CN112030047A - Preparation method of high-hardness fine-grain rare earth aluminum alloy material - Google Patents
Preparation method of high-hardness fine-grain rare earth aluminum alloy material Download PDFInfo
- Publication number
- CN112030047A CN112030047A CN202010870938.4A CN202010870938A CN112030047A CN 112030047 A CN112030047 A CN 112030047A CN 202010870938 A CN202010870938 A CN 202010870938A CN 112030047 A CN112030047 A CN 112030047A
- Authority
- CN
- China
- Prior art keywords
- aluminum alloy
- temperature
- rare earth
- aluminum
- metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000956 alloy Substances 0.000 title claims abstract description 42
- 229910000838 Al alloy Inorganic materials 0.000 title claims abstract description 33
- 229910052761 rare earth metal Inorganic materials 0.000 title claims abstract description 19
- 150000002910 rare earth metals Chemical class 0.000 title claims abstract description 16
- 238000002360 preparation method Methods 0.000 title claims abstract description 7
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 30
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 23
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 16
- 229910052706 scandium Inorganic materials 0.000 claims abstract description 15
- 238000007670 refining Methods 0.000 claims abstract description 13
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 12
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 11
- 238000010438 heat treatment Methods 0.000 claims abstract description 9
- 238000000265 homogenisation Methods 0.000 claims abstract description 9
- 239000004615 ingredient Substances 0.000 claims abstract description 9
- 239000002994 raw material Substances 0.000 claims abstract description 5
- VHHHONWQHHHLTI-UHFFFAOYSA-N hexachloroethane Chemical compound ClC(Cl)(Cl)C(Cl)(Cl)Cl VHHHONWQHHHLTI-UHFFFAOYSA-N 0.000 claims abstract description 4
- 238000000465 moulding Methods 0.000 claims abstract description 4
- 238000002844 melting Methods 0.000 claims abstract description 3
- 230000008018 melting Effects 0.000 claims abstract description 3
- 229910052751 metal Inorganic materials 0.000 claims description 23
- 239000002184 metal Substances 0.000 claims description 23
- 238000000034 method Methods 0.000 claims description 15
- 238000005266 casting Methods 0.000 claims description 13
- 239000011888 foil Substances 0.000 claims description 8
- 239000000463 material Substances 0.000 claims description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 6
- 229910002804 graphite Inorganic materials 0.000 claims description 6
- 239000010439 graphite Substances 0.000 claims description 6
- 239000000155 melt Substances 0.000 claims description 6
- 238000003756 stirring Methods 0.000 claims description 6
- 238000003723 Smelting Methods 0.000 claims description 5
- 238000001816 cooling Methods 0.000 claims description 5
- 238000003825 pressing Methods 0.000 claims description 4
- 238000005520 cutting process Methods 0.000 claims description 3
- 230000007547 defect Effects 0.000 claims description 3
- 239000004576 sand Substances 0.000 claims description 3
- 229910018580 Al—Zr Inorganic materials 0.000 claims description 2
- 238000000137 annealing Methods 0.000 claims 1
- 230000036760 body temperature Effects 0.000 claims 1
- 238000001125 extrusion Methods 0.000 claims 1
- 238000002156 mixing Methods 0.000 claims 1
- 239000011777 magnesium Substances 0.000 abstract description 15
- 239000011701 zinc Substances 0.000 abstract description 12
- 229910052749 magnesium Inorganic materials 0.000 abstract description 8
- 229910052725 zinc Inorganic materials 0.000 abstract description 8
- 239000010949 copper Substances 0.000 abstract description 6
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 abstract description 4
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 abstract description 4
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 abstract description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 abstract description 3
- 229910052802 copper Inorganic materials 0.000 abstract description 3
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 abstract description 2
- ZGUQGPFMMTZGBQ-UHFFFAOYSA-N [Al].[Al].[Zr] Chemical compound [Al].[Al].[Zr] ZGUQGPFMMTZGBQ-UHFFFAOYSA-N 0.000 abstract 1
- LUKDNTKUBVKBMZ-UHFFFAOYSA-N aluminum scandium Chemical compound [Al].[Sc] LUKDNTKUBVKBMZ-UHFFFAOYSA-N 0.000 abstract 1
- 239000002245 particle Substances 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 239000012535 impurity Substances 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 238000009716 squeeze casting Methods 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 229910001093 Zr alloy Inorganic materials 0.000 description 3
- 238000005275 alloying Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000005728 strengthening Methods 0.000 description 3
- 229910018571 Al—Zn—Mg Inorganic materials 0.000 description 2
- 229910018569 Al—Zn—Mg—Cu Inorganic materials 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000009931 harmful effect Effects 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000006911 nucleation Effects 0.000 description 2
- 238000010899 nucleation Methods 0.000 description 2
- 238000010587 phase diagram Methods 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000007528 sand casting Methods 0.000 description 2
- 239000002893 slag Substances 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 229910017706 MgZn Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000005496 eutectics Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- -1 rare earth compounds Chemical class 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- VSZWPYCFIRKVQL-UHFFFAOYSA-N selanylidenegallium;selenium Chemical compound [Se].[Se]=[Ga].[Se]=[Ga] VSZWPYCFIRKVQL-UHFFFAOYSA-N 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/10—Alloys based on aluminium with zinc as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/02—Making non-ferrous alloys by melting
- C22C1/026—Alloys based on aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/02—Making non-ferrous alloys by melting
- C22C1/03—Making non-ferrous alloys by melting using master alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/06—Making non-ferrous alloys with the use of special agents for refining or deoxidising
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/04—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
- C22F1/053—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with zinc as the next major constituent
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacture And Refinement Of Metals (AREA)
Abstract
本发明公开了一种高硬度细晶稀土铝合金材料的制备方法,其特征在于包括如下质量百分比的原料:锌5.7~6.7wt%、镁1.9~2.6wt%、铜2.0~2.6wt%,钪0.18~0.2wt%,锆0.1~0.12wt%,铝含量为平衡余量;先将各种配料、覆盖剂、模具预热,然后设定熔炼炉目标温度后开始加热,将预热好的纯铝配料放入炉膛中,依次加入纯铜、铝锆中间合金、铝钪中间合金、纯镁、纯锌配料以及六氯乙烷精炼剂,所有材料均用铝箔纸包裹,经搅拌、掏渣、浇铸成型。本发明通过460℃~465℃,保温24小时和480℃~485℃,保温24小时的双级均匀化处理后,其维氏硬度HV≥180,其抗拉强度σb≥200MPa,平均晶粒尺寸为35~40μm。
The invention discloses a preparation method of a high-hardness, fine-grained rare earth aluminum alloy material, which is characterized by comprising the following raw materials by mass percentage: 5.7-6.7 wt% of zinc, 1.9-2.6 wt% of magnesium, 2.0-2.6 wt% of copper, and 2.6 wt% of scandium. 0.18-0.2wt%, zirconium 0.1-0.12wt%, aluminum content is the balance balance; first preheat various ingredients, covering agents and molds, then set the target temperature of the melting furnace and start heating, and put the preheated pure The aluminum ingredients are put into the furnace, and pure copper, aluminum-zirconium master alloy, aluminum-scandium master alloy, pure magnesium, pure zinc ingredients and hexachloroethane refining agent are added in sequence. Cast molding. In the present invention, the Vickers hardness HV≥180, the tensile strength σb ≥200MPa , and the average grain size after two-stage homogenization treatment at 460°C~465°C for 24 hours and 480°C~485°C for 24 hours The size is 35 to 40 μm.
Description
技术领域technical field
本发明涉及铝合金制备技术,具体说是一种低成本、高硬度细晶的稀土铝合金以及通过合金化和热处理的材料制备方法。本发明不仅适用于金属型和砂型铸造,同样适用于压力铸造、挤压铸造等工艺。The invention relates to an aluminum alloy preparation technology, in particular to a low-cost, high-hardness, fine-grained rare-earth aluminum alloy and a material preparation method through alloying and heat treatment. The invention is not only suitable for metal mold and sand mold casting, but also suitable for pressure casting, squeeze casting and other processes.
背景技术Background technique
超高强度铝合金结构材料,具有比强度,比刚度高,焊接加工性能好等优良特性,常被用于机械制造、航天航空、化工等领域。近年来,人们发现在Al-Zn-Mg-Cu合金中加入微量稀土元素及少量钪可使合金中锌含量在采用传统熔铸技术的条件下突破7%的上限,提高到12%,从而大幅度提高合金的强度,Sc在其中的优化作用与Al3Sc粒子紧密相关。在合金凝固过程中会形成初生Al3Sc粒子与α(Al)基体相具有相类似的晶体结构(αAl=0.4050nm,αAl3Sc=0.4106nm)和一致的晶体取向,初生Al3Sc粒子在晶粒内和晶界处能够有效地抑制有害扩散并在α-Al基体中为异质形核提供核心,起到细化晶粒的作用。但是,铸态下的组织通常包含α(Al)和网状非平衡共晶相,还有少量杂质相(Al7CuFe),这类组织比较脆,导致在加工变形时析出与基体界面容易产生裂纹而使合金开裂,这不仅对材料的塑性加工不利,还影响材料的使用性能,如断裂韧性、疲劳性能等。Ultra-high-strength aluminum alloy structural materials have excellent characteristics such as high specific strength, high specific stiffness, and good welding performance, and are often used in machinery manufacturing, aerospace, chemical industry and other fields. In recent years, it has been found that adding trace rare earth elements and a small amount of scandium to the Al-Zn-Mg-Cu alloy can make the zinc content in the alloy break through the upper limit of 7% and increase to 12% under the condition of traditional casting technology, thereby greatly increasing the To improve the strength of the alloy, the optimal effect of Sc in it is closely related to Al 3 Sc particles. During the solidification of the alloy, primary Al 3 Sc particles will be formed and the α(Al) matrix phase has a similar crystal structure (αAl=0.4050nm, αAl 3 Sc=0.4106nm) and consistent crystal orientation, and the primary Al 3 Sc particles are in the The intra-grain and grain boundaries can effectively inhibit harmful diffusion and provide a core for heterogeneous nucleation in the α-Al matrix, which plays the role of grain refinement. However, the as-cast structure usually contains α(Al) and network non-equilibrium eutectic phase, and a small amount of impurity phase (Al 7 CuFe), which is relatively brittle, which leads to the formation of precipitation at the interface between the matrix and the matrix during processing deformation. The alloy is cracked due to cracks, which is not only detrimental to the plastic processing of the material, but also affects the performance of the material, such as fracture toughness and fatigue properties.
通过双级均匀化的热处理方法可以使得合金组织发生演变,使内部化合物种类、数量、尺寸得到改善,从而影响合金的使用性能。The two-stage homogenization heat treatment method can make the alloy structure evolve and improve the type, quantity and size of internal compounds, thereby affecting the performance of the alloy.
因此,发明一种高硬度细晶稀土铝合金材料的制备方法来解决上述问题很有必要。Therefore, it is necessary to invent a preparation method of a high-hardness fine-grained rare-earth aluminum alloy material to solve the above problems.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于提供一种高硬度细晶稀土铝合金材料的制备方法,通过合理选择合金化元素以及采用合适的热处理方法,以解决上述背景技术中提出的问题。The purpose of the present invention is to provide a method for preparing a high-hardness fine-grained rare-earth aluminum alloy material, by reasonably selecting alloying elements and adopting a suitable heat treatment method to solve the problems raised in the above background technology.
为实现上述目的,本发明提供如下技术方案:通过加入稀土元素钪、锆并控制和锌、镁的含量比,得到一种高硬度细晶稀土铝合金材料,其特征在于如下质量百分比的原料:锌(Zn)5.7~6.7wt%、镁(Mg)1.9~2.6wt%、铜(Cu)2.0~2.6wt%,钪(Sc)0.18~0.2wt%,锆(Zr)0.1~0.12wt%,铝含量为平衡余量,其中Zn、Mg比参考Al-Zn-Mg合金相图(附图10),Sc、Zr比为1.5~2:1;其他不可避免的微量杂质铁(Fe)≤0.15%,硅(Si)≤0.12%、锰(Mn)≤0.10%、铬(Cr)≤0.04%。In order to achieve the above object, the present invention provides the following technical solutions: by adding rare earth elements scandium and zirconium and controlling the content ratio of zinc and magnesium, a high-hardness fine-grained rare-earth aluminum alloy material is obtained, which is characterized by the following raw materials by mass percentage: Zinc (Zn) 5.7-6.7wt%, magnesium (Mg) 1.9-2.6wt%, copper (Cu) 2.0-2.6wt%, scandium (Sc) 0.18-0.2wt%, zirconium (Zr) 0.1-0.12wt%, The aluminum content is the balance balance, in which the ratio of Zn and Mg refers to the phase diagram of the Al-Zn-Mg alloy (Fig. 10), the ratio of Sc and Zr is 1.5 to 2:1; other inevitable trace impurities iron (Fe) ≤ 0.15 %, silicon (Si) ≤ 0.12%, manganese (Mn) ≤ 0.10%, chromium (Cr) ≤ 0.04%.
本发明的强化机理为:本发明硬度高,合金元素Zn和Mg是主要强化元素,他们共同存在使会形成η(MgZn2)和T(Al2Mg3Zn3)强化相,提高合金的硬度,晶粒得到细化,稀土Sc和Zr元素在其中会形成Al3(Sc,Zr)相,在熔炼过程中起到细化晶粒的作用,同时会与杂质元素结合形成稀土化合物,净化了晶界,消除杂质元素的有害作用,且与合金中的合金元素相互作用形成了合金化合物,改变了合金中的相组成,均匀化处理后呈弥散分布的稀土相可以起到异质形核的作用,细化晶粒;疲劳性能好,合金凝固时稀土Sc与Al原子结合析出初生Al3Sc第二相粒子,Al3Sc粒子细化铸态α(Al)晶粒,在合金均匀化退火时析出次生的Al3Sc第二相粒子弥散分布,提高铝合金强韧性和抑制合金变形组织再结晶,同时也改善了合金的疲劳性能;The strengthening mechanism of the invention is as follows: the hardness of the invention is high, and the alloy elements Zn and Mg are the main strengthening elements, and their coexistence will form η (MgZn 2 ) and T (Al 2 Mg 3 Zn 3 ) strengthening phases and improve the hardness of the alloy. , the grains are refined, and the rare earth Sc and Zr elements will form Al 3 (Sc, Zr) phases in them, which play a role in refining grains during the smelting process, and at the same time combine with impurity elements to form rare earth compounds, purifying The grain boundary eliminates the harmful effects of impurity elements, and interacts with alloying elements in the alloy to form alloy compounds, which changes the phase composition in the alloy. After homogenization, the dispersed rare earth phase can play a role in heterogeneous nucleation. It has good fatigue performance. When the alloy is solidified, rare earth Sc and Al atoms combine to precipitate primary Al 3 Sc second phase particles, and Al 3 Sc particles refine the as-cast α(Al) grains. The secondary Al 3 Sc second phase particles are dispersed and distributed during the precipitation, which improves the strength and toughness of the aluminum alloy and inhibits the recrystallization of the alloy's deformation structure, and also improves the fatigue performance of the alloy;
优选的,包括以下步骤:Preferably, the following steps are included:
1)将工业用铝(99.7wt%纯度)装入熔炼炉炉膛,加热炉体至720℃~750℃,保温30min使物料加热至充分熔化1) Load industrial aluminum (99.7wt% purity) into the hearth of the smelting furnace, heat the furnace body to 720℃~750℃, and keep the temperature for 30min to heat the material to fully melt
2)将炉体升温加热至750℃~760℃,用干燥的铝箔紧密包裹金属Cu,从炉体边缘缓慢放入,开启电磁搅拌器进行搅拌10min;2) Heat the furnace body to 750℃~760℃, tightly wrap the metal Cu with dry aluminum foil, slowly put it in from the edge of the furnace body, and turn on the electromagnetic stirrer to stir for 10 minutes;
3)在步骤2的炉体温度下,加入用干燥的铝箔紧密包裹的Al-Zr(5wt%Zr,95wt%Al)中间合金、Al-Sc(2wt%Sc,98wt%Al)中间合金均匀混合并充分熔化,并在熔体表面均匀撒上一层占配料总重量0.3~2%的石墨覆盖剂,保温15min;3) At the temperature of the furnace body in
4)将步骤3得到的合金化铝合金熔体降温至670℃~690℃,加入用干燥的铝箔紧密包裹的金属Mg块,通过压勺将包裹的金属Mg块压入金属熔液中,待完全熔化后在熔液表面均匀撒上占配料总重量0.3~2%的石墨覆盖剂,保温10min;4) Cool the alloyed aluminum alloy melt obtained in
5)在步骤4的炉温下加入金属Zn块,保温5min后使用电磁搅拌器,在经过5min的搅拌后得到综合合金化铝合金熔体;5) Add metal Zn block at the furnace temperature of
6)在720℃~750℃保温10min后,加入占配料总量2%的六氯乙烷精炼剂进行精炼5min,精炼结束后进行扒渣,得到精炼后铝合金熔体;6) After keeping the temperature at 720℃~750℃ for 10min, add hexachloroethane refining agent accounting for 2% of the total ingredients for refining for 5min. After the refining, carry out slag removal to obtain the aluminum alloy melt after refining;
7)将步骤6所得的精炼后的铝合金熔体在700℃~720℃保温静置5min后,缓慢倒入模具型腔中,空冷后得到合金铸锭;7) After the refined aluminum alloy melt obtained in
8)将步骤7所得到的铝合金铸锭放入热处理炉中进行均匀化处理,保温温度460℃~465℃,保温时间24h;紧接着将热处理炉升温至480℃~485℃保温24h,置于空气中使之自然冷却,得到均匀化铸锭;8) Put the aluminum alloy ingot obtained in
9)将步骤8所得的均匀化铸锭进行表面切削处理,去除铸锭表面缺陷,得到表面光滑的铸锭,得到成品。9) Perform surface cutting treatment on the homogenized ingot obtained in
优选的,所述Zn原子与Mg原子质量比例为:2.2~3.5:1。Preferably, the mass ratio of Zn atoms to Mg atoms is 2.2-3.5:1.
优选的,所述Sc原子与Zr原子质量比例为:Sc:Zr原子比为1.5~2:1。Preferably, the mass ratio of the Sc atom to the Zr atom is as follows: the Sc:Zr atomic ratio is 1.5-2:1.
优选的,所述浇铸成型采用金属型或砂型铸造,或者采用压力铸造或挤压铸造工艺。Preferably, the casting molding adopts metal mold or sand casting, or adopts pressure casting or squeeze casting process.
本发明的技术效果和优点:Technical effects and advantages of the present invention:
1、本发明制备的铝合金,兼具晶粒细小和硬度高的特性,适用于轻质,高硬的用材;其维氏硬度HV≥180,其抗拉强度σb≥200MPa,平均晶粒尺寸为35~40μm。1. The aluminum alloy prepared by the present invention has the characteristics of fine grain size and high hardness, and is suitable for light-weight and high-hardness materials; its Vickers hardness HV ≥ 180, its tensile strength σ b ≥ 200 MPa, and the average grain size The size is 35 to 40 μm.
2、本发明性价比高。原材料充足易得,生产成本低廉。2. The present invention is cost-effective. The raw materials are abundant and readily available, and the production cost is low.
3、本发明冶炼工艺稳定。发明中采用的合金元素,不与铁质坩埚壁或覆盖剂发生明显副反应,生产工艺易于控制,易于生产。3. The smelting process of the present invention is stable. The alloy elements used in the invention do not have obvious side reactions with the iron crucible wall or the covering agent, and the production process is easy to control and easy to produce.
4、本发明适用工艺范围广。本发明不仅适用于金属型和砂型铸造,同样适用于压力铸造或挤压铸造,不存在热裂和热脆倾向,具有非常广阔的生产应用前景。4. The present invention has a wide range of applicable processes. The invention is not only suitable for metal mold and sand mold casting, but also suitable for pressure casting or squeeze casting.
附图说明Description of drawings
图1为本发明的晶界处存在的Al3(Sc,Zr)相。FIG. 1 shows the Al 3 (Sc, Zr) phase existing at the grain boundary of the present invention.
图2为本发明的Al-Zn-Mg-Cu-Sc-Zr合金铸态组织形貌。Figure 2 shows the as-cast microstructure of the Al-Zn-Mg-Cu-Sc-Zr alloy of the present invention.
图3为传统Al-Zn-Mg-Cu合金铸态组织形貌。Figure 3 shows the as-cast microstructure of the traditional Al-Zn-Mg-Cu alloy.
图4为本发明的Al-Zn-Mg-Cu-Sc-Zr合金铸态组织形貌。Figure 4 is the as-cast microstructure of the Al-Zn-Mg-Cu-Sc-Zr alloy of the present invention.
图5为本发明的Al-Zn-Mg-Cu-Sc-Zr合金均匀化后的组织形貌。Figure 5 shows the microstructure of the Al-Zn-Mg-Cu-Sc-Zr alloy of the present invention after homogenization.
图6为本发明的铸态与均匀化后的维氏硬度。FIG. 6 shows the Vickers hardness in the as-cast state and after homogenization of the present invention.
图7是本发明所用的平板状拉伸试样示意图,其厚度δ=2.2mm。Fig. 7 is a schematic diagram of the flat tensile test sample used in the present invention, the thickness of which is δ=2.2 mm.
图8是图7中平板状拉伸试样尺寸图。FIG. 8 is a dimension drawing of the flat tensile test specimen in FIG. 7 .
图9为本发明合金的力学性能。Figure 9 shows the mechanical properties of the alloy of the present invention.
图10为Al-Zn-Mg相图,其中本实验所要求的Zn、Mg比如图(等温截面)。Figure 10 is the Al-Zn-Mg phase diagram, in which the Zn and Mg ratios required in this experiment are shown (isothermal section).
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only a part of the embodiments of the present invention, rather than all the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.
本发明提供了如图所示的一种高硬度细晶稀土铝合金材料的制备方法,其特征在于包括如下质量百分比的原料:Zn5.7~6.7wt%、Mg1.9~2.6wt%、Cu2.0~2.6wt%,Sc0.18~0.2wt%,Zr0.1~0.12wt%,铝含量为平衡余量。The invention provides a preparation method of a high-hardness fine-grained rare earth aluminum alloy material as shown in the figure, which is characterized by comprising the following raw materials by mass percentage: Zn5.7-6.7wt%, Mg1.9-2.6wt%, Cu2 .0~2.6wt%, Sc0.18~0.2wt%, Zr0.1~0.12wt%, the aluminum content is the balance balance.
进一步的,在上述技术方案中,包括以下步骤:Further, in the above technical solution, the following steps are included:
1)将100Kg工业用铝(99.7wt%纯度)装入熔炼炉炉膛,加热炉体至720℃~750℃,保温30min使物料加热至充分熔化1) Put 100Kg of industrial aluminum (99.7wt% purity) into the hearth of the smelting furnace, heat the furnace body to 720℃~750℃, and keep the temperature for 30min to heat the material to fully melt.
2)将炉体升温加热至750℃~760℃,用干燥的铝箔紧密包裹2.0Kg~2.6Kg金属Cu片,从炉体边缘缓慢放入,开启电磁搅拌器进行搅拌10min;2) Heat the furnace body to 750℃~760℃, tightly wrap 2.0Kg~2.6Kg metal Cu sheets with dry aluminum foil, slowly put them in from the edge of the furnace body, and turn on the electromagnetic stirrer to stir for 10 minutes;
3)在步骤2的炉体温度下,加入用干燥的铝箔紧密包裹的1.6Kg~3.0KgAl-Zr(5wt%Zr,95wt%Al)中间合金、10.0Kg~15.0KgAl-Sc(2wt%Sc,98wt%Al)中间合金均匀混合并充分熔化,并在熔体表面均匀撒上一层石墨覆盖剂,保温15min;3) At the furnace temperature of
4)将步骤3得到的合金化铝合金熔体降温至670℃~690℃,加入用干燥的铝箔紧密包裹的1.9Kg~2.7Kg金属Mg块,通过压勺将包裹的金属Mg块压入金属熔液中,待完全熔化后在熔液表面均匀撒上石墨覆盖剂,保温10min;4) Cool the alloyed aluminum alloy melt obtained in
5)在步骤4的炉温下加入5.9Kg~6.9Kg金属Zn块,保温5min后使用电磁搅拌器,在经过5min的搅拌后得到综合合金化铝合金熔体;5) Add 5.9Kg~6.9Kg metal Zn block at the furnace temperature of
6)在720℃~750℃保温10min后,加入2.0Kg六氯乙烷精炼剂进行精炼5min,精炼结束后进行扒渣,得到精炼后铝合金熔体;6) After keeping the temperature at 720℃~750℃ for 10min, add 2.0Kg of hexachloroethane refining agent for refining for 5min, and carry out slag removal after refining to obtain the aluminum alloy melt after refining;
7)将步骤6所得的精炼后的铝合金熔体在700℃~720℃保温静置5min后,缓慢倒入模具型腔中,空冷后得到合金铸锭;7) After the refined aluminum alloy melt obtained in
8)将步骤7所得到的铝合金铸锭放入热处理炉中进行均匀化处理,保温温度460℃~465℃,保温时间24h;紧接着将热处理炉升温至480℃~485℃保温24h,置于空气中使之自然冷却,得到均匀化铸锭;8) Put the aluminum alloy ingot obtained in
9)将步骤8所得的均匀化铸锭进行表面切削处理,去除铸锭表面缺陷,得到表面光滑的铸锭,得到成品。9) Perform surface cutting treatment on the homogenized ingot obtained in
进一步的,在上述技术方案中,所述Zn原子与Mg原子质量比例为:2.2~3.5:1;Further, in the above technical solution, the mass ratio of the Zn atom to the Mg atom is: 2.2-3.5:1;
进一步的,在上述技术方案中,所述Sc原子与Zr原子质量比例为:Sc:Zr原子比为1.5~2:1。Further, in the above technical solution, the mass ratio of the Sc atom to the Zr atom is: the Sc:Zr atomic ratio is 1.5-2:1.
进一步的,在上述技术方案中,所述浇铸成型采用金属型或砂型铸造,或者采用压力铸造或挤压铸造工艺。Further, in the above technical solution, the casting molding adopts metal mold or sand casting, or adopts pressure casting or squeeze casting process.
最后应说明的是:以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。Finally, it should be noted that the above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. Although the present invention has been described in detail with reference to the foregoing embodiments, for those skilled in the art, the The technical solutions described in the foregoing embodiments can be modified, or some technical features thereof can be equivalently replaced, and any modifications, equivalent replacements, improvements, etc. made within the spirit and principle of the present invention shall be included. within the protection scope of the present invention.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010870938.4A CN112030047A (en) | 2020-08-26 | 2020-08-26 | Preparation method of high-hardness fine-grain rare earth aluminum alloy material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010870938.4A CN112030047A (en) | 2020-08-26 | 2020-08-26 | Preparation method of high-hardness fine-grain rare earth aluminum alloy material |
Publications (1)
Publication Number | Publication Date |
---|---|
CN112030047A true CN112030047A (en) | 2020-12-04 |
Family
ID=73581825
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010870938.4A Pending CN112030047A (en) | 2020-08-26 | 2020-08-26 | Preparation method of high-hardness fine-grain rare earth aluminum alloy material |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112030047A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113388747A (en) * | 2021-04-29 | 2021-09-14 | 百色市广百金属材料有限公司 | Novel aluminum-zirconium-rare earth ternary aluminum alloy additive and preparation method thereof |
CN113462938A (en) * | 2021-07-16 | 2021-10-01 | 合肥工业大学 | Preparation method of high-strength gradient microalloyed aluminum alloy material |
CN116463531A (en) * | 2023-04-21 | 2023-07-21 | 河南空天新材料研究院有限公司 | Superplastic high-strength aluminum alloy fine-grain plate and preparation method thereof |
CN116875863A (en) * | 2023-07-11 | 2023-10-13 | 内蒙古工业大学 | Novel super-strong aluminum alloy material and preparation and processing method thereof |
CN118345266A (en) * | 2024-06-18 | 2024-07-16 | 鼎镁新材料科技股份有限公司 | Scandium microalloying refinement method for 7-series aluminum alloy grains |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101068943A (en) * | 2004-10-05 | 2007-11-07 | 阿勒里斯铝业科布伦茨有限公司 | High-strength, high-toughness Al-Zn alloy product and method for producing the product |
CN101484603A (en) * | 2006-07-07 | 2009-07-15 | 阿勒里斯铝业科布伦茨有限公司 | AA7000-series aluminium alloy products and a method of manufacturing thereof |
WO2010031255A1 (en) * | 2008-09-17 | 2010-03-25 | 北京有色金属研究总院 | An al alloy material suitable for manufacturing main supporting structural components with large section |
CN104152761A (en) * | 2014-07-31 | 2014-11-19 | 天津大学 | Sc-containing Al-Zn-Mg-Cu-Zr alloy and preparation method thereof |
CN106555086A (en) * | 2015-09-24 | 2017-04-05 | 湖南稀土金属材料研究院 | A kind of high strength anti-corrosion Al-Zn-Mg- (Cu) line aluminium alloy bar and preparation method thereof |
CN107190186A (en) * | 2017-05-31 | 2017-09-22 | 佛山科学技术学院 | A kind of novel ultra-high-strength/tenacity aluminum alloy and preparation method thereof |
-
2020
- 2020-08-26 CN CN202010870938.4A patent/CN112030047A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101068943A (en) * | 2004-10-05 | 2007-11-07 | 阿勒里斯铝业科布伦茨有限公司 | High-strength, high-toughness Al-Zn alloy product and method for producing the product |
CN101484603A (en) * | 2006-07-07 | 2009-07-15 | 阿勒里斯铝业科布伦茨有限公司 | AA7000-series aluminium alloy products and a method of manufacturing thereof |
WO2010031255A1 (en) * | 2008-09-17 | 2010-03-25 | 北京有色金属研究总院 | An al alloy material suitable for manufacturing main supporting structural components with large section |
CN104152761A (en) * | 2014-07-31 | 2014-11-19 | 天津大学 | Sc-containing Al-Zn-Mg-Cu-Zr alloy and preparation method thereof |
CN106555086A (en) * | 2015-09-24 | 2017-04-05 | 湖南稀土金属材料研究院 | A kind of high strength anti-corrosion Al-Zn-Mg- (Cu) line aluminium alloy bar and preparation method thereof |
CN107190186A (en) * | 2017-05-31 | 2017-09-22 | 佛山科学技术学院 | A kind of novel ultra-high-strength/tenacity aluminum alloy and preparation method thereof |
Non-Patent Citations (1)
Title |
---|
(苏)库德良绍夫: "《铝合金断裂韧性》", 30 September 1980, 冶金工业出版社 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113388747A (en) * | 2021-04-29 | 2021-09-14 | 百色市广百金属材料有限公司 | Novel aluminum-zirconium-rare earth ternary aluminum alloy additive and preparation method thereof |
CN113462938A (en) * | 2021-07-16 | 2021-10-01 | 合肥工业大学 | Preparation method of high-strength gradient microalloyed aluminum alloy material |
CN116463531A (en) * | 2023-04-21 | 2023-07-21 | 河南空天新材料研究院有限公司 | Superplastic high-strength aluminum alloy fine-grain plate and preparation method thereof |
CN116463531B (en) * | 2023-04-21 | 2024-12-27 | 河南空天新材料研究院有限公司 | Superplastic high-strength aluminum alloy fine-grain plate and preparation method thereof |
CN116875863A (en) * | 2023-07-11 | 2023-10-13 | 内蒙古工业大学 | Novel super-strong aluminum alloy material and preparation and processing method thereof |
CN118345266A (en) * | 2024-06-18 | 2024-07-16 | 鼎镁新材料科技股份有限公司 | Scandium microalloying refinement method for 7-series aluminum alloy grains |
CN118345266B (en) * | 2024-06-18 | 2024-09-17 | 鼎镁新材料科技股份有限公司 | Scandium microalloying refinement method for 7-series aluminum alloy grains |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112030047A (en) | Preparation method of high-hardness fine-grain rare earth aluminum alloy material | |
CN100439533C (en) | A kind of Al-Si-Cu-Mg series deformed aluminum alloy and preparation method thereof | |
CN114457263B (en) | High-strength high-toughness high-heat-conductivity die-casting aluminum alloy and manufacturing method thereof | |
CN103290265B (en) | Die-cast zinc alloy with high flowability and preparation method thereof | |
CN109371295B (en) | Al-Mn alloy with high Mn content and preparation method thereof | |
CN102676887A (en) | Aluminum alloy for pressure casting and casting of the aluminum alloy | |
CN105112742B (en) | A kind of Al-Si-Mg-Cu-Ti-Sc casting wrought alloy and preparation method thereof | |
CN108977702A (en) | A kind of aluminium alloy and aluminium alloy castings preparation method | |
CN101294247B (en) | Aluminum alloy refiner and aluminum alloy prepared with the refiner | |
CN110408807A (en) | A kind of hypoeutectic Al-Si casting alloy and preparation method thereof | |
CN103233138B (en) | Mg-Al series magnesium alloy grain-refining agent and preparation method thereof | |
CN113278831B (en) | Method for preparing regenerated ADC12 aluminum alloy from scrap aluminum | |
CN108149083B (en) | A kind of semisolid pressure casting aluminium alloy and the method for preparing semisolid pressure casting aluminium alloy castings | |
CN102277521A (en) | High-temperature high-tenacity single-phase solid-solution magnesium rare earth base alloy and preparation method thereof | |
CN111304509A (en) | A kind of refined magnesium alloy by adding VN particles and preparation method thereof | |
CN105950929B (en) | Hypereutectic Al Si alloys and magnesium alloy hybrid engine cylinder body and its casting method | |
CN118531265A (en) | High-strength and high-toughness cast aluminum alloy and preparation method and application thereof | |
CN109266886B (en) | A kind of refinement method of manganese-iron-aluminum alloy intermetallic compound phase | |
JP3840400B2 (en) | Method for producing semi-melt molded billet of aluminum alloy for transportation equipment | |
CN111593244A (en) | A new type of multi-component corrosion-resistant magnesium alloy and preparation method thereof | |
CN117568679A (en) | A heat-treatment-free high-strength and tough Al-Zn-Si-Ce die-cast aluminum alloy and its preparation method and use | |
CN115874087B (en) | A kind of die-casting aluminum alloy and preparation method thereof | |
CN113528897B (en) | A kind of refining agent for aluminum-silicon alloy with low cooling rate sensitivity, its preparation method, aluminum-silicon alloy and its refining method | |
WO2007114345A1 (en) | DIECASTING Zn ALLOY, PROCESS FOR PRODUCTION THEREOF, AND Al MASTER ALLOY FOR DIECASTING ALLOY | |
CN101041874A (en) | Pseudo-crystal reinforced high zinc magnesium alloy and method for manufacturing same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
CB03 | Change of inventor or designer information | ||
CB03 | Change of inventor or designer information |
Inventor after: Li Heng Inventor after: Wu Yucheng Inventor after: Tang Jie Inventor after: Wang Ronghui Inventor after: Wang Weiguo Inventor after: Li Ming Inventor before: Li Heng Inventor before: Tang Jie Inventor before: Wang Ronghui Inventor before: Wang Weiguo Inventor before: Li Ming Inventor before: Wu Yucheng |
|
CB03 | Change of inventor or designer information | ||
CB03 | Change of inventor or designer information |
Inventor after: Wu Yucheng Inventor after: Li Heng Inventor after: Tang Jie Inventor after: Wang Ronghui Inventor after: Wang Weiguo Inventor after: Li Ming Inventor before: Li Heng Inventor before: Wu Yucheng Inventor before: Tang Jie Inventor before: Wang Ronghui Inventor before: Wang Weiguo Inventor before: Li Ming |
|
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20201204 |