JP2003311373A - Method for producing base material for semi-melting formation - Google Patents

Method for producing base material for semi-melting formation

Info

Publication number
JP2003311373A
JP2003311373A JP2002113590A JP2002113590A JP2003311373A JP 2003311373 A JP2003311373 A JP 2003311373A JP 2002113590 A JP2002113590 A JP 2002113590A JP 2002113590 A JP2002113590 A JP 2002113590A JP 2003311373 A JP2003311373 A JP 2003311373A
Authority
JP
Japan
Prior art keywords
temperature
alloy material
aluminum alloy
magnesium alloy
high shear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002113590A
Other languages
Japanese (ja)
Other versions
JP3829164B2 (en
Inventor
Shigeru Mikubo
滋 三久保
Masafumi Mizouchi
政文 溝内
Tsunaki Iwashita
綱樹 岩下
Zenji Hotta
善治 堀田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu Mitsui Aluminum Industries Inc
Original Assignee
Kyushu Mitsui Aluminum Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Mitsui Aluminum Industries Inc filed Critical Kyushu Mitsui Aluminum Industries Inc
Priority to JP2002113590A priority Critical patent/JP3829164B2/en
Publication of JP2003311373A publication Critical patent/JP2003311373A/en
Application granted granted Critical
Publication of JP3829164B2 publication Critical patent/JP3829164B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Forging (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To simply and easily manufacture a base material for semi-melting formed product without applying a troublesome method, setting to each kind of the base material and restricting to the shape of the base material. <P>SOLUTION: A method for producing an aluminum alloy material or a magnesium alloy material having excellent semi-melting formation is performed, with which a strain (εN) corresponding to ≥0.15 as a high shearing strain is given to an aluminum alloy cast block or a magnesium alloy cast block, having ≥0°C to not higher than melting point in the actual body temperature and thereafter, the aluminum alloy material or the magnesium alloy material is heated up to not lower than an eutectic temperature or a solidus temperature so that a primary crystal α becomes a uniformly fine spheroidizing by selecting the holding time and the holding temperature. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、アルミニウム合金
又はマグネシウム合金の半溶融成形品の製造に適した素
材の製造方法に関するものである。
TECHNICAL FIELD The present invention relates to a method for producing a material suitable for producing a semi-molten molded product of an aluminum alloy or a magnesium alloy.

【0002】[0002]

【従来の技術】半溶融成形品の製造としては、素材を半
溶融温度域まで昇温し成形するチクソキャスト法が一般
的に知られている。この製法の製品は、金型鋳造の製品
と比較し、鋳造偏析や内部欠陥が少なく、ニアネットシ
ェイプ化や熱処理が可能なことから、軽量で薄肉製品が
製造できる製造法として最近注目されている技術であ
る。半溶融成形品の素材であるビレットの鋳造方法とし
ては、ペシネやアルマックス方式として知られているビ
レット製造時の半溶融温度域で電磁的に溶湯の撹拌を行
い、ビレット製造段階で初晶αを粉砕し球状化させる方
法「方式A」が一般的である。また、鋳造時に従来添加
されている量よりも多量のAl−Ti−Bを添加するこ
とで、溶湯凝固までの初晶αの成長を抑え、微細化した
ビレットを鋳造し、その後そのビレットを半溶融温度域
まで昇温し初晶αを球状化させる方法「方式B」も報告
されている。その他、特開2000−134845号公
報には、ビレットを冷間型枠鍛造にて加工歪みを導入
し、その後半溶融温度域まで昇温し初晶αを球状化させ
る方法「方式C」もある。
2. Description of the Related Art A thixocasting method in which a raw material is heated to a semi-melting temperature range and molded is generally known as a method for producing a semi-melted molded article. Compared with die casting products, the products of this production method have less casting segregation and internal defects, and can be near net shape and heat treated, so they have recently attracted attention as a manufacturing method that can produce lightweight and thin products. It is a technology. As a method for casting the billet, which is the material of the semi-molten molded product, the molten metal is electromagnetically stirred in the semi-melting temperature range during the billet production known as the pesine or Almax method, and the primary crystal α The method "method A" of crushing and spheroidizing is generally used. In addition, by adding a larger amount of Al-Ti-B than that conventionally added during casting, the growth of primary crystal α until the solidification of the molten metal is suppressed, a fine billet is cast, and then the billet is A method "method B" in which the primary crystal α is spheroidized by raising the temperature to the melting temperature range is also reported. In addition, Japanese Patent Laid-Open No. 2000-134845 also has a method “method C” in which a billet is subjected to cold form forging to introduce a processing strain and the temperature is raised to a melting temperature range in the latter half thereof to make the primary crystal α spherical. .

【0003】[0003]

【発明が解決しようとする課題】上記従来の「方式A」
では、電磁的撹拌を必要とするために非常に莫大な設備
投資が必要となる。また、素材品種毎に細かな製造条件
の設定が必要で作業工程も非常に煩雑となる他、製造コ
ストも非常に高くなる難点がある。また「方式B」で
は、多量のAl−Ti−Bを添加するために、溶解炉内
でのTiB沈降による品質不安定が発生するという問
題がある。また「方式C」では、冷間型枠鍛造で加工歪
みを導入するが、鍛造に非常に大きなプレス圧を必要と
するため、製造コストが高くなる。また、素材に均一な
加工歪みの導入が難しく、鍛造後の素材形状の均一化も
難しい。その他、素材直径が100mm以下のように小
さいものを製造する場合、ビレット素材としては更に小
さなものが要求されるため、素材径が限定される。ま
た、鍛造用プレス機は、鍛造ストロークが500mm以
下が一般的であるため、500mmを越える素材長さを
製造する場合、特殊なプレス機の導入が必要となり、莫
大な設備投資が必要となる問題がある。
[Problems to be Solved by the Invention] The above-mentioned conventional "method A"
Then, a very huge capital investment is required because electromagnetic stirring is required. Further, since it is necessary to set fine manufacturing conditions for each material type, the working process becomes very complicated and the manufacturing cost becomes very high. Further, in the “method B”, since a large amount of Al—Ti—B is added, there is a problem that quality instability occurs due to TiB 2 settling in the melting furnace. Further, in "method C", a processing strain is introduced by cold mold forging, but a very large press pressure is required for forging, so that the manufacturing cost becomes high. Further, it is difficult to introduce a uniform processing strain into the material, and it is difficult to make the material shape uniform after forging. In addition, when manufacturing a material having a small diameter of 100 mm or less, a billet material having a smaller diameter is required, so that the material diameter is limited. Further, since the forging press machine generally has a forging stroke of 500 mm or less, when manufacturing a material length exceeding 500 mm, it is necessary to introduce a special pressing machine, which requires a huge capital investment. There is.

【0004】本発明は、以上の点に鑑みて創案されたも
のであって、煩雑な方法を採ることや、素材品種毎の設
定や、素材形状の制約がなく、簡便容易に半溶融成形用
の素材を製造する方法を提供することを目的とするもの
である。
The present invention was devised in view of the above points, and it is simple and easy for semi-melt molding without employing a complicated method, setting each material type, and restricting the material shape. It is an object of the present invention to provide a method for producing the material.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、本願の第1発明は、高剪断歪みとして、0.15以
上の相当歪み(ε)を実体温度が0℃以上で溶融温度
以下のアルミニウム合金鋳塊又はマグネシウム合金鋳塊
に付与し、その後アルミニウム合金材又はマグネシウム
合金材を共晶温度又は固相線温度以上に昇温し、保持時
間、保持温度の選択により、初晶αが均一微細な球状化
となる如くなすことを特徴とする半溶融成形に優れたア
ルミニウム合金材又はマグネシウム合金材の製造方法を
採用する。なお相当歪み(ε)は次式で定義した。即
ち、 ε=2N/√3(1/tan(Φ/2+Ψ/2)+Ψ
/2(1/sin(Φ/2+Ψ/2)) ここでNは挿入回数を示し、ΦとΨは図1中の角度を示
す。
In order to achieve the above-mentioned object, the first invention of the present application provides a high shear strain with an equivalent strain (ε N ) of 0.15 or more at a solid temperature of 0 ° C. or more and a melting temperature. It is given to the following aluminum alloy ingot or magnesium alloy ingot, and then the aluminum alloy material or magnesium alloy material is heated to a temperature higher than the eutectic temperature or solidus temperature, and the holding time and holding temperature are selected to obtain the primary crystal α The method for producing an aluminum alloy material or a magnesium alloy material excellent in semi-melt forming is adopted, wherein The equivalent strain (ε N ) was defined by the following equation. That is, ε N = 2N / √3 (1 / tan (Φ / 2 + Ψ / 2) + Ψ
/ 2 (1 / sin (Φ / 2 + Ψ / 2)) Here, N indicates the number of insertions, and Φ and Ψ indicate angles in FIG.

【0006】また、本願の第2発明は、高剪断歪みとし
て、0.05以上の相当歪み(ε)を実体温度が0℃
以上で溶融温度以下の結晶粒平均サイズが500μm以
下であるアルミニウム合金鋳塊又はマグネシウム合金鋳
塊に付与し、その後アルミニウム合金材又はマグネシウ
ム合金材を共晶温度又は固相線温度以上に昇温し、保持
時間、保持温度の選択により、初晶αが均一微細な球状
化となる如くなすことを特徴とする半溶融成形に優れた
アルミニウム合金材又はマグネシウム合金材の製造方法
を採用する。
Further, in the second invention of the present application, as the high shear strain, an equivalent strain (ε N ) of 0.05 or more is applied at a substance temperature of 0 ° C.
The above is applied to an aluminum alloy ingot or a magnesium alloy ingot having a crystal grain average size of 500 μm or less at a melting temperature or less, and then the aluminum alloy material or the magnesium alloy material is heated to a eutectic temperature or a solidus temperature or more. A method for producing an aluminum alloy material or a magnesium alloy material excellent in semi-melt forming, characterized in that the primary crystal α is formed into a uniform fine spheroidal shape by selecting the holding time and the holding temperature.

【0007】また、本願の第3発明は、高剪断歪みとし
て、0.05以上の相当歪み(ε)を実体温度が0℃
以上で溶融温度以下のアルミニウム合金鋳塊又はマグネ
シウム合金鋳塊に付与し、しかも該高剪断歪みは、1回
目の剪断角度(Φ)の延長線上に対し、5°以上180
°未満傾いた剪断角度(X)で更に付与するものとし、
その後アルミニウム合金材又はマグネシウム合金材を共
晶温度又は固相線温度以上に昇温し、保持時間、保持温
度の選択により、初晶αが均一微細な球状化となる如く
なすことを特徴とする半溶融成形に優れたアルミニウム
合金材又はマグネシウム合金材の製造方法を採用する。
Further, in the third invention of the present application, as the high shear strain, an equivalent strain (ε N ) of 0.05 or more is applied at an actual temperature of 0 ° C.
The above is applied to an aluminum alloy ingot or a magnesium alloy ingot having a melting temperature or lower, and the high shear strain is 5 ° or more and 180 ° with respect to the extension line of the first shear angle (Φ).
Shall be further imparted with a shear angle (X) tilted less than °,
After that, the aluminum alloy material or the magnesium alloy material is heated to a temperature higher than the eutectic temperature or the solidus temperature, and the holding time and the holding temperature are selected so that the primary crystal α becomes a uniform fine sphere. A method of manufacturing an aluminum alloy material or a magnesium alloy material excellent in semi-melt forming is adopted.

【0008】また、本願の第4発明は、高剪断歪みの付
与は、側方押出しによる素材挿入口からの加圧法若しく
は出口からの引き抜き法、又は素材断面積の断面減少率
が30%未満の絞り工程を含んだ素材挿入口からの加圧
法若しくは出口からの引き抜き法とし、しかもその成形
速度は10,000mm/秒以下の範囲としたことを特
徴とする方法を採用する。
Further, in the fourth invention of the present application, high shear strain is imparted by a pressing method from a material insertion port by lateral extrusion or a drawing method from an outlet, or a cross-section reduction rate of the material cross-sectional area is less than 30%. A pressurizing method from a material insertion port including a drawing step or a drawing method from an outlet is adopted, and a molding speed thereof is set to a range of 10,000 mm / sec or less.

【0009】また、本願の第5発明は、高剪断歪みとし
て、0.05以上の相当歪み(ε)を実体温度が0℃
以上で溶融温度以下のアルミニウム合金鋳塊又はマグネ
シウム合金鋳塊に付与し、高剪断歪みを付与するに際し
て高剪断歪み付与荷重よりも小さい荷重を材料の進行方
向に対して反対方向より付与する。その後アルミニウム
合金材又はマグネシウム合金材を共晶温度又は固相線温
度以上に昇温し、保持時間、保持温度の選択により、初
晶αが均一微細な球状化となる如くなすことを特徴とす
る半溶融成形に優れたアルミニウム合金材又はマグネシ
ウム合金材の製造方法を採用する。
Further, in the fifth invention of the present application, as the high shear strain, an equivalent strain (ε N ) of 0.05 or more is applied at a substance temperature of 0 ° C.
As described above, when a high shear strain is applied to an aluminum alloy ingot or a magnesium alloy ingot having a melting temperature or lower, a load smaller than the high shear strain applying load is applied from the opposite direction to the traveling direction of the material. After that, the aluminum alloy material or the magnesium alloy material is heated to a temperature higher than the eutectic temperature or the solidus temperature, and the holding time and the holding temperature are selected so that the primary crystal α becomes a uniform fine sphere. A method of manufacturing an aluminum alloy material or a magnesium alloy material excellent in semi-melt forming is adopted.

【0010】また、本願の第6発明は、高剪断歪み付与
後に、更に再結晶温度未満の冷間加工や、再結晶温度以
上の熱間加工を行う方法を採用する。
Further, the sixth invention of the present application adopts a method of performing cold working below the recrystallization temperature or hot working above the recrystallization temperature after applying high shear strain.

【0011】[0011]

【発明の実施の形態】以下本発明の実施の形態を説明
し、本発明の理解に供する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below to provide an understanding of the present invention.

【0012】アルミニウム合金鋳塊又はマグネシウム合
金鋳塊に高剪断歪みを付与すると、その後の再結晶温度
以上の領域で一つの結晶粒内に幾つかの亜粒界が発生
し、更に共晶温度又は固相線温度以上に昇温させると、
この亜粒界へ液体が流れ込み、次に適正な保持温度、保
持時間によって、均一で微細な初晶αの球状化組織が得
られることが判明した。その初晶αのサイズが100μ
mを越えると、半溶融成形品に空隙などの欠陥や大幅な
成分偏析が発生するため、初晶αは均一微細な球状化が
必要で、特に100μm以下が好ましいことを確認し
た。また、これらの効果は高剪断歪みの付与によって得
られるものであるから、アルミニウム又はマグネシウム
の合金組成や不純物の種類に関わらず上記効果を得るこ
とができる。なお、アルミニウムの場合は、主要添加元
素又は微量添加元素、不純物は、Cu、Mn、Si、M
g、Zn、Li、Fe、N、F、Na、P、Ca、S
c、Ti、V、Cr、Co、Ni、Ga、Ge、Sr、
Y、Zr、Mo、Ag、Cd、In、Sh、Sb、T
e、La、Ce、Tl、Pb、Bi等である。
When high shear strain is applied to an aluminum alloy ingot or a magnesium alloy ingot, some subgrain boundaries are generated in one crystal grain in a region above the recrystallization temperature thereafter, and further eutectic temperature or When the temperature is raised above the solidus temperature,
It was found that a liquid flows into this sub-grain boundary, and then a uniform and fine spheroidized structure of primary crystal α is obtained with an appropriate holding temperature and holding time. The size of the primary crystal α is 100μ
When it exceeds m, defects such as voids and significant segregation of components occur in the semi-molten molded product, and therefore it has been confirmed that the primary crystal α needs to be uniformly fine spheroidized, and particularly preferably 100 μm or less. Further, since these effects are obtained by applying high shear strain, the above effects can be obtained regardless of the alloy composition of aluminum or magnesium and the type of impurities. In the case of aluminum, the main additive element or the trace additive element and the impurities are Cu, Mn, Si and M.
g, Zn, Li, Fe, N, F, Na, P, Ca, S
c, Ti, V, Cr, Co, Ni, Ga, Ge, Sr,
Y, Zr, Mo, Ag, Cd, In, Sh, Sb, T
e, La, Ce, Tl, Pb, Bi and the like.

【0013】アルミニウム合金鋳塊又はマグネシウム合
金鋳塊に対し高剪断歪みを付与することによって、半溶
融温度域へ昇温時に初晶αの均一で微細な球状組織化を
確実なものとすることができる。高剪断歪みの付与で、
実体温度を0℃以上溶融温度以下とした理由は、実体温
度が0℃未満とするには冷却炉などの設備や高剪断歪み
導入による発熱を防ぐ設備などが必要となるため、作業
工程が煩雑となるし、また、溶融温度を越えると、高剪
断歪みを付与することが難しいためであり、特に再結晶
温度以下が好ましい。
By imparting a high shear strain to the aluminum alloy ingot or the magnesium alloy ingot, it is possible to ensure uniform and fine spherical structure of the primary crystal α when the temperature is raised to the semi-melting temperature range. it can. By applying high shear strain,
The reason why the solid temperature is set to 0 ° C. or higher and the melting temperature or lower is that the solid temperature is less than 0 ° C., because equipment such as a cooling furnace and equipment for preventing heat generation due to introduction of high shear strain are required, the work process is complicated. This is because if the melting temperature is exceeded, it is difficult to impart high shear strain, and the recrystallization temperature or lower is particularly preferable.

【0014】 高剪断歪み付与前のアルミニウム合金鋳
塊又はマグネシウム合金鋳塊の結晶粒の平均サイズが大
きくなると、0.15未満の相当歪み(ε)の場合、
高剪断歪み付与後に半溶融温度域へ加熱しても初晶αが
粗大となり、更に高剪断歪み付与後の素材断面中にも初
晶αの不均一な部位が発生し、半溶融成形品素材として
は適さないものとなるため、相当歪み(ε)は0.1
5以上とし、特に0.45以上で1以下の範囲が好まし
い。
When the average size of the crystal grains of the aluminum alloy ingot or the magnesium alloy ingot before the high shear strain increases, the equivalent strain (ε N ) of less than 0.15,
Even after heating to a semi-melting temperature range after applying high shear strain, the primary crystal α becomes coarse, and non-uniform parts of primary crystal α also occur in the cross section of the material after applying high shear strain, resulting in a semi-melted molded product material. Therefore, the equivalent strain (ε N ) is 0.1
It is preferably 5 or more, and particularly preferably 0.45 or more and 1 or less.

【0015】高剪断歪み付与前のアルミニウム合金鋳塊
又はマグネシウム合金鋳塊の結晶粒の平均サイズが50
0μm以下とすると、0.05以上0.15未満の相当
歪み(ε)の場合でも、高剪断歪み付与後に半溶融温
度域へ加熱しても初晶αのサイズは均一球状化となるた
め、鋳塊の結晶粒の平均サイズは500μm以下とし、
特に200μm以下が好ましい。
The average grain size of the aluminum alloy ingot or magnesium alloy ingot before the high shear strain is applied is 50.
If it is 0 μm or less, even if the equivalent strain (ε N ) is 0.05 or more and less than 0.15, the size of the primary crystal α will be uniform spheroidal even if heated to the semi-melting temperature range after the high shear strain is applied. , The average size of the crystal grains of the ingot is 500 μm or less,
It is particularly preferably 200 μm or less.

【0016】次に、1回目の剪断角度(Φ)の延長線上
に対し、5°以上180°未満傾いた剪断角度(X)を
更に付与すると、アルミニウム合金鋳塊又はマグネシウ
ム合金鋳塊の結晶粒の平均サイズに関わらず、0.05
以上0.15未満の相当歪み(ε)の場合でも、素材
断面中に均等に高剪断歪みが付与され、初晶αは均一で
微細球状化となる。しかし、剪断角度(X)が5°未満
の場合は素材断面に均一な高剪断歪みが付与されず、1
80°以上の場合では、素材への内部割れや破断が発生
するため、剪断角度(X)は5°以上180°未満とす
る。
Next, when a shear angle (X) inclined by 5 ° or more and less than 180 ° is further applied to the extension line of the first shear angle (Φ), the crystal grains of the aluminum alloy ingot or the magnesium alloy ingot are formed. 0.05, regardless of the average size of
Even in the case of the equivalent strain (ε N ) of less than 0.15, high shear strain is uniformly applied in the cross section of the material, and the primary crystal α becomes uniform and becomes fine spheroidized. However, if the shear angle (X) is less than 5 °, uniform high shear strain is not applied to the cross section of the material, and 1
When the angle is 80 ° or more, internal cracking or fracture occurs in the material, so the shear angle (X) is set to 5 ° or more and less than 180 °.

【0017】上述の高剪断歪みを付与する方法として、
側方押出しによる素材挿入口からの加圧法又は若しくは
出口からの引き抜き法、又は素材断面積の断面減少率が
30%未満の絞り工程を含んだ素材挿入口からの加圧法
若しくは出口からの引き抜き法としたが、30%未満の
絞り工程を含むと、低い相当歪み(ε)の場合でも素
材断面中へ均等に高剪断歪みが付与される。しかし断面
減少率が30%以上となると、高剪断歪み付与時に、加
圧法では非常に大きなプレス荷重が必要となり、高剪断
歪み付与後の素材の表面品質も粗悪なものとなる。また
引き抜き法では材料中に破断が起こることもある。その
ため断面減少率は30%未満が好ましい。なお、ここで
の断面減少率は、「1−(高剪断歪み付与後の断面積÷
鋳塊断面積)×100」で定義した。また、その成形速
度が10,000mm/秒を越えると、高剪断歪みの付
与が不均一となる場合や、素材への内部割れや破断が発
生するため、成形速度は10,000mm/秒以下とし
た。
As a method for imparting the above-mentioned high shear strain,
Pressurization method from the material insertion port by side extrusion or drawing method from the outlet, or pressurization method from the material insertion port or drawing method from the material outlet including the drawing process with the cross-sectional area reduction rate of less than 30% However, when the drawing step of less than 30% is included, even when the equivalent strain is low (ε N ), high shear strain is uniformly applied to the cross section of the material. However, when the cross-section reduction rate is 30% or more, when applying high shear strain, a very large press load is required in the pressing method, and the surface quality of the material after high shear strain is also poor. Further, in the drawing method, fracture may occur in the material. Therefore, the cross-section reduction rate is preferably less than 30%. In addition, the cross-section reduction rate here is "1- (cross-sectional area after high shear strain application ÷
Cross-sectional area of ingot) × 100 ”. If the molding rate exceeds 10,000 mm / sec, high shear strain may not be applied uniformly, or internal cracking or fracture may occur in the material. Therefore, the molding rate should be 10,000 mm / sec or less. did.

【0018】アルミニウム合金鋳塊又はマグネシウム合
金鋳塊に、高剪断歪みを付与するに際して高剪断歪み付
与荷重よりも小さい荷重を材料の進行方向に対して反対
方向より付与する方法の場合、高剪断歪み付与の開放部
がなくなる。そのため、材料の断面中で均一に高剪断歪
みが付与される。更に圧縮工程の作用も加わることとな
り、相当歪み(ε)が0.05以上0.15未満の低
領域でも、初晶αは均一球状微細化する。その他、高剪
断歪み付与後の素材も望ましい形状を得ることができ
る。高剪断歪み付与後に冷間、熱間加工を施しても、半
溶融温度域への加熱後の初晶αの球状化が損なわれるこ
とはない。
When applying a high shear strain to an aluminum alloy ingot or a magnesium alloy ingot, a load smaller than the high shear strain applying load is applied from the opposite direction to the traveling direction of the material, the high shear strain is applied. There is no open part for application. Therefore, high shear strain is uniformly applied in the cross section of the material. Further, the action of the compression step is also added, and even in a low region where the equivalent strain (ε N ) is 0.05 or more and less than 0.15, the primary crystal α is made uniform and spherical. In addition, the material after being subjected to high shear strain can also obtain a desired shape. Even if cold or hot working is performed after the high shear strain is applied, the spheroidization of the primary crystal α after heating to the semi-melting temperature range is not impaired.

【0019】[0019]

【実施例】以下本発明の実施例を図面を参酌しながら詳
述するが、本発明は下記実施例に限定されるものではな
いことはもとよりである。
EXAMPLES Examples of the present invention will be described below in detail with reference to the drawings, but it goes without saying that the present invention is not limited to the following examples.

【0020】図1は本発明で用いた高剪断歪み付与の模
式図であり、図中符号1は金型、2は金型ポンチ、3は
アルミニウム合金鋳塊又はマグネシウム合金鋳塊を示
す。図2は比較例として使用した冷間型枠鍛造の模式図
であり、図中符号1は金型、2は金型ポンチ、3はアル
ミニウム合金鋳塊又はマグネシウム合金鋳塊を示す。
FIG. 1 is a schematic view of applying high shear strain used in the present invention. In the figure, reference numeral 1 is a die, 2 is a die punch, and 3 is an aluminum alloy ingot or a magnesium alloy ingot. FIG. 2 is a schematic view of cold formwork forging used as a comparative example. In the figure, reference numeral 1 is a mold, 2 is a mold punch, and 3 is an aluminum alloy ingot or a magnesium alloy ingot.

【0021】各元素をそれぞれ表1に示される組成とな
るように溶湯を調整し、連続鋳造にてアルミニウム合金
鋳塊を製造した。
The molten alloy was adjusted so that each element had the composition shown in Table 1, and an aluminum alloy ingot was manufactured by continuous casting.

【0022】[0022]

【表1】 [Table 1]

【0023】各元素をそれぞれ表2に示される組成とな
るように溶湯を調整し、マグネシウム合金鋳塊を製造し
た。
A molten alloy was prepared so that each element had the composition shown in Table 2, and a magnesium alloy ingot was manufactured.

【0024】[0024]

【表2】 [Table 2]

【0025】上記表1と表2に示すアルミニウム合金鋳
塊とマグネシウム合金鋳塊を、図1と図2に示す金型を
使用し表3に示す条件でアルミニウム合金材及びマグネ
シウム合金材を製造し、高剪断歪み付与後の表面状態、
半溶融成形品の成形性、半溶融成形後の初晶αの形状を
評価し、同時にアルミニウム合金材を成形するためのプ
レス圧を測定した結果も表3に併記した。
Aluminum alloy ingots and magnesium alloy ingots shown in Tables 1 and 2 above were manufactured using the molds shown in FIGS. 1 and 2 under the conditions shown in Table 3 to produce aluminum alloy materials and magnesium alloy materials. , Surface condition after high shear strain,
Table 3 also shows the results obtained by evaluating the moldability of the semi-molten molded product and the shape of the primary crystal α after the semi-melt molding, and at the same time measuring the press pressure for molding the aluminum alloy material.

【0026】[0026]

【表3】 [Table 3]

【0027】表3に示した試験内容の比は比較例で本発
明の特許請求の範囲から外れる条件を示し、発は発明例
で本発明の特許請求の範囲内の条件を示す。高剪断歪み
付与後の表面状態は、表3で示す成形条件で成形した際
に表面凹凸が良好なものを○とし、表面凹凸が大きくム
シレ発生が認められたものを×で判定した。半溶融成形
品の成形性は、成形品の内部に空隙などの欠陥や成分偏
析がないものを○とし、欠陥や成分偏析があるものを×
とした。半溶融成形後の初晶αの形状は、球状化が認め
られているものを○とし、球状化が不十分であるものを
×と判定した。初晶αの微細均一は、初晶αのサイズが
100μm以下のものを○とし、100μmを越えるも
のを×と判定した。プレス荷重は、成形時のプレス荷重
が5t/cm未満のものを○とし、5t/cm以上
のものを×とした。
The ratios of the test contents shown in Table 3 show conditions outside the scope of the claims of the present invention in the comparative examples, and the emission shows the conditions within the scope of the claims of the present invention in the examples of the invention. The surface condition after applying high shear strain was evaluated as ◯ when the surface unevenness was good when molded under the molding conditions shown in Table 3, and was evaluated as x when the surface unevenness was large and rusting was observed. The moldability of a semi-molten molded product is ○ if there are no defects such as voids or component segregation inside the molded product, and x is if there are defects or component segregation.
And Regarding the shape of the primary crystal α after the semi-melt molding, those in which spheroidization was recognized were evaluated as ◯, and those in which spheroidization was insufficient were evaluated as x. The fine homogeneity of the primary crystal α was evaluated as ◯ when the size of the primary crystal α was 100 μm or less, and as × when the size of the primary crystal α was more than 100 μm. Regarding the press load, the one having a press load of less than 5 t / cm 2 at the time of molding was ◯, and the one having a press load of 5 t / cm 2 or more was x.

【0028】図3はアルミニウム合金の場合の初晶α
(Al)の均一微細化が○評価の代表例の光学顕微鏡組
織写真を示し、図4は球状化が×評価の代表例の光学顕
微鏡写真を示している。
FIG. 3 shows the primary crystal α in the case of an aluminum alloy.
The uniform micronization of (Al) shows an optical micrograph of a typical example evaluated as ◯, and FIG. 4 shows an optical micrograph of a typical example evaluated as spheroidized as ×.

【0029】[0029]

【発明の効果】以上説明して来た如く、本発明によれ
ば、従来の半溶融成形用の素材製造法よりも低コズトや
工程の簡素化が大幅に図れ、素材の品質安定性均一性も
格段に向上する。また、素材成形時のプレス圧も格段に
減少することが可能であるから、金型寿命の向上や省エ
ネ化にも寄与する。更に、得られる組織は合金組成に関
わらず、均一球状化した初晶αとなり、半溶融成形用の
優れた素材として使用が可能であるという効果を奏す
る。
As described above, according to the present invention, it is possible to significantly reduce the cost and simplify the process as compared with the conventional method for manufacturing the material for semi-melt molding, and to improve the quality stability of the material. Also significantly improves. Further, since the pressing pressure at the time of forming the material can be remarkably reduced, it contributes to the improvement of the life of the die and the energy saving. Further, the obtained structure becomes a uniform spheroidized primary crystal α regardless of the alloy composition, and there is an effect that it can be used as an excellent material for semi-melt forming.

【図面の簡単な説明】[Brief description of drawings]

【図1】高剪断歪み付与の模式図である。FIG. 1 is a schematic view of applying high shear strain.

【図2】冷間型枠鍛造の模式図である。FIG. 2 is a schematic view of cold mold forging.

【図3】アルミニウム合金の初晶α(Al)の微細均一
化が○評価の代表例の光学顕微鏡写真である。
FIG. 3 is an optical micrograph of a typical example in which primary homogenization α (Al) of an aluminum alloy is evaluated as ○.

【図4】アルミニウム合金の初晶α(Al)の微細均一
化が×評価の代表例の光学顕微鏡写真である。
FIG. 4 is an optical micrograph of a typical example in which the homogenization of primary crystals α (Al) of an aluminum alloy is evaluated ×.

【符号の説明】[Explanation of symbols]

1 金型 2 金型ポンチ 3 アルミニウム合金鋳塊又はマグネシウム合金鋳塊 1 mold 2 mold punch 3 Aluminum alloy ingot or magnesium alloy ingot

【手続補正書】[Procedure amendment]

【提出日】平成14年4月17日(2002.4.1
7)
[Submission date] April 17, 2002 (2002.4.1)
7)

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0026[Correction target item name] 0026

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0026】[0026]

【表3】 [Table 3]

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0029[Name of item to be corrected] 0029

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0029】[0029]

【発明の効果】以上説明して来た如く、本発明によれ
ば、従来の半溶融成形用の素材製造法よりも低コストや
工程の簡素化が大幅に図れ、素材の品質安定性均一性も
格段に向上する。また、素材成形時のプレス圧も格段に
減少することが可能であるから、金型寿命の向上や省エ
ネ化にも寄与する。更に、得られる組織は合金組成に関
わらず、均一球状化した初晶αとなり、半溶融成形用の
優れた素材として使用が可能であるという効果を奏す
る。
As described above, according to the present invention, it is possible to significantly reduce the cost and simplify the process as compared with the conventional method for manufacturing a material for semi-melt molding, and to improve the quality stability of the material. Also significantly improves. Further, since the pressing pressure at the time of forming the material can be remarkably reduced, it contributes to the improvement of the life of the die and the energy saving. Further, the obtained structure becomes a uniform spheroidized primary crystal α regardless of the alloy composition, and there is an effect that it can be used as an excellent material for semi-melt forming.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22F 1/04 C22F 1/04 A 1/06 1/06 // C22C 21/02 C22C 21/02 21/10 21/10 23/02 23/02 C22F 1/00 611 C22F 1/00 611 624 624 681 681 682 682 683 683 685 685 686 686A 691 691B 691C 694 694A 694B (72)発明者 岩下 綱樹 福岡県大牟田市四山町80番地 九州三井ア ルミニウム工業株式会社内 (72)発明者 堀田 善治 福岡県福岡市東区箱崎6−10−1 九州大 学工学研究院 材料工学部門内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 7 Identification code FI theme code (reference) C22F 1/04 C22F 1/04 A 1/06 1/06 // C22C 21/02 C22C 21/02 21 / 10 21/10 23/02 23/02 C22F 1/00 611 C22F 1/00 611 624 624 681 681 681 682 682 683 683 683 685 685 686 686A 691 691B 691C 694 694A 694B Yoyama Town 80 Kyushu Mitsui Aluminum Industry Co., Ltd. (72) Inventor Zenji Hotta 6-10-1 Hakozaki, Higashi-ku, Fukuoka-shi, Fukuoka Kyushu University Faculty of Engineering, Materials Engineering Department

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 高剪断歪みとして、0.15以上の相当
歪み(ε)を実体温度が0℃以上で溶融温度以下のア
ルミニウム合金鋳塊又はマグネシウム合金鋳塊に付与
し、その後アルミニウム合金材又はマグネシウム合金材
を共晶温度又は固相線温度以上に昇温し、保持時間、保
持温度の選択により、初晶αが均一微細な球状化となる
如くなすことを特徴とする半溶融成形に優れたアルミニ
ウム合金材又はマグネシウム合金材の製造方法。
1. As a high shear strain, an equivalent strain (ε N ) of 0.15 or more is applied to an aluminum alloy ingot or a magnesium alloy ingot having a body temperature of 0 ° C. or more and a melting temperature or less, and then an aluminum alloy material. Alternatively, in a semi-melt forming process, the magnesium alloy material is heated to a temperature higher than the eutectic temperature or the solidus temperature, and the holding time and holding temperature are selected so that the primary crystal α becomes a uniform fine sphere. A method for producing an excellent aluminum alloy material or magnesium alloy material.
【請求項2】 高剪断歪みとして、0.05以上の相当
歪み(ε)を実体温度が0℃以上で溶融温度以下の結
晶粒平均サイズが500μm以下であるアルミニウム合
金鋳塊又はマグネシウム合金鋳塊に付与し、その後アル
ミニウム合金材又はマグネシウム合金材を共晶温度又は
固相線温度以上に昇温し、保持時間、保持温度の選択に
より、初晶αが均一微細な球状化となる如くなすことを
特徴とする半溶融成形に優れたアルミニウム合金材又は
マグネシウム合金材の製造方法。
2. An aluminum alloy ingot or magnesium alloy casting having a high shear strain of an equivalent strain of 0.05 or more (ε N ) and an average grain size of 500 μm or less at a body temperature of 0 ° C. or more and a melting temperature or less. It is applied to the lump, and then the aluminum alloy material or the magnesium alloy material is heated to a temperature higher than the eutectic temperature or the solidus temperature, and the holding time and holding temperature are selected so that the primary crystal α becomes a uniform fine sphere. A method for producing an aluminum alloy material or a magnesium alloy material, which is excellent in semi-melt forming.
【請求項3】 高剪断歪みとして、0.05以上の相当
歪み(ε)を実体温度が0℃以上で溶融温度以下のア
ルミニウム合金鋳塊又はマグネシウム合金鋳塊に付与
し、しかも該高剪断歪みは、1回目の剪断角度(Φ)の
延長線上に対し、5°以上180°未満傾いた剪断角度
(X)で更に付与するものとし、その後アルミニウム合
金材又はマグネシウム合金材を共晶温度又は固相線温度
以上に昇温し、保持時間、保持温度の選択により、初晶
αが均一微細な球状化となる如くなすことを特徴とする
半溶融成形に優れたアルミニウム合金材又はマグネシウ
ム合金材の製造方法。
3. As a high shear strain, an equivalent strain (ε N ) of 0.05 or more is applied to an aluminum alloy ingot or a magnesium alloy ingot having a body temperature of 0 ° C. or more and a melting temperature or less, and the high shear strain is also applied. The strain is further applied at a shearing angle (X) inclined by 5 ° or more and less than 180 ° with respect to the extension line of the first shearing angle (Φ), and then the aluminum alloy material or the magnesium alloy material is subjected to the eutectic temperature or Aluminum alloy material or magnesium alloy material excellent in semi-melt forming characterized by raising the temperature above the solidus temperature and selecting the holding time and holding temperature so that the primary crystal α becomes a uniform fine spheroidizing. Manufacturing method.
【請求項4】 高剪断歪みの付与は、側方押出しによる
素材挿入口からの加圧法若しくは出口からの引き抜き
法、又は素材断面積の断面減少率が30%未満の絞り工
程を含んだ素材挿入口からの加圧法若しくは出口からの
引き抜き法とし、しかもその成形速度は10,000m
m/秒以下の範囲としたことを特徴とする請求項1、2
又は3に記載の半溶融成形に優れたアルミニウム合金材
又はマグネシウム合金材の製造法法。
4. The application of high shear strain includes a pressurization method from a material insertion port by lateral extrusion or a drawing method from an outlet, or a material insertion process including a drawing step in which the cross-sectional area reduction rate of the material is less than 30%. Pressurization method from the mouth or drawing method from the outlet, and the molding speed is 10,000 m
3. A range of m / sec or less, wherein the range is 1 or 2.
Or the method for producing an aluminum alloy material or a magnesium alloy material, which is excellent in semi-melt forming according to 3).
【請求項5】 高剪断歪みとして、0.05以上の相当
歪み(ε)を実体温度が0℃以上で溶融温度以下のア
ルミニウム合金鋳塊又はマグネシウム合金鋳塊に付与
し、高剪断歪みを付与するに際して高剪断歪み付与荷重
よりも小さい荷重を材料の進行方向に対して反対方向よ
り付与する。その後アルミニウム合金材又はマグネシウ
ム合金材を共晶温度又は固相線温度以上に昇温し、保持
時間、保持温度の選択により、初晶αが均一微細な球状
化となる如くなすことを特徴とする半溶融成形に優れた
アルミニウム合金材又はマグネシウム合金材の製造方
法。
5. As a high shear strain, an equivalent strain (ε N ) of 0.05 or more is applied to an aluminum alloy ingot or a magnesium alloy ingot having a body temperature of 0 ° C. or more and a melting temperature or less to give a high shear strain. When applying, a load smaller than the high shear strain applying load is applied in the direction opposite to the traveling direction of the material. After that, the aluminum alloy material or the magnesium alloy material is heated to a temperature higher than the eutectic temperature or the solidus temperature, and the holding time and the holding temperature are selected so that the primary crystal α becomes a uniform fine sphere. A method for producing an aluminum alloy material or a magnesium alloy material excellent in semi-melt forming.
【請求項6】 高剪断歪み付与後に、更に再結晶温度未
満の冷間加工、又は再結晶温度以上の熱間加工を行うこ
とを特徴とする請求項1、2、3、又は5に記載の半溶
融成形に優れたアルミニウム合金材又はマグネシウム合
金材の製造方法。
6. The method according to claim 1, further comprising cold working below the recrystallization temperature or hot working above the recrystallization temperature after applying the high shear strain. A method for producing an aluminum alloy material or a magnesium alloy material excellent in semi-melt forming.
JP2002113590A 2002-04-16 2002-04-16 Semi-melt molding material manufacturing method Expired - Fee Related JP3829164B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002113590A JP3829164B2 (en) 2002-04-16 2002-04-16 Semi-melt molding material manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002113590A JP3829164B2 (en) 2002-04-16 2002-04-16 Semi-melt molding material manufacturing method

Publications (2)

Publication Number Publication Date
JP2003311373A true JP2003311373A (en) 2003-11-05
JP3829164B2 JP3829164B2 (en) 2006-10-04

Family

ID=29533478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002113590A Expired - Fee Related JP3829164B2 (en) 2002-04-16 2002-04-16 Semi-melt molding material manufacturing method

Country Status (1)

Country Link
JP (1) JP3829164B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100424218C (en) * 2007-07-11 2008-10-08 华中科技大学 Magnesium alloy casting semi solid-state heat treatment method
CN103128255A (en) * 2011-11-22 2013-06-05 中国兵器工业第五九研究所 Die and method used for preparing magnesium alloy semisolid blank
CN103343308A (en) * 2013-07-22 2013-10-09 哈尔滨工业大学 Device and method for preparing magnesium alloy semi-solid blank through repetitive upsetting-extrusion deformation and isothermal annealing
JP2016102246A (en) * 2014-11-28 2016-06-02 アイシン軽金属株式会社 Aluminum alloy for die casting excellent in ductility and cast product using the same
CN107164712A (en) * 2017-03-27 2017-09-15 南昌大学 A kind of Semi-solid isothermal treatment method of the base block amorphous composites of Ti
CN109735736A (en) * 2018-12-14 2019-05-10 珠海市润星泰电器有限公司 A kind of preparation method of low density metals based composites
CN113355617A (en) * 2021-06-03 2021-09-07 兰州理工大学 Preparation method of magnesium alloy with bimodal structure
CN114210835A (en) * 2021-12-13 2022-03-22 中北大学 Magnesium alloy combined type shearing extrusion deformation method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100424218C (en) * 2007-07-11 2008-10-08 华中科技大学 Magnesium alloy casting semi solid-state heat treatment method
CN103128255A (en) * 2011-11-22 2013-06-05 中国兵器工业第五九研究所 Die and method used for preparing magnesium alloy semisolid blank
CN103343308A (en) * 2013-07-22 2013-10-09 哈尔滨工业大学 Device and method for preparing magnesium alloy semi-solid blank through repetitive upsetting-extrusion deformation and isothermal annealing
JP2016102246A (en) * 2014-11-28 2016-06-02 アイシン軽金属株式会社 Aluminum alloy for die casting excellent in ductility and cast product using the same
CN107164712A (en) * 2017-03-27 2017-09-15 南昌大学 A kind of Semi-solid isothermal treatment method of the base block amorphous composites of Ti
CN109735736A (en) * 2018-12-14 2019-05-10 珠海市润星泰电器有限公司 A kind of preparation method of low density metals based composites
CN109735736B (en) * 2018-12-14 2019-11-29 珠海市润星泰电器有限公司 A kind of preparation method of low density metals based composites
CN113355617A (en) * 2021-06-03 2021-09-07 兰州理工大学 Preparation method of magnesium alloy with bimodal structure
CN114210835A (en) * 2021-12-13 2022-03-22 中北大学 Magnesium alloy combined type shearing extrusion deformation method
CN114210835B (en) * 2021-12-13 2023-09-22 中北大学 Combined shearing extrusion deformation method for magnesium alloy

Also Published As

Publication number Publication date
JP3829164B2 (en) 2006-10-04

Similar Documents

Publication Publication Date Title
RU2463371C2 (en) Magnesium-containing high-silica aluminium alloys used as structural materials and method of their manufacturing
Meng et al. Recent progress and development in extrusion of rare earth free Mg alloys: a review
JPH06500602A (en) Improved lithium aluminum alloy system
JPS58213840A (en) Metal composition suitable for producing semi-solid semi-liquid state and manufacture
CN87103970A (en) The goods of nickel-base heat resisting superalloy and manufacture method
CN101538667B (en) High-strength and wear-resistant cocrystallized Al-Si alloy forging stock material and preparation method thereof
CN109972009B (en) High-toughness high-modulus wrought magnesium alloy and preparation method thereof
CN104745897A (en) High-silicon wrought aluminum alloy material and production method thereof
CN109295362A (en) A kind of ultra-high-strength/tenacity Al-Zn-Mg-Cu aluminium alloy and its processing technology
JP3548709B2 (en) Method for producing semi-solid billet of Al alloy for transportation equipment
JP2003311373A (en) Method for producing base material for semi-melting formation
JPH093610A (en) Thin aluminum diecast product excellent in dimensional accuracy and ductility and its production
KR101400140B1 (en) Preparing method for magnesium alloy extrudate and the magnesium alloy extrudate thereby
CN112030047A (en) Preparation method of high-hardness fine-grain rare earth aluminum alloy material
JP3852915B2 (en) Method for producing semi-melt molded billet of aluminum alloy for transportation equipment
JP3840400B2 (en) Method for producing semi-melt molded billet of aluminum alloy for transportation equipment
JP3676723B2 (en) Method for producing semi-melt molded billet of aluminum alloy for transportation equipment
JPS61259828A (en) Production of high-strength aluminum alloy extrudate
JP3798676B2 (en) Method for producing semi-melt molded billet of aluminum alloy for transportation equipment
US20020170697A1 (en) Method of manufacturing lightweight high-strength member
JP4121266B2 (en) Method for producing semi-molten billet of aluminum alloy for transportation equipment
CN107723491A (en) A kind of alterant and metamorphism treatment method that special cast aluminium alloy gold is equipped for IC
RU2697683C1 (en) Method for production of ingots from aluminum-matrix composite alloy
WO2021003528A1 (en) Aluminium alloys
JP3621889B2 (en) Method for producing Al-Si alloy material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050916

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051115

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060314

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060414

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060608

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060612

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090721

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100721

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120721

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees