JP2011096641A - Manufacturing method of active material, and manufacturing method of lithium ion secondary battery - Google Patents

Manufacturing method of active material, and manufacturing method of lithium ion secondary battery Download PDF

Info

Publication number
JP2011096641A
JP2011096641A JP2010207083A JP2010207083A JP2011096641A JP 2011096641 A JP2011096641 A JP 2011096641A JP 2010207083 A JP2010207083 A JP 2010207083A JP 2010207083 A JP2010207083 A JP 2010207083A JP 2011096641 A JP2011096641 A JP 2011096641A
Authority
JP
Japan
Prior art keywords
active material
water
manufacturing
organic compound
soluble organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010207083A
Other languages
Japanese (ja)
Other versions
JP5594007B2 (en
Inventor
Koji Tokita
浩司 時田
Keitaro Otsuki
佳太郎 大槻
Atsushi Sano
篤史 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2010207083A priority Critical patent/JP5594007B2/en
Priority to US12/887,820 priority patent/US8734539B2/en
Priority to CN201010502292.0A priority patent/CN102034979B/en
Publication of JP2011096641A publication Critical patent/JP2011096641A/en
Application granted granted Critical
Publication of JP5594007B2 publication Critical patent/JP5594007B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of an active material capable of improving rate characteristics of a lithium ion secondary battery. <P>SOLUTION: The manufacturing method of the active material includes a process of forming an intermediate by heating a phosphate source, a vanadium source, a water-soluble organic compound and water for 1 to 12 hours, and a process of heating the intermediate, lithium salt and water. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、活物質の製造方法及びリチウムイオン二次電池の製造方法に関する。   The present invention relates to an active material manufacturing method and a lithium ion secondary battery manufacturing method.

リチウムイオン二次電池用の正極活物質としては、LiCoOが広く用いられている。しかし、LiCoOは、その原料コストが高いことや、その熱安定性が低く安全性に問題があることが指摘されている。これらの問題を克服する正極活物質としてLiFePOやLiVOPO等のリン酸系の正極活物質が注目されている。リン酸系正極材料の中でも4V級の充放電電圧を実現し得る化合物として、LiVOPOが知られている(下記特許文献1、非特許文献1,2を参照)。 LiCoO 2 is widely used as a positive electrode active material for lithium ion secondary batteries. However, it has been pointed out that LiCoO 2 has a high raw material cost and has a low thermal stability and a safety problem. As positive electrode active materials that overcome these problems, phosphoric acid-based positive electrode active materials such as LiFePO 4 and LiVOPO 4 have attracted attention. LiVOPO 4 is known as a compound that can realize a charge / discharge voltage of 4 V class among phosphoric acid positive electrode materials (see Patent Document 1 and Non-Patent Documents 1 and 2 below).

特表2003−520405号公報Special table 2003-520405 gazette

Journal of The Electrochemical Society, 151(6) A796−A800 (2004)Journal of The Electrochemical Society, 151 (6) A796-A800 (2004) Electrochemistry, 71 No.12 (2003), 1108−1110Electrochemistry, 71 No. 12 (2003), 1108-1110

LiVOPOは、三斜晶(α型結晶)、斜方晶(β型結晶)等の複数の結晶構造を示し、その結晶構造に応じて異なる電気化学特性を有することが知られている。そして、LiVOPOのβ型結晶は、α型結晶に比べて、直線的で短いイオン伝導経路(リチウムイオンパス)を有するため、リチウムイオンを可逆的に挿入脱離する特性(以下、場合により「可逆性」と記す。)に優れる。そのため、LiVOPOに含まれるβ型結晶の割合が大きいほど、LiVOPOを用いた電池の充放電容量及びレート特性が向上する傾向がある。したがって、LiVOPOのβ型結晶の単相を得ることが可能な活物質の製造方法が望まれる。 LiVOPO 4 has a plurality of crystal structures such as triclinic crystal (α-type crystal) and orthorhombic crystal (β-type crystal), and is known to have different electrochemical characteristics depending on the crystal structure. Since the β-type crystal of LiVOPO 4 has a linear and shorter ion conduction path (lithium ion path) than the α-type crystal, it has a characteristic of reversibly inserting and desorbing lithium ions (hereinafter, “ Reversible "). Therefore, the larger the ratio of β-type crystals contained in LiVOPO 4, tends to improve the charge and discharge capacities and rate characteristics of batteries using LiVOPO 4. Therefore, a method for producing an active material capable of obtaining a single phase of LiVOPO 4 β-type crystal is desired.

しかしながら、上記特許文献1及び非特許文献1,2に記載されたLiVOPOの製造方法では、β型結晶を得るための条件が厳しく、β型結晶の単相を得難いという問題を本発明者らは見出した。 However, in the method for producing LiVOPO 4 described in Patent Document 1 and Non-Patent Documents 1 and 2, the conditions for obtaining β-type crystals are severe, and it is difficult for the present inventors to obtain a single phase of β-type crystals. Found.

本発明は、上記従来技術の有する課題に鑑みてなされたものであり、リチウムイオン二次電池のレート特性を向上させることが可能な活物質の製造方法及び当該活物質を用いたリチウムイオン二次電池の製造方法を提供することを目的とする。   The present invention has been made in view of the above-described problems of the prior art, and a method for producing an active material capable of improving the rate characteristics of a lithium ion secondary battery, and a lithium ion secondary using the active material It aims at providing the manufacturing method of a battery.

上記目的を達成するために、本発明に係る活物質の製造方法は、リン酸源、バナジウム源、水溶性の有機化合物及び水を1〜12時間加熱して、中間体を形成する工程と、中間体、リチウム塩及び水を加熱する工程と、を備える。   In order to achieve the above object, a method for producing an active material according to the present invention includes a step of heating a phosphoric acid source, a vanadium source, a water-soluble organic compound and water for 1 to 12 hours to form an intermediate, Heating the intermediate, the lithium salt, and water.

上記本発明によれば、LiVOPOのβ型結晶を含む活物質を形成することができる。上記本発明によって得た活物質を正極活物質として備えるリチウムイオン二次電池では、従来の製造方法により形成したLiVOPOを用いたリチウムイオン二次電池に比べて、レート特性を向上させることが可能となる。 According to the present invention, an active material containing a LiVOPO 4 β-type crystal can be formed. In the lithium ion secondary battery including the active material obtained by the present invention as the positive electrode active material, the rate characteristics can be improved as compared with the lithium ion secondary battery using LiVOPO 4 formed by the conventional manufacturing method. It becomes.

上記本発明では、水溶性の有機化合物が、スクロース、グルコース、メチルセルロース、エチルセルロース、フルクトオリゴ糖及びポリビニルアルコールからなる群より選ばれる少なくとも一種であればよい。   In the present invention, the water-soluble organic compound may be at least one selected from the group consisting of sucrose, glucose, methylcellulose, ethylcellulose, fructooligosaccharide and polyvinyl alcohol.

上記本発明では、水溶性の有機化合物が含む炭素のモル数[C]とバナジウム源が含むバナジウムのモル数[V]との比[C]/[V]を、0.01〜8に調整することが好ましい。比[C]/[V]を、0.1〜4に調整することがより好ましい。これにより、本発明の効果が顕著となる。   In the present invention, the ratio [C] / [V] of the number of moles of carbon [C] contained in the water-soluble organic compound and the number of moles [V] of vanadium contained in the vanadium source is adjusted to 0.01-8. It is preferable to do. More preferably, the ratio [C] / [V] is adjusted to 0.1-4. Thereby, the effect of this invention becomes remarkable.

本発明に係るリチウムイオン二次電池の製造方法は、集電体と、集電体上に位置し、上記本発明に係る活物質の製造方法によって得られた活物質を含む活物質層と、を有する電極を形成する工程を備える。これにより、従来の製造方法により形成したLiVOPOを用いたリチウムイオン二次電池に比べて、レート特性が大きいリチウムイオン二次電池を製造することが可能となる。 A method for producing a lithium ion secondary battery according to the present invention includes a current collector, an active material layer that is located on the current collector and includes an active material obtained by the method for producing an active material according to the present invention, Forming an electrode having the following. Thereby, it becomes possible to manufacture a lithium ion secondary battery having higher rate characteristics than a lithium ion secondary battery using LiVOPO 4 formed by a conventional manufacturing method.

本発明によれば、リチウムイオン二次電池のレート特性を向上させることが可能な活物質の製造方法及び当該活物質を用いたリチウムイオン二次電池の製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the active material which can improve the rate characteristic of a lithium ion secondary battery, and the manufacturing method of a lithium ion secondary battery using the said active material can be provided.

図1は、本発明の一実施形態に係るリチウムイオン二次電池の模式断面図である。FIG. 1 is a schematic cross-sectional view of a lithium ion secondary battery according to an embodiment of the present invention.

(活物質の製造方法)
以下では、本発明の好適な一実施形態に係る活物質の製造方法について詳細に説明する。
(Method for producing active material)
Below, the manufacturing method of the active material which concerns on suitable one Embodiment of this invention is demonstrated in detail.

本実施形態に係る活物質の製造方法は、リン酸源、バナジウム源、水溶性の有機化合物及び水を1〜12時間加熱することにより、中間体を形成する工程と、中間体、リチウム塩及び水を加熱する工程と、を備える。なお、中間体とは、LiVOPOの前駆体であり、Liを含有しない化合物である。以下では、上記の中間体を形成する工程を第一加熱工程と記す。また、中間体、リチウム塩及び水を加熱する工程を第二加熱工程と記す。 The method for producing an active material according to the present embodiment includes a step of forming an intermediate by heating a phosphoric acid source, a vanadium source, a water-soluble organic compound and water for 1 to 12 hours, an intermediate, a lithium salt, and Heating the water. The intermediate is a precursor of LiVOPO 4 and is a compound that does not contain Li. Below, the process of forming said intermediate body is described as a 1st heating process. Moreover, the process of heating an intermediate body, lithium salt, and water is described as a 2nd heating process.

<第一加熱工程>
第一加熱工程では、リン酸源、バナジウム源、水溶性の有機化合物及び蒸留水を攪拌してこれらの混合液を調整し、混合液を加熱すればよい。これにより、中間体が混合液中に生成する。本発明者らは、混合液の加熱によって、中間体の水和物であるVOPO・2HOが混合液中に生成する、と考える。
<First heating step>
In the first heating step, a phosphoric acid source, a vanadium source, a water-soluble organic compound and distilled water are stirred to prepare a mixed solution, and the mixed solution may be heated. Thereby, an intermediate body produces | generates in a liquid mixture. The present inventors consider that VOPO 4 .2H 2 O, which is a hydrate of an intermediate, is generated in the mixed solution by heating the mixed solution.

第一加熱工程では、混合液を50〜120℃に加熱することが好ましい。すなわち、リン酸源、バナジウム源、水溶性の有機化合物及び蒸留水から中間体を形成する反応の温度を上記の範囲内に調整することが好ましい。混合液の温度が低すぎる場合、混合液の温度が上記の範囲内である場合に比べて、中間体が生成し難い傾向がある。混合液の温度が高すぎる場合、混合液の温度が上記の範囲内である場合に比べて、中間体の粒子径が大きくなり、第二加熱工程での反応性が悪化する傾向がある。本実施形態では、混合液を上記の温度範囲に加熱することにより、これらの傾向を抑制される。第一加熱工程では、混合液を1〜12時間加熱する。混合液の加熱時間が1〜12時間の範囲外である場合、放電容量又はレート特性が悪化する傾向がある。また、加熱時間が長い場合、得られるLiVOPOの結晶が大きくなりすぎ、これを用いた電池の特性が劣化する。 In the first heating step, the mixed solution is preferably heated to 50 to 120 ° C. That is, it is preferable to adjust the temperature of the reaction for forming the intermediate from the phosphoric acid source, vanadium source, water-soluble organic compound and distilled water within the above range. When the temperature of the mixed liquid is too low, it tends to be difficult to generate an intermediate as compared with the case where the temperature of the mixed liquid is within the above range. When the temperature of the mixed liquid is too high, the particle diameter of the intermediate is increased as compared with the case where the temperature of the mixed liquid is within the above range, and the reactivity in the second heating step tends to deteriorate. In this embodiment, these tendencies are suppressed by heating the mixed solution to the above temperature range. In the first heating step, the mixed solution is heated for 1 to 12 hours. When the heating time of the mixed liquid is outside the range of 1 to 12 hours, the discharge capacity or rate characteristics tend to deteriorate. In addition, when the heating time is long, the resulting LiVOPO 4 crystal becomes too large, and the characteristics of the battery using this will deteriorate.

なお、第一加熱工程では、蒸留水を上記の温度範囲で1〜12時間加熱しながら、蒸留水にリン酸源、バナジウム源及び水溶性の有機化合物を添加して混合液を調整してもよい。この場合も中間体が生成する。   In the first heating step, while the distilled water is heated in the above temperature range for 1 to 12 hours, a mixed solution is prepared by adding a phosphoric acid source, a vanadium source, and a water-soluble organic compound to the distilled water. Good. Again, an intermediate is formed.

リン酸源としては、例えば、HPO、NHPO及び(NHHPOからなる群より選ばれる少なくとも一種を用いることができる。なお、二種以上のリン酸源を併用してもよい。バナジウム源としては、例えば、V又はNHVOのいずれかを用いることができる。なお、二種以上のバナジウム源を併用してもよい。 As the phosphoric acid source, for example, at least one selected from the group consisting of H 3 PO 4 , NH 4 H 2 PO 4 and (NH 4 ) 2 HPO 4 can be used. Two or more phosphate sources may be used in combination. As the vanadium source, for example, either V 2 O 5 or NH 4 VO 3 can be used. Two or more vanadium sources may be used in combination.

リン酸源とバナジウム源の配合比は、リン酸源に含まれるリン元素のモル数とバナジウム源に含まれるバナジウム元素のモル数との比が、LiVOPOの化学量論比(1:1)になるように調整すればよい。なお、リン酸源とバナジウム源の配合比は、必ずしも上記の化学量論比を満たさなくてもよい。 The mixing ratio of the phosphoric acid source and the vanadium source is such that the ratio of the number of moles of phosphorus element contained in the phosphoric acid source to the number of moles of vanadium element contained in the vanadium source is the stoichiometric ratio of LiVOPO 4 (1: 1). It may be adjusted so that Note that the blending ratio of the phosphate source and the vanadium source does not necessarily satisfy the above stoichiometric ratio.

水溶性の有機化合物としては、例えば、スクロース、グルコース、メチルセルロース、エチルセルロース、ポリビニルアルコール、フルクトオリゴ糖、ソルビトール、ラクトース等の等の水溶性の高分子又は糖類が挙げられる。水溶性の有機化合物としては、室温において固体であるものを用いればよい。水溶性の有機化合物は後述する焼成で炭素化し、最終的に得られる活物質中に不純物として残存し、導電助剤として機能する場合がある。なお、水溶性の有機化合物の代わりに、ポリフッ化ビニリデンのような非水溶性の有機化合物や、グラファイト又はアセチレンブラック等の炭素材料を用いた場合、本発明の効果を奏することは困難である。   Examples of the water-soluble organic compound include water-soluble polymers or saccharides such as sucrose, glucose, methyl cellulose, ethyl cellulose, polyvinyl alcohol, fructooligosaccharide, sorbitol, and lactose. What is necessary is just to use what is solid at room temperature as a water-soluble organic compound. The water-soluble organic compound may be carbonized by firing, which will be described later, and may remain as an impurity in the finally obtained active material and function as a conductive aid. In addition, when a water-insoluble organic compound such as polyvinylidene fluoride or a carbon material such as graphite or acetylene black is used instead of the water-soluble organic compound, it is difficult to achieve the effects of the present invention.

第一加熱工程では、水溶性の有機化合物が含む炭素のモル数[C]とバナジウム源が含むバナジウムのモル数[V]との比[C]/[V]を0.01〜8に調整することが好ましい。比[C]/[V]を、0.1〜4に調整することがより好ましい。[C]/[V]が上記範囲より小さい場合、後述する乾燥工程中に中間体が水溶性の有機化合物によって被覆され難い傾向がある。また、[C]/[V]が上記範囲より大きい場合、活物質に対する有機化合物の割合が大きくなりすぎ、電池容量が低下する傾向がある。   In the first heating step, the ratio [C] / [V] of the number of moles of carbon [C] contained in the water-soluble organic compound and the number of moles [V] of vanadium contained in the vanadium source was adjusted to 0.01-8. It is preferable to do. More preferably, the ratio [C] / [V] is adjusted to 0.1-4. When [C] / [V] is smaller than the above range, the intermediate tends to be difficult to be covered with the water-soluble organic compound during the drying step described later. Moreover, when [C] / [V] is larger than the said range, the ratio of the organic compound with respect to an active material becomes large too much, and there exists a tendency for battery capacity to fall.

第一加熱工程では、混合液を加熱して混合液中に中間体を生成させた後、スプレードライヤー等を用いて混合液を乾燥することが好ましい。乾燥により、混合液中で中間体の生成が更に進行するとともに、混合液から水分が除去され、中間体を含む残留物が得られる。また、乾燥中に中間体が水溶性の有機化合物によって被覆される。そのため、中間体の過剰な粒成長が抑制される。非水溶性の有機化合物を用いた場合は、乾燥中に中間体が非水溶性の有機化合物によって充分に被覆されない。なお、以下では、第一加熱工程中の乾燥によって得られる残留物を「第一残留物」と記す。   In the first heating step, it is preferable to heat the mixed solution to produce an intermediate in the mixed solution, and then dry the mixed solution using a spray dryer or the like. By drying, the production of the intermediate further proceeds in the mixed solution, and moisture is removed from the mixed solution, whereby a residue containing the intermediate is obtained. In addition, the intermediate is covered with a water-soluble organic compound during drying. Therefore, excessive grain growth of the intermediate is suppressed. When a water-insoluble organic compound is used, the intermediate is not sufficiently covered with the water-insoluble organic compound during drying. Hereinafter, a residue obtained by drying during the first heating step is referred to as a “first residue”.

第一工程では、上記の混合液を150〜300℃の雰囲気下で乾燥することが好ましい。乾燥の温度が低すぎる場合、温度が上記の範囲内である場合に比べて、乾燥が不十分となり、第一残留物の回収が困難になる傾向がある。本実施形態では、上記の温度範囲で混合液を乾燥することにより、これらの傾向が抑制される。なお、スプレードライヤーによる乾燥の代わりにろ過乾燥を採用した場合、混合液から水溶性の有機化合物が除去されてしまい、所望の中間体が得られず、本発明の効果を得ることが困難となる。スプレードライヤーによる乾燥の代わりに、凍結乾燥などを行ってもよい。   In the first step, it is preferable to dry the mixed solution in an atmosphere of 150 to 300 ° C. When the temperature of drying is too low, compared with the case where the temperature is within the above range, drying tends to be insufficient and recovery of the first residue tends to be difficult. In this embodiment, these tendencies are suppressed by drying the mixed solution in the above temperature range. When filtration drying is employed instead of drying with a spray dryer, the water-soluble organic compound is removed from the mixed solution, and a desired intermediate cannot be obtained, making it difficult to obtain the effects of the present invention. . Instead of drying with a spray dryer, freeze drying or the like may be performed.

本実施形態では、上述した中間体を含む混合液又は第一残留物を焼成することが好ましい。この焼成により、中間体を含む混合液又は第一残留物から、水が除去され、中間体が無水物になる。つまり、VOPO・2HOがVOPOになる、と本発明者らは考える。中間体を含む混合液又は第一残留物を焼成して水溶性の有機物を難溶性に変質させないと、第二加熱工程で有機物が再び水に溶解してしまう。なお、中間体を含む混合液又は残留物の焼成は、中間体を得るための必須の工程ではない。 In this embodiment, it is preferable to fire the liquid mixture or first residue containing the above-described intermediate. By this calcination, water is removed from the mixed solution containing the intermediate or the first residue, and the intermediate becomes anhydrous. That is, the present inventors consider that VOPO 4 · 2H 2 O becomes VOPO 4 . If the mixed liquid containing the intermediate or the first residue is baked to change the water-soluble organic matter to be hardly soluble, the organic matter is dissolved in water again in the second heating step. In addition, baking of the liquid mixture or residue containing an intermediate is not an essential process for obtaining an intermediate.

本実施形態では、中間体を含む混合液又は第一残留物を200〜500℃の雰囲気下で焼成すればよい。焼成の温度が低すぎる場合、中間体中に水が残存し易くなり、LiVOPOの組成がずれ易くなる傾向がある。焼成の温度が高すぎる場合、中間体に異相が含まれるため、最終生成物であるLiVOPO中のβ型結晶相の割合が低下し、電池容量の低下を引き起こす傾向がある。第一加熱工程における焼成の温度を上記の範囲内とすることによって、これらの傾向を抑制できる。 In this embodiment, what is necessary is just to bake the liquid mixture or 1st residue containing an intermediate body in 200-500 degreeC atmosphere. If the firing temperature is too low, water tends to remain in the intermediate and the composition of LiVOPO 4 tends to shift. When the firing temperature is too high, a hetero phase is contained in the intermediate, so that the ratio of the β-type crystal phase in the final product LiVOPO 4 tends to decrease, and the battery capacity tends to decrease. By setting the firing temperature in the first heating step within the above range, these tendencies can be suppressed.

中間体を含む混合液又は第一残留物の焼成の雰囲気は、窒素雰囲気、アルゴン雰囲気などの不活性雰囲気が望ましい。   The firing atmosphere of the mixed liquid containing the intermediate or the first residue is preferably an inert atmosphere such as a nitrogen atmosphere or an argon atmosphere.

<第二加熱工程>
第二加熱工程では、まず、第一加熱工程で得た中間体とリチウム塩を蒸留水に添加して、これらを攪拌して混合液を調整する。混合液を調整する際は、蒸留水の温度を30〜80℃程度に調整すればよい。これにより、リチウム塩の混合液への溶解が促進される。
<Second heating step>
In the second heating step, first, the intermediate and lithium salt obtained in the first heating step are added to distilled water, and these are stirred to prepare a mixed solution. What is necessary is just to adjust the temperature of distilled water to about 30-80 degreeC when adjusting a liquid mixture. This promotes dissolution of the lithium salt in the mixed solution.

リチウム塩としては、例えば、LiCO、LiF、LiNO、LiOH、LiCl、LiBr、LiI、LiSO、LiPO及びCHCOOLiからなる群より選ばれる一種又は二種以上を用いることができる。 Examples of the lithium salt include one or more selected from the group consisting of Li 2 CO 3 , LiF, LiNO 3 , LiOH, LiCl, LiBr, LiI, Li 2 SO 4 , Li 3 PO 4, and CH 3 COOLi. Can be used.

リチウム塩と中間体の配合比は、リチウム塩に含まれるリチウム元素のモル数と、中間体に含まれるバナジウム元素のモル数と、中間体に含まれるリン元素のモル数の比が、LiVOPOの化学量論比(1:1:1)になるように調整すればよい。なお、リチウム塩と中間体の配合比は、必ずしも上記の化学量論比を満たさなくてもよい。例えば、最終的に得られるLiVOPOにおけるLiの欠損を防止するために、リチウム塩を多めに配合してもよい。 The compounding ratio of the lithium salt and the intermediate is such that the ratio of the number of moles of lithium element contained in the lithium salt, the number of moles of vanadium element contained in the intermediate, and the number of moles of phosphorus element contained in the intermediate is LiVOPO 4 The stoichiometric ratio (1: 1: 1) may be adjusted. Note that the mixing ratio of the lithium salt and the intermediate does not necessarily satisfy the above stoichiometric ratio. For example, in order to prevent the loss of Li in the finally obtained LiVOPO 4 , a large amount of lithium salt may be added.

第二加熱工程では、中間体、リチウム塩及び蒸留水を含む混合液をスプレードライヤー等で乾燥して、第二残留物を得ることが好ましい。これにより、LiVOPOの組成のずれを抑制でき、電池容量の低下を抑制できる。第二加熱工程では、中間体、リチウム塩及び蒸留水を含む混合液を150〜300℃の雰囲気下で乾燥することが好ましい。乾燥の温度が低すぎる場合、温度が上記の範囲内である場合に比べて、乾燥が不十分となり第二残留物の回収が困難になる傾向がある。上記の温度範囲で混合液の乾燥を行うことにより、これらの傾向を抑制できる。なお、スプレードライヤーによる乾燥の代わりにろ過乾燥を採用した場合、混合液からリチウム元素が除去されてしまい、LiVOPOを得ることが困難となる。 In the second heating step, it is preferable to obtain a second residue by drying a mixed solution containing the intermediate, lithium salt and distilled water with a spray dryer or the like. Thus, it is possible to suppress deviation in composition of LiVOPO 4, can suppress a decrease in battery capacity. In the second heating step, it is preferable to dry the mixed solution containing the intermediate, lithium salt and distilled water in an atmosphere of 150 to 300 ° C. When the drying temperature is too low, drying tends to be insufficient and recovery of the second residue tends to be difficult as compared with the case where the temperature is within the above range. These tendencies can be suppressed by drying the mixed solution in the above temperature range. In the case of adopting filtered and dried in place of the drying with a spray drier, lithium element from the mixed liquid will be removed, it is difficult to obtain a LiVOPO 4.

第二加熱工程では、第二残留物を焼成する。または、第二加熱工程では、中間体、リチウム塩及び蒸留水を含む混合液を焼成する。この焼成によって、LiVOPOのβ型結晶を含む活物質を形成することができる。 In the second heating step, the second residue is fired. Or in a 2nd heating process, the liquid mixture containing an intermediate body, lithium salt, and distilled water is baked. By this firing, an active material containing a LiVOPO 4 β-type crystal can be formed.

第二加熱工程では、中間体、リチウム塩及び蒸留水を含む混合液又は第二残留物を400〜700℃の雰囲気下で焼成することが好ましい。焼成の温度が低過ぎる場合、LiVOPOの結晶成長度が小さく、その容量密度の向上度が小さくなる傾向がある。焼成の温度が高過ぎる場合、LiVOPOの結晶成長が過剰に進行して、LiVOPOの粒径が増加し、結晶におけるLiの拡散能が低下する傾向がある。そのため、得られるLiVOPOを用いた電池のレート特性の向上度が小さくなる傾向がある。第二加熱工程における焼成の温度を上記の範囲内とすることによって、これらの傾向を抑制できる。 In the second heating step, it is preferable to fire the mixed solution or second residue containing the intermediate, lithium salt and distilled water in an atmosphere of 400 to 700 ° C. If the firing temperature is too low, the degree of crystal growth of LiVOPO 4 tends to be small, and the degree of improvement in its capacity density tends to be small. If the firing temperature is too high, crystal growth of LiVOPO 4 proceeds excessively, the particle size of LiVOPO 4 increases, and the Li diffusibility in the crystal tends to decrease. For this reason, the degree of improvement in the rate characteristics of the battery using LiVOPO 4 obtained tends to be small. By setting the firing temperature in the second heating step within the above range, these tendencies can be suppressed.

第二加熱工程での焼成時間は、3〜20時間であればよい。また、焼成の雰囲気は、窒素雰囲気、アルゴン雰囲気、又は空気雰囲気であればよい。   The firing time in the second heating step may be 3 to 20 hours. The firing atmosphere may be a nitrogen atmosphere, an argon atmosphere, or an air atmosphere.

本実施形態に係る活物質の製造方法で得られるLiVOPOは、リチウムイオンの可逆性に優れるβ型結晶の単相であるため、これを用いた電池のレート特性が向上する、と本発明者らは考える。換言すれば、本実施形態に係る活物質の製造方法では、LiVOPOのβ型結晶を従来の製造方法に比べて高い収率で得ることが可能になる、と考える。なお、仮に、水溶性の有機化合物を用いずに、リン酸源、バナジウム源及び水を加熱して中間体を形成した後に、中間体、水溶性の有機化合物、リチウム塩及び水を加熱した場合、β型結晶が生成し難くなり、本発明の効果を得ることが困難になる。 Since the LiVOPO 4 obtained by the method for producing an active material according to the present embodiment is a single-phase β-type crystal that is excellent in reversibility of lithium ions, the present inventors have found that the rate characteristics of a battery using this improve. Think. In other words, in the method for producing an active material according to the present embodiment, it is considered that a β-type crystal of LiVOPO 4 can be obtained with a higher yield than the conventional production method. In the case where the intermediate, water-soluble organic compound, lithium salt and water are heated after forming the intermediate by heating the phosphoric acid source, vanadium source and water without using the water-soluble organic compound. This makes it difficult to produce β-type crystals and makes it difficult to obtain the effects of the present invention.

(リチウムイオン二次電池の製造方法)
上記本実施形態に係る製造方法によって得られた活物質や導電助剤を含む正極活物質層14を正極集電体12上に形成する(図1参照)。このようにして、正極集電体12と正極集電体12上に形成された正極活物質層14とを備える正極10を作製する。また、黒鉛等の負極活物質を含む負極物質層24を負極集電体22上に形成する。このようにして、負極集電体22と負極集電体22上に形成された負極活物質層24とを備える負極20を作製する。
(Method for producing lithium ion secondary battery)
A positive electrode active material layer 14 containing an active material and a conductive additive obtained by the manufacturing method according to the present embodiment is formed on the positive electrode current collector 12 (see FIG. 1). In this way, the positive electrode 10 including the positive electrode current collector 12 and the positive electrode active material layer 14 formed on the positive electrode current collector 12 is manufactured. Further, a negative electrode material layer 24 containing a negative electrode active material such as graphite is formed on the negative electrode current collector 22. In this way, the negative electrode 20 including the negative electrode current collector 22 and the negative electrode active material layer 24 formed on the negative electrode current collector 22 is produced.

次に、負極20及び正極10それぞれに対して、負極リード60及び正極リード62を電気的に接続する。その後、負極20と正極10との間に、セパレータ18を接触した状態で配置し、発電要素30を形成する。このとき、負極20の負極活物質層側の面、及び正極10の正極活物質層側の面が、セパレータ18と接触するように配置する。   Next, the negative electrode lead 60 and the positive electrode lead 62 are electrically connected to the negative electrode 20 and the positive electrode 10, respectively. Thereafter, the separator 18 is arranged in contact with the negative electrode 20 and the positive electrode 10 to form the power generation element 30. At this time, the surface of the negative electrode 20 on the negative electrode active material layer side and the surface of the positive electrode 10 on the positive electrode active material layer side are arranged in contact with the separator 18.

次に、電池ケース50の内部に、発電要素30を挿入し、更に電解質溶液を注入する。続いて、負極リード60、正極リード62の先端部をそれぞれ電池ケース外に配置した状態で、電池ケース50の開口部を封止することにより、リチウムイオン二次電池100が完成する。   Next, the power generation element 30 is inserted into the battery case 50, and further an electrolyte solution is injected. Subsequently, the lithium ion secondary battery 100 is completed by sealing the opening of the battery case 50 in a state where the leading ends of the negative electrode lead 60 and the positive electrode lead 62 are arranged outside the battery case.

以上、本発明に係る活物質及びリチウムイオン二次電池の製造方法の好適な一実施形態について詳細に説明したが、本発明は上記実施形態に限定されるものではない。   As mentioned above, although one suitable embodiment of the manufacturing method of the active material and lithium ion secondary battery which concerns on this invention was described in detail, this invention is not limited to the said embodiment.

本発明に係る製造方法により得た活物質は、リチウムイオン二次電池以外の電気化学素子の電極材料としても用いることができる。このような、電気化学素子としては、金属リチウム二次電池等のリチウムイオン二次電池以外の二次電池や、リチウムキャパシタ等の電気化学キャパシタ等が挙げられる。これらの電気化学素子は、自走式のマイクロマシン、ICカードなどの電源や、プリント基板上又はプリント基板内に配置される分散電源の用途に使用することが可能である。   The active material obtained by the production method according to the present invention can also be used as an electrode material for electrochemical devices other than lithium ion secondary batteries. Examples of such electrochemical elements include secondary batteries other than lithium ion secondary batteries such as metal lithium secondary batteries, and electrochemical capacitors such as lithium capacitors. These electrochemical elements can be used for power sources such as self-propelled micromachines and IC cards, and distributed power sources arranged on or in a printed circuit board.

以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example and a comparative example, this invention is not limited to a following example.

(実施例1)
<第一加熱工程>
200mlのイオン交換水に、バナジウム源である4.68gのNHVO、リン酸源である5.28gの(NHHPO、及び1gのスクロースを投入して混合液を調整した。混合液における[C]/[V]は0.90に調整された。この混合液を80℃で4時間加熱した。加熱後の混合液を、スプレードライヤーにより約200℃で乾燥させ、第一残留物を得た。この第一残留物を450℃のアルゴン中で4時間焼成し、中間体を得た。なお、第一残留物の焼成では1時間かけてアルゴン雰囲気を450℃まで昇温させた。
Example 1
<First heating step>
A mixed solution was prepared by adding 4.68 g of NH 4 VO 3 as a vanadium source, 5.28 g of (NH 4 ) 2 HPO 4 as a phosphoric acid source, and 1 g of sucrose to 200 ml of ion-exchanged water. . [C] / [V] in the mixed solution was adjusted to 0.90. The mixture was heated at 80 ° C. for 4 hours. The mixed solution after heating was dried at about 200 ° C. with a spray dryer to obtain a first residue. This first residue was calcined in argon at 450 ° C. for 4 hours to obtain an intermediate. In firing the first residue, the argon atmosphere was heated to 450 ° C. over 1 hour.

<第二加熱工程>
中間体に100mlのイオン交換水と、リチウム塩である2.96gのLiCOを加えて、これらを25℃で撹拌して混合液を調製した。次に、中間体、LiCO及びイオン交換水を含む混合液を、スプレードライヤーにより約200℃で乾燥させ、粉末状の第二残留物を得た。第二残留物を450℃のアルゴン雰囲気中で4時間焼成した。なお、第二残留物の焼成では、4時間かけてアルゴン雰囲気を450℃まで昇温させた。これにより、実施例1の活物質を得た。粉末X線回折(XRD)に基づくリートベルト解析の結果から、実施例1の活物質は、LiVOPOのβ型結晶の単相であることが確認された。
<Second heating step>
100 ml of ion-exchanged water and 2.96 g of Li 2 CO 3 as a lithium salt were added to the intermediate, and the mixture was stirred at 25 ° C. to prepare a mixed solution. Next, the liquid mixture containing the intermediate, Li 2 CO 3 and ion-exchanged water was dried at about 200 ° C. with a spray dryer to obtain a powdery second residue. The second residue was calcined in an argon atmosphere at 450 ° C. for 4 hours. In firing the second residue, the argon atmosphere was heated to 450 ° C. over 4 hours. This obtained the active material of Example 1. From the results of Rietveld analysis based on powder X-ray diffraction (XRD), it was confirmed that the active material of Example 1 was a single phase of LiVOPO 4 β-type crystal.

(実施例2〜41、比較例1〜7)
実施例2〜41及び比較例5〜7では、水溶性の有機化合物として表1〜3に示す化合物を用いた。比較例1、2では、水溶性の有機化合物ではなく、表1に示す炭素材料を用いた。比較例3では、水溶性の有機化合物ではなく、表1に示す非水溶性の有機化合物を用いた。比較例4では、水溶性の有機化合物、非水溶性の有機化合物及び炭素材料のいずれも用いなかった。
(Examples 2 to 41, Comparative Examples 1 to 7)
In Examples 2-41 and Comparative Examples 5-7, the compounds shown in Tables 1 to 3 were used as water-soluble organic compounds. In Comparative Examples 1 and 2, a carbon material shown in Table 1 was used instead of the water-soluble organic compound. In Comparative Example 3, not the water-soluble organic compound but the water-insoluble organic compound shown in Table 1 was used. In Comparative Example 4, none of the water-soluble organic compound, the water-insoluble organic compound, and the carbon material was used.

実施例2〜41及び比較例5〜7では、100mlのイオン交換水への水溶性の有機化合物の投入量が表1〜3に示す値であった。比較例1、2では、100mlのイオン交換水への炭素材料の投入量が表1に示す値であった。比較例3では、100mlのイオン交換水への非水溶性の有機化合物の投入量が表1に示す値であった。実施例2〜41及び比較例5〜7では、[C]/[V]を表1〜3に示す値に調整した。なお、表1に示す比較例1、2の[C]/[V]は、炭素材料が含む炭素の数[C]とバナジウム源が含むバナジウムの数[V]との比である。表1に示す比較例3の[C]/[V]は、非水溶性の有機化合物が含む炭素の数[C]とバナジウム源が含むバナジウムの数[V]との比である。   In Examples 2-41 and Comparative Examples 5-7, the input amount of the water-soluble organic compound into 100 ml of ion-exchanged water was the value shown in Tables 1-3. In Comparative Examples 1 and 2, the input amount of the carbon material into 100 ml of ion-exchanged water was the value shown in Table 1. In Comparative Example 3, the amount of the water-insoluble organic compound added to 100 ml of ion-exchanged water was the value shown in Table 1. In Examples 2-41 and Comparative Examples 5-7, [C] / [V] was adjusted to the values shown in Tables 1-3. In addition, [C] / [V] in Comparative Examples 1 and 2 shown in Table 1 is a ratio of the number [C] of carbon contained in the carbon material and the number [V] of vanadium contained in the vanadium source. [C] / [V] of Comparative Example 3 shown in Table 1 is the ratio of the number of carbons [C] contained in the water-insoluble organic compound to the number [V] of vanadiums contained in the vanadium source.

実施例2〜41及び比較例1〜3、5〜7の第一加熱工程における混合液の加熱時間は表1〜3に示す値であった。実施例10の加熱時間は、全実施例の中で最短であり、実施例11の加熱時間は、全実施例の中で最長である。比較例6の加熱時間は、全実施例及び全比較例の中で最短であり、比較例5の加熱時間は、全実施例及び全比較例の中で最長である。   The heating time of the liquid mixture in the 1st heating process of Examples 2-41 and Comparative Examples 1-3, 5-7 was the value shown to Tables 1-3. The heating time of Example 10 is the shortest among all examples, and the heating time of Example 11 is the longest among all examples. The heating time of Comparative Example 6 is the shortest among all examples and all comparative examples, and the heating time of Comparative Example 5 is the longest among all examples and all comparative examples.

以上の事項以外は、実施例1と同様の方法で、実施例2〜41及び比較例1〜7の各活物質を得た。   Except for the above, the active materials of Examples 2 to 41 and Comparative Examples 1 to 7 were obtained in the same manner as in Example 1.

[結晶構造の測定]
粉末X線回折(XRD)に基づくリートベルト解析の結果から、実施例2〜41及び比較例1〜7の各活物質は、LiVOPOのβ型結晶相を含むことが確認された。
[Measurement of crystal structure]
From the results of Rietveld analysis based on powder X-ray diffraction (XRD), it was confirmed that each of the active materials of Examples 2 to 41 and Comparative Examples 1 to 7 contained a β-type crystal phase of LiVOPO 4 .

[評価用セルの作製]
実施例1の活物質と、バインダーであるポリフッ化ビニリデン(PVDF)とアセチレンブラックを混合したものを、溶媒であるN−メチル−2−ピロリドン(NMP)中に分散させてスラリーを調製した。なお、スラリーにおいて活物質とアセチレンブラックとPVDFとの重量比が90:5:5となるように、スラリーを調製した。このスラリーを集電体であるアルミニウム箔上に塗布し、乾燥させた後、圧延を行い、実施例1の活物質を含む活物質層が形成された電極(正極)を得た。
[Production of evaluation cell]
A mixture of the active material of Example 1, polyvinylidene fluoride (PVDF) as a binder, and acetylene black was dispersed in N-methyl-2-pyrrolidone (NMP) as a solvent to prepare a slurry. The slurry was prepared so that the weight ratio of the active material, acetylene black, and PVDF was 90: 5: 5 in the slurry. This slurry was applied onto an aluminum foil as a current collector, dried, and then rolled to obtain an electrode (positive electrode) on which an active material layer containing the active material of Example 1 was formed.

次に、得られた電極と、その対極であるLi箔とを、それらの間にポリエチレン微多孔膜からなるセパレータを挟んで積層し、積層体(素体)を得た。この積層体を、アルミラミネーターパックに入れ、このアルミラミネートパックに、電解液として1MのLiPF溶液を注入した後、真空シールし、実施例1の評価用セルを作製した。 Next, the obtained electrode and the Li foil as the counter electrode were laminated with a separator made of a polyethylene microporous film interposed therebetween to obtain a laminate (element body). This laminate was put in an aluminum laminator pack, and 1M LiPF 6 solution was injected as an electrolyte into the aluminum laminate pack, followed by vacuum sealing to produce an evaluation cell of Example 1.

実施例1と同様の方法で、実施例2〜41及び比較例1〜7の活物質をそれぞれ単独で用いた評価用セルを作製した。   In the same manner as in Example 1, evaluation cells were produced using each of the active materials of Examples 2 to 41 and Comparative Examples 1 to 7 alone.

[放電容量の測定]
実施例1の評価用セルを用いて、放電レートを0.1C(25℃で定電流放電を行ったときに10時間で放電終了となる電流値)とした場合の放電容量(単位:mAh/g)を測定した。また、実施例1の評価用セルを用いて、放電レートを10C(25℃で定電流放電を行ったときに0.1時間で放電終了となる電流値)とした場合の放電容量(単位:mAh/g)を測定した。
[Measurement of discharge capacity]
Using the evaluation cell of Example 1, the discharge capacity (unit: mAh / unit) when the discharge rate is 0.1 C (current value at which discharge is completed in 10 hours when constant current discharge is performed at 25 ° C.) g) was measured. In addition, using the evaluation cell of Example 1, the discharge capacity (unit: unit) when the discharge rate is 10 C (current value at which discharge is completed in 0.1 hour when constant current discharge is performed at 25 ° C.). mAh / g) was measured.

実施例1と同様の方法で、実施例2〜41、比較例1〜7の各評価用セルの放電容量を測定した。   In the same manner as in Example 1, the discharge capacities of the evaluation cells of Examples 2 to 41 and Comparative Examples 1 to 7 were measured.

[レート特性の評価]
実施例1のレート特性(単位:%)を求めた。なお、レート特性とは、0.1Cでの放電容量を100%とした場合の10Cでの放電容量の比率である。結果を表1に示す。
[Evaluation of rate characteristics]
The rate characteristics (unit:%) of Example 1 were determined. The rate characteristic is the ratio of the discharge capacity at 10 C when the discharge capacity at 0.1 C is 100%. The results are shown in Table 1.

実施例1と同様の方法で、実施例2〜41、比較例1〜7の各評価用セルのレート特性をそれぞれ求めた。結果を表1〜3に示す。   In the same manner as in Example 1, the rate characteristics of the evaluation cells in Examples 2 to 41 and Comparative Examples 1 to 7 were obtained. The results are shown in Tables 1-3.

レート特性が30%以上であることが好ましく、40%以上であることがより好ましい。   The rate characteristic is preferably 30% or more, and more preferably 40% or more.

Figure 2011096641
Figure 2011096641

Figure 2011096641
Figure 2011096641

Figure 2011096641
Figure 2011096641

水溶性の有機化合物を含む混合液を1〜12時間加熱した実施例1〜41の各評価用セルのレート特性が30%以上であることが確認された。   It was confirmed that the rate characteristics of each evaluation cell of Examples 1-41 in which the mixed liquid containing the water-soluble organic compound was heated for 1 to 12 hours was 30% or more.

比較例1〜7の評価用セルのレート特性は30%未満であることが確認された。   It was confirmed that the rate characteristics of the evaluation cells of Comparative Examples 1 to 7 were less than 30%.

10・・・正極,20・・・負極、12・・・正極集電体、14・・・正極活物質層、18・・・セパレータ、22・・・負極集電体、24・・・負極活物質層、30・・・発電要素、50・・・ケース、60,62・・・リード、100・・・リチウムイオン二次電池。   DESCRIPTION OF SYMBOLS 10 ... Positive electrode, 20 ... Negative electrode, 12 ... Positive electrode collector, 14 ... Positive electrode active material layer, 18 ... Separator, 22 ... Negative electrode collector, 24 ... Negative electrode Active material layer, 30 ... power generation element, 50 ... case, 60, 62 ... lead, 100 ... lithium ion secondary battery.

Claims (5)

リン酸源、バナジウム源、水溶性の有機化合物及び水を1〜12時間加熱して、中間体を形成する工程と、
前記中間体、リチウム塩及び水を加熱する工程と、を備える、
活物質の製造方法。
A step of heating a phosphoric acid source, a vanadium source, a water-soluble organic compound and water for 1 to 12 hours to form an intermediate;
Heating the intermediate, lithium salt and water,
A method for producing an active material.
前記水溶性の有機化合物は、スクロース、グルコース、メチルセルロース、エチルセルロース、フルクトオリゴ糖及びポリビニルアルコールからなる群より選ばれる少なくとも一種である、
請求項1に記載の活物質の製造方法。
The water-soluble organic compound is at least one selected from the group consisting of sucrose, glucose, methylcellulose, ethylcellulose, fructooligosaccharide and polyvinyl alcohol.
The manufacturing method of the active material of Claim 1.
前記水溶性の有機化合物が含む炭素のモル数[C]と前記バナジウム源が含むバナジウムのモル数[V]との比[C]/[V]を、0.01〜8に調整する、
請求項1又は2に記載の活物質の製造方法。
The ratio [C] / [V] of the number of moles of carbon [C] contained in the water-soluble organic compound and the number of moles [V] of vanadium contained in the vanadium source is adjusted to 0.01-8.
The manufacturing method of the active material of Claim 1 or 2.
前記比[C]/[V]を、0.1〜4に調整する、
請求項3に記載の活物質の製造方法。
Adjusting the ratio [C] / [V] to 0.1-4,
The manufacturing method of the active material of Claim 3.
集電体と、前記集電体上に位置し、請求項1〜4のいずれか一項に記載の活物質の製造方法によって得られた活物質を含む活物質層と、を有する電極を形成する工程を備える、
リチウムイオン二次電池の製造方法。
The electrode which has a collector and the active material layer which is located on the said collector and contains the active material obtained by the manufacturing method of the active material as described in any one of Claims 1-4 is formed. Comprising the steps of:
A method for producing a lithium ion secondary battery.
JP2010207083A 2009-09-29 2010-09-15 Method for producing active material for lithium ion secondary battery and method for producing lithium ion secondary battery Active JP5594007B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010207083A JP5594007B2 (en) 2009-09-29 2010-09-15 Method for producing active material for lithium ion secondary battery and method for producing lithium ion secondary battery
US12/887,820 US8734539B2 (en) 2009-09-29 2010-09-22 Method of manufacturing active material containing vanadium and method of manufacturing lithium-ion secondary battery containing such active material
CN201010502292.0A CN102034979B (en) 2009-09-29 2010-09-29 Method of manufacturing active material and method of manufacturing lithium-ion secondary battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009224796 2009-09-29
JP2009224796 2009-09-29
JP2010207083A JP5594007B2 (en) 2009-09-29 2010-09-15 Method for producing active material for lithium ion secondary battery and method for producing lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2011096641A true JP2011096641A (en) 2011-05-12
JP5594007B2 JP5594007B2 (en) 2014-09-24

Family

ID=44113313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010207083A Active JP5594007B2 (en) 2009-09-29 2010-09-15 Method for producing active material for lithium ion secondary battery and method for producing lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP5594007B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012043367A1 (en) * 2010-09-27 2012-04-05 日本化学工業株式会社 Process for production of (vanadium phosphate)-lithium-carbon complex
WO2022145323A1 (en) * 2020-12-28 2022-07-07 日本化学工業株式会社 Method for manufacturing vanadium lithium phosphate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001015111A (en) * 1999-04-30 2001-01-19 Hydro Quebec New high surface conductivity electrode material
JP2003068304A (en) * 2001-08-30 2003-03-07 Yusaku Takita Electrode active material for secondary nonaqueous electrolyte battery, electrode containing the same and battery
WO2007034821A1 (en) * 2005-09-21 2007-03-29 Kanto Denka Kogyo Co., Ltd. Positive electrode active material, method for producing same, and nonaqueous electrolyte battery having positive electrode containing positive electrode active material
JP2008277119A (en) * 2007-04-27 2008-11-13 Tdk Corp Composite particle for electrode, its manufacturing method, and electrochemical device
JP2008311067A (en) * 2007-06-14 2008-12-25 Sumitomo Osaka Cement Co Ltd Method of manufacturing electrode material, electrode material, electrode, and battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001015111A (en) * 1999-04-30 2001-01-19 Hydro Quebec New high surface conductivity electrode material
JP2003068304A (en) * 2001-08-30 2003-03-07 Yusaku Takita Electrode active material for secondary nonaqueous electrolyte battery, electrode containing the same and battery
WO2007034821A1 (en) * 2005-09-21 2007-03-29 Kanto Denka Kogyo Co., Ltd. Positive electrode active material, method for producing same, and nonaqueous electrolyte battery having positive electrode containing positive electrode active material
JP2008277119A (en) * 2007-04-27 2008-11-13 Tdk Corp Composite particle for electrode, its manufacturing method, and electrochemical device
JP2008311067A (en) * 2007-06-14 2008-12-25 Sumitomo Osaka Cement Co Ltd Method of manufacturing electrode material, electrode material, electrode, and battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012043367A1 (en) * 2010-09-27 2012-04-05 日本化学工業株式会社 Process for production of (vanadium phosphate)-lithium-carbon complex
JP5309264B2 (en) * 2010-09-27 2013-10-09 日本化学工業株式会社 Method for producing lithium vanadium phosphate carbon composite
US9437866B2 (en) 2010-09-27 2016-09-06 Nippon Chemical Industrial Co., Ltd. Process for producing lithium vanadium phosphate-carbon composite
WO2022145323A1 (en) * 2020-12-28 2022-07-07 日本化学工業株式会社 Method for manufacturing vanadium lithium phosphate

Also Published As

Publication number Publication date
JP5594007B2 (en) 2014-09-24

Similar Documents

Publication Publication Date Title
US8394291B2 (en) Process for making fluorinated lithium vanadium polyanion powders for batteries
US8734539B2 (en) Method of manufacturing active material containing vanadium and method of manufacturing lithium-ion secondary battery containing such active material
WO2011115211A1 (en) Method for producing lithium manganese iron phosphate particulate powder, lithium manganese iron phosphate particulate powder and non-aqueous electrolyte secondary battery using that particulate powder
WO2014017617A1 (en) Positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries using same, lithium secondary battery, and method for producing positive electrode active material for lithium secondary batteries
WO2012133729A1 (en) Active material, electrode, lithium-ion secondary battery, and process for producing active material
JP5365125B2 (en) Active material for positive electrode of lithium ion secondary battery
JP5347603B2 (en) Active material manufacturing method, active material, electrode, and lithium ion secondary battery
JP5381192B2 (en) Method for producing active material for lithium ion secondary battery
JP5915732B2 (en) Method for producing positive electrode active material for non-aqueous secondary battery, method for producing positive electrode for non-aqueous secondary battery, and method for producing non-aqueous secondary battery
JP5515343B2 (en) Active material manufacturing method, active material, electrode, and lithium ion secondary battery
JP5594007B2 (en) Method for producing active material for lithium ion secondary battery and method for producing lithium ion secondary battery
JP2012099361A (en) Method of manufacturing active material, and lithium ion secondary battery
JP5444944B2 (en) Active material and method for producing active material
JP5888046B2 (en) Positive electrode active material, positive electrode and lithium ion secondary battery
JP6197609B2 (en) Positive electrode active material, positive electrode and lithium ion secondary battery
JP6236956B2 (en) Positive electrode active material, positive electrode, lithium ion secondary battery and sodium ion secondary battery
JP5594006B2 (en) Method for producing active material for lithium ion secondary battery and method for producing lithium ion secondary battery
JP5444943B2 (en) Method for producing active material
JP5609485B2 (en) Active material, method for producing active material, electrode, and lithium ion secondary battery
JP5444942B2 (en) Method for producing active material
JP6197610B2 (en) Positive electrode active material, positive electrode and lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130613

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20131004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140415

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140708

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140721

R150 Certificate of patent or registration of utility model

Ref document number: 5594007

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150