JP2003110141A - Method for manufacturing gallium nitride-based compound semiconductor - Google Patents

Method for manufacturing gallium nitride-based compound semiconductor

Info

Publication number
JP2003110141A
JP2003110141A JP2001335707A JP2001335707A JP2003110141A JP 2003110141 A JP2003110141 A JP 2003110141A JP 2001335707 A JP2001335707 A JP 2001335707A JP 2001335707 A JP2001335707 A JP 2001335707A JP 2003110141 A JP2003110141 A JP 2003110141A
Authority
JP
Japan
Prior art keywords
film
gas
compound semiconductor
gallium indium
indium nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001335707A
Other languages
Japanese (ja)
Inventor
Toshiaki Sakaida
敏昭 坂井田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2001335707A priority Critical patent/JP2003110141A/en
Publication of JP2003110141A publication Critical patent/JP2003110141A/en
Pending legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method exhibiting high manufacture efficiency by which low-resistance p-type aluminum gallium indium nitride can be formed in the state of as-grown without annealing an AlGaN film doped with p-type impurities. SOLUTION: Aluminum gallium indium nitride doped with p-type impurities is grown from organic metal materials in the presence of indium organic metal materials in the temperature range of 950 to 1,100 by an organic metal vapor phase growth method. After that, a high-resistance aluminum gallium indium nitride layer doped with p-type impurities is grown in the temperature range of 950 to 750 on the aluminum gallium indium nitride and is cooled.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、紫色、青色、また
は緑色発光ダイオード、紫色または青色レーザーダイオ
ード等に使用される窒化ガリウム系化合物半導体の製造
方法に係わり、特に気相成長後、アニーリング処理の必
要がなく、p型窒化アルミニウムガリウムインジウム化
合物半導体を得る製造効率に優れた方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a gallium nitride-based compound semiconductor used for a purple, blue or green light emitting diode, a purple or blue laser diode, etc., and particularly to a method of annealing after vapor phase growth. The present invention relates to a method of obtaining a p-type aluminum gallium indium nitride compound semiconductor, which is unnecessary and has excellent manufacturing efficiency.

【0002】[0002]

【従来の技術】p型の窒化ガリウム系化合物半導体の作
成方法として、アクセプター不純物であるMg等をドー
プして窒化ガリウム系化合物半導体を有機金属気相成長
法(MOCVD法)で成長させたのち、窒素等の不活性
雰囲気中で400℃以上に加熱して熱的アニーリングす
ることにより低抵抗化する方法が知られている(特開平
5−183189公報参照)。しかし、熱的アニーリン
グ処理には気相成長終了後、雰囲気ガスを置換して再度
高温に加熱して、保持する必要があり、製造効率が劣る
問題がある。上記のような結晶成長後の付加的な工程に
より、低抵抗なp型窒化アルミニウムガリウムインジウ
ム化合物半導体とするのではなく、MOCVD成長後に
低抵抗なp型窒化アルミニウムガリウムインジウム化合
物半導体を得る方法も知られている。例えばMg等のp
型不純物をドープした窒化ガリウム系化合物半導体の気
相成長後の冷却時に、400℃以上の温度で水素化ガス
を含む雰囲気から水素または窒素の雰囲気に切り替え、
水素パッシベーションを起こさずに熱処理なしで低抵抗
なp型窒化ガリウム系化合物半導体を得る方法(特開平
8−115880公報参照)、キャリアガスとして実質
的に窒素ガスを用い、インジウム源のガスを原料源のガ
スと同時に成長装置に流しp型III族窒化物半導体を
得る製造方法(特開2001−94149公報参照)等
が知られている。しかし、装置内に残存するキャリアガ
スの水素、或いは水素化ガスに基づく水素等が冷却時に
窒化ガリウム系化合物半導体の膜内に拡散し、高い正孔
キャリア濃度が得られにくく、又再現性も良くない等製
造効率上の問題がある。これを避けるために、p型不純
物をドープした窒化ガリウム系化合物半導体層を成長さ
せたのち、該層上にn型窒化ガリウム系化合物半導体層
を成長させた状態で冷却し、水素原子等がp型半導体層
に侵入することを防止する方法が知られている(特開平
8−8460公報参照)。しかし成長後にn型窒化ガリ
ウム系化合物半導体層をリアクティブイオンエッチング
(RIE)方式等で除去する必要があり、工程が複雑に
なり、製造効率が良くないという難点がある。
2. Description of the Related Art As a method for producing a p-type gallium nitride-based compound semiconductor, a gallium nitride-based compound semiconductor is grown by metalorganic chemical vapor deposition (MOCVD) after being doped with Mg as an acceptor impurity. A method is known in which the resistance is reduced by heating at 400 ° C. or higher in an inert atmosphere such as nitrogen and performing thermal annealing (see Japanese Patent Laid-Open No. 5-183189). However, in the thermal annealing treatment, after the vapor phase growth is completed, it is necessary to replace the atmospheric gas, heat it again to a high temperature and hold it, and there is a problem that the manufacturing efficiency is inferior. There is also known a method of obtaining a p-type aluminum gallium indium nitride indium compound semiconductor having a low resistance after MOCVD growth, instead of using the p-type aluminum gallium indium nitride compound semiconductor having a low resistance by an additional step after the crystal growth as described above. Has been. For example, p such as Mg
At the time of cooling after vapor phase growth of a gallium nitride-based compound semiconductor doped with a type impurity, the atmosphere containing a hydrogenating gas is switched to an atmosphere of hydrogen or nitrogen at a temperature of 400 ° C. or higher,
Method for obtaining a p-type gallium nitride compound semiconductor having low resistance without heat treatment without causing hydrogen passivation (see Japanese Patent Application Laid-Open No. 8-115880), in which substantially nitrogen gas is used as a carrier gas, and a gas of an indium source is used as a raw material source. There is known a manufacturing method (see Japanese Patent Application Laid-Open No. 2001-94149) for obtaining a p-type group III nitride semiconductor by flowing the same into the growth apparatus at the same time. However, hydrogen as a carrier gas remaining in the device, hydrogen based on a hydrogenated gas, or the like diffuses in the film of the gallium nitride-based compound semiconductor during cooling, which makes it difficult to obtain a high hole carrier concentration and also has good reproducibility. There is a problem in manufacturing efficiency such as not being present. In order to avoid this, a gallium nitride-based compound semiconductor layer doped with p-type impurities is grown, and then cooled while the n-type gallium nitride-based compound semiconductor layer is grown on the gallium nitride-based compound semiconductor layer, so that hydrogen atoms and the like are removed. There is known a method for preventing the intrusion into the type semiconductor layer (see Japanese Patent Laid-Open No. 8-8460). However, it is necessary to remove the n-type gallium nitride-based compound semiconductor layer after the growth by reactive ion etching (RIE) method or the like, which makes the process complicated and the manufacturing efficiency is not good.

【0003】[0003]

【発明が解決しようとする課題】本発明は熱的アニーリ
ング処理なしで、低抵抗のp型窒化アルミニウムガリウ
ムインジウム化合物半導体を作成する製造効率に優れた
方法を提供することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a highly efficient method for producing a low-resistance p-type aluminum gallium indium compound semiconductor without thermal annealing treatment.

【0004】[0004]

【問題を解決するための手段】上記の問題を解決するた
めに、本発明は、有機金属気相成長方法で、950℃か
ら1100℃の温度範囲にて、水素を主成分とする雰囲
気中、インジウム有機金属原料の存在下で、p型不純物
をドープしながら、アルミニウムとガリウムの有機金属
原料から、p型の第1の窒化アルミニウムガリウムイン
ジウム膜(AlGaInl−x−yN、ただし、0
<x≦1、0≦y<1,0<1−x−y<1)を成長さ
せ、更に950℃から750℃の温度範囲で高濃度のM
gがドープされた高抵抗の第2の窒化アルミニウムガリ
ウムインジウム膜(AlGaInl−a−bN、た
だし、0≦a<1、0<b≦1,0<1−a−b<1)
を薄く成長させた後、窒素雰囲気中で冷却させる方法で
ある。ここで、In有機金属原料の存在下とは、窒化ア
ルミニウムガリウムインジウムを成長させるAl、Ga
の有機金属原料と共に成膜反応装置内にInを含む有機
金属原料を流すことであり、高抵抗の窒化アルミニウム
ガリウムインジウムとは、750℃、窒素ガス雰囲気中
で30分間アニーリング処理後、ホール測定すると、抵
抗率で10Ω・cm以上の高抵抗を示し、n,p型の
判定ができない状態の膜のことである。MOCVD法
で、水素等の雰囲気中、インジウム有機金属原料の存在
下、GaNを成長すると、結晶性の良いGaNが得ら
れ、アイソエレクトロニクス効果として知られている
(Applicd Physics Lctters,
Vol.73,641,1998参照)。この条件下で
p型不純物をドープしながら、p型の窒化アルミニウム
ガリウムインジウムを成長させると、結晶性が良いので
MgがGa位置に正確に置換し、Mgが水素により不活
性化されることが少なく、高い正孔キャリア濃度の窒化
アルミニウムガリウムインジウム膜が期待される。高抵
抗の第2の窒化アルミニウムガリウムインジウム膜によ
って低抵抗のp型の第1の窒化アルミニウムガリウムイ
ンジウム膜が形成される理由は不明であるが、第1の膜
と第2の膜の接合面、或いは第2の膜がなんらかの障壁
として機能して、水素が第1のp型窒化アルミニウムガ
リウムインジウム膜に拡散侵入することを防止している
ものと考えている。
In order to solve the above-mentioned problems, the present invention is a metal-organic vapor phase epitaxy method in a temperature range of 950 ° C. to 1100 ° C. in an atmosphere containing hydrogen as a main component, in the presence of indium metal organic source, while doping a p-type impurity, aluminum and gallium organometal starting material, p-type first aluminum gallium nitride indium film (Al y Ga x in l- x-y N, However, 0
<X ≦ 1, 0 ≦ y <1, 0 <1-x-y <1) is grown, and M of high concentration is further grown in a temperature range of 950 ° C. to 750 ° C.
g second aluminum gallium nitride indium film of high resistivity doped (Al a Ga b In l- a-b N, however, 0 ≦ a <1,0 <b ≦ 1,0 <1-a-b <1)
Is a method of growing thinly and then cooling in a nitrogen atmosphere. Here, “in the presence of an In metal organic material” means Al, Ga for growing aluminum gallium indium nitride.
That is, the organometallic raw material containing In is allowed to flow in the film formation reaction device together with the organometallic raw material described in (1) above, and high-resistivity aluminum gallium indium nitride is annealed in a nitrogen gas atmosphere at 750 ° C. for 30 minutes and then subjected to hole measurement. , A film showing a high resistance of 10 6 Ω · cm or more, and in a state where n-type or p-type determination cannot be performed. When GaN is grown by MOCVD in an atmosphere of hydrogen or the like in the presence of an indium organometallic raw material, GaN with good crystallinity is obtained, which is known as an isoelectronic effect (Applied Physics Lctters,
Vol. 73, 641, 1998). When p-type aluminum gallium indium nitride is grown while doping a p-type impurity under this condition, Mg has a good crystallinity, so that Mg is accurately substituted at the Ga position and Mg is inactivated by hydrogen. Aluminum gallium indium nitride films with few and high hole carrier concentrations are expected. Although the reason why the low-resistance p-type first aluminum gallium indium nitride film is formed by the high-resistance second aluminum gallium indium nitride film is not clear, the bonding surface between the first film and the second film, Alternatively, it is considered that the second film functions as some kind of barrier to prevent hydrogen from diffusing and penetrating into the first p-type aluminum gallium indium nitride film.

【0005】[0005]

【発明の実施の形態】本発明は、MOCVD法によりI
n有機金属原料存在下で、Al、Gaの有機金属原料か
ら、第1及び高抵抗の第2の窒化アルミニウムガリウム
インジウム膜を成長させることで、アニーリング処理の
必要ない低抵抗の第1のp型窒化アルミニウムガリウム
インジウム膜を形成できることである。すなわち、as
−grownの状態でp型窒化アルミニウムガリウムイ
ンジウム膜を形成することである。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention is based on the MOCVD method.
By growing the first and second high-resistance aluminum gallium indium nitride films from the organic metal raw materials of Al and Ga in the presence of the n-organic metal raw material, the low-resistance first p-type that does not require annealing treatment. That is, an aluminum gallium indium nitride film can be formed. That is, as
Forming a p-type aluminum gallium indium nitride film in the -grown state.

【0006】サファイア基板上への成膜はMOCVD法
で行う、なわち第1の窒化アルミニウムガリウムインジ
ウム膜を成長する温度範囲は900℃から1150℃で
ある。2次元的成長がしやすい950℃以上が好まし
く、又1150℃以上では、窒化アルミニウムガリウム
インジウムの分解が激しくなり、又活性層も劣化するの
で1100℃以下とする必要がある。好ましくは、95
0℃から1050℃である。第1の窒化アルミニウムガ
リウムインジウム膜は水素等のキャリヤガスを主成分と
した雰囲気中でIn有機金属原料の存在下、AlとGa
の有機金属原料からp型不純物をドープしながら0.5
μ/Hrから2μ/Hrの成長速度で成長させる。上記
の温度範囲ではInは結晶内には殆ど取り込まれず、X
線回折結果は窒化アルミニウムガリウムのパターンを示
す。SIMS分析では結晶膜のIn/Ga含有比は0.
1%程度前後以下であり、混晶とは異なり、Inが固溶
した状態と考えられる。従って、第1の窒化アルミニウ
ムガリウムインジウム膜を1050℃の一定温度で成長
後、冷却過程での950℃前後までIn有機金属原料を
流しながら低成長速度で薄い膜を成長させても良く、又
1050℃から950℃まで冷却しながら成長させても
良い。Ga源ガスに対するIn源ガスの割合が少ないと
窒化アルミニウムガリウムインジウム膜の結晶性が向上
しにくく、又多すぎると結晶性が悪化するので、Ga源
ガスに対するIn源ガスの割合は1%から40%で、5
%から20%の範囲が好ましい。又Mg等のp型不純物
源ガスのGa源ガスに対する割合は0.01%から1%
で、0.05%から0.8%の範囲が好ましい。
The film is formed on the sapphire substrate by the MOCVD method, that is, the temperature range for growing the first aluminum gallium indium nitride film is 900 ° C. to 1150 ° C. The temperature is preferably 950 ° C. or higher, which facilitates two-dimensional growth. Further, at 1150 ° C. or higher, the decomposition of aluminum gallium indium nitride is severe and the active layer is deteriorated. Preferably 95
The temperature is from 0 ° C to 1050 ° C. The first aluminum gallium indium nitride film is formed of Al and Ga in the presence of In organometallic raw material in an atmosphere containing a carrier gas such as hydrogen as a main component.
While doping p-type impurities from the organic metal raw material of
Grow at a growth rate of μ / Hr to 2 μ / Hr. In the above temperature range, In is hardly taken into the crystal and X
The line diffraction results show the pattern of aluminum gallium nitride. According to SIMS analysis, the In / Ga content ratio of the crystal film is 0.
It is about 1% or less, which is considered to be a state in which In is solid-dissolved unlike the mixed crystal. Therefore, after growing the first aluminum gallium indium nitride film at a constant temperature of 1050 ° C., a thin film may be grown at a low growth rate while flowing the In organometallic raw material up to about 950 ° C. in the cooling process. It may be grown while cooling from ℃ to 950 ℃. If the ratio of the In source gas to the Ga source gas is small, the crystallinity of the aluminum gallium indium nitride film is difficult to improve, and if it is too large, the crystallinity deteriorates. Therefore, the ratio of the In source gas to the Ga source gas is 1% to 40%. %, 5
% To 20% is preferred. The ratio of p-type impurity source gas such as Mg to Ga source gas is 0.01% to 1%.
Therefore, the range of 0.05% to 0.8% is preferable.

【0007】第1のp型窒化アルミニウムガリウムイン
ジウム膜を成長後、水素を主成分とするキャリヤガスを
窒素を主成分とするキャリヤガスに切り替え、950℃
から750℃の温度範囲でp型不純物をドープしながら
Inが固溶した状態、或いはInを含有した混晶状態の
第2の窒化アルミニウムガリウムインジウム膜を成長さ
せる。主キャリアガスとして、窒素ガスを用い、有機金
属原料ガスのキャリアガスとして水素ガスを用いるが、
装置内のその反応部における水素濃度が1容量%から1
0容量%の範囲にあることが好ましい。750℃以下で
は結晶性が悪くなるので950℃から750℃の温度範
囲が好ましい。Ga源ガスに対するIn源ガスの割合は
第1のp型窒化アルミニウムガリウムインジウム膜の成
長条件と同一だが、発光ダイオード(LED)を作成す
る場合に第2の窒化アルミニウムガリウムインジウム膜
が活性層からの光の吸収層にならないようにすることが
好ましい。ピーク波長450nmの青色LEDの場合
は、In含有量は10%以下、好ましくは5%以下が好
ましい。Mg等のp型不純物源ガスのGa源ガスに対す
る割合は、第1のp型窒化アルミニウムガリウムインジ
ウム膜の成長条件と同一だが、キャリアガスを実質的に
窒素ガスとすることで、Mg等のp型不純物の膜中への
取込量が増加するために、高抵抗になりやすい。Ga源
ガスに対するIn源ガスの割合が一定の場合、成長温度
低下と共に膜中のIn比率が増加する。従って、成長は
一定温度でもよいし、In、Mg量を制御しながら95
0℃から750℃の冷却工程中でも良い。一般的に、窒
素ガスは水素ガスよりは、酸素等が微量存在し、純度が
良くないが、Mgの活性化を維持促進するので、第2の
窒化アルミニウムガリウムインジウムの成膜後の冷却過
程で膜の表面が過度に酸化されない10ppm程度以
下、好ましくは1ppm程度以下までの酸素を含有した
窒素を流しても良い。発光ダイオード等を作成する場合
は、第2の窒化アルミニウムガリウムインジウムは高抵
抗のため膜厚は50nm以下、5nmから20nmが好
ましい。この膜は膜厚方向には電流が流れ、大きな抵抗
を示さない。機構は不明だが、従来とは違う機構、例え
ば、欠陥を介在するホッピング或いはトンネル的機構、
ピット付近の仕事関数が低く、接触電位が低い事も考え
られる。従って、LEDのデバイス作成時に第2の窒化
アルミニウムガリウムインジウムをRIE方式等で除去
する必要がなく、製造効率が高い。
After the growth of the first p-type aluminum gallium indium nitride film, the carrier gas containing hydrogen as the main component is switched to the carrier gas containing nitrogen as the main component, and the temperature is 950 ° C.
To 750 ° C., a second aluminum gallium indium nitride film is grown in a solid solution state of In or a mixed crystal state containing In while doping p-type impurities. Nitrogen gas is used as the main carrier gas, and hydrogen gas is used as the carrier gas for the organometallic raw material gas.
The hydrogen concentration in the reaction section of the device is from 1% by volume to 1
It is preferably in the range of 0% by volume. Since the crystallinity deteriorates at 750 ° C or lower, a temperature range of 950 ° C to 750 ° C is preferable. The ratio of the In source gas to the Ga source gas is the same as the growth condition of the first p-type aluminum gallium indium nitride film, but when the light emitting diode (LED) is formed, the second aluminum gallium indium nitride film is removed from the active layer. It is preferable not to serve as a light absorbing layer. In the case of a blue LED having a peak wavelength of 450 nm, the In content is 10% or less, preferably 5% or less. The ratio of the p-type impurity source gas such as Mg to the Ga source gas is the same as that of the growth condition of the first p-type aluminum gallium indium nitride film, but when the carrier gas is substantially nitrogen gas, the p-type impurity gas such as Mg Since the amount of the type impurities taken into the film increases, the resistance tends to be high. When the ratio of In source gas to Ga source gas is constant, the In ratio in the film increases as the growth temperature decreases. Therefore, the growth may be performed at a constant temperature or 95 while controlling the amounts of In and Mg.
It may be during the cooling process from 0 ° C to 750 ° C. In general, nitrogen gas has a smaller amount of oxygen and the like than hydrogen gas and is not good in purity, but since it maintains and promotes activation of Mg, it is used in the cooling process after the second aluminum gallium indium nitride film is formed. Nitrogen containing oxygen up to about 10 ppm or less, preferably about 1 ppm or less, which does not excessively oxidize the surface of the film, may be flowed. When manufacturing a light emitting diode or the like, the thickness of the second aluminum gallium indium nitride is high resistance, so that the film thickness is preferably 50 nm or less, 5 nm to 20 nm. Current flows in this film in the film thickness direction and does not show a large resistance. Although the mechanism is unknown, a mechanism different from the conventional one, for example, a hopping or tunnel-like mechanism that intervenes a defect,
The work function near the pit may be low and the contact potential may be low. Therefore, the second aluminum gallium indium nitride does not need to be removed by the RIE method or the like when the LED device is manufactured, and the manufacturing efficiency is high.

【0008】原料はトリメチルガリウム(以下TMGと
記す。)、トリエチルガリウム等のトリアルキルガリウ
ム、トリメチルアルミニウム(以下TMAと記す。)、
トリエチルアルミニウム等のトリアルキルアルミニウ
ム,トリメチルインジウム(以下TMIと記す。)等を
使用する。p型不純物はMg、Zn、Be等にアルキル
基等の有機基を有する化合物、キレート化合物を用いる
が、活性化効率の点ではビスシクロペンタジエニルマグ
ネシウム(以下CpMgと記す。)、ビスエチルシク
ロペンタジエニルマグネシウム等の有機Mg化合物が好
ましい。
Raw materials are trimethylgallium (hereinafter referred to as TMG), trialkylgallium such as triethylgallium, trimethylaluminum (hereinafter referred to as TMA),
Trialkylaluminum such as triethylaluminum, trimethylindium (hereinafter referred to as TMI), or the like is used. As the p-type impurity, a compound having an organic group such as an alkyl group in Mg, Zn, Be or the like, or a chelate compound is used, but in terms of activation efficiency, biscyclopentadienyl magnesium (hereinafter referred to as Cp 2 Mg) and bis. Organic Mg compounds such as ethylcyclopentadienyl magnesium are preferred.

【0009】この新しいp型化の手法でLED用の膜を
堆積する場合、低温バッファ層はGaN膜に限らず、A
lN膜やAlGaN膜を、アンドープGaN膜はAlG
aN膜或いはMgを微量ドープしたGaN膜を、Siド
ープGaN膜はSiドープAlGaN膜を用いてもよ
い。
When the LED film is deposited by this new p-type conversion method, the low temperature buffer layer is not limited to the GaN film, and
1N film and AlGaN film, undoped GaN film is AlG
An aN film or a GaN film that is lightly doped with Mg may be used, and a Si-doped GaN film may be an Si-doped AlGaN film.

【0010】[0010]

【実施例1】c面から面方位が0.2度の傾いた、厚さ
300μ程度の平滑なサファイア基板を110℃に加熱
した混酸(硫酸:リン酸=3:1)中で30分処理し、
純水でよく水洗、乾燥する基板処理を行った。
Example 1 A smooth sapphire substrate having a plane orientation of 0.2 degrees from the c-plane and a thickness of about 300 μm is treated in a mixed acid (sulfuric acid: phosphoric acid = 3: 1) heated at 110 ° C. for 30 minutes. Then
Substrate treatment was performed by washing well with pure water and drying.

【0011】サファイア基板を横型のMOCVD装置内
部の基板ホルダに設置し、水素雰囲気中で、1100℃
の高温に、5分間保持し基板の高温クリーニングを行な
った。
The sapphire substrate was placed on a substrate holder inside a horizontal MOCVD apparatus, and the temperature was set to 1100 ° C. in a hydrogen atmosphere.
The substrate was held at the high temperature for 5 minutes to perform high temperature cleaning of the substrate.

【0012】次に温度を500℃まで下げ、主キャリア
ガスとして水素を6リットル/分、アンモニアを3.5
リットル/分で流しながら、TMG用のキャリアガスを
10cc/分で流して5分保持し、約20nmの厚みの
GaN低温バッファ層を作成した。
Next, the temperature is lowered to 500 ° C., hydrogen as a main carrier gas is 6 liters / minute, and ammonia is 3.5
The carrier gas for TMG was flowed at 10 cc / min for 5 minutes while flowing at liter / min to form a GaN low temperature buffer layer having a thickness of about 20 nm.

【0013】ついでTMGのみ止めて、温度を1050
℃まで上昇させ、主キャリアガスとして水素8リットル
/分、アンモニア3.5リットル/分を流しながら、T
MG用キャリアガスを40cc/分で流し60分間保持
し、1.5ミクロンの厚みのアンドープGaN膜を得
た。
Then, only TMG is stopped and the temperature is raised to 1050.
The temperature is increased to ℃, and hydrogen (8 liters / minute) and ammonia (3.5 liters / minute) are used as the main carrier gas.
A carrier gas for MG was flowed at 40 cc / min and held for 60 minutes to obtain an undoped GaN film having a thickness of 1.5 μm.

【0014】次に温度を1000℃まで下げ、主キャリ
アガスとして水素ガスを8リットル/分、アンモニアを
3.5リットル/分、TMG用のキャリアガスを40c
c/分で流しながら、In源ガスとしてTMIをGa源
ガス1に対して10%、Mg源ガスとしてCpMgを
Ga源ガス1に対して0.2%となるように流し、10
分保持し第1の窒化ガリウムインジウムを作成した。そ
の後、TMG,TMI,CpMgを停止し、主キャリ
アガスを水素ガスから窒素ガスに切り替えて、8リット
ル/分で流し、アンモニアを3.5リットル/分で流し
ながら、冷却速度10℃/分程度で900℃にした。9
00℃で再度TMG用のキャリアガスを10cc/分で
流し、In源ガスとしてTMIをGa源ガス1に対して
10%、Mg源ガスとしてCpMgをGa源ガス1に
対して0.6%となるように流し、10分間保持し第2
の窒化ガリウムインジウム膜を作成した。成膜後窒素ガ
スだけをそのまま流しながら常温まで自然冷却した。
Next, the temperature is lowered to 1000 ° C., hydrogen gas as a main carrier gas is 8 liters / minute, ammonia is 3.5 liters / minute, and carrier gas for TMG is 40 c.
While flowing at c / min, TMI as an In source gas is 10% with respect to the Ga source gas 1 and Cp 2 Mg as an Mg source gas is 0.2% with respect to the Ga source gas 1 and 10%.
The first minute gallium indium nitride was prepared by holding the amount. Then, TMG, TMI, and Cp 2 Mg were stopped, the main carrier gas was switched from hydrogen gas to nitrogen gas, and flowed at 8 liters / minute, while flowing ammonia at 3.5 liters / minute, cooling rate was 10 ° C. / The temperature was set to 900 ° C. in about a minute. 9
A carrier gas for TMG was flown again at 00 ° C. at 10 cc / min, TMI as an In source gas was 10% with respect to the Ga source gas 1, and Cp 2 Mg as an Mg source gas was 0.6 with respect to the Ga source gas 1. Flow for 10% and hold for 2 minutes
Was prepared. After forming the film, it was naturally cooled to room temperature while flowing only nitrogen gas.

【0015】冷却後、MOCVD装置から、膜のついた
基板を取り出し、ホール測定を行うと高抵抗を示した。
この高抵抗層をRIE法で除去し、ホール測定を行う
と、p型を示し、キャリア濃度は約9×1017/cm
、抵抗率は約1Ω・cmであった。なお、MOCVD
装置から、取り出したウェーハを、窒素ガス雰囲気中
で、750℃、30分間アニーリングし、ホール測定を
行なったところ高抵抗であった。
After cooling, the substrate with the film was taken out from the MOCVD apparatus, and hole measurement was performed, which showed high resistance.
When this high resistance layer is removed by the RIE method and hole measurement is performed, it shows a p-type and has a carrier concentration of about 9 × 10 17 / cm 3.
3. The resistivity was about 1 Ω · cm. MOCVD
The wafer taken out from the apparatus was annealed in a nitrogen gas atmosphere at 750 ° C. for 30 minutes, and the hole measurement was performed.

【0016】[0016]

【実施例2】第2の窒化ガリウムインジウム膜の作成時
に、Mg源ガスとしてCpMgをGa源ガス1に対し
て0.3%となるように流す以外は、実施例1と同一の
方法で成膜した。冷却後、MOCVD装置から、膜のつ
いた基板を取り出し、ホール測定を行うと高抵抗を示し
た。この高抵抗層をRIE法で除去し、ホール測定を行
うと、p型を示し、キャリア濃度は約7×1017/c
、抵抗率は約1Ω・cmであった。なお、MOCV
D装置から、取り出したウェーハを、窒素ガス雰囲気中
で、750℃、30分間アニーリングし、ホール測定を
行なったところ高抵抗であった。
Example 2 The same method as in Example 1 except that when the second gallium indium nitride film was formed, Cp 2 Mg as a Mg source gas was flowed so as to be 0.3% with respect to the Ga source gas 1. It was formed into a film. After cooling, the substrate with the film was taken out from the MOCVD apparatus, and hole measurement was performed, which showed high resistance. When this high resistance layer is removed by the RIE method and hole measurement is performed, it shows a p-type and the carrier concentration is about 7 × 10 17 / c.
m 3 , and the resistivity was about 1 Ω · cm. MOCV
The wafer taken out from the D device was annealed at 750 ° C. for 30 minutes in a nitrogen gas atmosphere, and the hole measurement was performed.

【0017】[0017]

【実施例3】基板処理、基板の高温クリーニング、低温
バッファ層形成、アンドープGaN膜形成、第1の窒化
ガリウムインジウム膜形成は実施例1に於いて述べたも
のと同一の方法で行った。その後、TMG,TMI,C
Mgを停止し、主キャリアガスを水素ガスから窒素
ガスに切り替えて、8リットル/分で流し、アンモニア
を3.5リットル/分で流しながら、冷却速度10℃/
分程度で850℃にした。850℃で再度TMG用のキ
ャリアガスを10cc/分、流しなが、In源ガスとし
てTMIをGa源ガス1に対して5%となるように、ド
ーパント用のMg源ガスとしてCpMgをGa源ガス
1に対して0.6%となるように流し、10分間保持し
第2の窒化ガリウムインジウム膜を作成した。成膜後窒
素ガスをそのまま流しながら、850℃以下は常温まで
自然冷却した。冷却後、MOCVD装置から、膜のつい
た基板を取り出し、ホール測定を行うと高抵抗を示し
た。この高抵抗層をRIE法で除去し、ホール測定を行
うと、p型を示し、キャリア濃度は約1×1018/c
、抵抗率は約1Ω・cmであった。なお、MOCV
D装置から、取り出した膜のついた基板を、窒素ガス雰
囲気中で、750℃、30分間アニーリングし、ホール
測定を行なったところ高抵抗であった。
Example 3 Substrate processing, substrate high temperature cleaning, low temperature buffer layer formation, undoped GaN film formation, and first gallium indium nitride film formation were carried out in the same manner as described in Example 1. After that, TMG, TMI, C
Stopping p 2 Mg, switching the main carrier gas from hydrogen gas to nitrogen gas, flowing at 8 liters / minute, and flowing ammonia at 3.5 liters / minute, cooling rate 10 ° C. /
The temperature was raised to 850 ° C in about a minute. At 850 ° C., 10 cc / min of TMG carrier gas is not flowed again, but Cp 2 Mg is used as the Mg source gas for the dopant so that TMI is 5% with respect to the Ga source gas 1 as the In source gas. A second gallium indium nitride film was formed by flowing the source gas so as to be 0.6% and holding it for 10 minutes. After the film formation, the temperature was naturally cooled to 850 ° C. or lower while flowing nitrogen gas as it was. After cooling, the substrate with the film was taken out from the MOCVD apparatus, and hole measurement was performed, which showed high resistance. When this high resistance layer is removed by the RIE method and hole measurement is performed, it shows a p-type and has a carrier concentration of about 1 × 10 18 / c.
m 3 , and the resistivity was about 1 Ω · cm. MOCV
The substrate with the film taken out from the device D was annealed at 750 ° C. for 30 minutes in a nitrogen gas atmosphere, and the hole measurement was performed. As a result, the resistance was high.

【0018】[0018]

【実施例4】基板処理、基板の高温クリーニング、低温
バッファ層形成、アンドープGaN膜形成は実施例1に
於いて述べたものと同一の方法で行った。ついで、10
50℃から950℃まで10℃/分程度で冷却しなが
ら、主キャリアガスとして水素ガスを8リットル/分、
アンモニアを3.5リットル/分、TMG用のキャリア
ガスを40cc/分で流し、In源ガスとしてTMIを
Ga源ガス1に対して10%となるように、ドーパント
用のMg源ガスとしてCpMgをGa源ガス1に対し
て0.15%となるように流し、第1の窒化ガリウムイ
ンジウム膜を作成した。その後、主キャリアガスを水素
ガスから窒素ガスに切り替え、950℃から850℃ま
で10℃/分程度で冷却しながらTMG用のキャリアガ
スを10cc/分で流しなが、In源ガスとしてTMI
をGa源ガス1に対して5%となるように、ドーパント
として、Mg源ガスとしてCpMgをGa源ガス1に
対して0.5%となるように流し、第2の窒化ガリウム
インジウム膜を作成した。成膜後,窒素ガスをそのまま
流しながら常温まで自然冷却した。降温後、MOCVD
装置から、膜のついた基板を取り出し、ホール測定を行
うと高抵抗を示した。この高抵抗層をRIE法で除去
し、ホール測定を行うと、p型を示し、キャリア濃度は
約8×1017/cm、抵抗率は約1Ω・cmであっ
た。なお、MOCVD装置から、取り出した膜のついた
基板を、窒素ガス雰囲気中で、750℃、30分間アニ
ーリングし、ホール測定を行なったところ高抵抗であっ
た。
Example 4 Substrate treatment, substrate high temperature cleaning, low temperature buffer layer formation, and undoped GaN film formation were performed in the same manner as described in Example 1. Then 10
While cooling from 50 ° C. to 950 ° C. at about 10 ° C./min, hydrogen gas as a main carrier gas was 8 liters / min,
Ammonia of 3.5 liters / minute and carrier gas of TMG at 40 cc / minute were flown so that TMI as an In source gas was 10% with respect to Ga source gas 1 and Cp 2 was used as a Mg source gas for a dopant. Mg was made to flow to Ga source gas 1 so that it might become 0.15%, and the 1st gallium indium nitride film was created. After that, the main carrier gas was switched from hydrogen gas to nitrogen gas, and the carrier gas for TMG was flowed at 10 cc / min while cooling from 950 ° C. to 850 ° C. at about 10 ° C./min.
To 5% relative to the Ga source gas 1 and Cp 2 Mg as the Mg source gas as a dopant to 0.5% relative to the Ga source gas 1 to form a second gallium indium nitride film. It was created. After forming the film, it was naturally cooled to room temperature while flowing nitrogen gas as it was. After cooling, MOCVD
When the substrate with the film was taken out from the device and hole measurement was performed, it showed high resistance. When this high-resistance layer was removed by the RIE method and hole measurement was performed, it showed a p-type, a carrier concentration of about 8 × 10 17 / cm 3 , and a resistivity of about 1 Ω · cm. The substrate with the film taken out from the MOCVD apparatus was annealed at 750 ° C. for 30 minutes in a nitrogen gas atmosphere, and the hole was measured to find that it had a high resistance.

【0019】[0019]

【実施例5】実施例3の第1の膜の成膜条件に、TMA
を10cc/分で流すことを加えて、第1の窒化アルミ
ニウムガリウムインジウム膜を作成し、又実施例3の第
2の膜の成膜条件にTMAを2cc/分流すことを加え
て第2の窒化アルミニウムガリウムインジウム膜を作成
した。冷却後、MOCVD装置から、膜のついた基板を
取り出し、ホール測定を行うと高抵抗を示した。この高
抵抗層をRIE法で除去し、ホール測定を行うと、p型
を示し、キャリア濃度は約3×1017/cm、抵抗
率は約2.5Ω・cmであった。なお、MOCVD装置
から、取り出した膜のついた基板を、窒素ガス雰囲気中
で、750℃、30分間アニーリングし、ホール測定を
行なったところ高抵抗であった。
[Embodiment 5] TMA is used as the film forming condition for the first film of Embodiment 3.
At a rate of 10 cc / min to form a first aluminum gallium indium nitride film, and the second film of Example 3 was formed under the same conditions as TMA at a rate of 2 cc / min. An aluminum gallium indium nitride film was created. After cooling, the substrate with the film was taken out from the MOCVD apparatus, and hole measurement was performed, which showed high resistance. When this high-resistance layer was removed by the RIE method and hole measurement was performed, it showed a p-type, carrier concentration was about 3 × 10 17 / cm 2 , and resistivity was about 2.5 Ω · cm. The substrate with the film taken out from the MOCVD apparatus was annealed at 750 ° C. for 30 minutes in a nitrogen gas atmosphere, and the hole was measured to find that it had a high resistance.

【0020】[0020]

【実施例6】基板処理、基板クリーニング、低温バッフ
ァ層形成、アンドープGaN膜形成、を実施例1に於い
て述べたものと同一の方法で行った。該アンドープGa
N膜上に以下の膜を形成した。主キャリアガスとして水
素ガスを8リットル/分、アンモニアを35リットル/
分、TMG用のキャリアガスを40cc/分、水素で希
釈された100ppmモノシランを2.5cc/分で流
しながら60分間保持し、1.5ミクロンの厚みのSi
ドープGaN膜を得た。その後、760℃で、窒素雰囲
気中で厚み7nmのSiドープGaN障壁層と、厚み3
nmのアンドープGa0.7In0.3N井戸層の5対
の量子井戸層からなるMQWを障壁層、井戸層と順次積
み最後に障壁層を積んで作成した。その後、1000℃
に昇温し、水素雰囲気中でMg拡散防止或いは電子キャ
リアブロックのために厚さ10nmのアンドープAl
0.1Ga0.9Nを積層した。ついで、主キャリアガ
スとして水素ガスを8リットル/分、アンモニアを3.
5リットル/分、TMG用のキャリアガスを40cc/
分で流しながら、In源ガスとしてTMIをGa源ガス
1に対して10%、Mg源ガスとしてCpMgをGa
源ガス1に対して0.2%となるように流し、10分保
持し第1の窒化ガリウムインジウム膜を作成した。つい
で、TMG,TMI,CpMgを停止し、主キャリア
ガスを水素ガスから窒素ガスに切り替え8リットル/
分、アンモニアを3.5リットル/分で流しながら、冷
却速度15℃/分程度で850℃にした。850℃で再
度TMG用のキャリアガスを10cc/分で流し、In
源ガスとしてTMIをGa源ガス1に対して10%、M
g源ガスとしてCpMgをGa源ガス1に対して0.
6%となるように流し、4分間保持し第2の窒化ガリウ
ムインジウム膜を作成した。成膜後、窒素ガスだけをそ
のまま流しながら常温まで自然冷却した。サファイア基
板をGaN系半導体を堆積した側と反対側の面を研磨等
により、100μ程度の厚さにした。次に高抵抗の第2
の窒化ガリウムインジウム膜の一部を表面からSiドー
プGaN層に達する深さまでRIE法で除去した。つい
で、露出させたSiドープGaN層表面上に、Al、C
r、Al、Auを順次薄膜形成し、窒素雰囲気中550
℃で5分間アニーリングしてn電極を形成した。又第2
のMgドープ高抵抗窒化ガリウムインジウム層表面にN
i、Auを順次薄膜形成し空気中で550℃10分間ア
ニーリングしてp電極を形成した。次に、各電極に金ワ
イヤーを接続し、常法に従って樹脂でモールドしてLE
Dとした。順方向電圧20mAにおいて発光させたとこ
ろ、Vf3.5V、波長450nmの青色発光を示し、
発光出力は3mWと非常に良好な特性を示した。
Example 6 Substrate treatment, substrate cleaning, low temperature buffer layer formation, and undoped GaN film formation were carried out in the same manner as described in Example 1. The undoped Ga
The following film was formed on the N film. Hydrogen gas as main carrier gas is 8 liters / minute, ammonia is 35 liters / minute
, TGC carrier gas at 40 cc / min, and hydrogen-diluted 100 ppm monosilane at 2.5 cc / min for 60 minutes while flowing to obtain Si having a thickness of 1.5 μm.
A doped GaN film was obtained. Then, at 760 ° C., a Si-doped GaN barrier layer having a thickness of 7 nm and a thickness of 3 nm are formed in a nitrogen atmosphere.
An MQW composed of 5 pairs of quantum well layers of nm undoped Ga 0.7 In 0.3 N well layer was sequentially stacked with the barrier layer, the well layer, and finally the barrier layer was stacked. After that, 1000 ℃
Unheated Al with a thickness of 10 nm to prevent Mg diffusion and block electron carriers in a hydrogen atmosphere.
0.1 Ga 0.9 N was laminated. Then, as main carrier gas, hydrogen gas was 8 liters / minute, and ammonia was 3.
5 liters / minute, carrier gas for TMG 40 cc /
Flowing in minutes, TMI as In source gas is 10% with respect to Ga source gas 1 and Cp 2 Mg as Mg source gas is Ga.
The first gallium indium nitride film was formed by allowing the source gas to flow at 0.2% and holding it for 10 minutes. Then, stop TMG, TMI, and Cp 2 Mg, and switch the main carrier gas from hydrogen gas to nitrogen gas 8 liters /
Minute, while flowing ammonia at 3.5 liters / minute, the cooling rate was set to 850 ° C. at about 15 ° C./minute. At 850 ° C., a carrier gas for TMG was flown again at 10 cc / min to remove In
As source gas, TMI is 10% with respect to Ga source gas 1, M
As a g source gas, Cp 2 Mg was added to Ga source gas 1 in an amount of 0.1
A second gallium indium nitride film was formed by pouring the solution to 6% and holding it for 4 minutes. After forming the film, it was naturally cooled to room temperature while flowing only nitrogen gas. The surface of the sapphire substrate opposite to the side on which the GaN-based semiconductor was deposited was polished to a thickness of about 100 μm. Next, the second with high resistance
A part of the gallium indium nitride film was removed by RIE from the surface to a depth reaching the Si-doped GaN layer. Then, Al, C are formed on the exposed surface of the Si-doped GaN layer.
A thin film of r, Al, and Au is sequentially formed, and then 550 in a nitrogen atmosphere.
Annealed at 5 ° C for 5 minutes to form an n-electrode. The second
On the surface of the Mg-doped high-resistance gallium indium nitride layer of
Thin films of i and Au were sequentially formed and annealed in air at 550 ° C. for 10 minutes to form a p electrode. Next, connect the gold wire to each electrode and mold with resin according to the usual method to LE.
D. When it was made to emit light at a forward voltage of 20 mA, it showed blue light emission of Vf3.5V and a wavelength of 450 nm.
The emission output was 3 mW, which was a very good characteristic.

【0021】[0021]

【実施例7】Mg拡散防止或いは電子キャリアブロック
のために積層した厚さ10nmのアンドープAl0.1
Ga0.9N層までは実施例5と同一の方法で作成し
た。該Al0.1Ga0.9N層上に、以下のように第
1及び第2の窒化ガリウムインジウム膜を作成した。1
050℃から950℃まで10℃/分程度で冷却しなが
ら、主キャリアガスとして水素ガスを8リットル/分、
アンモニアを3.5リットル/分、TMG用のキャリア
ガスを40cc/分で流し、In源ガスとしてTMIを
Ga源ガス1に対して10%となるように、ドーパント
として、Mg源ガスとしてCpMgをGa源ガス1に
対して0.15%となるように流し、第1の窒化ガリウ
ムインジウム膜を作成した。その後、主キャリアガスを
水素ガスから窒素ガスに切り替え、950℃から850
℃まで10℃/分程度で冷却しながらTMG用のキャリ
アガスを4cc/分流し、In源ガスとしてTMIをG
a源ガス1に対して5%となるように、ドーパントとし
て、Mg源ガスとしてCpMgをGa源ガス1に対し
て0.5%となるように流し、第2の窒化ガリウムイン
ジウム膜を形成した。成膜後,窒素ガスをそのまま流し
ながら常温まで自然冷却した。成膜後は実施例5と同様
な方法でLEDを作成し、特性評価を行った。順方向電
圧20mAにおいて発光させたところ、Vf3.6V、
波長450nmの青色発光を示し、発光出力は2.8m
Wと非常に良好な特性を示した。
[Embodiment 7] Undoped Al 0.1 having a thickness of 10 nm laminated to prevent Mg diffusion or block electron carriers.
The layers up to the Ga 0.9 N layer were formed by the same method as in Example 5. First and second gallium indium nitride films were formed on the Al 0.1 Ga 0.9 N layer as follows. 1
While cooling from 050 ° C. to 950 ° C. at about 10 ° C./min, hydrogen gas as a main carrier gas was 8 liters / min,
Ammonia was flowed at 3.5 liters / minute, TMG carrier gas was flowed at 40 cc / minute, and TMI as In source gas was 10% with respect to Ga source gas 1 so that Cp 2 was used as a dopant and Mg source gas. Mg was made to flow to Ga source gas 1 so that it might become 0.15%, and the 1st gallium indium nitride film was created. After that, the main carrier gas was switched from hydrogen gas to nitrogen gas, and the temperature was changed from 950 ° C to 850 ° C.
Carrier gas for TMG is flowed at 4 cc / min while cooling to 10 ° C./min at about 10 ° C./min, and TMI is used as an In source gas at G
a. As a dopant, Cp 2 Mg as a Mg source gas was flowed so as to be 5% with respect to the a source gas 1 so as to be 0.5% with respect to the Ga source gas 1, and the second gallium indium nitride film was formed. Formed. After forming the film, it was naturally cooled to room temperature while flowing nitrogen gas as it was. After forming the film, an LED was prepared in the same manner as in Example 5 and the characteristics were evaluated. When light was emitted at a forward voltage of 20 mA, Vf3.6V,
It emits blue light with a wavelength of 450 nm and the emission output is 2.8 m.
It showed a very good characteristic of W.

【0022】[0022]

【比較例1】基板処理、基板の高温クリーニング、低温
バッファ層形成、アンドープGaN膜形成は実施例1に
於いて述べたものと同一の方法で行った。次に温度を1
000℃まで下げ、該アンドープGaN膜上に主キャリ
アガスとして水素ガスを8リットル/分、アンモニアを
3.5リットル/分、TMG用のキャリアガスを40c
c/分で流しながら、Mg源ガスとしてCpMgをG
a源ガス1に対して0.2%となるように流し、10分
保持しGaN膜を作成した。その後、TMG,Cp
gを停止し、主キャリアガスを水素ガスから窒素ガスに
切り替え、8リットル/分、アンモニアを3.5リット
ル/分で流しながら、冷却速度10℃/分程度で850
℃にし、850℃以下は窒素雰囲気中で常温まで自然冷
却した。冷却後、MOCVD装置から、膜のついた基板
を取り出し、ホール測定を行うと高抵抗を示した。な
お、MOCVD装置から、取り出した膜のついた基板
を、窒素ガス雰囲気中で、750℃、30分間アニーリ
ングし、ホール測定を行うと、p型を示した。
COMPARATIVE EXAMPLE 1 Substrate treatment, substrate high temperature cleaning, low temperature buffer layer formation, and undoped GaN film formation were carried out in the same manner as described in Example 1. Then set the temperature to 1
The temperature was lowered to 000 ° C., and hydrogen gas was 8 liters / minute, ammonia was 3.5 liters / minute, and carrier gas for TMG was 40 c as main carrier gas on the undoped GaN film.
Cp 2 Mg as a Mg source gas while flowing at c / min
The a source gas was flowed at 0.2% with respect to 1 and held for 10 minutes to form a GaN film. After that, TMG, Cp 2 M
g, and the main carrier gas was changed from hydrogen gas to nitrogen gas, while flowing 8 liters / minute and ammonia at 3.5 liters / minute, while cooling at a rate of about 10 ° C./minute to 850
C., and 850.degree. C. or lower was naturally cooled to room temperature in a nitrogen atmosphere. After cooling, the substrate with the film was taken out from the MOCVD apparatus, and hole measurement was performed, which showed high resistance. The substrate with the film taken out from the MOCVD apparatus was annealed at 750 ° C. for 30 minutes in a nitrogen gas atmosphere, and hole measurement was performed to show a p-type.

【0023】[0023]

【比較例2】基板処理、基板の高温クリーニング、低温
バッファ層形成、アンドープGaN膜形成は実施例1に
於いて述べたものと同一の方法で行った。次に温度を1
000℃まで下げ、該アンドープGaN膜上に、比較例
1の成膜条件に、In源ガスとしてTMIをGa源ガス
1に対して10%流す条件を加えて、薄膜を作成した。
成膜後は比較例1と同一の方法で行った。冷却後、MO
CVD装置から、膜のついた基板を取り出し、ホール測
定を行うと高抵抗を示した。なお、MOCVD装置か
ら、取り出した膜のついた基板を、窒素ガス雰囲気中
で、750℃、30分間アニーリングし、ホール測定を
行うと、p型を示した。
COMPARATIVE EXAMPLE 2 Substrate treatment, substrate high temperature cleaning, low temperature buffer layer formation, and undoped GaN film formation were performed in the same manner as described in Example 1. Then set the temperature to 1
The temperature was lowered to 000 ° C., and a thin film was formed on the undoped GaN film by adding the film forming condition of Comparative Example 1 to the condition that TMI as an In source gas was caused to flow by 10% with respect to the Ga source gas 1.
After the film formation, the same method as in Comparative Example 1 was used. After cooling, MO
When the substrate with the film was taken out from the CVD device and hole measurement was performed, it showed high resistance. The substrate with the film taken out from the MOCVD apparatus was annealed at 750 ° C. for 30 minutes in a nitrogen gas atmosphere, and hole measurement was performed to show a p-type.

【0024】[0024]

【比較例3】基板処理、基板の高温クリーニング、低温
バッファ層形成、アンドープGaN膜,第1の窒化ガリ
ウムインジウム膜形成は実施例1に於いて述べたものと
同一の方法で行った。その後、主キャリアガスを水素ガ
スから窒素ガスに切り替えて、8リットル/分で流し、
アンモニアを3.5リットル/分で流しながら、TMG
用のキャリアガスを10cc/分で流し、In源ガスと
してTMIをGa源ガス1に対して10%、Mg源ガス
としてCpMgをGa源ガス1に対して0.15なる
ように流し、1000℃で10分間保持し第2の窒化ガ
リウムインジウム膜を作成した。その後、TMG,TM
I、CpMgを停止し、主キャリアガスの窒素ガスを
8リットル/分、アンモニアを3.5リットル/分で流
しながら、冷却速度10℃/分程度で850℃にし、8
50℃以下は窒素ガスだけをそのまま流しながら常温ま
で自然冷却した。冷却後、MOCVD装置から、膜のつ
いた基板を取り出し、ホール測定を行うと高抵抗を示し
た。RIE法で第2の膜を除去後、ホール測定を行った
が、高抵抗で抵抗率は10Ω・cm以上の半絶縁材料
であった。なお、MOCVD装置から、取り出した膜の
ついた基板を、窒素ガス雰囲気中で、750℃、30分
間アニーリングし、ホール測定を行うと、p型を示し、
さらにRIE法で第2の膜を除去後、ホール測定を行う
とp型を示した。
COMPARATIVE EXAMPLE 3 Substrate treatment, substrate high temperature cleaning, low temperature buffer layer formation, undoped GaN film, and first gallium indium nitride film formation were carried out in the same manner as described in Example 1. After that, the main carrier gas was switched from hydrogen gas to nitrogen gas and flowed at 8 liters / minute,
TMG while flowing ammonia at 3.5 l / min
Carrier gas at a flow rate of 10 cc / min, TMI as an In source gas at 10% relative to the Ga source gas 1, and Cp 2 Mg as an Mg source gas at 0.15 relative to the Ga source gas 1, The second gallium indium nitride film was formed by holding at 1000 ° C. for 10 minutes. After that, TMG, TM
I, Cp 2 Mg was stopped, the main carrier gas was nitrogen gas at 8 liters / minute, and ammonia was made to flow at 3.5 liters / minute, while cooling to 850 ° C. at a cooling rate of about 10 ° C./minute.
At 50 ° C. or lower, the temperature was naturally cooled to room temperature while flowing only nitrogen gas. After cooling, the substrate with the film was taken out from the MOCVD apparatus, and hole measurement was performed, which showed high resistance. After the second film was removed by the RIE method, hole measurement was performed, and it was a semi-insulating material having high resistance and a resistivity of 10 5 Ω · cm or more. The substrate with the film taken out from the MOCVD apparatus was annealed in a nitrogen gas atmosphere at 750 ° C. for 30 minutes, and hole measurement was performed to show p-type.
Furthermore, after the second film was removed by the RIE method, hole measurement was performed, and it was found to be p-type.

【0025】[0025]

【比較例4】基板処理、基板の高温クリーニング、低温
バッファ層形成、アンドープGaN膜形成は実施例1に
於いて述べたものと同一の方法で行った。次に温度を1
000℃まで下げ、該アンドープGaN膜上に主キャリ
アガスとして水素ガスを8リットル/分、アンモニアを
3.5リットル/分、TMG用のキャリアガスを40c
c/分で流しながら、In源ガスとしてTMIをGa源
ガス1に対して10%、Mg源ガスとしてCpMgを
Ga源ガス1に対して0.2%となるように流し、10
分保持し第1の窒化ガリウムインジウム膜を作成した。
その後、TMG,TMIn,CpMgを停止し、主キ
ャリアガスを水素ガスから窒素ガスに切り替え8リット
ル/分で流し、アンモニアを3.5リットル/分で流し
ながら、冷却速度10℃/分程度で900℃にした。9
00℃で再度TMG用のキャリアガスを10cc/分で
流し、In源ガスとしてTMIをGa源ガス1に対して
10%、Mg源ガスとしてCpMgをGa源ガス1に
対して0.08%となるように流し、10分間保持し第
2の窒化ガリウムインジウム膜を作成した。成膜後、窒
素ガスだけをそのまま流しながら自然冷却した。冷却
後、MOCVD装置から、膜のついた基板を取り出し、
ホール測定を行うと高抵抗を示した。RIE法で第2の
膜を除去後、ホール測定を行ったが、高抵抗で抵抗率は
10Ω・cm以上の半絶縁材料であった。なお、MO
CVD装置から、取り出した膜のついた基板を、窒素ガ
ス雰囲気中で、750℃、30分間アニーリングし、ホ
ール測定を行うと、p型を示し、さらにRIE法で第2
の膜を除去後、ホール測定を行うとp型を示した。
COMPARATIVE EXAMPLE 4 Substrate treatment, substrate high temperature cleaning, low temperature buffer layer formation, and undoped GaN film formation were carried out in the same manner as described in Example 1. Then set the temperature to 1
The temperature was lowered to 000 ° C., and hydrogen gas was 8 liters / minute, ammonia was 3.5 liters / minute, and carrier gas for TMG was 40 c as main carrier gas on the undoped GaN film.
While flowing at c / min, TMI as an In source gas is 10% with respect to the Ga source gas 1 and Cp 2 Mg as an Mg source gas is 0.2% with respect to the Ga source gas 1 and 10%.
Then, the first gallium indium nitride film was formed.
After that, TMG, TMIn, and Cp 2 Mg were stopped, the main carrier gas was switched from hydrogen gas to nitrogen gas, and flowed at 8 liters / minute, while flowing ammonia at 3.5 liters / minute, the cooling rate was about 10 ° C./minute. To 900 ° C. 9
A carrier gas for TMG was flown again at 00 ° C. at 10 cc / min, TMI as an In source gas was 10% with respect to the Ga source gas 1, and Cp 2 Mg as an Mg source gas was 0.08 with respect to the Ga source gas 1. %, And the mixture was held for 10 minutes to form a second gallium indium nitride film. After forming the film, it was naturally cooled while flowing only nitrogen gas. After cooling, take out the substrate with the film from the MOCVD device,
The Hall measurement showed high resistance. After the second film was removed by the RIE method, hole measurement was performed, and it was a semi-insulating material having high resistance and a resistivity of 10 5 Ω · cm or more. MO
The substrate with the film taken out from the CVD apparatus was annealed in a nitrogen gas atmosphere at 750 ° C. for 30 minutes, and hole measurement was performed to show p-type.
After removing the film, the hole measurement showed a p-type.

【発明の効果】本発明の成長方法によると、成膜後のア
ニーリング処理が必要なく、as−grownで、高い
正孔濃度を有する低抵抗のp型窒化アルミニウムガリウ
ムインジウムを形成でき、製造効率に優れる方法を得る
ことができる。
According to the growth method of the present invention, it is possible to form a low-resistance p-type aluminum gallium indium nitride having a high hole concentration with an as-grown without the need for an annealing treatment after film formation, and to improve the manufacturing efficiency. An excellent method can be obtained.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】有機金属気相成長方法を使用して窒化ガリ
ウム系化合物半導体を製造する方法であって、インジウ
ム、アルミニウム及びガリウムの各金属を含む有機金属
原料を使用して先ず、水素を主成分とする雰囲気中で、
950℃から1100℃の温度範囲で、p型不純物をド
ープした第1の窒化アルミニウムガリウムインジウム化
合物半導体層を成長させた後、引き続き該窒化アルミニ
ウムガリウムインジウム化合物半導体層上に、窒素を主
成分とする雰囲気中で、950℃から750℃の温度範
囲で、p型不純物をドープした高抵抗の第2の窒化アル
ミニウムガリウムインジウム化合物半導体層を成長させ
た後、常温まで自然冷却することを特徴とする窒化ガリ
ウム系化合物半導体の製造方法。
1. A method for producing a gallium nitride-based compound semiconductor using an organometallic vapor phase epitaxy method, which comprises using an organometallic raw material containing each metal of indium, aluminum and gallium, and mainly using hydrogen. In the atmosphere as an ingredient,
After growing the first aluminum gallium indium nitride compound semiconductor layer doped with p-type impurities in the temperature range of 950 ° C. to 1100 ° C., nitrogen is the main component on the aluminum gallium indium indium compound semiconductor layer. In the atmosphere, a high-resistance second aluminum gallium indium nitride compound semiconductor layer doped with p-type impurities is grown in a temperature range of 950 ° C. to 750 ° C., and then naturally cooled to room temperature. Method of manufacturing gallium compound semiconductor.
【請求項2】前記第1の窒化アルミニウムガリウムイン
ジウム化合物半導体が、抵抗率が10Ω・cm以下であ
り、前記第2の窒化アルミニウムガリウムインジウム化
合物半導体が、抵抗率が10Ω・cm以上の高抵抗の
化合物半導体であることを特徴とする請求項1に記載の
窒化ガリウム系化合物半導体の製造方法。
2. The first aluminum gallium indium nitride compound semiconductor has a resistivity of 10 Ω · cm or less, and the second aluminum gallium indium nitride compound semiconductor has a resistivity of 10 6 Ω · cm or more. The method for producing a gallium nitride-based compound semiconductor according to claim 1, wherein the method is a compound semiconductor having resistance.
JP2001335707A 2001-09-27 2001-09-27 Method for manufacturing gallium nitride-based compound semiconductor Pending JP2003110141A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001335707A JP2003110141A (en) 2001-09-27 2001-09-27 Method for manufacturing gallium nitride-based compound semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001335707A JP2003110141A (en) 2001-09-27 2001-09-27 Method for manufacturing gallium nitride-based compound semiconductor

Publications (1)

Publication Number Publication Date
JP2003110141A true JP2003110141A (en) 2003-04-11

Family

ID=19150652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001335707A Pending JP2003110141A (en) 2001-09-27 2001-09-27 Method for manufacturing gallium nitride-based compound semiconductor

Country Status (1)

Country Link
JP (1) JP2003110141A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101186681B1 (en) * 2005-10-05 2012-09-28 서울옵토디바이스주식회사 P-LAYER OF A GaN BASED COMPOUND SEMICONDUCTOR AND METHOD OF FABRICATING THE SAME

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101186681B1 (en) * 2005-10-05 2012-09-28 서울옵토디바이스주식회사 P-LAYER OF A GaN BASED COMPOUND SEMICONDUCTOR AND METHOD OF FABRICATING THE SAME

Similar Documents

Publication Publication Date Title
JP2540791B2 (en) A method for manufacturing a p-type gallium nitride-based compound semiconductor.
JP2778405B2 (en) Gallium nitride based compound semiconductor light emitting device
JP2917742B2 (en) Gallium nitride based compound semiconductor light emitting device and method of manufacturing the same
JP3846150B2 (en) Group III nitride compound semiconductor device and electrode forming method
JPH06232451A (en) Growing method of p-type gallium nitride
JPH0715041A (en) Light emitting element of gallium nitride based compound semiconductor
US6346720B1 (en) Layered group III-V compound semiconductor, method of manufacturing the same, and light emitting element
KR100806262B1 (en) Method for manufacturing p-type group iii nitride semiconductor, and group iii niride semiconductor light-emitting device
JP2004134750A (en) Manufacturing method of p-type group iii nitride compound semiconductor
JP2713095B2 (en) Semiconductor light emitting device and method of manufacturing the same
JP2918139B2 (en) Gallium nitride based compound semiconductor light emitting device
JP2713094B2 (en) Semiconductor light emitting device and method of manufacturing the same
JP4103309B2 (en) Method for manufacturing p-type nitride semiconductor
JP4974635B2 (en) Film forming method of group III nitride compound semiconductor multilayer structure
JP3522610B2 (en) Method for manufacturing p-type nitride semiconductor
JP3064891B2 (en) Group 3-5 compound semiconductor, method of manufacturing the same, and light emitting device
JPH10144960A (en) Method for manufacturing p-type nitride semiconductor and nitride semiconductor element
JP2809045B2 (en) Nitride semiconductor light emitting device
JP4609917B2 (en) Method for producing aluminum gallium nitride layer, method for producing group III nitride semiconductor light emitting device, and group III nitride semiconductor light emitting device
JP2008098245A (en) Film forming method of group iii nitride compound semiconductor laminate structure
JP2006128653A (en) Group iii-v compound semiconductor, its manufacturing method and its use
JP3251600B2 (en) Organic metal growth method
JP2560964B2 (en) Gallium nitride compound semiconductor light emitting device
JP2003110141A (en) Method for manufacturing gallium nitride-based compound semiconductor
JPH05198841A (en) Forming method for p-type of gallium nitride compound semiconductor