JP2003103285A - 水質浄化用多孔体 - Google Patents

水質浄化用多孔体

Info

Publication number
JP2003103285A
JP2003103285A JP2001304507A JP2001304507A JP2003103285A JP 2003103285 A JP2003103285 A JP 2003103285A JP 2001304507 A JP2001304507 A JP 2001304507A JP 2001304507 A JP2001304507 A JP 2001304507A JP 2003103285 A JP2003103285 A JP 2003103285A
Authority
JP
Japan
Prior art keywords
water
porous body
silicon carbide
porous
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001304507A
Other languages
English (en)
Inventor
Kenji Kito
健児 鬼頭
Makiko Tazane
真紀子 田実
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritake Co Ltd
Original Assignee
Noritake Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritake Co Ltd filed Critical Noritake Co Ltd
Priority to JP2001304507A priority Critical patent/JP2003103285A/ja
Publication of JP2003103285A publication Critical patent/JP2003103285A/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Biological Treatment Of Waste Water (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

(57)【要約】 【課題】長期間にわたり優れた水浄化能力を有する水質
浄化用多孔体を得る。 【解決手段】水質浄化用多孔体であって、その表面に露
出した炭化珪素を有することを特徴とする水質浄化用多
孔体。該多孔体は、好ましくは、実質的にセラミックス
からなり、かつ、炭化珪素がセラミックスに対してセラ
ミック質結合材で結合されて構成される。また、該多孔
体は、その平均細孔径が10〜500μmの範囲であ
り、その気孔率が30〜95%の範囲であるのが好まし
い。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、水質浄化用の多孔
体すなわち水の浄化に適用する多孔体に関し、より詳し
くは水槽等における水中の有機成分やアオコ等の藻類の
生成を減少させる微生物(菌体)を固定保持するための
水質浄化用多孔体に関するものである。
【0002】
【従来の技術】観賞魚等を家庭内の水槽で長期にわたり
飼育生存させていくためには、水槽中の水質を良好に管
理することが要求される。魚類は餌を食べて消化し、排
泄物を水中に放出するが、この排泄放出物は通常の自然
界では大量に存在するバクテリア等の微生物によって分
解されている。同時にアンモニアが放出されるが、この
アンモニアは、好気性の微生物、消化細菌等により分解
され、亜硝酸イオン(NO2 -)から硝酸イオン(N
3 -)に変換されて無害化される。
【0003】しかしながら、家庭用水槽内では魚類の生
物固体密度が自然条件に比較してきわめて高く、加えて
好気性細菌の絶対量も著しく少ないため、魚類に有害と
考えられるアンモニアや亜硝酸イオンの濃度が高くなる
ので、観賞魚等の長期飼育にはこれらの濃度を常に或る
レベル以下に保つことが必須となる。このため、例えば
活性炭などの多孔性濾材を充填した濾過槽を別に設け、
配管を介し、ポンプ駆動等で水槽中の水を汲み取り、濾
過して循環させることが考えられる。
【0004】ところが、活性炭は多孔性で、きわめて比
表面積が大きく、吸着能については格段の性能を有する
が、その分、細孔径が極端に小さいため、微生物の付着
固定による長期間の水質浄化効果は期待できない。この
ため、活性炭ではなく、微生物の付着固定に適した細孔
径約1〜10μmの孔を多数有する有機質系或いは無機
質系の多孔性の濾過材が選択、使用されている。このう
ち有機質系の濾過材は、変質しやすく良好な気孔を形成
することが難しい。このため、一般には無機質系の多孔
性濾過材が賞揚されているが、未だ十分ではない。
【0005】さらに、上記のように、水中に溶解してい
る有機物ばかりでなく、汚濁した水を長期間放置してお
くと、アオコ等の藻類が水中に懸濁したり、水槽壁面に
付着したりするため、水槽自体、観賞用としての美観が
著しく損なわれてしまう。このため、例えば1週間から
1箇月の期間ごとに水槽の水を入れ替えたり、さらには
水槽自体を洗浄する必要がある。
【0006】水の浄化に適する微生物担持用の多孔性セ
ラミック体には、例えば特公平6−30580号があ
り、ここでは多孔質セラミック材の細孔が0.1〜1μ
mの微生物の担持固定と10〜100μmの微生物の増
殖にそれぞれ適する2つの細孔径分布を有する多孔質セ
ラミック体が開示され、また特開平7−100479号
には、細孔径が10〜50μmの多孔性セラミック体
が、特開平7−267752号には粒状骨材と前記骨材
と同一化学組成の微粉を結合剤とした多孔性セラミック
体が開示されている。
【0007】特開平6−256069号では、連通気孔
と空気及び水の透過性を確保するための多孔性セラミッ
ク材として、平均粒径10〜500μmの耐火性セラミ
ック質粗粒をガラスで焼結結合させている。また、特開
平8−266189号では観賞魚の飼育に適する濾過材
として吸着能を有するゼオライトと炭素を含む多孔性セ
ラミック材が開示され、さらに関連する公報として特公
平7−46992号、特公平7−77639、特開平9
−220089号、特開2000−15019号などが
ある。
【0008】
【発明が解決しようとする課題】それらは多数、かつ、
各種の大きさの細孔を有する多孔性セラミック材とは言
え、微生物の担持性は充分であるが、必ずしも充分満足
に水槽中の水を浄化するものではない。このため、浄化
率を高めるためにポンプなどで強制的に水槽中の汚濁さ
れた水を槽外に汲み出し、槽外に設置した濾過材を通過
させる循環タイプの装置が利用されている。ポンプ利用
等の強制的水循環タイプにおいては、駆動源として電力
が必要であるのに加え、ポンプなどの稼働部分を有する
ので、常にメンテナンスが必要となる。
【0009】本発明者は、以上のような事情に鑑み、水
質浄化用の多孔性セラミック材について鋭意研究、実験
を進めた結果、驚くべきことに、炭化珪素が表面に露出
した多孔性セラミック材を魚などが飼育される水槽に単
に配置するだけで、優れた水の浄化作用を発現すること
を見い出し、本発明を完成するに至った。すなわち、本
発明は、ポンプなどの駆動装置やそのための電力、さら
にはそれらの利用による修理、保守などが不要で、単に
水槽中に配置するだけで汚濁された水を浄化できる水質
浄化用多孔体を提供することを目的とする。
【0010】
【課題を解決するための手段】本発明は、水質浄化用多
孔体であって、その表面に露出した炭化珪素を有するこ
とを特徴とする水質浄化用多孔体である。そして、飼育
されている魚類の餌や排泄物等で汚濁された水を多孔体
の表面に存在する炭化珪素と接触させる。この多孔体
は、実質的にセラミックスからなり、かつ、炭化珪素が
該セラミックスに対してセラミック質結合材で結合され
ているのが好ましい。
【0011】
【発明の実施の形態】炭化珪素は、珪素と炭素からな
り、化学式SiCとして示される物質である。炭化珪素
は、人工で合成される高硬度、高融点の物質であり、高
温特性と耐摩耗性に優れ、耐火物工業、製鋼工業、砥石
工業では周知の材料である。本発明においては、この炭
化珪素を水質浄化用多孔体の表面に露出して保持させて
用いる。
【0012】前述のとおり、水質浄化用多孔性セラミッ
ク材については、従来各種提案がある。しかし、それら
の多孔性基材はアルミナ、粘土、ゼオライトなどの酸化
物であるか、或いはこれらの酸化物の多孔体に微生物と
の親和性向上のために炭素を被覆したものであり、本発
明のように、炭化珪素を水質浄化用に積極的に利用し、
その効果を認識した事実は存在しない。
【0013】炭化珪素には、大きくはα及びβの2種の
結晶構造が知られ、さらに実際に使用される大部分を占
めるα型にも各種の結晶構造タイプが存在し、例えば4
H、6H、15R、21R等が知られている。また、炭
化珪素は純度により、純度99%以上で薄い緑色透明の
高純度品いわゆるGCと純度95〜98%の黒色のCに
分類される。また、その市販品は粒径5mmの粗粒から
粒径0.5μmの微粉まで各種グレードの粉が容易に入
手できる。
【0014】本発明においては、それらいずれの炭化珪
素も用いられるが、炭化珪素は好ましくは炭化珪素粒と
して適用される。中でも、高純度のGCで、かつ、より
粒径の小さい微粉を用いることが水との接触面積の増大
による浄化効率を高める点で好ましい。炭化珪素粒は、
基材である多孔体の表面にできるだけその表面積が多く
なるように固着(結合)させる。
【0015】基材すなわち炭化珪素粒の固着ベースとな
る多孔体の材質には特に限定はなく、有機物タイプとし
ては、ポリ塩化ビニール、ポリエチレン、フェノール樹
脂、ポリプロピレン、PET、ポリウレタン、アクリル
樹脂などの熱可塑性或いは熱硬化性樹脂が挙げられる。
例えばポリウレタンの場合、連続気泡型発泡体として知
られているウレタンフォ−ムがあり、その発泡方法、製
造方法も周知である。一方、無機物タイプとしては、セ
メント、粘土、アルミナ、シリカ、陶石等の常温硬化タ
イプ、高温焼結タイプの材料などが挙げられる。
【0016】基材の多孔性の程度は、使用する材質にも
よるが、大きい方が水浄化に有利であり、基材が有機物
タイプの場合、多孔性は大きくすることが可能である。
しかし、その程度があまり大きいと多孔性の機械的強度
が不足して使用中に壊れ易く、耐久性に劣り、一方、多
孔性の程度が小さいと汚濁水との接触機会が減少し、水
質浄化効率が低下する。
【0017】また、本発明の水質浄化用多孔体は、炭化
珪素粒を骨材とし、有機物成分、特に樹脂類、例えばフ
ェノール樹脂を通常1〜5重量%の少量で結合材とする
有機結合型炭化珪素製多孔体としても構成できる。ま
た、同じく炭化珪素粒を骨材とし、無機物成分を結合材
とする無機結合型炭化珪素多孔体も好適である。これら
の場合、その表面に炭化珪素が露出しているので、これ
が水質浄化機能を発揮する。
【0018】上記無機物成分結合材(剤)の例として
は、ビトリファイド結合材を挙げることができる。ビト
リファイド結合材として、予め所要化学成分を含む天然
鉱物、試薬等を混合溶融し、そしてガラス化させ、次い
で急冷し微粉砕したいわゆるフリット、或いは珪砂、粘
土、長石、陶石等を高温焼成後、所望の化学成分のガラ
スになるように構成成分を調合したビトリファイド結合
材が知られている。
【0019】このような無機物成分を結合材とする無機
結合型炭化珪素多孔体、すなわち水質浄化用多孔体は、
従来周知のセラミック質多孔体を製造する場合と同様に
して製造することができるが、以下その製造態様例を説
明する。セラミック質多孔体の製造において、炭化珪素
粒を多量に添加しても耐火度が高いため炭化珪素はその
まま残すことができる。しかし、炭化珪素は、1300
℃以上になると表面の炭素分が空気中の酸素と反応して
二酸化炭素になり、残った珪素分も反応して二酸化珪
素、すなわちシリカガラスとなる。炭化珪素粒の粒径が
粗いと、多くはこれ以上の反応が進行しなくなるため、
平均粒径が10μm以上、好ましくはJIS R600
1に規定する篩の目開き##360以上の42μm以上
であるのがよく、逆に5μm以下の微粉になればなるほ
ど上記分解反応が進行し、炭化珪素粒が焼失する可能性
が大きくなる。
【0020】また、この時、上記のように二酸化炭素の
発生があるため、通常焼結体の表面には発泡の跡が見ら
れ、焼結体の細孔量も急速に減少する。このため、13
00℃以上の高温は粘土や長石等を使用するときは好ま
しくない。無機結合材を用い、特に焼結現象を利用して
炭化珪素粒を結合固着させる場合は、樹脂等の有機結合
材を使用するよりも、微生物の固定をするのに好ましい
状態になるが、その製造は1300℃以下であるのが好
ましい。
【0021】本発明の水質浄化用多孔体は、微生物の担
持のため、細孔径が0.5〜10μmの孔を比較的多く
含むことが好ましいが、この範囲の細孔径が多孔体の最
大含有率になると、汚濁された水との単なる静的な接触
機会が多くなるにとどまり、汚濁水との動的接触機会が
少なくなり、最終的な浄化効率が劣るようになってしま
う。
【0022】このため、本発明の水質浄化用多孔体にお
いては、平均細孔径が10〜500μmの範囲であるの
が好ましい。10μm以下であると(すなわちこの値を
下回ると)水の動的なフローが期待できないため、水の
浄化効率が劣ってしまう。一方、500μm以上である
と(すなわちこの値を上回ると)微生物の担持が期待で
きる細孔が少なくなり、また、多孔体の機械的強度も劣
って使用中に破損する恐れが生じる。
【0023】また、本発明の水質浄化用多孔体において
は、その気孔率が30〜95%の範囲であるのが好まし
い。水質浄化用多孔体の気孔率が30%を下回ると微生
物の担持総数が少なくなり、その結果、汚濁水の浄化効
力が劣ることになる。一方、その気孔率が95%を上回
ると、多孔体の機械的強度が弱くなり、使用中に破損す
る恐れが生じる。
【0024】
【実施例】以下、実施例に基づき本発明をさらに詳しく
説明するが、本発明がこれら実施例に限定されないこと
はもちろんである。
【0025】〈実施例1〉炭化珪素を表面に露出させて
なるセラミック質多孔体の製造は、例えば耐火物、特に
砥石の製造工程が多くそのまま利用できる。粒度#60
番の緑色炭化珪素粒(JIS R6001に規定、昭和
電工社製“グリーンデンシック”、純度99.3%)1
00重量部、結合剤(長石70wt%、陶石20wt
%、木節粘土10wt%の混合物)18重量部及びデキ
ストリン2重量部と、所定量の水を秤量混合した。
【0026】次いで、上記混合物を10cm×10cm
の正方形の金型に投入し、約100kg/cm2の圧力を
かけ、10cm×10cm×1cm(1cmは厚さ)の
正方形板を得た。この板を100℃で10時間保持して
充分に乾燥させた後、最高温度1320℃で3時間焼成
した。得られた焼結炭化珪素含有多孔体を粗粉砕し、粒
径3〜8mmに篩い分けた粒状多孔体を得た。その物性
を表1及び図1に示している。
【0027】各物性の測定方法は以下のとおりとした。
この点、以下の実施例、比較例についても同じである。 (1)充填嵩比重:粒径3〜8mmの多孔体50gを1
00mlのメスシリンダー上から静かに投入し、占有し
た体積を求め、これを重量で割って求めた。 (2)吸水率:乾燥させた上記粒状多孔体を20g秤量
し、次いでこれを水の入った200mlビーカーに投入
し、約10分間程度煮沸し、冷却後、濡れたタオルで表
面に付着した水分を拭い去り、包水重量と乾燥重量から
算出した。 (3)平均細孔径:水銀圧入法にて細孔分布を求め、こ
の分布より平均値を求めた。 (4)細孔容積:水銀圧入法から上記(3)と同時に測
定した。 (5)気孔率:JIS R2205に準拠して測定し
た。 (6)比表面積:N2ガスによるBET法による。
【0028】〈実施例2〉粒度#220の黒色炭化珪素
(昭和電工社製、商品名:デンシック、純度98.7
%)とフリット化されたビトリファイド結合剤を用い
た。この結合剤は、硼砂33.8重量部、ホウ酸26.
7重量部、珪砂39.5重量部を秤量し、充分混合した
後、1200℃以上の温度で1時間保持して溶解、溶融
し、均質なガラスとし、次いでこの溶融物を水中に投下
し急冷してフリット塊とする。この塊を充分に粉砕して
平均粒径が数μmの微粉とした。次に、このフリット粉
75重量部と粘土25重量部、そしてムライト粉5重量
部を各々秤量し充分混合した。この結合剤の化学組成は
以下のとおりである。SiO2:57.7wt%、B2
3:27.5wt%、Al23:8.1wt%、Na
2O:5.6wt%、K2O:0.1wt%、CaO:
0.1wt%、MgO:0.1wt%、TiO2:0.
6wt%、Fe23:0.2wt%。
【0029】上記炭化珪素100重量部と上記で得た結
合剤10重量部を皿型の混合器に投入し、乾式で混合し
た。次いで、適量の水と、デキストリンを1.5重量部
添加し、炭化珪素粒の表面にまんべんなく結合剤粉が付
着しているように調製した。なお、デキストリンに代え
てCMCのような有機1次結合剤を用いてもよく、添加
量は1〜2重量部程度でよい。この調製粉をプレス用金
型に入れ、150kg/cm2の圧力で直径20cm、
厚み2cmの円盤状に成形した。成形物を充分に乾燥し
た後、窯に入れ、大気雰囲気中、10時間で最高温度9
25℃に昇温した。この温度で5時間保持して焼結した
後、12時間かけて室温まで冷却した。以下、実施例1
と同様に粗粉砕し、分級して粒状セラミック質多孔体を
得た。その物性を表1に示す。
【0030】〈実施例3〉適度の可塑性と粘着力を有す
る村上粘土(耐火度:約SK27)100重量部、平均
粒径12μmの#1000のGC炭化珪素粉200重量
部及び平均粒径0.3mmのクルミ粉40重量部に、適
量の水を加えて、水分18%の混練物をつくり、押出成
形機で直径50mmφの棒状成形体を得た。次いで、こ
れを15mmの厚みで輪切りにし、100℃で乾燥し
た。この乾燥物を最高温度1100℃に3時間保持し焼
成した。焼成物の物性を表1に示す。
【0031】〈比較例1〉粒度#80番の褐色溶融アル
ミナ砥粒(昭和電工社製、商品名=モランダムA−4
0)100重量部、ビトリファイド結合剤12重量部
(長石46重量部、陶石35重量部、粘土15重量部、
石灰石3重量部、そしてマグネシア1重量部よりなる混
合粉)及びデキストリン1重量部に、適量の水を秤量添
加して混合物を調製し、以降、焼成温度を最高温度13
00℃とした以外は実施例1と同様にして粒径3〜8m
mに篩い分けた粒状多孔体を得た。得られた表面がアル
ミナ質のセラミック質多孔体の物性を表1に示す。
【0032】〈比較例2〉市販の角のない表面が滑らか
で径(直径)が3〜6mm程度の緻密な小石。
【0033】
【表 1】
【0034】《評価試験》上記各多孔体及び小石の水質
浄化能力の評価は次のように行った。容量が横36cm
×奥行き22cm×高さ26cmの5個の各ガラス製透
明水槽に水道水11リットルを入れ、それぞれ、実施例
1〜3及び比較例1の各セラミック質多孔体1.6k
g、比較例2の小石3kgを投入し、これら各水槽中
で、それぞれ、大きさ約10cmのワキン四匹を飼育し
た。各水槽中の水はポンプ等の強制撹拌や外部に設置し
た活性炭槽を循環させるなどの付加装置は何もなく、そ
のまま自然の放置状態とした。
【0035】5箇月後の目視によるワキンの飼育状況及
び水槽の濁り色調、藻の発生状況の観察結果は以下のと
おりであった。なお、一部、試験開始後5箇月経過途中
の観察結果も記載している。 〈実施例1〉水槽ガラス壁面への藻類の付着、藻類の発
生は殆どなし。水の濁りは若干あるものの十分鑑賞に堪
える。 〈実施例2〉上記実施例1と同じ。 〈実施例3〉水槽ガラス壁面への藻類の付着、藻類は認
められず。濁りは実施例1〜3中最も少なかった。 〈比較例1〉水槽ガラス壁の半分程度に直径数mm程度
の藻が斑点状に付着していた。水槽の水は濁った薄い赤
褐色を呈し、ワキンの動きは鈍かった。 〈比較例2〉水槽のガラス壁面全体に緑褐色の藻類が付
着し、さらに水槽内部の水も緑褐色を呈し、透明度はき
わめて悪い。ワキンは3箇月目に一匹死亡した。
【0036】
【発明の効果】本発明の炭化珪素が表面に露出している
多孔体は、長期間にわたり水の浄化能力が優れている。
【図面の簡単な説明】
【図1】実施例1の粒状多孔体の細孔径分布測定結果を
示す図
フロントページの続き (72)発明者 田実 真紀子 愛知県名古屋市西区則武新町三丁目1番36 号 株式会社ノリタケカンパニーリミテド 内 Fターム(参考) 4B033 NA02 NA11 NB02 NB14 NB27 NB62 NB68 NC04 ND04 ND11 NE02 NF06 4D003 AA01 EA14 EA24 EA38 4G019 FA13

Claims (3)

    【特許請求の範囲】
  1. 【請求項1】水質浄化用の多孔体であって、その表面に
    露出した炭化珪素を有することを特徴とする水質浄化用
    多孔体。
  2. 【請求項2】前記多孔体が実質的にセラミックスからな
    り、かつ、前記炭化珪素がセラミックスに対してセラミ
    ック質結合材で結合されていることを特徴とする請求項
    1に記載の水質浄化用多孔体。
  3. 【請求項3】前記多孔体の平均細孔径が10〜500μ
    mの範囲であり、かつ、前記多孔体の気孔率が30〜9
    5%の範囲であることを特徴とする請求項1〜2のいず
    れかに記載の水質浄化用多孔体。
JP2001304507A 2001-09-28 2001-09-28 水質浄化用多孔体 Pending JP2003103285A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001304507A JP2003103285A (ja) 2001-09-28 2001-09-28 水質浄化用多孔体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001304507A JP2003103285A (ja) 2001-09-28 2001-09-28 水質浄化用多孔体

Publications (1)

Publication Number Publication Date
JP2003103285A true JP2003103285A (ja) 2003-04-08

Family

ID=19124419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001304507A Pending JP2003103285A (ja) 2001-09-28 2001-09-28 水質浄化用多孔体

Country Status (1)

Country Link
JP (1) JP2003103285A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009069731A1 (ja) * 2007-11-30 2009-06-04 Ngk Insulators, Ltd. 炭化珪素質多孔体
WO2012004893A1 (ja) * 2010-07-09 2012-01-12 小川 弘 汚水処理装置
CN108201794A (zh) * 2016-12-20 2018-06-26 韩国机械硏究院 利用经氧化处理的碳化硅的水处理用陶瓷分离膜及其制备方法
KR20180121853A (ko) * 2018-08-24 2018-11-09 한국기계연구원 산화 처리된 SiC를 이용한 수처리용 세라믹 분리막의 제조 방법
KR101918916B1 (ko) * 2018-08-24 2018-11-15 한국기계연구원 산화 처리된 SiC를 이용한 수처리용 세라믹 분리막

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009069731A1 (ja) * 2007-11-30 2009-06-04 Ngk Insulators, Ltd. 炭化珪素質多孔体
US8449644B2 (en) 2007-11-30 2013-05-28 Ngk Insulators, Ltd. Silicon carbide porous body
JP5478259B2 (ja) * 2007-11-30 2014-04-23 日本碍子株式会社 炭化珪素質多孔体
WO2012004893A1 (ja) * 2010-07-09 2012-01-12 小川 弘 汚水処理装置
CN108201794A (zh) * 2016-12-20 2018-06-26 韩国机械硏究院 利用经氧化处理的碳化硅的水处理用陶瓷分离膜及其制备方法
US10987635B2 (en) 2016-12-20 2021-04-27 Korea Institute Of Materials Science Ceramic membrane for water treatment using oxidation-treated SiC and method for manufacturing the same
CN108201794B (zh) * 2016-12-20 2021-07-16 韩国材料研究院 利用经氧化处理的碳化硅的水处理用陶瓷分离膜及其制备方法
KR20180121853A (ko) * 2018-08-24 2018-11-09 한국기계연구원 산화 처리된 SiC를 이용한 수처리용 세라믹 분리막의 제조 방법
KR101918916B1 (ko) * 2018-08-24 2018-11-15 한국기계연구원 산화 처리된 SiC를 이용한 수처리용 세라믹 분리막
KR102416209B1 (ko) * 2018-08-24 2022-07-04 한국재료연구원 산화 처리된 SiC를 이용한 수처리용 세라믹 분리막의 제조 방법

Similar Documents

Publication Publication Date Title
KR100434676B1 (ko) 하,폐수처리용 다공성 광물 담체 및 그 제조방법
JP4540656B2 (ja) 多孔質セラミックス用組成物及びそれを用いた多孔質セラミックス並びにその製造方法
CN106747558A (zh) 一种微孔过滤净化石及其制备方法
JPWO2005108680A1 (ja) 水制構造物、水制工用コンクリートブロック、およびこれらを用いた水制工法
JP2003103285A (ja) 水質浄化用多孔体
CN102503540B (zh) 圆球形凹凸棒活性炭陶粒滤料
JPH09220089A (ja) セラミック質微生物固定化担体
JP2002220291A (ja) セラミック濾材
KR100920490B1 (ko) 하천생태복원용 다공질 하상보호블록
KR100434613B1 (ko) 미생물 고정화용 다공성 세라믹 담체
CN100364639C (zh) 天然矿物吸附过滤芯的生产方法
JP2005270048A (ja) 微生物担体及びその製造方法
JP2011116626A (ja) 吸水材及びこれを利用した冷風扇
CN100360210C (zh) 天然矿物吸附过滤板的生产方法
JPH0492874A (ja) 多孔質セラミックスの製造方法
JPS5978679A (ja) 菌床などに用いる多孔セラミツク体
CN101348383B (zh) 一种用于水处理的陶瓷颗粒及其制备方法
KR100993120B1 (ko) 바텀 애쉬를 이용한 수질 정화체 및 그 제조방법
KR101901279B1 (ko) 산업 부산물을 이용한 흡착 담체 및 그 제조방법
JP3480668B2 (ja) 脱リン用水質浄化ポーラスコンクリート部材
JP2003144820A (ja) 多孔質焼成濾材
CN1810345A (zh) 轻质陶骨架滤料
JP2000070960A (ja) 建築廃材を利用した脱リン材
JPH10337469A (ja) 吸着性多孔質焼結体及びその製造方法
KR19990011078A (ko) 미생물담체(bio-house)의 제조방법 및 그 제조방법에 의한 미생물담체

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050222

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050628