JP2003068304A - Electrode active material for secondary nonaqueous electrolyte battery, electrode containing the same and battery - Google Patents

Electrode active material for secondary nonaqueous electrolyte battery, electrode containing the same and battery

Info

Publication number
JP2003068304A
JP2003068304A JP2001260667A JP2001260667A JP2003068304A JP 2003068304 A JP2003068304 A JP 2003068304A JP 2001260667 A JP2001260667 A JP 2001260667A JP 2001260667 A JP2001260667 A JP 2001260667A JP 2003068304 A JP2003068304 A JP 2003068304A
Authority
JP
Japan
Prior art keywords
active material
electrode
electrode active
battery
vopo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001260667A
Other languages
Japanese (ja)
Other versions
JP5002098B2 (en
Inventor
Tatsuki Ishihara
達己 石原
Mohamad Azmi Bustam
モハマド アズミ ブスタム
Yusaku Takita
祐作 滝田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2001260667A priority Critical patent/JP5002098B2/en
Publication of JP2003068304A publication Critical patent/JP2003068304A/en
Application granted granted Critical
Publication of JP5002098B2 publication Critical patent/JP5002098B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide an electrode and a secondary nonaqueous electrolyte battery by using the electrode active material whose cycle property is improved. SOLUTION: Vanadium-phosphorous composite compound with ω-VOPO4 crystal structure is used as the electrode active material for the secondary nonaqueous electrolyte battery. The vanadium-phosphorous composite compound is shown on the basis of the composition of VOPO4 by general formula (I). AXV1-y My O1+δ1 P1-z Qz O4+δ2 (I) (A is at least an element selected from alkali metals and alkali earth metals that is preferably lithium. X corresponds the amount of an element A inserted in an lithium site. M is at least one element selected from a group consisting of Al, Fe, Ga, Bi, Sn, Cr, Cu, Zn, Mg, Ti, Ge, Ta, Mo, W, Nb, Ni, Mn and Co. Q at least one element selected from a group consisting of S, As, Si and Ge.).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、非水電解質電池、
さらに詳細には充放電可能な非水電解質二次電池に関
し、特に電極活物質の改良に関わり、サイクル特性の改
善を目指すものである。
TECHNICAL FIELD The present invention relates to a non-aqueous electrolyte battery,
More specifically, the present invention relates to a chargeable / dischargeable non-aqueous electrolyte secondary battery, and particularly to the improvement of the electrode active material to improve the cycle characteristics.

【0002】[0002]

【従来の技術】リチウム等のアルカリ金属、マグネシウ
ム等のアルカリ土類金属、あるいはこれらの合金、化合
物等を負極活物質とする非水電解質二次電池は、負極金
属イオンの正極活物質へのインサーションもしくはイン
ターカレーション反応によって、その大放電容量と充電
可逆性とを確保している。
2. Description of the Related Art A non-aqueous electrolyte secondary battery using an anode metal such as an alkali metal such as lithium or an alkaline earth metal such as magnesium, or an alloy or compound thereof is used as an intercalator for an anode metal ion to the cathode active material. The large discharge capacity and charge reversibility are ensured by the ionization or intercalation reaction.

【0003】最近、二次電池として、リチウムに対して
インターカレーションホストとなりうるVOPO4を正
極材料として用いた電池が提案されている(N.Dupre et
al.,Solid State Ionics,140,pp.209-221(2001), N.Du
pre et al.,J. Power Sources,97-98,pp.532-534(200
1))。
Recently, as a secondary battery, a battery using VOPO 4 which can be an intercalation host for lithium as a positive electrode material has been proposed (N. Dupre et al.
al., Solid State Ionics, 140, pp.209-221 (2001), N.Du
pre et al., J. Power Sources, 97-98, pp.532-534 (200
1)).

【0004】[0004]

【発明が解決しようとする課題】VOPO4の結晶構造
にはいくつかの多形が存在することが知られており、上
記文献においては、α、αII、δ、γ型のVOPO4
正極活物質、金属リチウムを負極活物質とした二次電池
が提案されている。上記文献によれば、負極を金属リチ
ウムとした場合、αII−VOPO4は電流値C/50、
4V付近の電圧において140mAh/gの初期容量を
有することが示されている。しかしながら、上記文献に
記載の各種結晶構造のVOPO4からなる正極活物質は
いずれもサイクル特性に問題があり、例えば、最もサイ
クル特性に優れた上記αII−VOPO4においても、C
/50の電流値で9サイクル後の容量は118mAh/
g(84%)まで低下してしまう。従って、サイクル特
性を改善した電極活物質の開発が望まれるところであ
る。
It is known that there are several polymorphs in the crystal structure of VOPO 4 , and in the above literature, α, α II , δ, γ type VOPO 4 is used as a positive electrode. A secondary battery using an active material or metallic lithium as a negative electrode active material has been proposed. According to the above literature, when metallic lithium is used as the negative electrode, α II -VOPO 4 has a current value C / 50,
It has been shown to have an initial capacity of 140 mAh / g at voltages near 4V. However, any of the positive electrode active materials composed of VOPO 4 having various crystal structures described in the above-mentioned documents has a problem in cycle characteristics. For example, even in the above α II -VOPO 4 having the most excellent cycle characteristics, C
The capacity after 9 cycles at a current value of / 50 is 118 mAh /
g (84%). Therefore, development of an electrode active material having improved cycle characteristics is desired.

【0005】本発明は、上記実情に鑑みてなされたもの
であり、その目的は、サイクル特性を改善した電極活物
質、及び該電極活物質を用いた電極並びに非水電解質二
次電池を提供することにある。
The present invention has been made in view of the above circumstances, and an object thereof is to provide an electrode active material having improved cycle characteristics, an electrode using the electrode active material, and a non-aqueous electrolyte secondary battery. Especially.

【0006】[0006]

【課題を解決するための手段】本発明者らは、上記の目
的を達成するために、種々の検討を重ねた結果、特定の
結晶構造を有するVOPO4を電極活物質として使用す
ることによって、サイクル特性に関する上記課題が改善
できることを見出した。即ち、本発明は、ω−VOPO
4型の結晶構造を有するバナジウム−リン複合化合物か
らなる非水電解質二次電池用電極活物質を提供するもの
である。
The inventors of the present invention have conducted various studies in order to achieve the above object, and as a result, by using VOPO 4 having a specific crystal structure as an electrode active material, It was found that the above-mentioned problems regarding cycle characteristics can be improved. That is, the present invention relates to ω-VOPO.
It is intended to provide an electrode active material for a non-aqueous electrolyte secondary battery, which is composed of a vanadium-phosphorus composite compound having a 4- type crystal structure.

【0007】次に、本発明は、上記の電極活物質を含む
非水電解質二次電池用電極も提供する。また、本発明
は、上記記載の電極を用いる非水電解質二次電池も提供
するものである。より具体的には、上記記載の電極を正
極として用いる非水電解質二次電池、更に、負極とし
て、アルカリ金属材料及びアルカリ土類金属材料からな
る群から選ばれる少なくとも1種の負極活物質を含む電
極を用いる上記非水電解質二次電池を提供するものであ
る。
Next, the present invention also provides an electrode for a non-aqueous electrolyte secondary battery containing the above electrode active material. The present invention also provides a non-aqueous electrolyte secondary battery using the electrode described above. More specifically, a non-aqueous electrolyte secondary battery using the electrode described above as a positive electrode, and further, as a negative electrode, at least one negative electrode active material selected from the group consisting of alkali metal materials and alkaline earth metal materials. The above non-aqueous electrolyte secondary battery using an electrode is provided.

【0008】[0008]

【発明の実施の形態】以下、本発明をさらに詳しく説明
する。 (1)非水電解質二次電池用電極活物質:本発明におけ
る電極活物質は、上記のごとく、ω−VOPO4型の結
晶構造を有することを特徴とするバナジウム−リン複合
化合物である。VOPO4の結晶構造は、VO6八面体と
PO4四面体が2次元または3次元の開いたフレームワ
ークを形成し、アルカリ金属及びアルカリ土類の挿入に
適した構造を有する。VO 6八面体とPO4四面体の結合
形態の違いにより、α、αII、δ、γ等の結晶構造が存
在するが、本発明におけるω−VOPO4型の結晶構造
を有する化合物とはこの一種であり、具体的には、JC
PDSカード37−0809に記載されているX線回折
パターンを与える結晶構造を有する化合物である。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention is described in more detail below.
To do. (1) Electrode active material for non-aqueous electrolyte secondary battery: In the present invention
As described above, the electrode active material is ω-VOPO.FourType of conclusion
Vanadium-Phosphorus composite characterized by having a crystal structure
It is a compound. VOPOFourThe crystal structure of VO6With an octahedron
POFourA framework with an open tetrahedron in two or three dimensions
For the insertion of alkali metals and alkaline earths.
It has a suitable structure. VO 6Octahedron and POFourJoining tetrahedra
Α, α, depending on the formII, Δ, γ and other crystal structures exist
Ω-VOPO in the present inventionFourCrystal structure of mold
The compound having is a kind of this, and specifically, JC
X-ray diffraction written on PDS card 37-0809
It is a compound having a crystal structure that gives a pattern.

【0009】本発明におけるω−VOPO4型の結晶構
造を有する化合物においては、通常バナジウムの5価及
び4価間の酸化還元により、金属リチウム対極に対し、
約4Vの電位で充放電が行われる。このため、結晶構造
中のバナジウム、リンを他の元素で置換し、バナジウム
の平均価数を制御することにより充放電容量を制御する
ことが可能である。また、置換により結晶構造を安定化
することも可能である。さらに、リチウムが挿入される
サイトの一部に予めアルカリ金属元素、アルカリ土類金
属元素を挿入することにより、結晶構造を安定化するこ
とも可能である。
In the compound having the ω-VOPO 4 type crystal structure according to the present invention, normally, due to the redox between the pentavalent and tetravalent vanadium, the metal lithium counter electrode is
Charging / discharging is performed at a potential of about 4V. Therefore, it is possible to control the charge / discharge capacity by substituting vanadium and phosphorus in the crystal structure with another element and controlling the average valence of vanadium. It is also possible to stabilize the crystal structure by substitution. Furthermore, the crystal structure can be stabilized by previously inserting an alkali metal element or an alkaline earth metal element into a part of the site where lithium is inserted.

【0010】本発明のω−VOPO4型の結晶構造を有
するバナジウム−リン複合化合物は、VOPO4なる組
成を基本として、通常下記一般式(I)で表される。
The vanadium-phosphorus composite compound having the ω-VOPO 4 type crystal structure of the present invention is usually represented by the following general formula (I) based on the composition of VOPO 4 .

【0011】[0011]

【化1】 Ax1-yy1+δ11-zz4+δ2 (I) 上記一般式(I)中、Aは、アルカリ金属元素及びアル
カリ土類金属元素から選ばれる少なくとも一つの元素で
ある。Aの具体例としては、Li、Na、K、Mg、及
びCa等の元素を挙げることができる。好ましくはリチ
ウムである。xの値はリチウムサイトに挿入される元素
Aの量に相当する。負極をリチウム含有材料とする場
合、Aをリチウム以外とすると、xの値があまりに大き
いと電池容量が低下しすぎる傾向にあるので、通常0.
4以下、好ましくは0.2以下さらに好ましくは0.1
以下である。無論、xの値を0とすることも可能であ
る。
Embedded image A x V 1-y M y O 1 + δ 1 P 1-z Q z O 4 + δ 2 (I) In the general formula (I), A is an alkali metal element or an alkaline earth metal element. At least one element selected. Specific examples of A include elements such as Li, Na, K, Mg, and Ca. Lithium is preferred. The value of x corresponds to the amount of element A inserted in the lithium site. When the negative electrode is made of a lithium-containing material, if A is other than lithium, the battery capacity tends to decrease too much when the value of x is too large.
4 or less, preferably 0.2 or less, more preferably 0.1
It is the following. Of course, it is possible to set the value of x to 0.

【0012】Mは、Al、Fe、Ga、Bi、Sn、C
r、Cu、Zn、Mg、Ti、Ge、Ta、Mo、W、
Nb、Ni、Mn、及びCoからなる群から選ばれる少
なくとも一つの元素である。yの値は元素Mによるバナ
ジウムの置換量に相当する。yの値はあまりに大きいと
電池容量が低下しすぎる傾向にあるので、通常0.4以
下、好ましくは0.2以下さらに好ましくは0.1以下
である。無論、yの値を0とすることも可能である。
M is Al, Fe, Ga, Bi, Sn, C
r, Cu, Zn, Mg, Ti, Ge, Ta, Mo, W,
At least one element selected from the group consisting of Nb, Ni, Mn, and Co. The value of y corresponds to the substitution amount of vanadium with the element M. If the value of y is too large, the battery capacity tends to decrease too much, so it is usually 0.4 or less, preferably 0.2 or less, more preferably 0.1 or less. Of course, the value of y can be set to 0.

【0013】QはS、As、Si、及びGeからなる群
から選ばれる少なくとも一つの元素である。zの値は元
素Qによるリンの置換量に相当する。zの値はあまりに
大きいとかえって結晶構造の安定性が低下することがあ
るので、通常0.4以下、好ましくは0.2以下さらに
好ましくは0.1以下である。無論、zの値を0とする
ことも可能である。
Q is at least one element selected from the group consisting of S, As, Si and Ge. The value of z corresponds to the substitution amount of phosphorus by the element Q. If the value of z is too large, the stability of the crystal structure may decrease, so it is usually 0.4 or less, preferably 0.2 or less, more preferably 0.1 or less. Of course, the value of z can be set to 0.

【0014】また、δ1、及びδ2は、それぞれVOPO
4の不定比性に由来する酸素欠損量又は酸素過剰量に相
当する。δ1は−0.2≦δ1≦0.2、δ2は−0.2
≦δ2≦0.2を満たす数である。本発明の活物質であ
る化合物は、公知の方法によって製造することができ、
その方法も、種々の方法がある。
Further, δ 1 and δ 2 are VOPO, respectively.
This corresponds to the oxygen deficiency amount or the oxygen excess amount derived from the nonstoichiometry of 4 . δ 1 is −0.2 ≦ δ 1 ≦ 0.2, δ 2 is −0.2
It is a number that satisfies ≦ δ 2 ≦ 0.2. The compound which is the active material of the present invention can be produced by a known method,
There are various methods.

【0015】例えば、具体例の一つとして、所定のモル
比の原料水溶液を加熱しながら撹拌後、乾燥、焼成する
製造方法を挙げることができる。 (2)本発明電極:本発明電極では、上記電極活物質を
用いる。この場合、上記活物質は通常粉末状で用いれば
よく、その平均粒径は1−100μm程度とすればよ
い。平均粒径は例えばレーザー回折式粒度分布測定装置
で測定される値である。また、電極中における上記活物
質の含有量は、用いる活物質の種類、必要に応じて用い
られる結着材(バインダー)や導電材の使用量等に応じ
て適宜設定すればよい。また、本発明電極においては、
上記電極活物質単独又は他の従来から知られている電極
活物質との混合物であってもよい。
For example, as one specific example, there can be mentioned a production method in which a raw material aqueous solution having a predetermined molar ratio is stirred while being heated, then dried and fired. (2) The electrode of the present invention: In the electrode of the present invention, the above electrode active material is used. In this case, the above active material may be usually used in the form of powder, and its average particle size may be about 1-100 μm. The average particle size is a value measured by, for example, a laser diffraction type particle size distribution measuring device. In addition, the content of the active material in the electrode may be appropriately set depending on the type of the active material used, the usage amount of the binder (binder) and the conductive material used as necessary, and the like. Further, in the electrode of the present invention,
The above electrode active material may be used alone or in a mixture with other conventionally known electrode active materials.

【0016】本発明電極の作製に際しては、上記電極活
物質を用いるほかは公知の電極の作成方法に従って行え
ばよい。例えば、上記活物質の粉末を必要に応じて公知
の結着材(ポリテトラフルオロエチレン、ポリビニリデ
ンフルオライド、ポリビニルクロライド、エチレンプロ
ピレンジエンポリマー、スチレン−ブタジエンゴム、ア
クリロニトリル−ブタジエンゴム、フッ素ゴム、ポリ酢
酸ビニル、ポリメチルメタクリレート、ポリエチレン、
ニトロセルロース等)、さらに必要に応じて公知の導電
材(アセチレンブラック、カーボン、グラファイト、天
然黒鉛、人造黒鉛、ニードルコークス等)と混合した
後、得られた混合粉末をステンレス鋼製等の支持体上に
圧着成形したり、金属製容器に充填すればよい。
The electrode of the present invention may be manufactured according to a known method for manufacturing an electrode except that the above electrode active material is used. For example, the active material powder is a known binder as required (polytetrafluoroethylene, polyvinylidene fluoride, polyvinyl chloride, ethylene propylene diene polymer, styrene-butadiene rubber, acrylonitrile-butadiene rubber, fluororubber, poly Vinyl acetate, polymethylmethacrylate, polyethylene,
Nitrocellulose, etc.) and, if necessary, a known conductive material (acetylene black, carbon, graphite, natural graphite, artificial graphite, needle coke, etc.), and the resulting mixed powder is made of a support such as stainless steel. It may be pressure-molded on the top or filled in a metal container.

【0017】あるいは、例えば、上記混合粉末を有機溶
剤(N-メチルピロリドン、トルエン、シクロヘキサ
ン、ジメチルホルムアミド、ジメチルアセトアミド、メ
チルエチルケトン、酢酸メチル、アクリル酸メチル、ジ
エチルトリアミン、N,N−ジメチルアミノプロピルア
ミン、エチレンオキシド、テトラヒドロフラン等)と混
合して得られたスラリーをアルミニウム、ニッケル、ス
テンレス、銅等の金属基板上に塗布する等の方法によっ
ても本発明電極を作製することができる。
Alternatively, for example, the above mixed powder is mixed with an organic solvent (N-methylpyrrolidone, toluene, cyclohexane, dimethylformamide, dimethylacetamide, methyl ethyl ketone, methyl acetate, methyl acrylate, diethyltriamine, N, N-dimethylaminopropylamine, The electrode of the present invention can also be produced by a method such as coating a slurry obtained by mixing with ethylene oxide, tetrahydrofuran, etc.) on a metal substrate such as aluminum, nickel, stainless steel, and copper.

【0018】電極の厚さは、通常1−1000μm、好
ましくは10−200μm程度である。厚すぎると導電
性が低下する傾向にあり、薄すぎると容量が低下する傾
向にある。なお、塗布・乾燥によって得られた電極は、
活物質の充填密度を上げるためローラープレス等により
圧密してもよい。 (3)本発明の非水電解質二次電池:本発明の非水電解
質二次電池は、本発明電極(2)を電極として用いる以
外は、公知のリチウム二次電池等の非水電解質二次電池
における構成要素を採用することができる。
The thickness of the electrode is usually 1-1000 μm, preferably 10-200 μm. If it is too thick, the conductivity tends to decrease, and if it is too thin, the capacity tends to decrease. The electrodes obtained by coating and drying are
You may compact by a roller press etc. in order to raise the packing density of an active material. (3) Non-aqueous electrolyte secondary battery of the present invention: The non-aqueous electrolyte secondary battery of the present invention is a non-aqueous electrolyte secondary battery such as a known lithium secondary battery except that the electrode (2) of the present invention is used as an electrode. Components in batteries can be employed.

【0019】本発明の電極は、通常正極として使用する
ことが可能である。この場合負極としては、電極活物質
として公知の負極活物質を使用することが可能である
が、アルカリ金属材料及びアルカリ土類金属材料からな
る群から選ばれる少なくとも1種を用いることが好まし
い。本発明にいうアルカリ金属材料とは、リチウム、ナ
トリウム、カリウム等のアルカリ金属、アルカリ金属の
化合物、合金等のほか、アルカリ金属イオンを吸蔵・放
出することが可能な材料(例えば、Li2.5Co0.5N、
Li4Ti512、炭素材料等)も含まれる。
The electrode of the present invention can usually be used as a positive electrode. In this case, as the negative electrode, a negative electrode active material known as an electrode active material can be used, but it is preferable to use at least one selected from the group consisting of alkali metal materials and alkaline earth metal materials. The alkali metal material referred to in the present invention includes alkali metals such as lithium, sodium and potassium, alkali metal compounds and alloys, as well as materials capable of inserting and extracting alkali metal ions (for example, Li 2.5 Co 0.5 N,
Li 4 Ti 5 O 12 , carbon materials, etc.) are also included.

【0020】また、アルカリ土類金属材料とは、マグネ
シウム、カルシウム等のアルカリ土類金属、アルカリ土
類金属の化合物、合金等のほか、アルカリ土類金属イオ
ンを吸蔵・放出することが可能な材料(例えば、Mgz
Ti2(PO43(0<z<4)等)等も含まれる。負
極の作製は公知の方法に従えばよく、例えば、前記
(2)で説明した方法と同様にして作製することができ
る。すなわち、例えば、負極活物質の粉末を必要に応じ
て(2)で説明した公知の結着材、さらに必要に応じて
(2)で説明した公知の導電材と混合した後、この混合
粉末をシート状に成形し、これをステンレス、銅等の導
電体網(集電体)に圧着すればよい。また、例えば、上
記混合粉末を(2)で説明した公知の有機溶剤と混合し
て得られたスラリーを銅等の金属基板上に塗布すること
により作製することもできる。
The alkaline earth metal materials include alkaline earth metals such as magnesium and calcium, compounds and alloys of alkaline earth metals, and materials capable of inserting and extracting alkaline earth metal ions. (For example, Mg z
Ti 2 (PO 4 ) 3 (0 <z <4) and the like are also included. The negative electrode may be manufactured according to a known method, and for example, the negative electrode can be manufactured in the same manner as the method described in (2) above. That is, for example, if necessary, the powder of the negative electrode active material is mixed with the known binder described in (2) and, if necessary, the known conductive material described in (2), and then this mixed powder is mixed. It may be formed into a sheet, and this may be pressure-bonded to a conductor network (current collector) such as stainless steel or copper. Alternatively, for example, the mixed powder may be mixed with the known organic solvent described in (2) to obtain a slurry, and the slurry may be applied on a metal substrate such as copper.

【0021】その他の構成要素としては、公知の非水電
解質二次電池に使用されるものを構成要素として使用で
きる。例えば、以下のものが例示できる。電解液は通
常、電解質及び溶媒を含む。電解液の溶媒としては、非
水系であれば特に制限されず、例えばカーボネート類、
エーテル類、ケトン類、スルホラン系化合物、ラクトン
類、ニトリル類、塩素化炭化水素類、エーテル類、アミ
ン類、エステル類、アミド類、リン酸エステル化合物等
を使用することができる。
As other constituent elements, those used in known non-aqueous electrolyte secondary batteries can be used. For example, the following can be illustrated. The electrolytic solution usually contains an electrolyte and a solvent. The solvent of the electrolytic solution is not particularly limited as long as it is a non-aqueous solvent, for example, carbonates,
Ethers, ketones, sulfolane compounds, lactones, nitriles, chlorinated hydrocarbons, ethers, amines, esters, amides, phosphoric acid ester compounds and the like can be used.

【0022】これらの代表的なものを列挙すると、1,
2−ジメトキシエタン、1,2−ジエトキシエタン、テ
トラヒドロフラン、2−メチルテトラヒドロフラン、エ
チレンカーボネート、ビニレンカーボネート、メチルホ
ルメート、ジメチルスルホキシド、プロピレンカーボネ
ート、アセトニトリル、γ−ブチロラクトン、ジメチル
ホルムアミド、ジメチルカーボネート、ジエチルカーボ
ネート、スルホラン、エチルメチルカーボネート、1,
4−ジオキサン、4−メチル−2−ペンタノン、1,3
−ジオキソラン、4−メチル−1,3−ジオキソラン、
ジエチルエーテル、スルホラン、メチルスルホラン、プ
ロピオニトリル、ベンゾニトリル、ブチロニトリル、バ
レロニトリル、1,2−ジクロロエタン、リン酸トリメ
チル、リン酸トリエチル等が使用できる。これらは1種
または2種以上で用いることができる。
The typical ones are listed as follows:
2-dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, ethylene carbonate, vinylene carbonate, methyl formate, dimethyl sulfoxide, propylene carbonate, acetonitrile, γ-butyrolactone, dimethylformamide, dimethyl carbonate, diethyl carbonate. , Sulfolane, ethyl methyl carbonate, 1,
4-dioxane, 4-methyl-2-pentanone, 1,3
-Dioxolane, 4-methyl-1,3-dioxolane,
Diethyl ether, sulfolane, methyl sulfolane, propionitrile, benzonitrile, butyronitrile, valeronitrile, 1,2-dichloroethane, trimethyl phosphate, triethyl phosphate and the like can be used. These can be used alone or in combination of two or more.

【0023】電解液としては、これらの溶媒に、負極活
物質中のアルカリ金属イオンもしくはアルカリ土類金属
イオンが、上記正極活物質又は正極活物質及び負極活物
質と電気化学反応するための移動を行うことができる電
解質物質、例えば、LiClO4、LiPF6、LiBF
4、LiCF3SO3、LiAsF6、LiB(C
65 4、LiCl、LiBr、CH3SO3Li、CF3
SO3Li、LiN(SO2CF 32、LiN(SO22
52、LiC(SO2CF33、LiN(SO3
32等を使用することができる。また、本発明では公
知の固体電解質、例えば、ナシコン構造を有するLiT
2(PO43等も使用できる。
As the electrolytic solution, a negative electrode active material is added to these solvents.
Alkali metal ion or alkaline earth metal in the substance
Ions are the positive electrode active material or the positive electrode active material and the negative electrode active material.
The electric charge that can carry out the transfer for electrochemical reaction with the quality.
Degradation material, eg LiClOFour, LiPF6, LiBF
Four, LiCF3SO3, LiAsF6, LiB (C
6HFive) Four, LiCl, LiBr, CH3SO3Li, CF3
SO3Li, LiN (SO2CF 3)2, LiN (SO2C2
FFive)2, LiC (SO2CF3)3, LiN (SO3C
F3)2Etc. can be used. In addition, according to the present invention,
Known solid electrolytes such as LiT having a Nasicon structure
i2(POFour)3Etc. can also be used.

【0024】本発明電池では、セパレータ、電池ケース
他、構造材料等の要素についても従来公知の各種材料が
使用でき、特に制限はない。例えば、正極と負極との間
にセパレータを使用する場合は、微多孔性の高分子フィ
ルムが用いられ、ナイロン、セルロースアセテート、ニ
トロセルロース、ポリスルホン、ポリアクリロニトリ
ル、ポリフッ化ビニリデン、ポリプロピレン、ポリエチ
レン、ポリブテン等のポリオレフィン高分子よりなるも
のが用いられる。セパレータの化学的及び電気化学的安
定性の点からポリオレフィン系高分子が好ましく、電池
セパレータの目的の一つである自己閉塞温度の点からポ
リエチレン製であることが望ましい。
In the battery of the present invention, various conventionally known materials can be used for the separator, the battery case, and other structural materials, and there is no particular limitation. For example, when using a separator between the positive electrode and the negative electrode, a microporous polymer film is used, nylon, cellulose acetate, nitrocellulose, polysulfone, polyacrylonitrile, polyvinylidene fluoride, polypropylene, polyethylene, polybutene, etc. The above-mentioned polyolefin polymer is used. From the viewpoint of the chemical and electrochemical stability of the separator, a polyolefin-based polymer is preferable, and from the viewpoint of the self-closing temperature which is one of the purposes of the battery separator, polyethylene is preferable.

【0025】ポリエチレンセパレータの場合、高温形状
維持性の点から超高分子量ポリエチレンであることが好
ましく、その分子量の下限は好ましくは50万、さらに
好ましくは100万、最も好ましくは150万である。
他方分子量の上限は、好ましくは500万、更に好まし
くは400万、最も好ましくは300万である。分子量
が大きすぎると、流動性が低すぎて加熱された時セパレ
ーターの孔が閉塞しない場合があるからである。
The polyethylene separator is preferably ultra-high molecular weight polyethylene from the viewpoint of shape retention at high temperature, and the lower limit of its molecular weight is preferably 500,000, more preferably 1,000,000, and most preferably 1,500,000.
On the other hand, the upper limit of the molecular weight is preferably 5,000,000, more preferably 4,000,000, and most preferably 3,000,000. This is because if the molecular weight is too large, the fluidity is so low that the pores of the separator may not be closed when heated.

【0026】本発明の電池は、これらの電池要素を用い
て公知の方法に従って組み立てればよい。この場合、電
池形状についても特に制限されることはなく、例えば円
筒状、角型、コイン型等種々の形状、サイズを適宜採用
することができる。
The battery of the present invention may be assembled using these battery elements according to a known method. In this case, the shape of the battery is not particularly limited, and various shapes and sizes such as a cylindrical shape, a square shape, and a coin shape can be appropriately adopted.

【0027】[0027]

【実施例】以下、実施例によって本発明をさらに具体的
に説明するが、本発明はこれらによりなんら制限される
ものではない。 実施例1 ω−VOPO4を以下のようにして得た。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited thereto. Example 1 ω-VOPO 4 was obtained as follows.

【0028】V25とNH2OH・HClをモル比で
1:1となるように秤量し、85%H3PO4水溶液をP
/Vのモル比が1.1/1となるように加え、さらに水
を加え、80℃にて撹拌した。この溶液を蒸発乾固し、
得られた固体を110℃にて一晩乾燥し、沸騰水中で2
回水洗後、濾過し、60℃にて一晩乾燥後粉砕し、前駆
体となるVO(HPO4)・0.5H2Oを得た。
V 2 O 5 and NH 2 OH.HCl were weighed so that the molar ratio was 1: 1 and an 85% H 3 PO 4 aqueous solution was added to P.
/ V was added so that the molar ratio was 1.1 / 1, water was further added, and the mixture was stirred at 80 ° C. The solution was evaporated to dryness,
The solid obtained is dried at 110 ° C. overnight and 2 times in boiling water.
After being washed with water twice, filtered, dried at 60 ° C. overnight and pulverized to obtain VO (HPO 4 ) .0.5H 2 O as a precursor.

【0029】得られたVO(HPO4)・0.5H2Oを
窒素中にて500℃、3時間焼成した後、さらに酸素中
にて600℃焼成することにより、目的とするω−VO
PO 4を得た。得られたω−VOPO4のX線回折結果を
図1に示す。図1に示す粉末X線回折パターンから、J
CPDSカード37−0809に記載のω−VOPO4
であることを確認した。また、Fe、Znの酸化還元滴
定により求めたバナジウムの価数は4.95であった。
The obtained VO (HPOFour) ・ 0.5H2O
After baking in nitrogen at 500 ° C for 3 hours, further in oxygen
By firing at 600 ° C at
PO FourGot The obtained ω-VOPOFourX-ray diffraction results of
As shown in FIG. From the powder X-ray diffraction pattern shown in FIG.
Ω-VOPO described in CPDS card 37-0809Four
Was confirmed. Also, redox drops of Fe and Zn
The valency of vanadium determined by the above method was 4.95.

【0030】次に、得られたω−VOPO4を正極活物
質(25mg)として、アセチレンブラック95重量
%、ポリテトラフルオレエチレン5%からなる導電材
(12.5mg)をエタノールを加えて混合の上、ステ
ンレスメッシュに圧着し正極とした。電池の作成の前
に、200℃で4時間乾燥した。負極として金属リチウ
ム、電解液としてEC(エチレンカーボネート):DM
C(ジメチルカーボネート)=1:2を用い、ポリプロ
ピレンをセパレータとして、半開放型セルを用いて0.
08mA(C/50)の定電流で4.3〜3.2Vの範
囲で充放電した。その結果、1サイクル目の可逆容量
(充電容量)は85mAh/gであり、図2に示すよう
に良好なサイクル特性を示した。即ち、前記公知文献
(N.Dupre et al.,Solid State Ionics,140,pp.209-221
(2001), N.Dupre et al.,J. Power Sources,97-98,pp.5
32-534(2001))においては、最もサイクル特性に優れた
αII−VOPO4においても、C/50の電流値で9サ
イクル後の容量は84%にまで低下してしているが、図
2によれば、ω−VOPO4の場合、同じ条件下での9
サイクル目の容量は99%を維持している。
Next, using the obtained ω-VOPO 4 as a positive electrode active material (25 mg), a conductive material (12.5 mg) consisting of 95% by weight of acetylene black and 5% of polytetrafluorethylene was mixed with ethanol. Then, it was pressure-bonded to a stainless mesh to obtain a positive electrode. Before making the cells, they were dried at 200 ° C. for 4 hours. Metallic lithium as the negative electrode, EC (ethylene carbonate): DM as the electrolyte
C (dimethyl carbonate) = 1: 2, polypropylene was used as a separator, and a semi-open cell was used.
It was charged and discharged at a constant current of 08 mA (C / 50) in the range of 4.3 to 3.2V. As a result, the reversible capacity (charging capacity) at the first cycle was 85 mAh / g, which showed good cycle characteristics as shown in FIG. That is, the publicly known document (N. Dupre et al., Solid State Ionics, 140, pp.209-221).
(2001), N. Dupre et al., J. Power Sources, 97-98, pp. 5
32-534 (2001)), even in α II -VOPO 4 , which has the best cycle characteristics, the capacity after 9 cycles at a current value of C / 50 dropped to 84%. According to 2, in the case of ω-VOPO 4 , 9 under the same conditions
The capacity at the cycle cycle is maintained at 99%.

【0031】[0031]

【発明の効果】本発明によれば、特定の電極活物質を利
用するので、従来から公知のVOPO 4電極活物質と比
較して、サイクル特性が良好な非水電解質二次電池を提
供することができる。
According to the present invention, a specific electrode active material can be used.
Since it is used, the VOPO that has been publicly known FourRatio with electrode active material
In comparison, we propose a non-aqueous electrolyte secondary battery with good cycle characteristics.
Can be offered.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例であるω−VOPO4のX
線回折図形を示す。
FIG. 1 is an X of ω-VOPO 4 , which is an embodiment of the present invention.
A line diffraction pattern is shown.

【図2】 本発明の一実施例であるω−VOPO4のサ
イクル特性を示す特性図を示す。
FIG. 2 is a characteristic diagram showing cycle characteristics of ω-VOPO 4 which is an embodiment of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 石原 達己 大分県大分市鴛野959番地22号 (72)発明者 ブスタム モハマド アズミ 大分県大分市寒田南町1丁目市営51−2A −1−25 (72)発明者 滝田 祐作 大分県大分市宮崎台3丁目4番33号 Fターム(参考) 5H029 AJ05 AK03 AL12 AL13 AM02 AM03 AM04 AM05 AM07 CJ02 DJ17 HJ02 5H050 AA07 BA16 CA07 CB12 GA02 HA02    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Tatsumi Ishihara             No.22, 959, Ohno, Oita City, Oita Prefecture (72) Inventor Bustam Mohammad Azumi             51-2A, 1-chome, Sandaminami-cho, Oita City, Oita Prefecture             -1-25 (72) Inventor Yusaku Takita             3-43 Miyazakidai, Oita City, Oita Prefecture F term (reference) 5H029 AJ05 AK03 AL12 AL13 AM02                       AM03 AM04 AM05 AM07 CJ02                       DJ17 HJ02                 5H050 AA07 BA16 CA07 CB12 GA02                       HA02

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ω−VOPO4型の結晶構造を有するバ
ナジウム−リン複合化合物からなる非水電解質二次電池
用電極活物質。
1. An electrode active material for a non-aqueous electrolyte secondary battery comprising a vanadium-phosphorus composite compound having an ω-VOPO 4 type crystal structure.
【請求項2】 請求項1に記載の電極活物質を含む非水
電解質二次電池用電極。
2. An electrode for a non-aqueous electrolyte secondary battery containing the electrode active material according to claim 1.
【請求項3】 請求項2に記載の電極を正極として用い
た非水電解質二次電池。
3. A non-aqueous electrolyte secondary battery using the electrode according to claim 2 as a positive electrode.
【請求項4】 アルカリ金属材料及びアルカリ土類金属
材料からなる群から選ばれる少なくとも1種の負極活物
質を含む電極を負極として用いた請求項3に記載の非水
電解質二次電池。
4. The non-aqueous electrolyte secondary battery according to claim 3, wherein an electrode containing at least one kind of negative electrode active material selected from the group consisting of alkali metal materials and alkaline earth metal materials is used as a negative electrode.
JP2001260667A 2001-08-30 2001-08-30 Electrode active material for non-aqueous electrolyte secondary battery, electrode and battery including the same Expired - Lifetime JP5002098B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001260667A JP5002098B2 (en) 2001-08-30 2001-08-30 Electrode active material for non-aqueous electrolyte secondary battery, electrode and battery including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001260667A JP5002098B2 (en) 2001-08-30 2001-08-30 Electrode active material for non-aqueous electrolyte secondary battery, electrode and battery including the same

Publications (2)

Publication Number Publication Date
JP2003068304A true JP2003068304A (en) 2003-03-07
JP5002098B2 JP5002098B2 (en) 2012-08-15

Family

ID=19087834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001260667A Expired - Lifetime JP5002098B2 (en) 2001-08-30 2001-08-30 Electrode active material for non-aqueous electrolyte secondary battery, electrode and battery including the same

Country Status (1)

Country Link
JP (1) JP5002098B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004303527A (en) * 2003-03-31 2004-10-28 Yusaku Takita Electrode active material and electrode for nonaqueous electrolyte secondary battery as well as nonaqueous electrolyte secondary battery
JP2011049126A (en) * 2009-08-28 2011-03-10 Equos Research Co Ltd Anode active material for sodium ion battery, and sodium ion battery in which the same is used
US20110072649A1 (en) * 2009-09-29 2011-03-31 Tdk Corporation Method of manufacturing active material and method of manufacturing lithium-ion secondary battery
JP2011096640A (en) * 2009-09-29 2011-05-12 Tdk Corp Manufacturing method of active material, and manufacturing method of lithium ion secondary battery
JP2011096641A (en) * 2009-09-29 2011-05-12 Tdk Corp Manufacturing method of active material, and manufacturing method of lithium ion secondary battery
US8445135B2 (en) 2009-03-16 2013-05-21 Tdk Corporation Method of manufacturing active material, active material, electrode, and lithium-ion secondary battery
JP2013206554A (en) * 2012-03-27 2013-10-07 Tdk Corp Active material, electrode, and lithium-ion secondary battery
KR20140048456A (en) * 2012-10-15 2014-04-24 삼성에스디아이 주식회사 Positive active material, method for preparation thereof and lithium battery comprising the same
US8734987B2 (en) 2010-06-18 2014-05-27 Tdk Corporation Active material, electrode containing same, lithium-ion secondary battery with the electrode, and method of manufacturing active material
US8821763B2 (en) 2008-09-30 2014-09-02 Tdk Corporation Active material and method of manufacturing active material
US8932762B2 (en) 2008-09-30 2015-01-13 Tdk Corporation Active material and positive electrode and lithium-ion second battery using same
US8993171B2 (en) 2010-07-16 2015-03-31 Tdk Corporation Active material, electrode containing the active material, lithium secondary battery including the electrode, and method for making active material
US9564641B2 (en) 2011-03-31 2017-02-07 Tdk Corporation Active material, electrode, lithium ion secondary battery, and method for manufacturing active material
CN106602005A (en) * 2016-05-11 2017-04-26 北京纳米能源与系统研究所 Preparation method of V2(PO4)O/C material, negative electrode of lithium ion battery, prepared from V2(PO4)O/C material prepared thereby and method for preparing negative electrode
WO2017119208A1 (en) * 2016-01-06 2017-07-13 国立研究開発法人産業技術総合研究所 Positive electrode active material for secondary battery and production method therefor, and secondary battery
US10230108B2 (en) 2011-03-31 2019-03-12 Tdk Corporation Active material, method for manufacturing active material, electrode, and lithium ion secondary battery
US10312523B2 (en) 2016-02-25 2019-06-04 Tdk Corporation Lithium ion secondary battery
US10611639B2 (en) 2011-03-31 2020-04-07 Tdk Corporation Active material, method for manufacturing active material, electrode, lithium ion secondary battery, and method for manufacturing lithium ion secondary battery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57118008A (en) * 1980-11-10 1982-07-22 Exxon Research Engineering Co Insersion stratified mixed oxide
JP2004533706A (en) * 2001-04-06 2004-11-04 ヴァレンス テクノロジー インコーポレーテッド Sodium ion battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57118008A (en) * 1980-11-10 1982-07-22 Exxon Research Engineering Co Insersion stratified mixed oxide
JP2004533706A (en) * 2001-04-06 2004-11-04 ヴァレンス テクノロジー インコーポレーテッド Sodium ion battery

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004303527A (en) * 2003-03-31 2004-10-28 Yusaku Takita Electrode active material and electrode for nonaqueous electrolyte secondary battery as well as nonaqueous electrolyte secondary battery
US8936871B2 (en) 2008-09-30 2015-01-20 Tdk Corporation Active material and positive electrode and lithium-ion second battery using same
US8821763B2 (en) 2008-09-30 2014-09-02 Tdk Corporation Active material and method of manufacturing active material
US8932762B2 (en) 2008-09-30 2015-01-13 Tdk Corporation Active material and positive electrode and lithium-ion second battery using same
US8445135B2 (en) 2009-03-16 2013-05-21 Tdk Corporation Method of manufacturing active material, active material, electrode, and lithium-ion secondary battery
JP2011049126A (en) * 2009-08-28 2011-03-10 Equos Research Co Ltd Anode active material for sodium ion battery, and sodium ion battery in which the same is used
US20110072649A1 (en) * 2009-09-29 2011-03-31 Tdk Corporation Method of manufacturing active material and method of manufacturing lithium-ion secondary battery
JP2011096640A (en) * 2009-09-29 2011-05-12 Tdk Corp Manufacturing method of active material, and manufacturing method of lithium ion secondary battery
JP2011096641A (en) * 2009-09-29 2011-05-12 Tdk Corp Manufacturing method of active material, and manufacturing method of lithium ion secondary battery
US8734539B2 (en) * 2009-09-29 2014-05-27 Tdk Corporation Method of manufacturing active material containing vanadium and method of manufacturing lithium-ion secondary battery containing such active material
US8734987B2 (en) 2010-06-18 2014-05-27 Tdk Corporation Active material, electrode containing same, lithium-ion secondary battery with the electrode, and method of manufacturing active material
US8993171B2 (en) 2010-07-16 2015-03-31 Tdk Corporation Active material, electrode containing the active material, lithium secondary battery including the electrode, and method for making active material
US10230108B2 (en) 2011-03-31 2019-03-12 Tdk Corporation Active material, method for manufacturing active material, electrode, and lithium ion secondary battery
US9564641B2 (en) 2011-03-31 2017-02-07 Tdk Corporation Active material, electrode, lithium ion secondary battery, and method for manufacturing active material
US10611639B2 (en) 2011-03-31 2020-04-07 Tdk Corporation Active material, method for manufacturing active material, electrode, lithium ion secondary battery, and method for manufacturing lithium ion secondary battery
JP2013206554A (en) * 2012-03-27 2013-10-07 Tdk Corp Active material, electrode, and lithium-ion secondary battery
KR20140048456A (en) * 2012-10-15 2014-04-24 삼성에스디아이 주식회사 Positive active material, method for preparation thereof and lithium battery comprising the same
KR101994260B1 (en) 2012-10-15 2019-06-28 삼성에스디아이 주식회사 Positive active material, method for preparation thereof and lithium battery comprising the same
WO2017119208A1 (en) * 2016-01-06 2017-07-13 国立研究開発法人産業技術総合研究所 Positive electrode active material for secondary battery and production method therefor, and secondary battery
JPWO2017119208A1 (en) * 2016-01-06 2018-11-08 国立研究開発法人産業技術総合研究所 Positive electrode active material for secondary battery, method for producing the same, and secondary battery
JP7116464B2 (en) 2016-01-06 2022-08-10 国立研究開発法人産業技術総合研究所 Positive electrode active material for secondary battery, manufacturing method thereof, and secondary battery
US10312523B2 (en) 2016-02-25 2019-06-04 Tdk Corporation Lithium ion secondary battery
CN106602005A (en) * 2016-05-11 2017-04-26 北京纳米能源与系统研究所 Preparation method of V2(PO4)O/C material, negative electrode of lithium ion battery, prepared from V2(PO4)O/C material prepared thereby and method for preparing negative electrode
CN106602005B (en) * 2016-05-11 2019-04-26 北京纳米能源与系统研究所 V2(PO4) O/C material preparation method, the cathode and method of lithium ion battery is made

Also Published As

Publication number Publication date
JP5002098B2 (en) 2012-08-15

Similar Documents

Publication Publication Date Title
JP5235282B2 (en) Cathode active material and battery for non-aqueous electrolyte secondary battery
KR100778649B1 (en) Positive electrode material and cell comprising the same
JP3504195B2 (en) Lithium secondary battery positive electrode active material and lithium secondary battery
JP4963330B2 (en) Lithium iron composite oxide for positive electrode active material of lithium secondary battery, method for producing the same, and lithium secondary battery using the same
CN109565047B (en) Positive electrode active material for battery and battery
CN108075113B (en) Positive electrode active material for battery and battery using same
JP5002098B2 (en) Electrode active material for non-aqueous electrolyte secondary battery, electrode and battery including the same
WO2011068255A1 (en) Pyrophosphate compound and method for producing same
JP2003034534A (en) Carbon-containing lithium iron complex oxide for positive electrode active substance for lithium secondary cell and method for producing the same
JP2002083597A (en) Lithium secondary battery
JP7177277B2 (en) Electrodes for lithium secondary batteries
JP3624205B2 (en) Electrode active material for non-aqueous electrolyte secondary battery, electrode and battery including the same
JP3079382B2 (en) Non-aqueous secondary battery
KR100838944B1 (en) Seconday battery
JP2002246025A (en) Electrode active material for non-aqueous electrolyte secondary battery, and electrode and battery containing the same
KR101082937B1 (en) Negative-electrode material and battery using the same
JP2009004357A (en) Nonaqueous electrolyte lithium-ion secondary battery
JP2002289188A (en) Electrode active material for nonaqueous electrolyte secondary battery, electrode comprising it, and battery
JP4170733B2 (en) Cathode active material for non-aqueous electrolyte secondary battery
JP3309719B2 (en) Non-aqueous electrolyte secondary battery
JP2004362934A (en) Positive electrode material and battery
WO2018123603A1 (en) Nonaqueous electrolyte secondary battery positive electrode and nonaqueous electrolyte secondary battery
JP2002117845A (en) Lithium iron complex oxide for lithium secondary battery positive electrode active material
JP5189466B2 (en) Lithium secondary battery
JPH08287914A (en) Lithium battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080826

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20090820

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090820

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120521

R150 Certificate of patent or registration of utility model

Ref document number: 5002098

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150525

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term