇温し、液相率が20〜80%と
なる温度で保持して半溶融加工することを特徴とする輸
送機器用アルミニウム合金の半溶融成型ビレットの製造
方法。
3. Cu 0.40 to 5.5 wt%, Si1
0.0-25.0 wt%, Zn 1.0 wt% or less, Fe
1.5 wt% or less, Mn 0.65 wt% or less, Ti0.
005 to 0.5 wt% and B 0.0001 to 0.5 wt
%, At least one kind, Mg 0.40 to 1.8 wt
%, Ni 0.05 to 1.7 wt%, and the balance substantially consisting of Al, and the average grain size of primary Si is 300 μm.
m or less and the dendrite branch spacing is 200 μm or less to produce an aluminum alloy, and then the strain rate is 5 to 5
0%, processing introduction speed 50 mm / sec. In the following, at a temperature below the recrystallization temperature, introducing processing strain by cold formwork forging,
After that, the temperature is raised to a temperature higher than the eutectic temperature, the liquid phase rate is maintained at a temperature of 20 to 80%, and semi-melt processing is performed, and a method for producing a semi-molten molded billet of an aluminum alloy for transportation equipment.
【請求項4】 アルミニウム合金を製造し、加工歪みを
導入する前に、450〜550℃の温度で1〜10時間
均質化処理を行うことを特徴とする請求項3記載の輸送
機器用アルミニウム合金の半溶融成型ビレットの製造方
法。
4. The aluminum alloy for transportation equipment according to claim 3, wherein the aluminum alloy is manufactured and subjected to a homogenizing treatment at a temperature of 450 to 550 ° C. for 1 to 10 hours before introducing a working strain. Method for producing semi-molten molded billet.
【請求項5】 更にP0.003〜0.150wt%を
含むアルミニウム合金を用いることを特徴とする請求項
1又は3記載の輸送機器用アルミニウム合金の半溶融成
型ビレットの製造方法。
5. The method for producing a semi-molten molded billet of an aluminum alloy for transportation equipment according to claim 1 or 3, wherein an aluminum alloy further containing P0.003 to 0.150 wt% is used.
【請求項6】 アルミニウム合金を製造し、加工歪みを
導入する前に、450〜550℃の温度で1〜10時間
均質化処理を行うことを特徴とする請求項5記載の輸送
機器用アルミニウム合金の半溶融成型ビレットの製造方
法。
6. The aluminum alloy for transportation equipment according to claim 5, wherein the aluminum alloy is produced and subjected to a homogenizing treatment at a temperature of 450 to 550 ° C. for 1 to 10 hours before introducing a working strain. Method for producing semi-molten molded billet.
JP2001343072A 2001-11-08 2001-11-08 Method for producing semi-molten billet of aluminum alloy for transportation equipment Expired - Fee Related JP4121266B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001343072A JP4121266B2 (en) 2001-11-08 2001-11-08 Method for producing semi-molten billet of aluminum alloy for transportation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001343072A JP4121266B2 (en) 2001-11-08 2001-11-08 Method for producing semi-molten billet of aluminum alloy for transportation equipment

Publications (2)

Publication Number Publication Date
JP2003136199A true JP2003136199A (en) 2003-05-14
JP4121266B2 JP4121266B2 (en) 2008-07-23

Family

ID=19156823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001343072A Expired - Fee Related JP4121266B2 (en) 2001-11-08 2001-11-08 Method for producing semi-molten billet of aluminum alloy for transportation equipment

Country Status (1)

Country Link
JP (1) JP4121266B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103667752A (en) * 2013-11-20 2014-03-26 茹林宝 Preparation technology of aluminum alloy sectional material
CN110241333A (en) * 2019-06-27 2019-09-17 广东顺博铝合金有限公司 A kind of aluminium alloy with good heat radiating
CN110241332A (en) * 2019-06-27 2019-09-17 广东顺博铝合金有限公司 A kind of wear-resistant aluminum alloy and its preparation

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105506409A (en) * 2015-12-28 2016-04-20 常熟市明瑞针纺织有限公司 High-wear-resistant cam of warp knitting machine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103667752A (en) * 2013-11-20 2014-03-26 茹林宝 Preparation technology of aluminum alloy sectional material
CN110241333A (en) * 2019-06-27 2019-09-17 广东顺博铝合金有限公司 A kind of aluminium alloy with good heat radiating
CN110241332A (en) * 2019-06-27 2019-09-17 广东顺博铝合金有限公司 A kind of wear-resistant aluminum alloy and its preparation

Also Published As

Publication number Publication date
JP4121266B2 (en) 2008-07-23

Similar Documents

Publication Publication Date Title
JPS58213840A (en) Metal composition suitable for producing semi-solid semi-liquid state and manufacture
JP2010018875A (en) High strength aluminum alloy, method for producing high strength aluminum alloy casting, and method for producing high strength aluminum alloy member
JP3891933B2 (en) High strength magnesium alloy and method for producing the same
AU2006210790A1 (en) Aluminum-zinc-magnesium-scandium alloys and methods of fabricating same
JP3525486B2 (en) Magnesium alloy casting material for plastic working, magnesium alloy member using the same, and methods for producing them
JP2001220639A (en) Aluminum alloy for casting
JP2000144296A (en) High-strength and high-toughness aluminum alloy forged material
US20040261916A1 (en) Dispersion hardenable Al-Ni-Mn casting alloys for automotive and aerospace structural components
JP2004084058A (en) Method for producing aluminum alloy forging for transport structural material and aluminum alloy forging
JP3548709B2 (en) Method for producing semi-solid billet of Al alloy for transportation equipment
JP3726087B2 (en) Aluminum alloy forged material for transport machine structural material and method for producing the same
JP5356777B2 (en) Magnesium alloy forging method
JP3852915B2 (en) Method for producing semi-melt molded billet of aluminum alloy for transportation equipment
JP3346186B2 (en) Aluminum alloy material for casting and forging with excellent wear resistance, castability and forgeability, and its manufacturing method
JP2003277868A (en) Aluminum alloy forging having excellent stress corrosion cracking resistance and stock for the forging
JP3840400B2 (en) Method for producing semi-melt molded billet of aluminum alloy for transportation equipment
JP3676723B2 (en) Method for producing semi-melt molded billet of aluminum alloy for transportation equipment
JP2003136199A (en) Method of manufacturing half-melted molding billet of aluminum alloy for transportation machine
JP3798676B2 (en) Method for producing semi-melt molded billet of aluminum alloy for transportation equipment
JP5575028B2 (en) High strength aluminum alloy, high strength aluminum alloy casting manufacturing method and high strength aluminum alloy member manufacturing method
JPH08232035A (en) High strength aluminum alloy material for bumper, excellent in bendability, and its production
JP2003311373A (en) Method for producing base material for semi-melting formation
JP4152095B2 (en) Method for producing semi-molten billet of aluminum alloy for transportation equipment
JP2006161103A (en) Aluminum alloy member and manufacturing method therefor
JP2001226731A (en) Aluminum-zinc-magnesium series aluminum alloy for casting and forging, aluminum-zinc-magnesium series cast and forged product, and its producing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20080402

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080428

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20110509

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20110509

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20120509

LAPS Cancellation because of no payment of annual fees