JP2003136174A - Method for manufacturing precast-forming billet of aluminum alloy for transport equipment - Google Patents
Method for manufacturing precast-forming billet of aluminum alloy for transport equipmentInfo
- Publication number
- JP2003136174A JP2003136174A JP2001337618A JP2001337618A JP2003136174A JP 2003136174 A JP2003136174 A JP 2003136174A JP 2001337618 A JP2001337618 A JP 2001337618A JP 2001337618 A JP2001337618 A JP 2001337618A JP 2003136174 A JP2003136174 A JP 2003136174A
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- aluminum alloy
- semi
- less
- strain
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Forging (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、輸送機器用として
用いるアルミニウム合金の半溶融成型ビレットの製造方
法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a semi-molten molded billet of an aluminum alloy used for transportation equipment.
【0002】[0002]
【従来の技術】半溶融ビレットを用いるチクソキャスト
法は、従来の金型鋳造法と比較し鋳造偏析・欠陥が少な
く、金型寿命が長いなどの利点があり最近注目されてい
る技術である。これに用いるビレットの鋳造方法として
は、ペネシー・アルマックス方式として知られているビ
レット段階で初晶α(Al)相を球状化するため、半溶
融温度域で電磁・機械撹拌を行う方法(方式A)や、鋳
造時に通常添加されている量よりも多量のAl−Ti−
Bを添加し、その後半溶融温度域まで昇温し初晶α(A
l)相を球状化させる方法(方式B)がある。また、押
出・圧延にて歪みを導入後、方式Bのように昇温し球状
化させる方法(方式C)が広く知られている。2. Description of the Related Art The thixocasting method using a semi-molten billet has recently attracted attention because it has advantages such as less casting segregation / defects and longer die life than the conventional die casting method. As a billet casting method used for this, in order to make the primary α (Al) phase into a spherical shape at the billet stage known as the Pennesey Almax method, a method of performing electromagnetic / mechanical stirring in the semi-melting temperature range (method A) or a larger amount of Al-Ti- than is usually added during casting.
B was added, and the temperature was raised to the melting temperature range in the latter half and the primary crystal α (A
1) There is a method of making the phase spherical (method B). Further, a method (method C) in which the temperature is raised to spherical as in method B after introducing strain by extrusion / rolling is widely known.
【0003】[0003]
【発明が解決しようとする課題】従来の半溶融製造法の
場合、方式Aでは工程が非常に煩雑で、製造コストが高
くつく不具合があった。また、方式Bでは、多量のAl
−Ti−Bを添加するため溶融炉内でのTiB 2沈降に
よる品質不安定が発生し、更に方式Cの圧延により歪み
を導入する方法は均一な歪みの導入が難しく、また押出
では常温押出により作業工程が煩雑で、しかも均一な歪
み導入が難しいし、両歪み導入法とも加工後の製品加工
が必要となり、量産化や低コスト化が図れないという問
題があった。[Problems to be Solved by the Invention]
In case of method A, the process is very complicated and the manufacturing cost is high.
There was a problem of sticking. In the method B, a large amount of Al
-TiB in the melting furnace to add Ti-B TwoFor settling
Quality instability occurs, and distortion occurs due to rolling of method C.
It is difficult to introduce uniform strain in the method of introducing
At room temperature extrusion, the work process is complicated, and the strain is uniform.
It is difficult to introduce only the product, and both strain introduction methods are product processing after processing
Is required, and mass production and cost reduction cannot be achieved.
There was a problem.
【0004】特許第2976073号には、改良された
方法が開示されている。即ち、そこには第1項中に「完
全に固化した金属または金属合金材料をその再結晶温度
未満の温度で変形する工程、該材料の微小構造の再結晶
を起こさせるために変形材料を加熱する工程、および該
材料の温度をその固相線温度を上回る温度に上昇させる
ことによりチキソトロピック的な挙動を呈する液状マト
リックス中に独立した粒子を形成させるために、再結晶
構造を部分的に融解させる工程を備えた方法」である。
この方法は、該材料の微小構造の再結晶を起こさせるた
めに変形材料を加熱する工程、および該材料の温度をそ
の固相線温度を上回る温度に上昇させるといういわば2
段階加熱とも言うべき加熱が行われる。このような方法
は、従来の技術に比べれば、改善された技術と言える
が、やはり2段階の加熱を必要とし、工程が複雑で加熱
制御が難しいという問題があった。Japanese Patent No. 2976073 discloses an improved method. That is, there is a step in the first paragraph "a step of deforming a completely solidified metal or metal alloy material at a temperature lower than its recrystallization temperature, and heating the deformable material to cause recrystallization of the microstructure of the material. And partially melting the recrystallized structure to form free-standing particles in a liquid matrix that behaves thixotropically by raising the temperature of the material above its solidus temperature. A method including a step of
This method comprises heating a deformed material to cause recrystallization of the microstructure of the material, and raising the temperature of the material above its solidus temperature, so to speak 2.
The heating which should be called stepwise heating is performed. Although such a method can be said to be an improved technique as compared with the conventional technique, it still requires two steps of heating, and has a problem that the process is complicated and heating control is difficult.
【0005】本発明は、上記従来技術の欠点を解消し、
工程が簡素で低コスト化を促進でき、得られる製品が均
質な輸送機器用アルミニウム合金の半溶融成型ビレット
の製造方法を提供することを目的とするものである。The present invention solves the above-mentioned drawbacks of the prior art,
It is an object of the present invention to provide a method for manufacturing a semi-molten cast billet of an aluminum alloy for transportation equipment, which has a simple process, can promote cost reduction, and has a homogeneous product.
【0006】[0006]
【課題を解決するための手段】上記目的を達成するため
に、本願の輸送機器用アルミニウム合金の半溶融成型ビ
レットの製造方法は、Si0.15〜1.5wt%、M
g0.20〜2.0wt%、Zn0.30wt%以下、
Fe1.2wt%以下と、Ti0.001〜0.5wt
%及びB0.0001〜0.5wt%の少なくとも1種
以上と、Cu0.05〜0.50wt%、Mn0.10
〜1.0wt%及びCr0.03〜0.50wt%の中
の少なくとも1種以上を含み、残部が実質的にAlの組
成から成り、デンドライト枝間隔(DAS)が200μ
m以下であるアルミニウム合金を製造し、次いで歪み率
5〜50%、加工導入速度50mm/sec.以下で再
結晶温度未満の温度で、冷間型枠鍛造にて加工歪みを導
入し、その後共晶温度又は固相線温度以上に昇温し、液
相率が20〜80%となる温度で保持して半溶融加工す
る方法である。In order to achieve the above object, a method for manufacturing a semi-molten cast billet of an aluminum alloy for transportation equipment according to the present invention is Si 0.15 to 1.5 wt%, M
g 0.20 to 2.0 wt%, Zn 0.30 wt% or less,
Fe 1.2 wt% or less and Ti 0.001 to 0.5 wt
% And B 0.0001 to 0.5 wt%, Cu 0.05 to 0.50 wt%, Mn 0.10
.About.1.0 wt% and Cr 0.03 to 0.50 wt% and at least one of them is composed substantially of Al, and the dendrite branch interval (DAS) is 200 .mu.m.
aluminum alloy having a strain rate of 5 to 50% and a processing introduction speed of 50 mm / sec. At a temperature below the recrystallization temperature, a working strain is introduced by cold mold forging, and thereafter, the temperature is raised to a temperature higher than the eutectic temperature or the solidus temperature, and the liquid phase ratio becomes 20 to 80%. It is a method of holding and semi-melt processing.
【0007】この場合に、成分偏析の均質化及び鋳造応
力の解放のために、加工歪みを導入する前に、450〜
600℃の温度で1〜10時間の均質化処理を行うと好
ましい。In this case, in order to homogenize the segregation of the components and release the casting stress, 450 to 450% before introducing the working strain.
It is preferable to perform homogenization treatment at a temperature of 600 ° C. for 1 to 10 hours.
【0008】[0008]
【発明の実施の形態】以下本発明で用いるアルミニウム
合金成分量の数値限定等種々の数値限定理由について詳
述する。BEST MODE FOR CARRYING OUT THE INVENTION Various reasons for limiting numerical values such as limiting the numerical values of the amounts of aluminum alloy components used in the present invention will be described in detail below.
【0009】Si成分は、Mg成分と共存することによ
り、熱処理によりMg2Siを析出し、機械的性質の向
上に寄与するが、0.15wt%未満ではその効果は小
さく、一方1.5wt%を越えると冷間鍛造加工性が悪
くなるため、0.15〜1.5wt%とした。When the Si component coexists with the Mg component, it precipitates Mg 2 Si by heat treatment and contributes to the improvement of mechanical properties, but if it is less than 0.15 wt%, its effect is small, while 1.5 wt%. %, The cold forgeability deteriorates, so the content was made 0.15 to 1.5 wt%.
【0010】Mg成分は、Si成分と共存することによ
り、機械的性質の向上に寄与するが、0.20wt%未
満ではその効果が小さく、一方2.0wt%を越えると
冷間鍛造加工性が悪くなるため、0.20〜2.0wt
%とした。The Mg component contributes to the improvement of mechanical properties by coexisting with the Si component, but if it is less than 0.20 wt%, its effect is small, and if it exceeds 2.0 wt%, cold forgeability is poor. 0.20 to 2.0 wt because it gets worse
%.
【0011】Zn成分は、耐食性を低下させるため、
0.30wt%以下とした。Since the Zn component lowers the corrosion resistance,
It was set to 0.30 wt% or less.
【0012】Fe成分は、Alと金属間化合物をつく
り、多く含有されるとAl−Fe−Si系化合物となり
伸び・靭性・耐食性に悪影響を及ぼすため、1.2wt
%以下とした。The Fe component forms an intermetallic compound with Al, and if contained in a large amount, becomes an Al-Fe-Si based compound, which adversely affects elongation, toughness and corrosion resistance.
% Or less.
【0013】Ti成分は、鋳塊の組織を微細化し、鋳塊
割れの発生を防止するが、0.001wt%未満ではそ
の効果が小さく、一方0.5wt%を越えると、TiA
l3の巨大な晶出物の発生を促進させ、冷間鍛造加工時
の割れや輸送機器部品の機械的性質の低下をまねくの
で、0.001〜0.5wt%とした。The Ti component refines the structure of the ingot and prevents the occurrence of ingot cracking, but if it is less than 0.001 wt%, its effect is small, while if it exceeds 0.5 wt%, TiA is produced.
to promote the formation of huge crystallized substance of l 3, since lowering the mechanical properties of the cracks and transportation equipment components during cold forging, and the 0.001~0.5wt%.
【0014】B成分もまたTi成分と共に鋳塊の組織を
微細化し、鋳塊割れの発生を防止するが、0.0001
wt%未満ではその効果は小さく、0.5wt%を越え
ると冷間鍛造加工時の割れや輸送機器部品の機械的性質
の低下をまねくので、0.0001〜0.5wt%とし
た。The B component, together with the Ti component, also refines the structure of the ingot and prevents the occurrence of ingot cracking.
If it is less than 0.5% by weight, the effect is small, and if it exceeds 0.5% by weight, cracking during cold forging and deterioration of mechanical properties of parts for transportation equipment may occur, so the content was made 0.0001 to 0.5% by weight.
【0015】Cu成分は、機械的性質の向上に役立つ
が、0.05wt%未満ではその効果は小さく、0.5
0wt%を越えると冷間鍛造加工時の割れや耐食性の低
下をまねくので、0.05〜0.50wt%とした。The Cu component serves to improve the mechanical properties, but if it is less than 0.05% by weight, its effect is small and 0.5
If it exceeds 0 wt%, cracking during cold forging and deterioration of corrosion resistance will occur, so the content was made 0.05 to 0.50 wt%.
【0016】Mn成分は、再結晶の抑制や再結晶粒の微
細化により強度及び伸びの向上に寄与するが、0.10
wt%未満ではその効果が小さく、1.0wt%を越え
ると延性の低下をまねくので、0.10〜1.0wt%
とした。The Mn component contributes to the improvement of strength and elongation by suppressing recrystallization and refining recrystallized grains.
If it is less than wt%, its effect is small, and if it exceeds 1.0 wt%, ductility is deteriorated, so 0.10 to 1.0 wt%
And
【0017】Cr成分は、Mn成分と同様に再結晶粒の
微細化あるいは再結晶を抑制し、強度・伸び・靭性を向
上させるが、0.03wt%未満ではその効果が小さ
く、0.50wt%を越えると延性に悪影響を及ぼすの
で、0.03〜0.50wt%とした。The Cr component, like the Mn component, suppresses the refinement or recrystallization of the recrystallized grains and improves the strength, elongation and toughness, but if it is less than 0.03 wt%, its effect is small and 0.50 wt%. %, The ductility is adversely affected, so the content was made 0.03 to 0.50 wt%.
【0018】デンドライト枝間隔(DAS)が200μ
m以下であるビレットを鋳造するが、デンドライト枝間
隔(DAS)が200μmを越えると、半溶融温度域に
加熱した際に初晶α(Al)相の均一微細球状化が得難
くなるし、均質化処理を行う場合には均質化処理に時間
を要するので、デンドライト枝間隔(DAS)を200
μm以下とした。The dendrite branch spacing (DAS) is 200μ
Although a billet having a diameter of m or less is cast, if the dendrite branch spacing (DAS) exceeds 200 μm, it becomes difficult to obtain uniform fine spheroidization of the primary crystal α (Al) phase when heated to a semi-melting temperature range, and it is uniform. Since it takes time to perform the homogenization treatment when performing the deoxidization treatment, the dendrite branch interval (DAS) is set to 200.
It was set to not more than μm.
【0019】鋳造で得られたビレットを均質化処理する
ことにより、鋳造時に結晶粒界に晶出したAl2Cu、
Mg2Si等の晶出物がマトリックスに固溶する。均質
化処理温度が450℃未満や1時間に達しない加熱時間
では、固溶化が充分得られず、鋳造歪みの除去も不充分
である。しかし600℃を越える処理温度では、部分融
解が発生し、鍛造時の加工性も損う。また、10時間を
越える加熱時間では、加熱時間の長時間に見合った均質
化の効果上昇が見られず、加熱エネルギーの損失とな
る。このため、均質化処理条件は450〜600℃の温
度で1〜10時間の加熱とした。By subjecting the billet obtained by casting to homogenization treatment, Al 2 Cu crystallized at the grain boundaries during casting,
Crystallized substances such as Mg 2 Si dissolve in the matrix. When the homogenization treatment temperature is less than 450 ° C. or the heating time does not reach 1 hour, solid solution is not sufficiently obtained and casting strain is not sufficiently removed. However, at a processing temperature exceeding 600 ° C., partial melting occurs and the workability during forging is impaired. Further, when the heating time exceeds 10 hours, the effect of homogenization commensurate with the long heating time is not increased and the heating energy is lost. For this reason, the homogenization treatment conditions were heating at a temperature of 450 to 600 ° C. for 1 to 10 hours.
【0020】次に加工歪みの導入は、工程が簡素化で
き、かつ少ない加工率で歪みが有効に導入されるように
冷間鍛造で行い、なおかつ鍛造用ビレットの全体に均一
に歪みが導入されるように型枠鍛造とする。歪み率は、
5%未満の場合には歪み導入が少ないため半溶融温度域
まで昇温しても初晶α(Al)相の均一な球状化は図れ
ず、一方50%を越えると初晶α(Al)相サイズに変
化は認められないのみならず冷間鍛造時に割れが発生す
るため、5〜50%とした。ここでの歪み率は、鍛造用
ビレットの元の長さをL1とし、鍛造後のビレットの長
さをL2とした時、(L1−L2)/L1×100
(%)で定義した。Next, the working strain is introduced by cold forging so that the process can be simplified and the strain can be effectively introduced with a small working rate, and the strain is uniformly introduced to the entire forging billet. The frame is forged so that The distortion rate is
If it is less than 5%, the introduction of strain is small, and even if the temperature is raised to the semi-melting temperature range, the primary spheroidal α (Al) phase cannot be made uniform spheroidization, while if it exceeds 50%, the primary crystal α (Al) is spheroidized. The change in phase size was not observed, and cracking occurred during cold forging, so the content was made 5 to 50%. The strain rate here is (L 1 −L 2 ) / L 1 × 100, where L 1 is the original length of the forging billet and L 2 is the length of the billet after forging.
It was defined by (%).
【0021】加工導入速度は、ビレット鋳塊の結晶粒微
細化と均質化処理を加えることにより大幅にアップでき
る。生産性から言えば加工導入速度はできるだけ早い方
が好ましい。しかしながら50mm/sec.を越える
と鍛造時に割れが生じたり、鍛造デッドゾーンが発生
し、歪みが均一に導入されないため50mm/sec.
以下とした。また冷間型枠鍛造の際のビレット温度は、
再結晶温度以上では所定の加工率に対する歪み導入が不
充分となり、半溶融温度に昇温しても初晶α(Al)相
が粒状組織とならないため再結晶温度未満とした。The processing introduction speed can be greatly increased by adding crystal grain refining and homogenizing treatment to the billet ingot. From the viewpoint of productivity, it is preferable that the processing introduction speed is as fast as possible. However, 50 mm / sec. If it exceeds 50 mm / sec., Cracks may occur during forging, or forging dead zones may occur, and strain may not be uniformly introduced.
Below. Also, the billet temperature during cold formwork forging is
Above the recrystallization temperature, the introduction of strain for a predetermined processing rate was insufficient, and the primary crystal α (Al) phase did not have a granular structure even when the temperature was raised to the semi-melting temperature, so the temperature was set below the recrystallization temperature.
【0022】その後、ビレットを共晶温度又は固相線温
度以上に昇温し、液相率が20〜80%となる温度で保
持して半溶融成型するが、液相率が20%未満では初晶
α(Al)相の均一な球状化は図れず、半溶融成型の変
形抵抗が大きく加圧成型が困難となる。また、80%を
越えると均一な組織を有する成型品が得られない。この
ため、共晶温度又は固相線温度以上の半溶融温度域での
液相率は20〜80%とした。After that, the billet is heated to a temperature higher than the eutectic temperature or the solidus temperature, and is held at a temperature at which the liquid phase ratio is 20 to 80% for semi-melt molding, but if the liquid phase ratio is less than 20%. Uniform spheroidization of the primary crystal α (Al) phase cannot be achieved, and the deformation resistance of semi-molten molding is large, making pressure molding difficult. Further, if it exceeds 80%, a molded product having a uniform structure cannot be obtained. Therefore, the liquid phase ratio in the semi-melting temperature range above the eutectic temperature or solidus temperature is set to 20 to 80%.
【0023】[0023]
【実施例】以下本発明の具体的な実施例を示す。図1は
本発明方法で用いる冷間型鍛造の模式図であり、図中符
号1は鍛造用金型、2は鍛造用金型ポンチ、3はアルミ
ニウム合金ビレットを示す。EXAMPLES Specific examples of the present invention will be described below. FIG. 1 is a schematic view of cold die forging used in the method of the present invention. In the figure, reference numeral 1 is a forging die, 2 is a forging die punch, and 3 is an aluminum alloy billet.
【0024】Si、Mg、Zn、Fe、Ti、B、C
u、Mn及びCrをそれぞれ下記表1に示すような組成
となるように溶湯を調製し、連続鋳造にてアルミニウム
合金ビレットを鋳造した。Si, Mg, Zn, Fe, Ti, B, C
A molten metal was prepared so that u, Mn, and Cr each had a composition shown in Table 1 below, and an aluminum alloy billet was cast by continuous casting.
【0025】[0025]
【表1】 [Table 1]
【0026】上記表1に示すアルミニウム合金ビレット
を、表2に示す条件で処理し、半溶融成型の成型性、半
溶融成型後の初晶α(Al)相の形状を評価した結果も
表2に併記した。The aluminum alloy billets shown in Table 1 were treated under the conditions shown in Table 2 to evaluate the moldability of semi-melt molding and the shape of the primary crystal α (Al) phase after semi-melt molding. Also described in.
【0027】[0027]
【表2】 [Table 2]
【0028】表2に示した加工歪導入時の成型性は、表
2で示す成型条件で成型した際に割れが発生せず成型性
の良好なものを○とし、割れが見られるものを×で判定
した。半溶融成型の成型性は、良好なものを○とし、成
型性の悪いものを×と判定した。半溶融成型後の初晶α
(Al)相の形状は、球状化が認められるものを○と
し、球状化が不充分であるものを×と判定した。半溶融
成型後の初晶α(Al)相の微細均一化では、初晶α
(Al)相サイズが100μm以下を○とし、100μ
mを越えるサイズのものを×と判定した。As for the moldability shown in Table 2 when the processing strain was introduced, the moldability that did not cause cracks when molded under the molding conditions shown in Table 2 was good, and the moldability was evaluated as ×, and the cracks were found. It was judged by. Regarding the moldability of the semi-melt molding, the good one was evaluated as ◯, and the poor moldability was evaluated as x. Primary crystal α after semi-melt molding
The shape of the (Al) phase was evaluated as ◯ when spheroidization was recognized, and as x when spheroidization was insufficient. In the homogenization of the primary crystal α (Al) phase after semi-melt molding,
If the (Al) phase size is 100 μm or less, it is set to 100 μ
Those having a size exceeding m were judged as x.
【0029】図2は、初晶α(Al)相の微細均一化が
○評価の代表例写真を示す。FIG. 2 shows a photograph of a representative example in which the fine homogenization of the primary crystal α (Al) phase was evaluated as ◯.
【0030】[0030]
【発明の効果】以上述べて来た如く、本発明方法によれ
ば、従来の半溶融ビレットよりも工程が簡素化され低コ
スト化が図れる。また、得られる組織も初晶α(Al)
相サイズが平均100μm以下で、かつ初晶α(Al)
相の面積率50%の均一球状化組織となっており、自動
車部材等の輸送機器用として使用が可能である。As described above, according to the method of the present invention, the process can be simplified and the cost can be reduced as compared with the conventional semi-molten billet. Further, the obtained structure is also primary crystal α (Al).
Phase size average 100μm or less and primary crystal α (Al)
It has a uniform spheroidized structure with a phase area ratio of 50% and can be used for transportation equipment such as automobile parts.
【図1】冷間型枠鍛造の模式図である。FIG. 1 is a schematic view of cold formwork forging.
【図2】初晶α(Al)相の微細均一化が○評価の代表
例の顕微鏡組織写真であり、倍率は50倍である。FIG. 2 is a photomicrograph of a typical example in which fine homogenization of primary crystal α (Al) phase is evaluated as ◯, and the magnification is 50 times.
1 鍛造用金型 2 鍛造用金型ポンチ 3 アルミニウム合金ビレット 1 Forging die 2 Forging die punch 3 Aluminum alloy billet
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B22D 17/00 B22D 17/00 Z C22C 21/02 C22C 21/02 21/06 21/06 C22F 1/05 C22F 1/05 // C22F 1/00 681 1/00 681 682 682 685 685A 691 691B 691C 694 694A (72)発明者 村山 康幸 福岡県大牟田市四山町80番地 九州三井ア ルミニウム工業株式会社内 (72)発明者 岩下 綱樹 福岡県大牟田市四山町80番地 九州三井ア ルミニウム工業株式会社内 Fターム(参考) 4E087 AA01 BA04 BA14 CB03 DB15 DB22 GA07 HB17 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) B22D 17/00 B22D 17/00 Z C22C 21/02 C22C 21/02 21/06 21/06 C22F 1/05 C22F 1/05 // C22F 1/00 681 1/00 681 682 682 685 685 695 A 691 691B 691C 694 694A (72) Inventor Yasuyuki Murayama 80 Kyushu Mitsui Aluminum Industry Co., Ltd. ) Inventor Tsunaki Iwashita 80 Yoyama-cho, Omuta City, Fukuoka Prefecture F-term in Kyushu Mitsui Aluminum Industry Co., Ltd. (Reference) 4E087 AA01 BA04 BA14 CB03 DB15 DB22 GA07 HB17
Claims (2)
20〜2.0wt%、Zn0.30wt%以下、Fe
1.2wt%以下と、Ti0.001〜0.5wt%及
びB0.0001〜0.5wt%の少なくとも1種以上
と、Cu0.05〜0.50wt%、Mn0.10〜
1.0wt%及びCr0.03〜0.50wt%の中の
少なくとも1種以上を含み、残部が実質的にAlの組成
から成り、デンドライト枝間隔が200μm以下である
アルミニウム合金を製造し、次いで歪み率5〜50%、
加工導入速度50mm/sec.以下で再結晶温度未満
の温度で、冷間型枠鍛造にて加工歪みを導入し、その後
共晶温度又は固相線温度以上に昇温し、液相率が20〜
80%となる温度で保持して半溶融加工することを特徴
とする輸送機器用アルミニウム合金の半溶融成型ビレッ
トの製造方法。1. Si 0.15 to 1.5 wt%, Mg 0.
20-2.0 wt%, Zn 0.30 wt% or less, Fe
1.2 wt% or less, at least one or more of Ti 0.001 to 0.5 wt% and B 0.0001 to 0.5 wt%, Cu 0.05 to 0.50 wt%, Mn 0.10 to
An aluminum alloy containing at least one of 1.0 wt% and Cr 0.03 to 0.50 wt%, the balance being substantially composed of Al, and having a dendrite branch interval of 200 μm or less is produced, and then strained. Rate 5-50%,
Processing introduction speed 50 mm / sec. Below, a working strain is introduced by cold mold forging at a temperature lower than the recrystallization temperature, then the temperature is raised to a temperature higher than the eutectic temperature or the solidus temperature, and the liquid phase ratio is 20 to
A method for producing a semi-molten cast billet of an aluminum alloy for transportation equipment, characterized by holding at a temperature of 80% and performing semi-melt processing.
導入する前に、450〜600℃の温度で1〜10時間
の均質化処理を行うことを特徴とする請求項1記載の輸
送機器用アルミニウム合金の半溶融成型ビレットの製造
方法。2. The aluminum for transportation equipment according to claim 1, wherein the aluminum alloy is manufactured and subjected to a homogenizing treatment at a temperature of 450 to 600 ° C. for 1 to 10 hours before introducing a working strain. A method for producing a semi-molten cast billet of an alloy.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001337618A JP4152095B2 (en) | 2001-11-02 | 2001-11-02 | Method for producing semi-molten billet of aluminum alloy for transportation equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001337618A JP4152095B2 (en) | 2001-11-02 | 2001-11-02 | Method for producing semi-molten billet of aluminum alloy for transportation equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003136174A true JP2003136174A (en) | 2003-05-14 |
JP4152095B2 JP4152095B2 (en) | 2008-09-17 |
Family
ID=19152223
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001337618A Expired - Fee Related JP4152095B2 (en) | 2001-11-02 | 2001-11-02 | Method for producing semi-molten billet of aluminum alloy for transportation equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4152095B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013204066A (en) * | 2012-03-27 | 2013-10-07 | Toyota Central R&D Labs Inc | Aluminum alloy member and method of manufacturing the same |
CN107201465A (en) * | 2015-05-13 | 2017-09-26 | 江苏亨通电力特种导线有限公司 | High hardness aluminium alloy lead wire |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111560548A (en) * | 2020-06-01 | 2020-08-21 | 凯米特新材料科技有限公司 | High-precision high-strength light aluminum alloy section for high-speed rail and preparation method thereof |
-
2001
- 2001-11-02 JP JP2001337618A patent/JP4152095B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013204066A (en) * | 2012-03-27 | 2013-10-07 | Toyota Central R&D Labs Inc | Aluminum alloy member and method of manufacturing the same |
CN107201465A (en) * | 2015-05-13 | 2017-09-26 | 江苏亨通电力特种导线有限公司 | High hardness aluminium alloy lead wire |
Also Published As
Publication number | Publication date |
---|---|
JP4152095B2 (en) | 2008-09-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110004341B (en) | High-strength magnesium alloy containing rare earth and preparation method thereof | |
JP3194742B2 (en) | Improved lithium aluminum alloy system | |
AU2006210790B2 (en) | Aluminum-zinc-magnesium-scandium alloys and methods of fabricating same | |
CN110029258B (en) | High-strength and high-toughness wrought magnesium alloy and preparation method thereof | |
EP2274454B1 (en) | Alloy composition and preparation thereof | |
JPS58213840A (en) | Metal composition suitable for producing semi-solid semi-liquid state and manufacture | |
CN87103970A (en) | The goods of nickel-base heat resisting superalloy and manufacture method | |
JP3525486B2 (en) | Magnesium alloy casting material for plastic working, magnesium alloy member using the same, and methods for producing them | |
CN112626401B (en) | 2XXX series aluminum alloy and preparation method thereof | |
JP2001220639A (en) | Aluminum alloy for casting | |
JP3548709B2 (en) | Method for producing semi-solid billet of Al alloy for transportation equipment | |
KR101400140B1 (en) | Preparing method for magnesium alloy extrudate and the magnesium alloy extrudate thereby | |
JP3852915B2 (en) | Method for producing semi-melt molded billet of aluminum alloy for transportation equipment | |
CN108998687B (en) | Iron-rich phase transformation agent and preparation method and modification method thereof | |
JP2004315938A (en) | Forged material of aluminum alloy for structural material in transport aircraft, and manufacturing method therefor | |
JP3840400B2 (en) | Method for producing semi-melt molded billet of aluminum alloy for transportation equipment | |
JP3676723B2 (en) | Method for producing semi-melt molded billet of aluminum alloy for transportation equipment | |
JP3798676B2 (en) | Method for producing semi-melt molded billet of aluminum alloy for transportation equipment | |
JP2003136174A (en) | Method for manufacturing precast-forming billet of aluminum alloy for transport equipment | |
JP4121266B2 (en) | Method for producing semi-molten billet of aluminum alloy for transportation equipment | |
JP2003311373A (en) | Method for producing base material for semi-melting formation | |
JPH0713275B2 (en) | High-strength stress corrosion cracking resistant aluminum-based powder metallurgy alloy | |
KR20190030296A (en) | Methods of treating aluminum alloy | |
JP2003147497A (en) | Method for producing semi-molten cast billet of aluminum alloy for transport apparatus | |
RU2299264C1 (en) | Deformed aluminum alloys articles forming method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Effective date: 20041028 Free format text: JAPANESE INTERMEDIATE CODE: A621 |
|
A131 | Notification of reasons for refusal |
Effective date: 20080129 Free format text: JAPANESE INTERMEDIATE CODE: A132 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080326 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Effective date: 20080617 Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Effective date: 20080701 Free format text: JAPANESE INTERMEDIATE CODE: A61 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110711 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 3 Free format text: PAYMENT UNTIL: 20110711 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 4 Free format text: PAYMENT UNTIL: 20120711 |
|
LAPS | Cancellation because of no payment of annual fees |