JP7116464B2 - Positive electrode active material for secondary battery, manufacturing method thereof, and secondary battery - Google Patents

Positive electrode active material for secondary battery, manufacturing method thereof, and secondary battery Download PDF

Info

Publication number
JP7116464B2
JP7116464B2 JP2017560050A JP2017560050A JP7116464B2 JP 7116464 B2 JP7116464 B2 JP 7116464B2 JP 2017560050 A JP2017560050 A JP 2017560050A JP 2017560050 A JP2017560050 A JP 2017560050A JP 7116464 B2 JP7116464 B2 JP 7116464B2
Authority
JP
Japan
Prior art keywords
secondary battery
positive electrode
electrode active
active material
magnesium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017560050A
Other languages
Japanese (ja)
Other versions
JPWO2017119208A1 (en
Inventor
タイタス ニャムワロ マセセ
昌弘 鹿野
比夏里 栄部
博 妹尾
光 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Publication of JPWO2017119208A1 publication Critical patent/JPWO2017119208A1/en
Application granted granted Critical
Publication of JP7116464B2 publication Critical patent/JP7116464B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/37Phosphates of heavy metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Description

本発明は、二次電池用正極活物質及びその製造方法、並びに、二次電池に関する。 TECHNICAL FIELD The present invention relates to a positive electrode active material for secondary batteries, a method for producing the same, and a secondary battery.

エネルギー問題の解決に向け、エネルギー貯蔵媒体は必要不可欠なものであり、高性能な二次電池の開発が急務である。現在、最高性能を誇る二次電池はリチウムイオン二次電池であるが、今後の利用展開として考えられる電気自動車やスマートグリッドの実現にはその容量面、コスト面、安全面に課題が残る。更なる発展に向けては現状の系を超越した革新的な二次電池の開発が必要であり、その方向性の一つに多価のイオンをキャリアとする多価イオン二次電池がある。例えば、マグネシウムを負極とする二次電池系は、高い理論容量密度を有し、資源が豊富で、高融点で安全性に富む点から注目されている。 Energy storage media are indispensable for solving energy problems, and the development of high-performance secondary batteries is urgently needed. Lithium-ion secondary batteries currently boast the highest performance, but issues remain in terms of capacity, cost, and safety to realize electric vehicles and smart grids, which are expected to be used in the future. For further development, it is necessary to develop an innovative secondary battery that transcends the current system, and one of the directions is a multivalent ion secondary battery that uses multivalent ions as carriers. For example, a secondary battery system using magnesium as a negative electrode has attracted attention because it has a high theoretical capacity density, is an abundant resource, has a high melting point, and is highly safe.

マグネシウムは高い理論重量、体積容量を有し、比較的卑な酸化還元電位を示すため、マグネシウムを負極に用いた二次電池は高エネルギー密度を有することが予想される。特に体積当たりの理論容量に関してはリチウムを凌ぐ値であり、これは電気自動車用二次電池等、限られたスペース(体積)に大容量を詰め込める点で有利である。さらに、マグネシウム埋蔵量が地殻層に豊富であり、リチウムイオン二次電池の欠点である、資源枯渇及びコストの問題がクリアできる。また、マグネシウムは融点が約650℃であり、Li(180℃)、Na(98℃)などと比べて非常に高い。融点は金属の安定性の指標であり、マグネシウムを用いた二次電池は安全性の向上も見込める。将来金属負極の実用化まで見据えると負極金属の安全性というのは非常に重要なファクターになる。さらに、リチウム、ナトリウムなどは空気中の水分などと激しく反応するため取り扱いが困難であるが、マグネシウムは空気中で安定であり、取り扱いも容易である。これらの理由から、マグネシウム二次電池はポストリチウムイオン二次電池の候補とみなされ、近年、多数の研究が行われている。 Magnesium has a high theoretical weight and volume capacity, and exhibits a relatively low oxidation-reduction potential, so secondary batteries using magnesium as a negative electrode are expected to have a high energy density. In particular, the theoretical capacity per volume is superior to that of lithium, which is advantageous in that a large capacity can be packed into a limited space (volume) such as a secondary battery for an electric vehicle. Furthermore, the crustal layer is rich in magnesium reserves, and the problems of resource depletion and cost, which are the drawbacks of lithium-ion secondary batteries, can be overcome. Also, magnesium has a melting point of about 650° C., which is much higher than that of Li (180° C.) and Na (98° C.). The melting point is an indicator of metal stability, and secondary batteries using magnesium are expected to improve safety. In anticipation of the practical use of metal anodes in the future, the safety of the anode metal will be a very important factor. Furthermore, lithium, sodium, etc. are difficult to handle because they react violently with moisture in the air, but magnesium is stable in the air and easy to handle. For these reasons, magnesium secondary batteries are regarded as candidates for post-lithium ion secondary batteries, and have been extensively studied in recent years.

マグネシウム二次電池系の創製にはまだいくつかの課題が存在する。特に、正極材料においては、多価のイオンはリチウムイオンに比べ、固相内でのアニオンとのクーロン相互作用は二倍と大きくなり、また、イオン半径がリチウムイオンより小さいため、アニオンとの距離が小さくなり、さらにその相互作用は増大する。それにより、多価のイオンは正極ホスト化合物内での静電相互作用の影響が非常に大きくなることが予想されるため、より価数の高いイオンほどトポケミカル反応に基づくインターカレーション電極の適応は困難である。 There are still some problems in creating a magnesium secondary battery system. In particular, in positive electrode materials, multivalent ions have twice the Coulomb interaction with anions in the solid phase as compared to lithium ions. becomes smaller and their interaction increases. As a result, it is expected that multivalent ions will be greatly affected by the electrostatic interaction within the positive electrode host compound, so the application of intercalation electrodes based on topochemical reactions is more likely for higher valence ions. Have difficulty.

これに対し、近年ではマグネシウム二次電池向けの正極材料は多々報告されており、正極としてシェブレル相を有するMo(T=S,Se)、V、TiSナノチューブ graphene-like MoSなどのナノ構造材料はマグネシウム二次電池として安定で可逆的な充放電特性を示すことが報告されている(例えば、非特許文献1等を参照)。 On the other hand, in recent years , many positive electrode materials for magnesium secondary batteries have been reported. Nanostructured materials such as MoS2 have been reported to exhibit stable and reversible charge-discharge characteristics as magnesium secondary batteries (see, for example, Non-Patent Document 1).

Prototype systems for rechargeable magnesium batteries、Nature 407、724-727(2000)Prototype systems for rechargeable magnesium batteries, Nature 407, 724-727 (2000)

しかしながら、上記多価イオン二次電池を実現するために克服するべき課題は多く、特に、重要なのが正極材料の開発である。多価イオンはリチウムイオンに比べ、固相内でのアニオンとのクーロン相互作用が飛躍的に増大するため、正極ホスト化合物中での多価イオンの固相内拡散が遅く、反応が大きく制限される要因となり得る。上記非特許文献1に開示されるような硫黄イオン等の塩基を含む化合物においても、反応電位が低下しやすく(約1.1V)、また、シェブレル相は分子量が大きくその理論容量が低い(約116mAhg-1)という問題点もあった。このような観点から、正極内における固相内の拡散の問題を解決でき、かつ、その二次電池のポテンシャルを引き出すべく負極と同様で資源が豊富な元素からなり高容量な正極材料の開発が求められていた。However, there are many problems to be overcome in order to realize the multivalent ion secondary battery, and the most important one is the development of positive electrode materials. Compared to lithium ions, multivalent ions have a dramatically increased Coulomb interaction with anions in the solid phase, so the diffusion of multivalent ions in the positive electrode host compound in the solid phase is slow and the reaction is greatly restricted. can be a factor Even in compounds containing bases such as sulfur ions as disclosed in Non-Patent Document 1, the reaction potential tends to decrease (about 1.1 V), and the Chevrell phase has a large molecular weight and a low theoretical capacity (about 116 mAhg −1 ) was also a problem. From this point of view, in order to solve the problem of diffusion in the solid phase in the positive electrode and to bring out the potential of the secondary battery, it is necessary to develop a high-capacity positive electrode material made of elements that are abundant in resources like the negative electrode. was wanted.

本発明は、上記に鑑みてなされたものであり、種々の二次電池に対して充放電可能で、これらの二次電池の特性向上を図ることができる二次電池用正極活物質及びその製造方法、並びに該正極活物質を構成要素とする二次電池を提供することを目的とする。 The present invention has been made in view of the above, and is capable of charging and discharging various secondary batteries and capable of improving the characteristics of these secondary batteries. An object of the present invention is to provide a method and a secondary battery having the positive electrode active material as a component.

本発明者は、上記目的を達成すべく鋭意研究を重ねた結果、特定組成の化合物を使用することにより、上記目的を達成できることを見出し、本発明を完成するに至った。 Means for Solving the Problems As a result of intensive studies aimed at achieving the above objects, the inventors have found that the above objects can be achieved by using a compound having a specific composition, and have completed the present invention.

すなわち、本発明は、例えば、以下の項に記載の主題を包含する。
項1. 下記一般式(1)
OXO (1)
(ここで、式(1)中、Mは、Ti、V、Nb及びMoからなる群より選ばれる少なくとも1種であり、XはP及びSからなる群より選ばれる少なくとも1種であり、0.5≦a≦1.2、3.5≦b≦4.5である)
で表される化合物を含み、
キャリアイオンがリチウムイオン以外である二次電池用正極活物質。
項2.上記項1に記載の正極活物質を構成要素とする二次電池。
項3.上記項1に記載の二次電池用正極活物質の製造方法であって、
上記Mを含有する原料と、上記Xを含有する原料とを含む原料混合物を加熱する加熱工程を備える、製造方法。
項4.前記加熱工程における加熱温度が500~1500℃である、上記項3に記載の製造方法。
That is, the present invention includes, for example, the subject matter described in the following sections.
Section 1. General formula (1) below
M a OXO b (1)
(Here, in formula (1), M is at least one selected from the group consisting of Ti, V, Nb and Mo, X is at least one selected from the group consisting of P and S, and 0 .5 ≤ a ≤ 1.2, 3.5 ≤ b ≤ 4.5)
including a compound represented by
A positive electrode active material for a secondary battery in which carrier ions are other than lithium ions.
Section 2. A secondary battery comprising the positive electrode active material according to item 1 as a component.
Item 3. Item 1. A method for producing the positive electrode active material for a secondary battery according to Item 1,
A production method comprising a heating step of heating a raw material mixture containing the raw material containing M and the raw material containing X.
Section 4. 4. The production method according to item 3, wherein the heating temperature in the heating step is 500 to 1500°C.

本発明に係る二次電池用正極活物質は、マグネシウムイオン二次電池やカリウムイオン電池等の種々の二次電池に対して充放電可能で、二次電池のエネルギー密度及び容量を高めることが可能であり、低コストでポストリチウム二次電池を構築できる。 The positive electrode active material for secondary batteries according to the present invention can charge and discharge various secondary batteries such as magnesium ion secondary batteries and potassium ion batteries, and can increase the energy density and capacity of secondary batteries. , and a post-lithium secondary battery can be constructed at low cost.

(a)は実施例1で得られた生成物(VOPO)のXRDパターンを示し、(b)は、リートベルト法により精密化したXRDパターンを示す。(a) shows the XRD pattern of the product (V a OPO b ) obtained in Example 1, and (b) shows the XRD pattern refined by the Rietveld method. 実施例1で得られたVOPOのSEM像を示す。1 shows an SEM image of V a OPO b obtained in Example 1. FIG. 実施例1で得られたVOPOを正極活物質として用いたときのMg全電池の電位-時間特性の結果を示す。2 shows the results of the potential-time characteristics of a Mg full battery using V a OPO b obtained in Example 1 as a positive electrode active material. 実施例1で得られたVOPOを正極活物質として用いたときの充放電特性、並びに、各サイクルと放電容量との関係を示す。1 shows charge-discharge characteristics when V a OPO b obtained in Example 1 is used as a positive electrode active material, and the relationship between each cycle and discharge capacity. 実施例1で得られたVOPOを正極活物質として用いたときのサイクル特性を示す。2 shows cycle characteristics when V a OPO b obtained in Example 1 is used as a positive electrode active material. 実施例2において焼成された生成物(NbOPO)のXRDパターンを示す。2 shows the XRD pattern of the product (Nb a OPO b ) calcined in Example 2. FIG. NbOPOを含む二次電池用正極活物質を正極材料として用いたときの試験例2の結果(充放電特性、並びに、各サイクルと放電容量との関係)を示す(C/20rate)。2 shows the results (charge/discharge characteristics and relationship between each cycle and discharge capacity) of Test Example 2 when a positive electrode active material for a secondary battery containing Nb a OPO b is used as a positive electrode material (C/20rate). NbOPOを含む二次電池用正極活物質を正極材料として用いたときの試験例2の結果(充放電特性、並びに、各サイクルと放電容量との関係)を示す(C/50rate)。2 shows the results (charge/discharge characteristics and relationship between each cycle and discharge capacity) of Test Example 2 when a positive electrode active material for a secondary battery containing Nb a OPO b was used as a positive electrode material (C/50rate). NbOPOを含む二次電池用正極活物質を正極材料として用いたときの試験例2の結果(充放電特性、並びに、各サイクルと放電容量との関係)を示す。2 shows the results (charge/discharge characteristics and relationship between each cycle and discharge capacity) of Test Example 2 when a positive electrode active material for a secondary battery containing Nb a OPO b is used as a positive electrode material. KVOPO(KVPO)の充放電曲線の結果を示す。1 shows the results of charge-discharge curves of KVOPO 4 (KVPO 5 ).

以下、本発明の実施形態について詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.

1.二次電池用正極活物質
本実施形態の二次電池用正極活物質は、下記一般式(1)
OXO (1)
(ここで、式(1)中、Mは、Ti、V、Nb及びMoからなる群より選ばれる少なくとも1種であり、XはP及びSからなる群より選ばれる少なくとも1種であり、0.5≦a≦1.2、3.5≦b≦4.5である)
で表される化合物を含む。本実施形態の二次電池用正極活物質は、キャリアイオンがリチウムイオン以外である二次電池、つまり、リチウムイオン二次電池以外の二次電池を構成するための正極活物質である。
1. Positive electrode active material for secondary battery The positive electrode active material for secondary battery of the present embodiment is represented by the following general formula (1)
M a OXO b (1)
(Here, in formula (1), M is at least one selected from the group consisting of Ti, V, Nb and Mo, X is at least one selected from the group consisting of P and S, and 0 .5 ≤ a ≤ 1.2, 3.5 ≤ b ≤ 4.5)
Including the compound represented by. The positive electrode active material for a secondary battery of the present embodiment is a positive electrode active material for constituting a secondary battery in which carrier ions are other than lithium ions, that is, a secondary battery other than a lithium ion secondary battery.

本実施形態の二次電池用正極活物質は、種々の金属イオンを挿入及び脱離することができることから、各種金属イオン二次電池用正極活物質として有用である。例えば、本実施形態の二次電池用正極活物質は、二次電池において電解液としてMgを含む化合物を使用した場合にはマグネシウムイオンを挿入及び脱離することができることから、マグネシウムイオン二次電池用正極活物質として有用である。また、例えば、本実施形態の二次電池用正極活物質は、二次電池において電解液としてカリウム(K)を含む化合物を使用した場合にはカリウムイオンを挿入及び脱離することができることから、カリウムイオン二次電池用正極活物質として有用である。 Since the positive electrode active material for secondary batteries of the present embodiment can insert and desorb various metal ions, it is useful as a positive electrode active material for various metal ion secondary batteries. For example, the positive electrode active material for a secondary battery of the present embodiment can insert and extract magnesium ions when a compound containing Mg is used as an electrolyte in a secondary battery. It is useful as a positive electrode active material for Further, for example, when a compound containing potassium (K) is used as an electrolyte in a secondary battery, the positive electrode active material for a secondary battery of the present embodiment can insert and desorb potassium ions. It is useful as a positive electrode active material for potassium ion secondary batteries.

一般式(1)において、Mは、Ti、V、Nb及びMoからなる群より選ばれる少なくとも1種である。中でもMは、Vであることが好ましく、この場合、二次電池用正極活物質をより低コストで製造することができ、また、二次電池用正極活物質の理論容量がより高くなるので、二次電池の電位を向上させやすい。 In general formula (1), M is at least one selected from the group consisting of Ti, V, Nb and Mo. Among them, M is preferably V. In this case, the positive electrode active material for secondary batteries can be produced at a lower cost, and the theoretical capacity of the positive electrode active material for secondary batteries is higher. It is easy to improve the potential of the secondary battery.

一般式(1)において、XはP及びSからなる群より選ばれる少なくとも1種である。これにより、二次電池用正極活物質を低コストで製造でき、また、二次電池の電位を向上させやすい。 In general formula (1), X is at least one selected from the group consisting of P and S. As a result, the positive electrode active material for secondary batteries can be produced at low cost, and the potential of the secondary battery can be easily improved.

一般式(1)で表される化合物としては、VOPO(例えば、VPO)、NbOPO(例えば、NbPO)が例示される。この場合、二次電池用正極活物質は、より低コストとなることに加えて、優れた理論容量、並びに高電位の観点においても有利である。Examples of compounds represented by general formula (1) include V a OPO b (eg, VPO 5 ) and Nba OPO b ( eg, NbPO 5 ). In this case, the positive electrode active material for secondary batteries is advantageous from the viewpoint of excellent theoretical capacity and high potential, in addition to being less costly.

一般式(1)で表される化合物の結晶構造は特に制限されない。例えば、一般式(1)で表される化合物(特に、VOPO)の結晶構造は、α相、β相、γ相、δ相、ε相、ω相等の種々の構造を形成することができ、中でも、α相及びβ相が好ましく、β相が特に好ましい。このような結晶構造であれば、製造が容易であり、また、二次電池用正極活物質に使用した場合に、二次電池をより高容量とすることが可能となる。The crystal structure of the compound represented by general formula (1) is not particularly limited. For example, the crystal structure of the compound represented by general formula (1) (especially VOPO 4 ) can form various structures such as α-phase, β-phase, γ-phase, δ-phase, ε-phase, and ω-phase. Among them, α-phase and β-phase are preferred, and β-phase is particularly preferred. With such a crystal structure, it is easy to manufacture, and when used as a positive electrode active material for a secondary battery, it is possible to increase the capacity of the secondary battery.

上記化合物において、主相である結晶構造の存在量は特に限定的ではなく、一般式(1)で表される化合物全体を基準として80モル%以上が好ましく、90モル%以上がより好ましい。このため、一般式(1)で表される化合物は、単相の結晶構造からなる材料として形成され得る。ただし、本発明の効果を損なわない範囲であれば、一般式(1)で表される化合物は、複数の結晶構造を有する材料して形成されていてもよい。なお、一般式(1)で表される化合物の結晶構造は、X線回折測定により確認することができる。 In the above compound, the abundance of the crystal structure, which is the main phase, is not particularly limited, and is preferably 80 mol % or more, more preferably 90 mol % or more, based on the entire compound represented by formula (1). Therefore, the compound represented by general formula (1) can be formed as a material having a single-phase crystal structure. However, the compound represented by the general formula (1) may be formed of a material having multiple crystal structures as long as it does not impair the effects of the present invention. The crystal structure of the compound represented by general formula (1) can be confirmed by X-ray diffraction measurement.

一般式(1)で表される化合物のX線回折測定において、2θで表される回折角度が16.67~17.56°の範囲、18.95~20.03°の範囲、21.97~23.43°の範囲、25.04~25.83°の範囲、26.00~26.84°の範囲、27.83~28.52°の範囲、28.79~29.47°の範囲、27.79~30.58°の範囲、31.19~32.37°の範囲、33.53~35.10°の範囲、36.61~38.34°の範囲、38.89~42.14°の範囲、42.87~43.93°の範囲、45.04~51.02°の範囲、51.81~58.40°の範囲および59.46~64.04°の範囲にピークを有していることが好ましい。この場合、一般式(1)で表される化合物を二次電池用正極活物質に使用した場合に、二次電池の容量を向上させやすい。 In the X-ray diffraction measurement of the compound represented by the general formula (1), the diffraction angle represented by 2θ is in the range of 16.67 to 17.56 °, the range of 18.95 to 20.03 °, and 21.97. ~23.43° range, 25.04-25.83° range, 26.00-26.84° range, 27.83-28.52° range, 28.79-29.47° range Range 27.79-30.58° Range 31.19-32.37° Range 33.53-35.10° Range 36.61-38.34° Range 38.89- 42.14° range, 42.87-43.93° range, 45.04-51.02° range, 51.81-58.40° range and 59.46-64.04° range preferably has a peak at . In this case, when the compound represented by the general formula (1) is used as the positive electrode active material for a secondary battery, the capacity of the secondary battery can be easily improved.

上記のような結晶構造及び組成を有する一般式(1)で表される化合物は、例えば、粒子状の粉末の形態となり得る。化合物が粒子状である場合、その平均粒子径は、各種金属イオンの挿入及び脱離のしやすさ、容量、並びに高電位の観点から、0.2~50μmが好ましく、0.5~30μmがより好ましい。一般式(1)で表される化合物の平均粒子径は、電子顕微鏡(SEM)観察により測定する。ここでいう平均粒子径とは、例えば、電子顕微鏡による直接観察によって測定された円相当径の算術平均値をいう。 The compound represented by general formula (1) having the crystal structure and composition as described above can be, for example, in the form of particulate powder. When the compound is particulate, its average particle diameter is preferably 0.2 to 50 μm, more preferably 0.5 to 30 μm, from the viewpoints of ease of insertion and desorption of various metal ions, capacity, and high potential. more preferred. The average particle size of the compound represented by general formula (1) is measured by electron microscope (SEM) observation. The average particle size referred to here is, for example, the arithmetic mean value of equivalent circle diameters measured by direct observation with an electron microscope.

本実施形態の二次電池用正極活物質を用いて、マグネシウムイオン二次電池やカリウムイオン二次電池等の二次電池を形成すると、二次電池を高容量とすることができる。しかも、一般式(1)で表わされる化合物において、MがTi、V、Nb及びMoからなる群より選ばれる少なくとも1種であることによって、二段階でのレドックス反応が起こるので、これによって二次電池の容量が高くなりやすい。例えば、MがVであれば、V5+/V4+及びV4+/V3+の二段階でのレドックス反応が起こる。When a secondary battery such as a magnesium ion secondary battery or a potassium ion secondary battery is formed using the positive electrode active material for a secondary battery of the present embodiment, the secondary battery can have a high capacity. Moreover, in the compound represented by the general formula (1), when M is at least one selected from the group consisting of Ti, V, Nb and Mo, a two-stage redox reaction occurs, which results in secondary Battery capacity tends to increase. For example, if M is V, a redox reaction occurs in two steps, V 5+ /V 4+ and V 4+ /V 3+ .

また、上記一般式(1)で表わされる化合物は、安価で容易なプロセスで製造することができる。そのため、本実施形態の二次電池用正極活物質によれば、低コストで種々の二次電池を提供することができるので、本実施形態の二次電池用正極活物質は、エネルギー密度の高い二次電池(例えば、マグネシウムイオン二次電池やカリウムイオン二次電池)を構成する正極材料として適している。 In addition, the compound represented by the above general formula (1) can be produced by a cheap and easy process. Therefore, according to the positive electrode active material for secondary batteries of the present embodiment, various secondary batteries can be provided at low cost. It is suitable as a positive electrode material for secondary batteries (for example, magnesium ion secondary batteries and potassium ion secondary batteries).

なお、本実施形態の二次電池用正極活物質の性能が阻害されない程度であれば、二次電池用正極活物質には他の材料が含まれていてもよい。また、上記二次電池用正極活物質は、一般式(1)で表わされる化合物の他に不可避不純物を含むこともできる。このような不可避不純物としては、後述の原料混合物等が挙げられ、例えば、二次電池用正極活物質中に10モル%以下程度、好ましくは5モル%以下程度、より好ましくは2モル%以下程度含有し得る。 The positive electrode active material for secondary batteries may contain other materials as long as the performance of the positive electrode active material for secondary batteries of the present embodiment is not hindered. In addition, the positive electrode active material for secondary batteries may contain inevitable impurities in addition to the compound represented by the general formula (1). Examples of such unavoidable impurities include raw material mixtures to be described later. can contain

二次電池用正極活物質においては、上記一般式(1)で表わされる化合物と炭素材料(例えば、アセチレンブラック等のカーボンブラック等)とが複合体を形成していてもよい。これにより、焼成時に炭素材料が一般式(1)で表される化合物の粒成長を抑制するため、電極特性に秀でた微粒子状の二次電池用正極活物質となり得る。この場合、炭素材料の含有量は、二次電池用正極活物質中に3~20質量%、特に5~15質量%となるように調整することが好ましい。 In the positive electrode active material for secondary batteries, the compound represented by the general formula (1) and a carbon material (for example, carbon black such as acetylene black) may form a composite. As a result, the carbon material suppresses grain growth of the compound represented by the general formula (1) during sintering, so that a particulate positive electrode active material for secondary batteries having excellent electrode properties can be obtained. In this case, the content of the carbon material is preferably adjusted to 3 to 20% by mass, particularly 5 to 15% by mass in the positive electrode active material for secondary batteries.

2.二次電池用正極活物質の製造方法
二次電池用正極活物質を製造する方法は特に限定されない。例えば、上記Mを含有する原料と、上記Xを含有する原料とを含む原料混合物を加熱する加熱工程を備える、製造方法によって、上記化合物を製造して二次電池用正極活物質を得ることができる。以下、この方法について具体的に説明する。
2. Method for Producing Positive Electrode Active Material for Secondary Battery The method for producing the positive electrode active material for secondary battery is not particularly limited. For example, it is possible to obtain a positive electrode active material for a secondary battery by producing the compound by a production method comprising a heating step of heating a raw material mixture containing the raw material containing M and the raw material containing X. can. This method will be specifically described below.

(1)原料混合物
上記製造方法における原料混合物は、Mを含有する原料と、上記Xを含有する原料とを含む。原料混合物は、MとXの両方を有する化合物であってもよく、このような化合物を1種又は2種以上含んでもよい。また、原料混合物は、Mを含有する原料を2種以上含んでもよいし、Xを含有する原料を2種以上含んでもよい。
(1) Raw material mixture The raw material mixture in the above production method includes a raw material containing M and a raw material containing X above. The raw material mixture may be a compound having both M and X, and may contain one or more such compounds. Moreover, the raw material mixture may contain two or more kinds of raw materials containing M, and may contain two or more kinds of raw materials containing X.

Mを含有する原料は、例えば、金属M(MはTi,V,Nb及びMoからなる群より選ばれる1種)であってもよいし、あるいは、Mを含む化合物であってもよい。また、Mを含有する原料は、Ti,V,Nb及びMoからなる群より選ばれる2種以上の合金であってもよいし、この合金に加えて金属M単体を含んでいてもよい。Mを含む化合物としては、例えば、酸化バナジウム(V)、酸化チタン、酸化ニオブ、酸化モリブデン等が例示される。その他、Mを含む化合物としては、金属Mの水酸化物、塩化物、炭酸塩、硝酸塩、シュウ酸塩等が例示される。Mを含む化合物は、水和物であってもよい。The raw material containing M may be, for example, metal M (M is one selected from the group consisting of Ti, V, Nb and Mo), or may be a compound containing M. Also, the raw material containing M may be an alloy of two or more selected from the group consisting of Ti, V, Nb and Mo, or may contain the metal M alone in addition to this alloy. Examples of compounds containing M include vanadium oxide (V 2 O 5 ), titanium oxide, niobium oxide, molybdenum oxide, and the like. In addition, examples of compounds containing M include metal M hydroxides, chlorides, carbonates, nitrates, oxalates, and the like. A compound containing M may be a hydrate.

Xを含有する原料は、単体であってもよいし(すなわち、P又はS)、あるいは、Xを含む化合物であってもよい。Xを含む化合物としては、例えば、NHPO(りん酸二水素アンモニウム)等が例示される。その他、Xを含む化合物としては、Xの酸化物、水酸化物、塩化物、炭酸塩、硝酸塩、シュウ酸塩等が例示される。Xを含む化合物は、水和物であってもよい。The raw material containing X may be a single substance (that is, P or S) or a compound containing X. Examples of compounds containing X include NH 4 H 2 PO 4 (ammonium dihydrogen phosphate). In addition, examples of compounds containing X include oxides, hydroxides, chlorides, carbonates, nitrates, and oxalates of X. A compound containing X may be a hydrate.

原料混合物は、M及びX以外のその他金属元素(特に希少金属元素)を含まないことが好ましい。また、その他金属元素を含む場合は、非酸化性雰囲気下での熱処理により離脱して揮発していくものが望ましい。 The raw material mixture preferably does not contain metal elements other than M and X (especially rare metal elements). Moreover, when other metal elements are contained, it is preferable that the metal elements are detached and volatilized by heat treatment in a non-oxidizing atmosphere.

なお、原料混合物を構成する各原料はいずれも市販品を使用してもよく、あるいは、別途合成して使用することもできる。 In addition, each raw material constituting the raw material mixture may be used as a commercially available product, or may be synthesized separately and used.

原料混合物の形状については特に限定はなく、取り扱い性の観点から、粉末状が好ましい。また反応性の観点から粒子は微細である方がよく平均粒子径が1μm以下(特に60~80nm程度)の粉末状が好ましい。各原料の平均粒子径は、電子顕微鏡観察(SEM)により測定する。 The shape of the raw material mixture is not particularly limited, and powdery form is preferable from the viewpoint of handleability. From the viewpoint of reactivity, fine particles are preferred, and powdery particles having an average particle size of 1 μm or less (particularly about 60 to 80 nm) are preferred. The average particle size of each raw material is measured by electron microscopy (SEM).

原料混合物は、Mを含有する原料と、Xを含有する原料とを所定の配合割合で混合することで調製することができる。混合方法は、特に制限されず、例えば、各原料を均一に混合できる方法を採用することができる。具体的には、乳鉢混合、メカニカルミリング処理、共沈法、各原料を溶媒中に分散させた後に混合する方法、各原料を溶媒中で一度に分散させて混合する方法等を採用することができる。これらのなかでも、乳鉢混合を採用するとより簡便な方法で、一般式(1)で表わされる化合物を得ることができる。より均一な混ざり合った原料混合物を得る場合は、共沈法を採用することができる。 The raw material mixture can be prepared by mixing a raw material containing M and a raw material containing X in a predetermined mixing ratio. The mixing method is not particularly limited, and for example, a method capable of uniformly mixing each raw material can be adopted. Specifically, mortar mixing, mechanical milling, coprecipitation, a method of dispersing each raw material in a solvent and then mixing, a method of dispersing and mixing each raw material in a solvent at once, and the like can be adopted. can. Among these methods, mortar mixing is a simpler method to obtain the compound represented by the general formula (1). A coprecipitation method can be employed to obtain a more homogeneous mixture of raw materials.

各原料混合物における各原料の混合割合については、特に限定的ではない。例えば、最終生成物である所望の組成を有する一般式(1)で表わされる化合物が得られるように各原料を配合することが好ましい。具体的には、各原料に含まれる各元素の比率が、目的とする化合物中の各元素の比率と同一となるように各原料の配合割合を調整することが好ましい。 The mixing ratio of each raw material in each raw material mixture is not particularly limited. For example, it is preferable to blend the raw materials so as to obtain the compound represented by the general formula (1) having the desired composition as the final product. Specifically, it is preferable to adjust the mixing ratio of each raw material so that the ratio of each element contained in each raw material is the same as the ratio of each element in the target compound.

(2)加熱工程
加熱工程では、Mを含有する原料と、Xを含有する原料とを含む原料混合物を加熱する。
(2) Heating step In the heating step, a raw material mixture containing a raw material containing M and a raw material containing X is heated.

上記加熱工程は、例えば、アルゴン、窒素等の不活性ガス雰囲気等で行うことができる。あるいは、上記加熱工程は、真空等の減圧下で行ってもよい。 The heating step can be performed, for example, in an atmosphere of an inert gas such as argon or nitrogen. Alternatively, the heating step may be performed under reduced pressure such as vacuum.

加熱工程における加熱温度(すなわち、焼成温度)は500~1500℃であることが好ましい。この場合、加熱工程の操作をより容易に行うことができるとともに、得られる化合物が所望の結晶構造を形成しやすい。その結果、得られる化合物の結晶性及び電極特性(特に容量及び電位)が向上しやすい。 The heating temperature (that is, the firing temperature) in the heating step is preferably 500 to 1500°C. In this case, the operation of the heating step can be performed more easily, and the obtained compound can easily form the desired crystal structure. As a result, the crystallinity and electrode properties (especially capacity and potential) of the resulting compound are likely to be improved.

加熱工程における加熱温度の下限は、700℃であることが好ましく、800℃であることがより好ましい。なお、焼成温度の上限値は、一般式(1)で表わされる化合物の製造における操作を容易におこなうことができる範囲で適宜決定することができる(例えば、1500℃)。 The lower limit of the heating temperature in the heating step is preferably 700°C, more preferably 800°C. The upper limit of the calcination temperature can be appropriately determined within a range in which the operation in the production of the compound represented by the general formula (1) can be easily performed (for example, 1500°C).

加熱工程における加熱時間については、特に限定的ではなく、例えば、10分~48時間が好ましく、30分~24時間がより好ましい。 The heating time in the heating step is not particularly limited, and is preferably 10 minutes to 48 hours, more preferably 30 minutes to 24 hours.

所定時間加熱を行った後、冷却することで所望の化合物が得られる。冷却速度は特に限定されない。また、一度冷却してから再度、前記加熱温度にて加熱処理を行って焼成を行ってもよい。 After heating for a predetermined time, the desired compound is obtained by cooling. A cooling rate is not particularly limited. Moreover, after cooling once, you may heat-process again at the said heating temperature, and may bake.

なお、一般式(1)で表わされる化合物は、上記製造方法の他に、例えば、共沈法、ゾルゲル法、水熱合成法などの方法によって製造することができる。 In addition, the compound represented by the general formula (1) can be produced by, for example, a coprecipitation method, a sol-gel method, a hydrothermal synthesis method, or the like, in addition to the above production methods.

3.二次電池
本実施形態の二次電池は、上述の二次電池用正極活物質を構成要素とする。特に、本実施形態の二次電池では、リチウムイオン二次電池以外の二次電池を示し、例えば、マグネシウムイオン二次電池、カリウムイオン二次電池である。
3. Secondary Battery The secondary battery of the present embodiment has the positive electrode active material for a secondary battery as a constituent element. In particular, the secondary battery of the present embodiment refers to secondary batteries other than lithium ion secondary batteries, such as magnesium ion secondary batteries and potassium ion secondary batteries.

二次電池は、上記二次電池用正極活物質を正極活物質として使用する他は、基本的な構造は、公知の非水電解液の二次電池を参考に構成することができる。例えば、正極、負極及びセパレータを、前記正極及び負極がセパレータによって互いに隔離されるように電池容器内に配置することができる。その後、非水電解液を当該電池容器内に充填した後、当該電池容器を密封すること等によって二次電池を製造することができる。電池容器の材料、大きさ及び形状は、二次電池の用途に応じて適宜決定することができる。 The basic structure of the secondary battery can be constructed with reference to known non-aqueous electrolyte secondary batteries, except that the positive electrode active material for secondary batteries is used as the positive electrode active material. For example, a positive electrode, a negative electrode and a separator can be placed in a battery container such that the positive electrode and negative electrode are separated from each other by the separator. After that, after filling the battery container with the non-aqueous electrolyte, the battery container is sealed, and the like, whereby the secondary battery can be manufactured. The material, size and shape of the battery container can be appropriately determined according to the application of the secondary battery.

前記正極は、上記実施形態の二次電池用正極活物質を含有する正極材料を正極集電体に担持した構造を採用することができる。例えば、上記二次電池用正極活物質、導電助剤、及び必要に応じて結着剤を含有する正極合剤を、正極集電体に塗布することで製造することができる。 The positive electrode can employ a structure in which a positive electrode current collector carries a positive electrode material containing the positive electrode active material for a secondary battery of the above embodiment. For example, it can be produced by coating a positive electrode current collector with a positive electrode mixture containing the positive electrode active material for a secondary battery, a conductive aid, and, if necessary, a binder.

導電助材としては、例えば、アセチレンブラック、ケッチェンブラック、カーボンナノチューブ、気相法炭素繊維、カーボンナノファイバー、黒鉛、コークス類等の炭素材料を用いることができる。導電助剤の形状は、特に制限はなく、例えば粉末状等を採用することができる。 Examples of conductive aids that can be used include carbon materials such as acetylene black, ketjen black, carbon nanotubes, vapor-grown carbon fibers, carbon nanofibers, graphite, and cokes. The shape of the conductive aid is not particularly limited, and for example, a powdery shape can be used.

結着剤としては、例えば、ポリフッ化ビニリデン樹脂、ポリテトラフルオロエチレン等のフッ素樹脂等が挙げられるが、これらに限定されるわけではない。 Examples of the binder include polyvinylidene fluoride resin, fluororesin such as polytetrafluoroethylene, and the like, but are not limited to these.

正極材料中の各種成分の含有量については、特に制限はなく、材料の種類に応じて適宜決定することができ、例えば、二次電池用正極活物質を50~95体積%(特に70~90体積%)、導電助剤を2.5~25体積%(特に5~15体積%)、結着剤を2.5~25体積%(特に5~15体積%)含有することができる。 The content of various components in the positive electrode material is not particularly limited, and can be appropriately determined according to the type of material. % by volume), 2.5 to 25% by volume (especially 5 to 15% by volume) of a conductive aid, and 2.5 to 25% by volume (especially 5 to 15% by volume) of a binder.

正極集電体を構成する材料としては、例えば、アルミニウム、チタン、白金、モリブデン、ステンレス、銅等が挙げられる。前記正極集電体の形状としては、例えば、多孔質体、箔、板、繊維からなるメッシュ等が挙げられる。 Materials constituting the positive electrode current collector include, for example, aluminum, titanium, platinum, molybdenum, stainless steel, and copper. Examples of the shape of the positive electrode current collector include porous bodies, foils, plates, meshes made of fibers, and the like.

なお、正極集電体に対する正極材料の塗布量は、所望の二次電池の用途等に応じて適宜決定することが好ましい。 The amount of the positive electrode material applied to the positive electrode current collector is preferably determined appropriately according to the intended use of the secondary battery.

マグネシウムイオン二次電池の負極を構成する負極活物質としては、例えば、マグネシウム金属;ケイ素;ケイ素含有Clathrate化合物;マグネシウム合金;M (M:Co、Ni、Mn、Sn等、M:Mn、Fe、Zn等)で表される三元又は四元酸化物;M (M:Fe、Co、Ni、Mn等)、M (M:Fe、Co、Ni、Mn等)、MnV、M(M:Sn、Ti等)、MO(M:Fe、Co、Ni、Mn、Sn、Cu等)等で表される金属酸化物;黒鉛、ハードカーボン、ソフトカーボン、グラフェン;上記した炭素材料;MgC、MgC・2HO等のような有機系化合物等が挙げられる。マグネシウム合金としては、例えば、マグネシウム及びアルミニウムを構成元素として含む合金、マグネシウム及び亜鉛を構成元素として含む合金、マグネシウム及びマンガンを構成元素として含む合金、マグネシウム及びビスマスを構成成分として含む合金、マグネシウム及びニッケルを構成元素として含む合金、マグネシウム及びアンチモンを構成元素として含む合金、マグネシウム及びスズを構成元素として含む合金、マグネシウム及びインジウムを構成元素として含む合金;金属(スカンジウム、チタン、バナジウム、クロム、ジルコニウム、ニオブ、モリブデン、ハフニウム、タンタル等)とカーボンを構成元素として含むMXene系合金、M BC系合金(M:Sc、Ti、V、Cr、Zr、Nb、Mo、Hf、Ta等)等の四元系層状炭化又は窒化化合物;マグネシウム及び鉛を構成元素として含む合金等が挙げられる。かかる負極は、集電体に金属マグネシウム、黒鉛またはマグネシウム合金を担持させた電極であってもよく、金属マグネシウム、黒鉛やカーボンまたはマグネシウム合金を電極に適した形状(例えば、板状など)に成形して得られた電極であってもよい。Examples of the negative electrode active material constituting the negative electrode of the magnesium ion secondary battery include magnesium metal; silicon; silicon - containing Clathrate compound ; magnesium alloy ; , M 2 : Mn, Fe, Zn, etc.); M 3 3 O 4 (M 3 : Fe, Co, Ni, Mn, etc.), M 4 2 O 3 (M 4 : Fe, Co, Ni, Mn, etc.), MnV 2 O 6 , M 5 O 2 (M 5 : Sn, Ti, etc.), M 6 O (M 6 : Fe, Co, Ni, Mn, Sn, Cu, etc.) Graphite, hard carbon, soft carbon, graphene ; Carbon materials mentioned above; Organic compounds such as MgC8H4O4 , MgC8H4O4.2H2O , etc. mentioned. Examples of magnesium alloys include alloys containing magnesium and aluminum as constituent elements, alloys containing magnesium and zinc as constituent elements, alloys containing magnesium and manganese as constituent elements, alloys containing magnesium and bismuth as constituent elements, and magnesium and nickel. as constituent elements, alloys containing magnesium and antimony as constituent elements, alloys containing magnesium and tin as constituent elements, alloys containing magnesium and indium as constituent elements; metals (scandium, titanium, vanadium, chromium, zirconium, niobium , molybdenum, hafnium, tantalum, etc.) and carbon as constituent elements, M7xBC3 - based alloys ( M7: Sc, Ti, V , Cr, Zr, Nb, Mo, Hf, Ta, etc.) quaternary layered carburized or nitrided compounds; and alloys containing magnesium and lead as constituent elements. Such a negative electrode may be an electrode in which metallic magnesium, graphite, or a magnesium alloy is supported on a current collector, and metallic magnesium, graphite, carbon, or a magnesium alloy is formed into a shape suitable for the electrode (for example, a plate shape). It may be an electrode obtained by

その他、カリウムイオン二次電池の負極を構成する負極活物質としては、例えば、カリウム金属;ケイ素;ケイ素含有Clathrate化合物;カリウム合金;M (M:Co、Ni、Mn、Sn等、M:Mn、Fe、Zn等)で表される三元又は四元酸化物;M (M:Fe、Co、Ni、Mn等)、M (M:Fe、Co、Ni、Mn等)、MnV、M(M:Sn、Ti等)、MO(M:Fe、Co、Ni、Mn、Sn、Cu等)等で表される金属酸化物;黒鉛、ハードカーボン、ソフトカーボン、グラフェン;上記した炭素材料;Lepidocrocite型K0.8Li0.2Ti1.67;KC;KTi;KTi13;KTinO2n+1(n=3,4,6,8);KSiP;KSi;MnSnO;K1.4Ti16;K1.5Ti6.51.516;K1.4Ti6.6Mn1.416;Zn(HCOO);Co(HCOO);Zn1.5Co1.5(HCOO);KVMoO;AV(A=Mn,Co,Ni,Cu);MnGeO;Ti(SO;KTi(PO;SnO;Nb;TiO;Te;VOMoO;polyacetyle (PAc),polyanthracite,polyparaphenylene(PPP),1,4-benzenedicarboxylate (BDC),polayaniline(PAn),polypyrrole (PPy),polythiophene(PTh),teteraethylthiuram disulfide(TETD),poly(2,5-dimercapto-1,3,4-thiadiazole)(PDMcT),poly(2,2’-dithiodianiline)(PDTDA),poly(5,8-dihydro-1H,4H-2,3,6,7-tetrathia-anthracene)(PDTTA),poly(2,2,6,6-tetramethylpiperidine-1-oxyl-4-yl methacrylate)(PTMA),K、K・2HO、K,K,K14,K,K24,K,K,K,K14,K,K14,K,K1812,K16,K10等のような有機系化合物等が挙げられる。カリウム合金としては、例えば、カリウム及びアルミニウムを構成元素として含む合金、カリウム及び亜鉛を構成元素として含む合金、カリウム及びマンガンを構成元素として含む合金、カリウム及びビスマスを構成成分として含む合金、カリウム及びニッケルを構成元素として含む合金、カリウム及びアンチモンを構成元素として含む合金、カリウム及びスズを構成元素として含む合金、カリウム及びインジウムを構成元素として含む合金;金属(スカンジウム、チタン、バナジウム、クロム、ジルコニウム、ニオブ、モリブデン、ハフニウム、タンタル等)とカーボンを構成元素として含むMXene系合金、M BC系合金(M:Sc、Ti、V、Cr、Zr、Nb、Mo、Hf、Ta等)等の四元系層状炭化又は窒化化合物;カリウム及び鉛を構成元素として含む合金等が挙げられる。かかる負極は、集電体に金属カリウム、黒鉛またはカリウム合金を担持させた電極であってもよく、金属カリウム、黒鉛やカーボンまたはカリウム合金を電極に適した形状(例えば、板状など)に成形して得られた電極であってもよい。 In addition, as the negative electrode active material constituting the negative electrode of the potassium ion secondary battery, for example, potassium metal; silicon; silicon - containing Clathrate compound ; potassium alloy; Sn, etc., M 2 : Mn, Fe, Zn, etc.); M 3 3 O 4 (M 3 : Fe, Co, Ni, Mn, etc.), M 4 2 O 3 ( M4: Fe, Co, Ni, Mn, etc.), MnV2O6 , M5O2 ( M5 : Sn , Ti, etc.), M6O ( M6 : Fe, Co, Ni, Mn, Sn, Cu etc.), etc .; graphite , hard carbon, soft carbon , graphene ; the above - described carbon materials ; K2Ti6O13 ; K2TiO2n + 1 ( n= 3,4,6,8 ); K2SiP2 ; KSi2P3 ; MnSnO3 ; K1.4Ti8O16 ; K1.5 Ti6.5V1.5O16 ; K1.4Ti6.6Mn1.4O16 ; Zn3 ( HCOO ) 6 ; Co3 ( HCOO ) 6 ; Zn1.5Co1.5 ( HCOO ) 6 ; KVMoO6 ; AV2O6 (A = Mn, Co, Ni, Cu); Mn2GeO4 ; Ti2 ( SO4 ) 3 ; KTi2 ( PO4 ) 3 ; SnO2 ; Nb2O5 ; TiO 2 ; Te; VOMoO 4 ; , poly(2,5-dimercapto-1,3,4-thiadiazole) (PDMcT), poly(2,2'-dithiodianiline) (PDTDA), poly(5,8-dihydro-1H,4H-2,3, 6,7-tetrathia-anthracene) (PDTTA), poly(2,2,6,6 -tetramethylpiperidine - 1 - oxyl - 4 - yl methacrylate) ( PTMA ), K2C6H4O4 , K2C5O5.2H2O , K4C8H2O6 , K2C6H 4O4 , K2C14H6O4 , K4C6O6 , K4C24H8O8 , K4C6O6 , K2C6O6 , K2C6H2O _ _ _ _ _ _ _ _ _ 4 , K2C14H6O4 , K2C8H4O4 , K2C14H4N2O4 , K2C6H4O4 , K2C18H12O8 , K _ _ _ _ _ _ _ _ _ Organic compounds such as 2C16H8O4 , K2C10H2N2O4 and the like are included. Potassium alloys include, for example, alloys containing potassium and aluminum as constituent elements, alloys containing potassium and zinc as constituent elements, alloys containing potassium and manganese as constituent elements, alloys containing potassium and bismuth as constituent elements, and potassium and nickel. as constituent elements, alloys containing potassium and antimony as constituent elements, alloys containing potassium and tin as constituent elements, alloys containing potassium and indium as constituent elements; metals (scandium, titanium, vanadium, chromium, zirconium, niobium , molybdenum, hafnium, tantalum, etc.) and carbon as constituent elements, M7xBC3 - based alloys ( M7: Sc, Ti, V , Cr, Zr, Nb, Mo, Hf, Ta, etc.) quaternary layered carbide or nitride compounds; alloys containing potassium and lead as constituent elements; Such a negative electrode may be an electrode in which metallic potassium, graphite, or a potassium alloy is supported on a current collector. It may be an electrode obtained by

前記負極は、負極活物質から構成することもでき、また、負極活物質、導電助剤、及び必要に応じて結着剤を含有する負極材料が負極集電体上に担持する構成を採用することもできる。負極材料が負極集電体上に担持する構成を採用する場合、負極活物質、導電助剤、及び必要に応じて結着剤を含有する負極合剤を、負極集電体に塗布することで製造することができる。 The negative electrode can also be composed of a negative electrode active material, and adopts a configuration in which a negative electrode material containing a negative electrode active material, a conductive aid, and, if necessary, a binder is supported on a negative electrode current collector. can also When adopting a configuration in which the negative electrode material is supported on the negative electrode current collector, a negative electrode mixture containing a negative electrode active material, a conductive aid, and optionally a binder is applied to the negative electrode current collector. can be manufactured.

負極が負極活物質から構成される場合、上記の負極活物質を電極に適した形状(板状等)に成形して得ることができる。 When the negative electrode is composed of a negative electrode active material, it can be obtained by forming the above negative electrode active material into a shape (such as a plate shape) suitable for the electrode.

また、負極材料が負極集電体上に担持する構成を採用する場合、導電助剤及び結着剤の種類、並びに負極活物質、導電助剤及び結着剤の含有量は上記した正極のものを適用することができる。負極集電体を構成する材料としては、例えば、アルミニウム、銅、ニッケル、ステンレス等が挙げられる。前記負極集電体の形状としては、例えば、多孔質体、箔、板、繊維からなるメッシュ等が挙げられる。なお、負極集電体に対する負極材料の塗布量は二次電池の用途等に応じて適宜決定することが好ましい。 In addition, when adopting a configuration in which the negative electrode material is supported on the negative electrode current collector, the types of the conductive aid and the binder, and the contents of the negative electrode active material, the conductive aid, and the binder are those of the positive electrode described above. can be applied. Examples of materials that constitute the negative electrode current collector include aluminum, copper, nickel, and stainless steel. Examples of the shape of the negative electrode current collector include a porous body, a foil, a plate, and a mesh made of fibers. The amount of the negative electrode material applied to the negative electrode current collector is preferably determined appropriately according to the usage of the secondary battery.

セパレータとしては、電池中で正極と負極を隔離し、且つ、電解液を保持して正極と負極との間のイオン伝導性を確保することができる材料からなるものであれば制限はない。例えば、ポリエチレン、ポリプロピレン等のポリオレフィン樹脂;ポリイミド;ポリビニルアルコール;末端アミノ化ポリエチレンオキシドポリテトラフルオロエチレン等のフッ素樹脂;アクリル樹脂;ナイロン;芳香族アラミド;無機ガラス;セラミックス等の材質からなり、多孔質膜、不織布、織布等の形態の材料を用いることができる。 The separator is not particularly limited as long as it is made of a material that separates the positive electrode and the negative electrode in the battery, holds an electrolytic solution, and ensures ion conductivity between the positive electrode and the negative electrode. For example, polyolefin resin such as polyethylene and polypropylene; polyimide; polyvinyl alcohol; fluorine resin such as terminally aminated polyethylene oxide polytetrafluoroethylene; acrylic resin; nylon; aromatic aramid; Materials in the form of membranes, nonwovens, wovens, etc. can be used.

非水電解液は、二次電池の種類に応じて適宜選択することができる。例えば、二次電池がマグネシウムイオン二次電池であれば、マグネシウムイオンを含む電解液が好ましい。このような電解液としては、例えば、マグネシウム塩の溶液、マグネシウムを含む無機材料で構成されるイオン液体等が挙げられる。このような電解液としては、例えば、マグネシウム塩を溶媒に溶解させた溶液、マグネシウムを含む無機材料で構成されるイオン液体などが挙げられるが、かかる例示のみに限定されるものではない。 The non-aqueous electrolyte can be appropriately selected according to the type of secondary battery. For example, if the secondary battery is a magnesium ion secondary battery, an electrolytic solution containing magnesium ions is preferable. Examples of such an electrolytic solution include a magnesium salt solution, an ionic liquid composed of an inorganic material containing magnesium, and the like. Examples of such an electrolytic solution include a solution in which a magnesium salt is dissolved in a solvent, an ionic liquid composed of an inorganic material containing magnesium, and the like, but are not limited to these examples.

マグネシウム塩としては、例えば、塩化マグネシウム、臭化マグネシウム、ヨウ化マグネシウムなどのハロゲン化マグネシウム、過塩素酸マグネシウム、テトラフルオロホウ酸マグネシウム、ヘキサフルオロリン酸マグネシウム、ヘキサフルオロヒ酸マグネシウムなどのマグネシウム無機塩化合物;ビス(トリフルオロメチルスルホニル)イミドマグネシウム、安息香酸マグネシウム、サリチル酸マグネシウム、フタル酸マグネシウム、酢酸マグネシウム、プロピオン酸マグネシウム、トリス(ペンタフルオロエタン)トリフルオロフォスフェイトマグネシウム、グリニャール試薬などのマグネシウム有機塩化合物などが挙げられるが、かかる例示のみに限定されるものではない。 Examples of magnesium salts include magnesium halides such as magnesium chloride, magnesium bromide, and magnesium iodide; magnesium inorganic salts such as magnesium perchlorate, magnesium tetrafluoroborate, magnesium hexafluorophosphate, and magnesium hexafluoroarsenate; Compound; Magnesium organic salt compounds such as bis(trifluoromethylsulfonyl)imide magnesium, magnesium benzoate, magnesium salicylate, magnesium phthalate, magnesium acetate, magnesium propionate, magnesium tris(pentafluoroethane) trifluorophosphate, Grignard reagents, etc. However, it is not limited only to such examples.

また、上記非水電解液の代わりに固体電解質を使用することもできる。固体電解質としては、例えば、(Mg0.1Hf0.94/3.8Nb(PO、(Mg0.1Hf0.94/3.8(Nb1-y)(PO (0≦y≦3)、MgZr(PO(a、b=1、2、4、5、7;c=2、4、6、8、10)、Mg(BH(NH等のマグネシウムイオン伝導体等が列挙される。A solid electrolyte can also be used instead of the non-aqueous electrolyte. Examples of solid electrolytes include (Mg 0.1 Hf 0.9 ) 4/3.8 Nb(PO 4 ) 3 , (Mg 0.1 Hf 0.9 ) 4/3.8 (Nb 1-y W y ) (PO4) 3 ( 0≤y≤3 ), MgaZrb (PO4) c (a, b = 1, 2, 4 , 5, 7; c = 2, 4, 6, 8, 10 ), Mg(BH 4 ) 2 (NH 3 ) 2 and other magnesium ion conductors.

また、二次電池がカリウムイオン二次電池であれば、電解液は、カリウムカチオンを含む電解液であればよい。前記電解液としては、例えば、カリウム塩を溶媒に溶解させた溶液、カリウムを含む無機材料で構成されるイオン液体などが挙げられるが、かかる例示のみに限定されるものではない。 Moreover, if the secondary battery is a potassium ion secondary battery, the electrolytic solution may be an electrolytic solution containing potassium cations. Examples of the electrolytic solution include a solution in which a potassium salt is dissolved in a solvent, an ionic liquid composed of an inorganic material containing potassium, and the like, but are not limited to these examples.

カリウム塩としては、例えば、塩化カリウム、臭化カリウム、フッ化カリウム、ヨウ化カリウムなどのハロゲン化カリウム、過塩素酸カリウム、テトラフルオロホウ酸カリウム、ヘキサフルオロリン酸カリウム、ヘキサフルオロヒ酸カリウムなどのカリウム無機塩化合物;トリフルオロメタンスルホン酸カリウム、ノナフルオロブタンスルホン酸カリウム、ビス(トリフルオロメタンスルホニル)イミドカリウム、ビス(ノナフルオロブタンスルホニル)イミドカリウム、ビス(フルオロスルホニル)イミドカリウム、トリフルオロ酢酸カリウム、ペンタフルオロプロピオン酸カリウム、カリウムエトキシド、テトラフェニルホウ酸カリウム、テトラフルオロホウ酸カリウム、ヘキサフルオロリン酸カリウム、ビス(トリフルオロメチルスルホニル)イミドカリウム、ビス(ペンタフルオロエタンスルホニル)イミドカリウム、トリス(ペンタフルオロエタン)トリフルオロフォスフェイトカリウム、安息香酸カリウム、サリチル酸カリウム、フタル酸カリウム、酢酸カリウム、プロピオン酸カリウム、グリニャール試薬などのカリウム有機塩化合物などが挙げられるが、かかる例示のみに限定されるものではない。 Examples of potassium salts include potassium halides such as potassium chloride, potassium bromide, potassium fluoride, and potassium iodide, potassium perchlorate, potassium tetrafluoroborate, potassium hexafluorophosphate, potassium hexafluoroarsenate, and the like. Potassium inorganic salt compound of; , potassium pentafluoropropionate, potassium ethoxide, potassium tetraphenylborate, potassium tetrafluoroborate, potassium hexafluorophosphate, potassium bis(trifluoromethylsulfonyl)imide, potassium bis(pentafluoroethanesulfonyl)imide, tris Potassium organic salt compounds such as (pentafluoroethane) trifluorophosphate potassium, potassium benzoate, potassium salicylate, potassium phthalate, potassium acetate, potassium propionate, and Grignard reagents, etc., but are limited only to these examples. is not.

また、上記非水電解液の代わりに固体電解質を使用することもできる。カリウム二次電池用固体電解質としては、例えば、KBiO、KNO-Gd固溶体系、KSbO、KSO、KHPO、KZr(PO,KFe(MoO,KFe(PO27,KMnTi(PO等のカリウムイオン伝導体等が列挙される。A solid electrolyte can also be used instead of the non-aqueous electrolyte. Solid electrolytes for potassium secondary batteries include, for example, KBiO 3 , KNO 2 —Gd 2 O 3 solid solution system, KSbO 3 , K 2 SO 4 , KH 2 PO 4 , KZr 2 (PO 4 ) 3 , K 9 Fe( Potassium ion conductors such as MoO 4 ) 6 , K 4 Fe 3 (PO 4 ) 2 P 27 and K 3 MnTi(PO 4 ) 3 are enumerated.

溶媒としては、例えば、プロピレンカーボネート、エチレンカーボネート、ジメトルカーボネート、エチルメチルカーボネート、ジエチルカーボネート等のカーボネート化合物;γ-ブチロラクトン、γ-バレロラクトンなどのラクトン化合物;テトラヒドロフラン、2-メチルテトラヒドロフラン、ジエチルエーテル、ジイソプロピルエーテル、ジブチルエーテル、メトキシメタン、N,N-ジメチルホルムアミド、グライム、N-プロピル-N-メチルピロリジニウムビス(トリフルオロメタンスルホニル)イミド、ジメトキシエタン、ジメトキメタン、ジエトキメタン、ジエトキエタン、プロピレングリコールジメチルエーテル等のエーテル化合物;アセトニトリル等が挙げられる。 Examples of solvents include carbonate compounds such as propylene carbonate, ethylene carbonate, dimethol carbonate, ethylmethyl carbonate and diethyl carbonate; lactone compounds such as γ-butyrolactone and γ-valerolactone; tetrahydrofuran, 2-methyltetrahydrofuran, diethyl ether, Diisopropyl ether, dibutyl ether, methoxymethane, N,N-dimethylformamide, glyme, N-propyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide, dimethoxyethane, dimethoxymethane, diethoxymethane, diethoxyethane, propylene glycol dimethyl ether, etc. Ether compounds; acetonitrile and the like.

本実施形態の二次電池は、式(1)で表わされる組成を有する化合物が用いられているので、酸化還元反応(充放電反応)に際し、より高い電位およびエネルギー密度を確保することができ、しかも、安全性(ポリアニオン骨格)および実用性に優れる。したがって、本実施形態の二次電池は、例えば、小型化および高性能化が求められるデバイスなどに好適に用いることができる。 Since the secondary battery of the present embodiment uses the compound having the composition represented by formula (1), it is possible to ensure higher potential and energy density during the oxidation-reduction reaction (charge-discharge reaction). Moreover, it is excellent in safety (polyanion skeleton) and practicality. Therefore, the secondary battery of the present embodiment can be suitably used, for example, for devices that require miniaturization and high performance.

なお、本明細書において、「マグネシウムイオン二次電池」は、マグネシウムイオンをキャリアイオンとする二次電池を意味し、「マグネシウム二次電池」は、負極活物質としてマグネシウム金属又はマグネシウム合金を使用する二次電池を意味する。また、「カリウムイオン二次電池」は、カリウムイオンをキャリアイオンとする二次電池を意味し、「カリウム二次電池」は、負極活物質としてカリウム金属又はカリウム合金を使用する二次電池を意味する。 In this specification, "magnesium ion secondary battery" means a secondary battery with magnesium ions as carrier ions, and "magnesium secondary battery" uses magnesium metal or a magnesium alloy as a negative electrode active material. means a secondary battery. In addition, "potassium ion secondary battery" means a secondary battery with potassium ions as carrier ions, and "potassium secondary battery" means a secondary battery that uses potassium metal or a potassium alloy as a negative electrode active material. do.

以下、実施例により本発明をより具体的に説明するが、本発明はこれら実施例の態様に限定されるものではない。 EXAMPLES The present invention will be described in more detail below with reference to examples, but the present invention is not limited to the embodiments of these examples.

(実施例1)
原料粉体としてNHPO及びVを準備し、NHPO及びVを、バナジウムとリンのモル比が1:2となるように秤量し、めのう乳鉢で約30分混合して原料混合物を得た。その後、原料混合物をジルコニアボール(15mmΦ×10個)と共にクロム鋼製容器に入れ、アセトンを加えて遊星ボールミル(Fritsch;P-6)にて、400rpmで6時間粉砕混合した。その後、減圧下でアセトンを留去したのち、回収した粉末を40MPaでペレット成型し、アルゴン中、700℃の焼成温度で2時間焼成した。このとき昇温速度を400℃/hとした。冷却速度は300℃まで100℃/hとし、以降は自然冷却により室温まで放冷した。その後、再び700℃、3時間で焼成することによりVOPOを得た。
(Example 1)
NH 4 H 2 PO 4 and V 2 O 5 were prepared as raw material powders, and the NH 4 H 2 PO 4 and V 2 O 5 were weighed so that the molar ratio of vanadium and phosphorus was 1:2. A raw material mixture was obtained by mixing in a mortar for about 30 minutes. After that, the raw material mixture was placed in a chromium steel container together with zirconia balls (15 mmΦ×10), acetone was added, and the mixture was pulverized and mixed at 400 rpm for 6 hours in a planetary ball mill (Fritsch; P-6). Then, after acetone was distilled off under reduced pressure, the recovered powder was pellet-molded at 40 MPa and fired at a firing temperature of 700° C. for 2 hours in argon. At this time, the temperature increase rate was set to 400° C./h. The cooling rate was 100° C./h up to 300° C., and thereafter, it was allowed to cool to room temperature by natural cooling. Then, it was fired again at 700° C. for 3 hours to obtain V a OPO b .

(実施例2)
原料粉体としてNHPO及びNbを準備し、NHPO及びNbを、ニオブとリンモル比が1:2となるように秤量し、めのう乳鉢で約30分混合して原料混合物を得た。その後、原料混合物をジルコニアボール(15mmΦ×10個)と共にクロム鋼製容器に入れ、アセトンを加えて遊星ボールミル(Fritsch;P-6)にて、400rpmで6時間粉砕混合した。その後、減圧下でアセトンを留去したのち、回収した粉末を40MPaでペレット成型し、アルゴン中、900℃の焼成温度で8時間以上焼成した。このとき昇温速度を400℃/hとした。冷却速度は300℃まで100℃/hとし、以降は自然冷却により室温まで放冷することによりNbOPOを得た。
(Example 2)
NH 4 H 2 PO 4 and Nb 2 O 5 were prepared as raw material powders, and the NH 4 H 2 PO 4 and Nb 2 O 5 were weighed so that the molar ratio of niobium and phosphorous was 1:2. After mixing for about 30 minutes, a raw material mixture was obtained. After that, the raw material mixture was placed in a chromium steel container together with zirconia balls (15 mmΦ×10), acetone was added, and the mixture was pulverized and mixed at 400 rpm for 6 hours in a planetary ball mill (Fritsch; P-6). Thereafter, after acetone was distilled off under reduced pressure, the recovered powder was pellet-molded at 40 MPa and fired at a firing temperature of 900° C. for 8 hours or more in argon. At this time, the temperature increase rate was set to 400° C./h. The cooling rate was 100° C./h up to 300° C., after which the product was naturally cooled to room temperature to obtain Nba OPO b .

<評価方法>
[粉末X線回折(XRD)測定]
X線回折装置((株)リガク製 RINT-UltimaIII/G)を用いて合成した試料の測定を行った。X線源には CuKα線を用い、印加電圧40kV、電流値40mAとした。測定は0.02°/secの走査速度で10°~80°の角度範囲で行った。
<Evaluation method>
[Powder X-ray diffraction (XRD) measurement]
The synthesized sample was measured using an X-ray diffractometer (RINT-UltimaIII/G manufactured by Rigaku Corporation). CuKα rays were used as the X-ray source, and the applied voltage was 40 kV and the current value was 40 mA. Measurements were made over an angular range of 10° to 80° at a scanning speed of 0.02°/sec.

[ICP-AES測定]
ICP-AES測定は、誘導結合プラズマ発光分光分析装置(サーモフィッシャーサイエンティフィック社の「iCAP6500」を使用して行った。
[ICP-AES measurement]
ICP-AES measurement was performed using an inductively coupled plasma atomic emission spectrometer (“iCAP6500” manufactured by Thermo Fisher Scientific).

[試験例1:マグネシウムイオン脱離及び挿入の検討(Mg全電池)]
セルはCR2032型コインセルを用いた。Mg盤を負極として、電解液は、Mg(TFSI)をその濃度が0.5Mとなるようにエチレングリコールジメチルエーテルジメトキシエチレングリコール(商品名:monoglyme)溶解させて調製した。定電流充放電測定は電圧切り替え器を用い、電流5mAg-1、上限電圧3.6V、下限電圧0Vに設定し、充電より開始することで充放電測定を行った。なお、測定は室温で行った。
[Test Example 1: Examination of magnesium ion desorption and insertion (Mg full battery)]
A CR2032 type coin cell was used as the cell. Using the Mg disc as the negative electrode, the electrolytic solution was prepared by dissolving Mg(TFSI) 2 in ethylene glycol dimethyl ether dimethoxyethylene glycol (trade name: monoglyme) to a concentration of 0.5M. The constant current charge/discharge measurement was performed by using a voltage switch, setting the current to 5 mAg −1 , the upper limit voltage to 3.6 V, and the lower limit voltage to 0 V, and starting from charging. In addition, the measurement was performed at room temperature.

[試験例2:カチオン脱離及び挿入の検討(カリウム二次電池)]
セルはCR2032型コインセルを用いた。天然黒鉛を負極として、電解液は1MのKTFSI(PC溶媒)を用いた。定電流充放電測定は電圧切り替え器を用い、電流10mAg-1、上限電圧4.2V、下限電圧1.5Vに設定し、充電より開始した。55℃恒温槽内にセルを入れた状態で充放電測定を行った。
[Test Example 2: Examination of cation detachment and insertion (potassium secondary battery)]
A CR2032 type coin cell was used as the cell. Natural graphite was used as the negative electrode, and 1M KTFSI (PC solvent) was used as the electrolyte. The constant current charge/discharge measurement was performed by using a voltage switch, setting the current to 10 mAg −1 , the upper limit voltage to 4.2 V, and the lower limit voltage to 1.5 V, and started from charging. Charge/discharge measurement was performed with the cell placed in a 55° C. constant temperature bath.

図1(a)は、実施例1において焼成された生成物(VOPO)のXRDパターンを示している。なお、使用したX線波長は1.5418Åである。FIG. 1(a) shows the XRD pattern of the calcined product (V a OPO b ) in Example 1. FIG. The X-ray wavelength used is 1.5418 Å.

図1(a)から、得られた試料の全てのBraggピークに斜方晶格子の指数付けを行うことができ、出発材料やその生成物等に見られた不純物相の存在がほぼ確認されなかった。また、XRDの結果より、VOPOは斜方晶系、空間群Pnma(No.62)に帰属できた。リートベルト法により格子定数がa=7.7849(7)Å、b=6.1329(4)Å、c=6.9692(5)Å、α=β=γ=90°、単位格子体積(V)が323.74(7)Åであり、文献値(Gopalet al. Solid StateChem.,5,432-435(1972))と合致している(すなわち、β相である)ことがわかった。なお、信頼度因子は、Rwp=6.27%、R=4.78%、χ=1.40であった。From FIG. 1(a), all the Bragg peaks of the obtained sample can be indexed with the orthorhombic lattice, and the presence of the impurity phase seen in the starting material, its product, etc. was almost not confirmed. rice field. Further, from the XRD results, V a OPO b could be attributed to the orthorhombic system and space group Pnma (No. 62). According to the Rietveld method, lattice constants a = 7.7849 (7) Å, b = 6.1329 (4) Å, c = 6.9692 (5) Å, α = β = γ = 90 °, unit cell volume ( V) is 323.74(7) Å 3 , which agrees with the literature value (Gopal et al. Solid State Chem., 5, 432-435 (1972)) (that is, it is a β phase). . The reliability factors were R wp =6.27%, R p =4.78%, and χ 2 =1.40.

OPOは多形性を示しことが知られているが、その中でも、β-VOPO多形は最も安定な相である。この多形のVOPOを、マグネシウム及びカリウム二次電池正極材料として評価を行った(試験例1及び試験例2)。V a OPO b is known to exhibit polymorphism, among which the β-V a OPO b polymorph is the most stable phase. This polymorphic V a OPO b was evaluated as a positive electrode material for magnesium and potassium secondary batteries (Test Examples 1 and 2).

また、図1から、得られたVOPOの結晶は、2θで表される回折角度が16.67~17.56°の範囲、18.95~20.03°の範囲、21.97~23.43°の範囲、25.04~25.83°の範囲、26.00~26.84°の範囲、27.83~28.52°の範囲、28.79~29.47°の範囲、27.79~30.58°の範囲、31.19~32.37°の範囲、33.53~35.10°の範囲、36.61~38.34°の範囲、38.89~42.14°の範囲、42.87~43.93°の範囲、45.04~51.02°の範囲、51.81~58.40°の範囲および59.46~64.04°の範囲等にピークを有していることがわかり、VOPOのピーク位置はβ-VPOとほぼ近いことがわかった。この結果から、VOPOの格子定数はβ-VPOとほぼ近いことが分かる。Further, from FIG. 1, the obtained crystals of V a OPO b have diffraction angles represented by 2θ in the range of 16.67 to 17.56°, 18.95 to 20.03°, and 21.97°. ~23.43° range, 25.04-25.83° range, 26.00-26.84° range, 27.83-28.52° range, 28.79-29.47° range Range 27.79-30.58° Range 31.19-32.37° Range 33.53-35.10° Range 36.61-38.34° Range 38.89- 42.14° range, 42.87-43.93° range, 45.04-51.02° range, 51.81-58.40° range and 59.46-64.04° range , and the peak position of V a OPO b was found to be almost close to that of β-VPO 5 . From this result, it can be seen that the lattice constant of V a OPO b is almost close to that of β-VPO 5 .

図1(b)は、リートベルト法により精密化したXRDパターンを示す。この結果、格子定数がa=7.7849(7)Å、b=6.1329(4)Å、c=6.9692(5)Å、α=β=γ=90°、単位格子体積(V)が323.74(7)Åであり、文献値(Gopal et al. Solid StateChem., 5,432-435(1972))と合致している(すなわち、β相が主相である)ことがわかった。なお、信頼度因子は、Rwp=6.27%、R=4.78%、χ=1.40であった。FIG. 1(b) shows the XRD pattern refined by the Rietveld method. As a result, the lattice constants a = 7.7849 (7) Å, b = 6.1329 (4) Å, c = 6.9692 (5) Å, α = β = γ = 90 °, unit cell volume (V ) is 323.74(7) Å 3 , which agrees with the literature value (Gopal et al. Solid State Chem., 5, 432-435 (1972)) (that is, the β phase is the main phase). I found out. The reliability factors were R wp =6.27%, R p =4.78%, and χ 2 =1.40.

また、ICP-AES測定の結果、実施例1で得られたVOPOは、a=0.722であることがわかった。 Further, as a result of ICP-AES measurement, it was found that V a OPO b obtained in Example 1 was a=0.722 .

図2には、実施例1で得られたVOPOのSEM像を示している。図中、スケールバーは23.2μmを示す。この結果から、実施例1で得られたVOPOは、粒子が凝集している傾向にあるが、平均粒子径30μm前後であることがわかる。FIG. 2 shows an SEM image of V a OPO b obtained in Example 1. As shown in FIG. In the figure, the scale bar indicates 23.2 μm. From this result, it can be seen that the particles of V a OPO b obtained in Example 1 tend to be agglomerated, but the average particle size is around 30 μm.

図3は、実施例1で得られたVOPOを含む二次電池用正極活物質を正極材料として用いたときの試験例1の結果(Mg全電池の電位-時間特性の結果)を示している。この結果、マグネシウムの挿入及び脱離を示唆する電位応答が見られることがわかった。FIG. 3 shows the results of Test Example 1 when the positive electrode active material for secondary batteries containing V a OPO b obtained in Example 1 was used as the positive electrode material (results of potential-time characteristics of Mg full battery). showing. As a result, it was found that potential responses suggesting the insertion and desorption of magnesium were observed.

図4は、VOPOを含む二次電池用正極活物質を正極材料として用いたときの試験例2の結果(充放電特性、並びに、各サイクルと放電容量との関係)を示している。この結果から、カリウムイオンの出し入れによって良好なサイクル特性を示していることがわかる。また、50サイクル目において初期容量の約70%が維持されることが分かった。さらに、図5に示すように、サイクル試験において良好な可逆容量が得られ、50サイクル後の容量維持が70%と安定した特性を示していることがわかる。FIG. 4 shows the results of Test Example 2 when a positive electrode active material for a secondary battery containing V a OPO b was used as a positive electrode material (charge/discharge characteristics and relationship between each cycle and discharge capacity). . From this result, it can be seen that good cycle characteristics are exhibited by taking in and out potassium ions. It was also found that about 70% of the initial capacity was maintained at the 50th cycle. Furthermore, as shown in FIG. 5, a good reversible capacity was obtained in the cycle test, and the capacity retention after 50 cycles was 70%, indicating stable characteristics.

引き出し容量(充電容量)は、70mAhg-1で平均電圧は約3.75Vであり、得られた正極材料が高容量・高電位材料として期待されることがわかる。The drawn capacity (charged capacity) was 70 mAhg −1 and the average voltage was about 3.75 V. It can be seen that the obtained positive electrode material is expected as a high capacity and high potential material.

なお、K又はMg2+が挿入及び脱離するときの抽出できる理論容量は約331mAhg-1ある。これは、VOPOを含む二次電池用正極活物質を正極材料とした場合、強固なポリアニオンユニット(PO 3-)を含むVOPO中のVが2段レドックス電子反応(V5+/V4+及びV4+/V3+対)をすることに起因する。The theoretical capacity that can be extracted when K + or Mg 2+ intercalates and desorbs is about 331 mAhg −1 . This is because when a positive electrode active material for a secondary battery containing V a OPO b is used as a positive electrode material, V in V a OPO b containing a strong polyanion unit (PO 4 3− ) undergoes a two-step redox electron reaction (V 5+ /V 4+ and V 4+ /V 3+ pairs).

図6は、実施例2において焼成された生成物(NbOPO)のXRDパターンを示している。なお、使用したX線波長は1.5418Åである。FIG. 6 shows the XRD pattern of the product (Nb a OPO b ) calcined in Example 2. The X-ray wavelength used is 1.5418 Å.

図6から、得られた試料の全てのBraggピークに斜方晶格子の指数付けを行うことができ、出発材料やその生成物等に見られた不純物相の存在がほぼ確認されなかった。また、XRDの結果より、NbOPOはVOPO同様に、多形性を示すことがわかり、特に、斜方晶のNbOPO多形が主相であることがわかった。From FIG. 6, all the Bragg peaks of the obtained sample could be indexed with an orthorhombic lattice, and the existence of the impurity phase seen in the starting material, its product, etc. was hardly confirmed. Further, from the XRD results, it was found that Nb a OPO b exhibited polymorphism in the same manner as V a OPO b , and in particular, it was found that the orthorhombic Nb a OPO b polymorph was the main phase.

図7、8は、NbOPOを含む二次電池用正極活物質を正極材料として用いたときの試験例2の結果(充放電特性、並びに、各サイクルと放電容量との関係)を示している(図7がC/20rate、図8がC/50rate、いずれも25サイクル)。この結果から、この結果から、C/20rate、C/50rateいずれにおいてもカリウムイオンの出し入れによって良好なサイクル特性を示していることがわかる。また、50サイクル目において初期容量の約70%が維持されることが分かった。さらに、図7、8に示すように、サイクル試験において良好な可逆容量が得られ、25サイクル後の容量維持が約70%と安定した特性を示していることがわかる。7 and 8 show the results of Test Example 2 when a positive electrode active material for a secondary battery containing Nb a OPO b was used as the positive electrode material (charge/discharge characteristics and relationship between each cycle and discharge capacity). (C/20rate in FIG. 7, C/50rate in FIG. 8, both 25 cycles). From this result, it can be seen that good cycle characteristics are exhibited by the inflow and outflow of potassium ions at both C/20rate and C/50rate. It was also found that about 70% of the initial capacity was maintained at the 50th cycle. Furthermore, as shown in FIGS. 7 and 8, good reversible capacity was obtained in the cycle test, and capacity retention after 25 cycles was about 70%, indicating stable characteristics.

図9は、NbOPOを含む二次電池用正極活物質を正極材料として用いたときの試験例2の結果のまとめ(充放電特性、並びに、各サイクルと放電容量との関係)を示している。図9に示すように、サイクル試験(各サイクルと放電容量との関係)において良好な可逆容量が得られ、C/5というレートにおいて約100mAhg-1であり比較的高い容量が得られた。合剤電極の最適化はされていないものの、NbOPOは良好なレート特性を示すといえる。FIG. 9 shows a summary of the results of Test Example 2 when a positive electrode active material for a secondary battery containing Nb a OPO b was used as the positive electrode material (charge/discharge characteristics and relationship between each cycle and discharge capacity). ing. As shown in FIG. 9, good reversible capacity was obtained in the cycle test (relationship between each cycle and discharge capacity), and a relatively high capacity of about 100 mAhg −1 was obtained at a rate of C/5. Although the mixture electrode has not been optimized, it can be said that NbOPO4 exhibits good rate characteristics.

(比較例1)
原料粉体としてKCO、VOPO及びカーボンを準備し、K、V及びCのモル比が2:4:1となるように秤量し、めのう乳鉢で約30分混合して原料混合物を得た。その後、原料混合物を40MPaでペレット成型し、アルゴン中、700℃の焼成温度で1時間以上焼成した。このとき昇温速度を400℃/hとした。冷却速度は300℃まで100℃/hとし、以降は自然冷却により室温まで放冷することによりKVOPOを得た。
(Comparative example 1)
K 2 CO 3 , Va OPO b , and carbon were prepared as raw material powders, weighed so that the molar ratio of K, V, and C was 2:4:1, and mixed in an agate mortar for about 30 minutes to obtain raw materials. A mixture was obtained. After that, the raw material mixture was formed into pellets at 40 MPa, and fired at a firing temperature of 700° C. for 1 hour or more in argon. At this time, the temperature increase rate was set to 400° C./h. The cooling rate was set to 100°C/h up to 300°C, and thereafter , KVaOPOb was obtained by naturally cooling to room temperature.

図10は、KVOPOの充放電曲線の結果である。この結果から、作動電位は高い(4V付近)ものの、引き出せる容量が少ないことがわかり、二次電池の性能を向上させるには、カリウムを含まないVOPO骨格を用いることが有効であることがわかる。FIG. 10 shows the results of charge-discharge curves of KV a OPO b . From this result, it can be seen that although the operating potential is high (around 4 V), the capacity that can be extracted is small, and it is effective to use a potassium-free V a OPO b skeleton to improve the performance of the secondary battery. I understand.

Claims (4)

下記一般式(1)
Nb OPO (1)
(ここで、式(1)中0.5≦a≦1.2、3.5≦b≦4.5である)
で表される化合物を含み、
前記化合物は、平均粒子径が0.2~50μmの粒子状の粉末であり、
前記化合物の結晶構造がα相又はβ相であり、
キャリアイオンがリチウムイオン以外である二次電池用正極活物質。
General formula (1) below
Nb a OPO b (1)
(Here, in formula (1) , 0.5≦a≦1.2 and 3.5≦b≦4.5)
including a compound represented by
The compound is a particulate powder having an average particle size of 0.2 to 50 μm,
The crystal structure of the compound is α phase or β phase,
A positive electrode active material for a secondary battery in which carrier ions are other than lithium ions.
請求項1に記載の正極活物質を構成要素とする二次電池。 A secondary battery comprising the positive electrode active material according to claim 1 as a component. 請求項1に記載の二次電池用正極活物質の製造方法であって、
Nbを含有する原料と、を含有する原料とを含む原料混合物を加熱する加熱工程を備える、製造方法。
A method for producing the positive electrode active material for a secondary battery according to claim 1,
A production method comprising a heating step of heating a raw material mixture containing a Nb -containing raw material and a P -containing raw material.
前記加熱工程における加熱温度が500~1500℃である、請求項3に記載の製造方法。 The production method according to claim 3, wherein the heating temperature in the heating step is 500 to 1500°C.
JP2017560050A 2016-01-06 2016-11-24 Positive electrode active material for secondary battery, manufacturing method thereof, and secondary battery Active JP7116464B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016000924 2016-01-06
JP2016000924 2016-01-06
PCT/JP2016/084851 WO2017119208A1 (en) 2016-01-06 2016-11-24 Positive electrode active material for secondary battery and production method therefor, and secondary battery

Publications (2)

Publication Number Publication Date
JPWO2017119208A1 JPWO2017119208A1 (en) 2018-11-08
JP7116464B2 true JP7116464B2 (en) 2022-08-10

Family

ID=59273626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017560050A Active JP7116464B2 (en) 2016-01-06 2016-11-24 Positive electrode active material for secondary battery, manufacturing method thereof, and secondary battery

Country Status (2)

Country Link
JP (1) JP7116464B2 (en)
WO (1) WO2017119208A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018097109A1 (en) * 2016-11-25 2018-05-31 学校法人東京理科大学 Positive electrode active material for potassium ion battery, positive electrode for potassium ion battery, and potassium ion battery
JP7498929B2 (en) * 2019-03-28 2024-06-13 パナソニックホールディングス株式会社 Solid electrolyte and magnesium secondary battery using same
US20240039039A1 (en) * 2020-12-04 2024-02-01 Otsuka Chemical Co., Ltd. Titanic acid-based solid electrolyte material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003068304A (en) 2001-08-30 2003-03-07 Yusaku Takita Electrode active material for secondary nonaqueous electrolyte battery, electrode containing the same and battery
JP2004220801A (en) 2003-01-09 2004-08-05 Toshiba Corp Nonaqueous electrolyte secondary battery
JP2013533577A (en) 2010-05-25 2013-08-22 ペリオン テクノロジーズ インク. Electrode material for magnesium battery
US20140106222A1 (en) 2012-10-15 2014-04-17 Samsung Sdi Co., Ltd. Positive active material, method of preparing the same, and lithium battery including the positive active material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003068304A (en) 2001-08-30 2003-03-07 Yusaku Takita Electrode active material for secondary nonaqueous electrolyte battery, electrode containing the same and battery
JP2004220801A (en) 2003-01-09 2004-08-05 Toshiba Corp Nonaqueous electrolyte secondary battery
JP2013533577A (en) 2010-05-25 2013-08-22 ペリオン テクノロジーズ インク. Electrode material for magnesium battery
US20140106222A1 (en) 2012-10-15 2014-04-17 Samsung Sdi Co., Ltd. Positive active material, method of preparing the same, and lithium battery including the positive active material

Also Published As

Publication number Publication date
WO2017119208A1 (en) 2017-07-13
JPWO2017119208A1 (en) 2018-11-08

Similar Documents

Publication Publication Date Title
Oh et al. An advanced sodium-ion rechargeable battery based on a tin–carbon anode and a layered oxide framework cathode
KR102073785B1 (en) Doped nickelate compounds
Wang et al. Novel P2-type Na 2/3 Ni 1/6 Mg 1/6 Ti 2/3 O 2 as an anode material for sodium-ion batteries
JP6927579B2 (en) Lithium iron manganese-based composite oxide
US10879533B2 (en) Nitride- and oxide-modified electrode compositions and their methods of making
JP7034471B2 (en) Potassium compound and positive electrode active material for potassium ion secondary battery containing it
WO2017099137A1 (en) Positive electrode active material for potassium ion secondary cell
Woo et al. Trigonal Na4Ti5O12 phase as an intercalation host for rechargeable batteries
JP2015507333A (en) Sulfate electrode
Song et al. Co3O4 hollow nanospheres doped with ZnCo2O4 via thermal vapor mechanism for fast lithium storage
Wang et al. Superior electrochemical and kinetics performance of LiNi0. 8Co0. 15Al0. 05O2 cathode by neodymium synergistic modifying for lithium ion batteries
JP7255831B2 (en) Positive electrode active material for potassium ion secondary battery and secondary battery
JP7116464B2 (en) Positive electrode active material for secondary battery, manufacturing method thereof, and secondary battery
JP7169650B2 (en) Positive electrode active material for potassium ion secondary battery, manufacturing method thereof, and potassium ion secondary battery
JP7224617B2 (en) Potassium compounds, solid electrolytes for potassium ion secondary batteries, positive electrode active materials for potassium ion secondary batteries, and secondary batteries
JP6876997B2 (en) Fluoride ion secondary battery active material and fluoride ion secondary battery using it
JP7074314B2 (en) Positive electrode active material for potassium ion secondary battery and secondary battery
JP6934665B2 (en) Positive electrode active material for secondary batteries, their manufacturing methods, and secondary batteries
TWI790197B (en) Lithium copper composite oxide
JP7126234B2 (en) Potassium compound and positive electrode active material for potassium ion secondary battery containing the same
JP7060866B2 (en) A method for manufacturing a positive electrode active material for a secondary battery, a secondary battery, and a positive electrode active material for a secondary battery.
Zou et al. Improving electrochemical properties of Li4Ti5O12/TiO2 diphase anode materials via Co-Cl co-doping
Vaněk et al. PREPARATION AND CHARACTERISATION OF CERAMIC ELECTROACTIVE MATERIALS FOR NA-ION BATTERIES

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191115

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20191115

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210615

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211207

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20220406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220722

R150 Certificate of patent or registration of utility model

Ref document number: 7116464

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150