WO2011115211A1 - Method for producing lithium manganese iron phosphate particulate powder, lithium manganese iron phosphate particulate powder and non-aqueous electrolyte secondary battery using that particulate powder - Google Patents

Method for producing lithium manganese iron phosphate particulate powder, lithium manganese iron phosphate particulate powder and non-aqueous electrolyte secondary battery using that particulate powder Download PDF

Info

Publication number
WO2011115211A1
WO2011115211A1 PCT/JP2011/056397 JP2011056397W WO2011115211A1 WO 2011115211 A1 WO2011115211 A1 WO 2011115211A1 JP 2011056397 W JP2011056397 W JP 2011056397W WO 2011115211 A1 WO2011115211 A1 WO 2011115211A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
olivine
lithium
powder
limn
Prior art date
Application number
PCT/JP2011/056397
Other languages
French (fr)
Japanese (ja)
Inventor
三島祐司
本田晋吾
西尾尊久
沖田朋子
山本博司
Original Assignee
戸田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 戸田工業株式会社 filed Critical 戸田工業株式会社
Priority to CN201180011603.6A priority Critical patent/CN102781827B/en
Priority to KR1020127022574A priority patent/KR101810259B1/en
Publication of WO2011115211A1 publication Critical patent/WO2011115211A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention is a method for producing olivine-type lithium iron manganese phosphate particles that can be easily produced at low cost, and has a high energy density when used as a high-power secondary battery.
  • Provided are lithium iron manganese oxide particles and a secondary battery using the same.
  • LiFePO 4 3.5V class olivine type structure LiFePO 4 to 4.1V class LiMnPO 4 as a positive electrode active material useful for a high energy density type lithium ion secondary battery.
  • LiMnPO 4 is less liable to enter and exit Li than LiFePO 4 , improvement of charge / discharge characteristics is required.
  • LiMnPO 4 having an olivine structure is composed of a strong phosphoric acid tetrahedral skeleton, an oxygen octahedron centered on manganese ions that contribute to redox, and lithium ions that are current carriers.
  • grain surface there exists a tendency which coat
  • it functions as an electrode of a secondary battery, and at the time of charge / discharge using Li as a negative electrode, it is said that it follows a two-phase reaction of the following formula due to the presence of a plateau region in charge / discharge characteristics indicated by capacity and voltage.
  • Non-Patent Documents 1 to 6 are methods in which Fe is dissolved in Mn sites.
  • LiMn 1-x Fe x PO 4 (0.05 ⁇ x ⁇ 0.5) also has better charge / discharge characteristics at low current as the particle surface is coated with carbon.
  • the smaller the crystallite size satisfies the above condition the better the charge / discharge characteristics at a high current load.
  • each aggregate in order to obtain a high molding density, each aggregate is formed so as to form a network of secondary particles that are appropriately aggregated and a conductive auxiliary agent such as carbon having a high graphitization rate. The state needs to be controlled.
  • the positive electrode combined with a large amount of carbon is bulky, and there is a disadvantage that the substantial lithium ion density that can be filled per unit volume is lowered. Therefore, in order to secure charge / discharge capacity per unit volume, olivine-type lithium iron manganese phosphate coated with fine and moderate carbon was obtained and high density was obtained through a small amount of conductive auxiliary agent. There is a need to form aggregates.
  • lithium manganese iron phosphate particles having an olivine structure with a small change in particle size, low electrical resistance, and high filling property due to charge / discharge are used as the positive electrode active material powder for non-aqueous electrolyte secondary batteries. It is required to produce by an industrial method with a small load.
  • Patent Document 1 technology to reduce deterioration after charge / discharge cycle test
  • Patent Document 2 technology to add different metal elements to reduce electrical resistance
  • Patent Document 3 technology synthesized by hydrothermal method
  • Patent Document 1 is a technique for improving charge / discharge repetition characteristics when LiMn 1-x Fe x PO 4 particle powder having an olivine type structure is used as a positive electrode. There is no mention of collective control.
  • Patent Document 2 is not a technique related to the composite of LiMnPO 4 particle powder having an olivine structure and carbon.
  • Patent Document 3 is a production method using a solid-phase reaction method, and since it has two heat treatments, it is difficult to say that the cost is low.
  • the present invention establishes an industrial method of olivine-type lithium iron phosphate particles with a small olivine structure, which has a small change in particle size due to charge / discharge, low electrical resistance, and high packing properties, As a non-aqueous electrolyte secondary battery containing a high positive electrode active material, it is a technical subject to obtain a high capacity also in current load characteristics.
  • the present invention relates to a method for producing olivine-type lithium manganese iron phosphate LiMn 1-x Fe x PO 4 (0.05 ⁇ x ⁇ 0.5) particle powder, wherein the raw material is Li compound, Mn compound , Fe compound, P compound and sugar or organic acid, and the raw material charge ratio is 0.95 ⁇ Li / (Mn + Fe) ⁇ 2.0, 0.95 ⁇ P / (Mn + Fe) ⁇ 1.3 in terms of mol ratio Obtained in the first step and the first step of obtaining an aqueous slurry having a pH of 5.5 to 12.5 by a neutralization reaction of a mixed solution containing 1 to 20 mol% of sugar or organic acid with respect to (Mn + Fe) The slurry is hydrothermally treated at a reaction temperature of 120 to 220 ° C., and the resulting compound has a production rate of LiMn 1-x Fe x PO 4 (0.05 ⁇ x ⁇ 0.5) of 75 wt% or more, Size 10-250
  • the median diameter of the aggregated particles in the slurry is 0.1 to 10 ⁇ m
  • the crystal phase is (NH 4 ) Mn 1- ⁇ Fe ⁇ PO 4 (0 ⁇ ⁇ ⁇ 1) or a manufacturing method according to the first aspect of the present invention for obtaining an aqueous slurry containing aggregated particles satisfying HMn 1- ⁇ Fe ⁇ PO 4 (0 ⁇ ⁇ ⁇ 1) (Invention 2).
  • this invention is the manufacturing method of this invention 1 or 2 whose saccharide
  • the present invention is the production method according to any one of the present inventions 1 to 3, wherein in the second step, washing is performed so that the sulfur content in the compound is 0.1 wt% or less (Invention 4). .
  • the present invention is the production method according to any one of the present inventions 1 to 4, wherein in the third step, the organic substance to be added is at least one of carbon black, an oil and fat compound, a sugar compound, and a synthetic resin. (Invention 5).
  • the present invention also relates to olivine type lithium manganese iron phosphate LiMn 1-x Fe x PO 4 (0.05 ⁇ x ⁇ 0.5) particle powder, wherein the content of lithium and phosphorus is in a molar ratio.
  • the crystallite size is 25 to 300 nm, the median diameter of the aggregated particles is 0.3 to 20 ⁇ m, and the electrical resistivity of the powder is 1 to 1.0 ⁇ 10 6 ⁇ ⁇ cm.
  • This is an olivine-type lithium iron manganese phosphate powder (this Invention 6).
  • the present invention also relates to lithium iron manganese phosphate particles having an olivine structure according to the present invention 6, wherein the lithium and phosphorus contents satisfy Li ⁇ P (the present invention 7).
  • the present invention also relates to lithium iron manganese phosphate particles having an olivine structure according to the present invention 6 or 7, wherein the unit cell volume V UC has the relationship represented by the following formula (1) (the present invention 8).
  • the present invention is a non-aqueous electrolyte secondary battery produced using the olivine-type lithium manganese iron phosphate particles according to any one of the present inventions 6 to 8 (Invention 9).
  • the method for producing olivine-type lithium iron manganese phosphate particles according to the present invention is low-cost and can be produced efficiently from almost equal amounts of raw materials. Is preferred.
  • lithium olivine manganese phosphate particles having an olivine structure according to the present invention have little change in particle size due to charge / discharge, low electrical resistance, and high filling properties, and are used for non-aqueous electrolyte secondary batteries. Suitable as a positive electrode active material.
  • the secondary battery using the olivine-type lithium manganese iron phosphate particles having the olivine structure as the positive electrode active material according to the present invention has a high capacity in the current load characteristics and can sufficiently withstand repeated charge and discharge.
  • Example 2 is a secondary electron image of the olivine-type lithium manganese iron phosphate particles obtained in Example 1 by a scanning electron microscope. It is the discharge characteristic which made the positive electrode the olivine type structure lithium iron iron phosphate particle powder obtained in Example 1, and evaluated it by the coin cell. It is a secondary electron image by the scanning electron microscope of the lithium iron manganese phosphate particle powder of the olivine type structure obtained in Comparative Example 4. It is a secondary electron image by the scanning electron microscope of the particle powder obtained by chemically oxidizing the lithium iron manganese phosphate particle powder of the olivine type structure obtained in Comparative Example 4. It is a Rietveld analysis result of the X-ray-diffraction pattern of the particle powder obtained by chemically oxidizing the lithium iron manganese phosphate particle powder of the olivine type structure obtained in Comparative Example 4.
  • the method for producing olivine-type lithium manganese iron phosphate LiMn 1-x Fe x PO 4 (0.05 ⁇ x ⁇ 0.5) particle powder according to the present invention includes a Li compound, a Mn compound, an Fe compound, Using a P compound and a sugar or an organic acid, the raw material charge ratio is 0.95 ⁇ Li / (Mn + Fe) ⁇ 2.0, 0.95 ⁇ P / (Mn + Fe) ⁇ 1.3 in terms of mol ratio, and (Mn + Fe)
  • the raw materials used in the first step are preferably LiOH and Li 3 PO 4 as the Li compound, MnSO 4 and MnCO 3 as the Mn compound, FeSO 4 and FeCO 3 as the Fe compound, and P compound as the P compound.
  • H 3 PO 4 , (NH 4 ) H 2 PO 4 , (NH 4 ) 2 HPO 4 , NaH 2 PO 4 , Na 2 HPO 4 , and Na 3 PO 4 are preferred.
  • the Li compound, Mn compound, Fe compound, and P compound in the first step have a raw material charge ratio of 0.95 ⁇ Li / (Mn + Fe) ⁇ 2.0 and 0.95 ⁇ P / (Mn + Fe) ⁇ 1. 3 to be mixed.
  • the raw material charge ratio is outside the above range, the target lithium iron manganese phosphate cannot be obtained.
  • the molar ratio is 0.98 ⁇ Li / (Mn + Fe) ⁇ 1.8 and 0.98 ⁇ P / (Mn + Fe) ⁇ 1.2.
  • the sugar or organic acid used in the first step is preferably sucrose, ascorbic acid, or citric acid.
  • the addition amount of sugar or organic acid is 1 to 20 mol%, more preferably 1.5 to 18 mol%, based on (Mn + Fe).
  • the added sugar or organic acid works as a transition metal reducing agent, and after hydrothermal reaction.
  • the production rate of LiMn 1-x Fe x PO 4 (0.05 ⁇ x ⁇ 0.5) is increased, and the primary particle diameter of the product is refined.
  • LiOH, NaOH, Na 2 CO 3 , NH 3 , urea, ethanolamine or the like is used as the alkali source used in the first step.
  • the aqueous slurry in the first step has a pH of 5.5 in order to increase the production rate of LiMn 1-x Fe x PO 4 (0.05 ⁇ x ⁇ 0.5) of the compound obtained by the hydrothermal treatment in the second step.
  • the median diameter of the aggregated particles in the slurry in the first step is preferably 0.1 to 10 ⁇ m.
  • the crystal phase of the aggregated particles in the slurry is (NH 4 ) Mn 1- ⁇ Fe ⁇ PO 4 (0 ⁇ ⁇ ⁇ 1) or HMn 1- ⁇ Fe ⁇ PO 4 (0 ⁇ ⁇ ⁇ 1). It is preferable that the agglomerated particles are included. When one of the two phases is not included, the target lithium manganese iron phosphate cannot be obtained.
  • the agglomerated particles having the median diameter and the crystal phase can be obtained by mixing raw materials under conditions where crystal nuclei are generated and grown (generation of a large number of crystal nuclei) or by pulverization of the product.
  • Examples of the apparatus used for pulverization include a ball mill and a medium stirring mill.
  • the hydrothermal treatment in the second step is preferably performed at 120 to 220 ° C.
  • the hydrothermal treatment time is preferably 1 to 10 hours.
  • the production rate of LiMn 1-x Fe x PO 4 (0.05 ⁇ x ⁇ 0.5) is 75 wt% or more.
  • the production rate of LiMn 1-x Fe x PO 4 (0.05 ⁇ x ⁇ 0.5) remains low even after the subsequent steps.
  • a more preferable production rate is 80 wt% or more.
  • the crystallite size of the obtained compound based on LiMn 1-x Fe x PO 4 (0.05 ⁇ x ⁇ 0.5) is 10 to 250 nm.
  • a compound having a crystallite size of less than 10 nm is industrially difficult to produce, and a compound having a crystallite size of more than 250 nm cannot obtain good battery characteristics.
  • a more preferable crystallite size is 30 to 150 nm.
  • the hydrothermal treatment in the second step needs to be performed by appropriately selecting the treatment temperature and the treatment time so as to satisfy the above generation rate and crystallite size. If the hydrothermal treatment temperature is low and the treatment time is short, the above-mentioned production rate may not be reached, or the crystallite size may not be reached, and if the hydrothermal treatment temperature is high and the treatment time is long, the above crystals May exceed child size.
  • the compound obtained by the hydrothermal treatment in the second step is subjected to filtration washing or decantation washing in order to remove impurity sulfate ions and control the composition ratio.
  • the apparatus used for cleaning include a press filter and a filter thickener.
  • the washing of the compound obtained by the hydrothermal treatment in the second step is preferably performed so that the sulfur content in the compound is 0.1 wt% or less. Washing is sufficient if sulfur in the compound can be sufficiently removed, and usually washing with water may be performed.
  • lithium compounds such as LiOH and Li 2 CO 3 are used for adjusting Li
  • manganese compounds such as MnCO 3 and MnC 2 O 4 are used for adjusting Mn
  • FeCO 3 and FeC are used for adjusting Fe.
  • an iron compound such as 2 O 4 and a PO 4 -containing compound such as H 3 PO 4 , (NH 4 ) H 2 PO 4 , (NH 4 ) 2 HPO 4 for adjusting P.
  • a fine lithium iron manganese phosphate solid solution coated with carbon 3 to 40 wt% of an organic substance is added in the third step to obtain a precursor powder. At that time, it is necessary to reduce the primary particle size of the precursor powder and to uniformly mix with the organic matter.
  • the apparatus used for mixing include a Henschel mixer, a raking machine, a high speed mixer, a medium stirring mill, and the like.
  • the organic substance to be added is preferably at least one of carbon black, an oil and fat compound, a sugar compound, and a synthetic resin.
  • the organic substance added is preferably at least one of an oil and fat compound, a sugar compound, and a synthetic resin.
  • the resulting compacted compact of olivine-type lithium manganese iron phosphate particles even at low temperatures such as 400 to 500 ° C. has an electrical resistivity of 1 to 1.0 ⁇ 10 6 ⁇ ⁇ cm. Satisfying and high performance secondary battery characteristics.
  • oil and fat compound examples include stearic acid and oleic acid
  • sugar compound examples include sucrose and dextrin
  • synthetic resin examples include polyethylene, polypropylene, and polyvinyl alcohol (PVA).
  • carbon black examples include acetylene black (manufactured by Denki Kagaku Kogyo Co., Ltd.) and ketjen black (manufactured by Lion Corporation).
  • Preferred binders include polyvinyl alcohol (PVA), polyvinyl butyral, starch, carboxymethyl cellulose and the like.
  • the precursor powder obtained in the third step is fired at a temperature of 250 to 850 ° C. in an inert gas or reducing gas atmosphere having an oxygen concentration of 0.1% or less.
  • an inert gas N 2 , Ar, H 2 O, CO 2 or a mixed gas thereof is used.
  • the reducing gas H 2 , CO, or a mixed gas of these gases and the inert gas is used.
  • the apparatus used for firing include a gas flow type box muffle furnace, a gas flow type rotary furnace, and a fluidized heat treatment furnace.
  • the calcination temperature may be 250 ° C. or higher, but the reaction of unreacted substances is completed, and the added organic matter
  • it is preferably calcined at 350 to 850 ° C., more preferably at 400 to 750 ° C. for 1 to 10 hours.
  • the lithium iron manganese phosphate particles according to the present invention can produce LiMn 1-x Fe x PO 4 (0.05 ⁇ x ⁇ 0.5) after hydrothermal treatment by adjusting an appropriate precursor slurry. The rate can be increased. Thereafter, the mixture is uniformly mixed with an organic substance and further baked, whereby the production rate of LiMn 1-x Fe x PO 4 (0.05 ⁇ x ⁇ 0.5) is high, and fine manganese phosphate sufficiently covered with carbon Iron lithium particle powder can be obtained.
  • the lithium iron manganese phosphate particles according to the present invention are preferably produced by the production method according to the present invention 1 described above.
  • the content of lithium and phosphorus is 0.9 ⁇ Li / (Mn + Fe) ⁇ 1.2 and 0.9 ⁇ P / (Mn + Fe) ⁇ 1.2 in terms of mol ratio. It is.
  • the content of lithium and phosphorus is outside the above range, a heterogeneous phase is likely to be formed, and in some cases, grain growth is promoted and lithium manganese iron phosphate particles having high battery characteristics cannot be obtained.
  • Preferable lithium and phosphorus contents are 0.98 ⁇ Li / (Mn + Fe) ⁇ 1.05, 0.98 ⁇ P / (Mn + Fe) ⁇ 1.05, and more preferably 1 ⁇ Li / (Mn + Fe) in molar ratio. ) ⁇ 1.05, 1 ⁇ P / (Mn + Fe) ⁇ 1.05.
  • the lithium manganese iron particle powder according to the present invention preferably has a lithium and phosphorus content of Li ⁇ P.
  • the BET specific surface area of the lithium iron manganese phosphate particles according to the present invention is 6 to 70 m 2 / g.
  • the BET specific surface area is less than 6 m 2 / g, the movement of Li ions in the lithium iron manganese phosphate particle powder is slow, so that it is difficult to take out the current.
  • a preferred BET specific surface area is 10 to 65 m 2 / g, more preferably 15 to 60 m 2 / g.
  • the carbon content of the lithium iron manganese phosphate particles according to the present invention is 0.5 to 8.0 wt%.
  • the carbon content is less than 0.5 wt%, the particle growth during the heat treatment cannot be suppressed, and the electric resistance of the obtained powder is increased, which deteriorates the charge / discharge characteristics of the secondary battery.
  • the carbon content exceeds 8.0 wt%, the packing density of the positive electrode is lowered, and the energy density per volume of the secondary battery is reduced.
  • a more preferable carbon content is 1.0 to 6.0 wt%.
  • the lithium iron manganese phosphate particles according to the present invention have an impurity sulfur content of 0.08 wt% or less, and good storage characteristics can be obtained in a nonaqueous electrolyte secondary battery.
  • impurities such as lithium sulfate are formed, and these impurities undergo a decomposition reaction during charge and discharge, and the reaction with the electrolyte during high-temperature storage is promoted, and after storage Resistance rises intensely.
  • a more preferable sulfur content is 500 ppm or less.
  • the crystal phase of LiMn 1-x Fe x PO 4 (0.05 ⁇ x ⁇ 0.5) having an olivine structure is 95 wt% or more.
  • LiMn 1-x Fe x PO 4 (0.05 ⁇ x ⁇ 0.5) particles obtained after firing may be fine and the discharge capacity may be high.
  • Li 3 PO 4 itself does not contribute to charging and discharging, it is desirable that it be less than 5 wt%.
  • the crystallite size of the lithium iron manganese phosphate particles according to the present invention is 25 to 300 nm. It is extremely difficult to mass-produce a powder having a crystallite size of less than 25 nm while satisfying other powder characteristics by the production method of the present invention, and Li moves inside the particle at a crystallite size exceeding 300 nm. Time is required and the current load characteristics of the secondary battery are deteriorated.
  • the preferred crystallite size is 30 nm to 200 nm, more preferably 40 nm to 150 nm.
  • the median diameter of the aggregated particles of the lithium iron manganese phosphate particles according to the present invention is 0.3 to 30 ⁇ m.
  • the median diameter is less than 0.3 ⁇ m, the positive electrode packing density is decreased and the reactivity with the electrolytic solution is increased.
  • the median diameter exceeds 30 ⁇ m, it is too large for the electrode film thickness and it is extremely difficult to form a sheet.
  • a preferable median diameter of the aggregated particles is 0.5 to 15 ⁇ m.
  • the density of the compression molded body of the lithium iron manganese phosphate particles according to the present invention is preferably 1.8 g / cc or more.
  • the true density of LiMn 1-x Fe x PO 4 (0.05 ⁇ x ⁇ 0.5) is 3.6 g / cc, and the closer to the true density, the better the filling property. Therefore, a preferable compression molding density is 2.0 g / cc or more exceeding 50% of the true density.
  • the lithium manganese iron phosphate particle powder according to the present invention is considered to have a high compression-molded body density because the amount of remaining carbon is small and primary particles are appropriately aggregated.
  • the powder electrical resistivity of the lithium iron manganese phosphate particles according to the present invention is 1 to 1.0 ⁇ 10 6 ⁇ ⁇ cm.
  • the powder electrical resistivity is preferably 1 to 5.0 ⁇ 10 5 ⁇ ⁇ cm, more preferably 5 to 1.0 ⁇ 10 5 ⁇ ⁇ cm.
  • the unit cell volume V UC of the lithium iron manganese phosphate particles according to the present invention is preferably in the relationship of formula (1).
  • the lattice constant and the unit cell volume decrease linearly with the increase of the value of x in LiMn 1-x Fe x PO 4 having an olivine structure, and follow Vegard's law.
  • the unit cell volume of LiMn 1-x Fe x PO 4 (0.05 ⁇ x ⁇ 0.5) having an olivine structure inferred from the linearity of the Vegard rule is 10.9 ⁇ (1-x) +291.36 Met. The closer to the unit cell volume, the transition metal substitution to the Li site and the loss of P and O are reduced. When the volume is smaller than the unit cell volume, Li is substituted to the transition metal site, and the theoretical capacity as an electrode is reduced. I think it will increase.
  • the present inventors According to the heat treatment of a precursor having a composition ratio deviated from the stoichiometric ratio of LiMn 1-x Fe x PO 4 having an olivine structure, the present inventors have made LiMn 1-x Fe x PO 4 ( It was confirmed that an impurity crystal phase that exists more stably than 0.05 ⁇ x ⁇ 0.5) tends to be generated.
  • the composition ratio of Li, Mn, Fe, and P is slight and a olivine-type LiMn 1-x Fe x PO 4 single crystal phase is formed, different lattice constants are obtained.
  • the unit cell volume is more than the above formula (1). In that case, it is assumed that the transition metal substitution to the Li site and the loss of P and O occur, and the battery characteristics deteriorate.
  • a conductive agent and a binder are added and mixed according to a conventional method.
  • the conductive agent acetylene black, carbon black, graphite and the like are preferable, and as the binder, polytetrafluoroethylene, polyvinylidene fluoride and the like are preferable.
  • the solvent for example, N-methyl-pyrrolidone is used, and the positive electrode active material sieved to 45 to 105 ⁇ m or less and the slurry containing the additive are kneaded until they become honey.
  • the obtained slurry is applied onto the current collector with a doctor blade having a groove of 25 ⁇ m to 500 ⁇ m.
  • the coating speed is about 60 cm / sec, and an Al foil of about 20 ⁇ m is usually used as a current collector.
  • drying is performed at 80 to 180 ° C. in a non-oxidizing atmosphere of Fe 2+ .
  • the sheet is subjected to a calender roll treatment so as to have a pressure of 1 to 3 t / cm 2 . In the step of forming the sheet, an oxidation reaction of Fe 2+ to Fe 3+ occurs even at room temperature.
  • the density of the compression molded body of the positive electrode active material is as high as 1.8 g / cc or more, and the electrical resistivity of the compression molded body of the positive electrode active material is 1 to 1.0 ⁇ 10 6 ⁇ . ⁇ Because it is as low as cm, the amount of carbon added during sheet preparation can be suppressed, and since the BET specific surface area of the positive electrode active material is as low as 6 to 70 m 2 / g, the amount of binder added can be suppressed, resulting in density A high positive electrode sheet is obtained.
  • lithium metal lithium metal, lithium / aluminum alloy, lithium / tin alloy, graphite or the like can be used, and the negative electrode sheet is produced by the same doctor blade method or metal rolling as the positive electrode.
  • an organic solvent containing at least one of carbonates such as propylene carbonate and dimethyl carbonate and ethers such as dimethoxyethane can be used as the solvent for the electrolytic solution.
  • At least one lithium salt such as lithium perchlorate and lithium tetrafluoroborate can be dissolved in the above solvent and used.
  • the olivine-type lithium iron manganese phosphate LiMn 1-x Fe x PO 4 (0.05 ⁇ x ⁇ 0.5) particle powder according to the present invention is produced by hydrothermal reaction and firing, and is low in cost and in a small environment Can be manufactured with load.
  • the present invention is the manufacturing method of LiMn 1-x Fe x PO 4 of olivine (0.05 ⁇ x ⁇ 0.5), LiMn 1-x Fe x PO 4 by hydrothermal reaction (0.05 ⁇ x ⁇ 0.5) is produced at a high production rate, then uniformly mixed with an organic substance to control the aggregated particle size, and fired under conditions of an inert or reducing atmosphere, and is finely coated with carbon. In addition, it is possible to obtain a particle powder having a high filling property.
  • the nonaqueous electrolyte secondary battery using this as a positive electrode active material also has a current load characteristic.
  • the present inventor estimates that a high capacity can be obtained and that it can sufficiently withstand repeated charge and discharge.
  • the non-aqueous electrolyte secondary battery using the olivine-type lithium iron manganese phosphate particles according to the present invention as a positive electrode active material has a discharge capacity at 115 Ch / g at room temperature (25 ° C.) of 115 mAh / g or more.
  • the discharge capacity at 1 C at 95 ° C. is at least 95 mAh / g, and the discharge capacity at 5 C at room temperature is at least 80 mAh / g.
  • a typical embodiment of the present invention is as follows.
  • the Li and P concentrations of the lithium and phosphorus-containing main raw materials were measured by neutralization titration using a pH meter and hydrochloric acid or NaOH reagent.
  • the Fe concentration of the iron raw material was quantified by titration (JIS K5109), and the Mn concentration of the manganese raw material was also quantified by titration (Analytical Chemistry Handbook, edited by the Japan Analytical Chemical Society). Based on these analysis results, the reaction concentration and the raw material charge ratio were determined.
  • Particle size of the aggregated particles in the slurry in the first step were measured median diameter D 50 by a wet method.
  • the crystal phase of the aggregated particles in the slurry in the first step was obtained by filtering the aggregated particles in the slurry, and using Cu-K ⁇ , a wet cake using an X-ray diffractometer RINT-2500 [manufactured by Rigaku Corporation]. Measurement was performed under conditions of 40 kV and 300 mA, and the crystal phase was identified.
  • the TCH pseudo-void function is used as the profile function, the method such as Finger is used for asymmetry of the function, and the reliability factor S value is 2.0. Analyzed to cut.
  • the unit cell volume of the lithium iron manganese phosphate particles having the olivine structure (space group Pnma) according to the present invention was calculated from the product of the lattice constants a, b and c calculated by the Rietveld analysis.
  • the composition ratio of the compound powder after adjusting the composition ratio of the compound obtained by the hydrothermal treatment in the second step and the lithium manganese iron phosphate particle powder according to the present invention is determined by the emission plasma analyzer ICAP-6500 [Thermo [Fischer Scientific]. The sample was dissolved in an acid solution at 200 ° C. using an autoclave.
  • the specific surface area of the lithium iron manganese phosphate particles according to the present invention was measured using MONOSORB [manufactured by Yuasa Ionics Co., Ltd.] after drying and deaeration of the sample under nitrogen gas at 120 ° C. for 45 minutes.
  • Carbon and sulfur amounts were quantified by burning them in an oxygen stream in a combustion furnace using EMIA-820 [manufactured by Horiba Ltd.].
  • the density of the compression molded body of the lithium iron manganese phosphate particles according to the present invention was calculated from the weight and volume of the compression molded body when compacted to 1.5 t / cm 2 with a 13 mm ⁇ jig. Moreover, the powder electrical resistivity was measured by the two-terminal method using the compression molded body.
  • NO 2 BF 4 having a molar number twice that of Li in the powder iron manganese phosphate is added to the powder of lithium manganese phosphate, left to stand for chemical oxidation, washed with acetonitrile and washed with Li. A particle powder with all removed was obtained.
  • the primary particle diameter was measured by SEM photographs obtained with a scanning electron microscope (SEM) of Hitachi S-4800 type, and the change rate of the primary particle diameter before and after chemical oxidation was calculated.
  • the secondary battery characteristics of the CR2032-type coin cell were evaluated using the lithium iron manganese phosphate particles having an olivine structure according to the present invention.
  • the positive electrode material slurry was adjusted to 8 wt%, applied onto an Al current collector with a doctor blade, dried in air at 120 ° C. for 10 minutes, and the dried sheet was pressurized to 3 t / cm 2 to form a positive electrode A sheet was produced.
  • the charge / discharge characteristics of the non-aqueous electrolyte secondary battery using the olivine type lithium iron manganese phosphate particles according to the present invention as the positive electrode active material were measured by measuring the discharge capacity at C / 10, 1C, and 5C at room temperature. And evaluated.
  • C / 10 is 10 hours
  • 1C is 1 hour
  • 5C is 1/5 hour
  • the theoretical capacity of LiMn 1-x Fe x PO 4 (0.05 ⁇ x ⁇ 0.5).
  • the current value is fixed so that a current of 170 mAh / g flows.
  • a higher C coefficient means higher current load characteristics.
  • the voltage range during charging and discharging is not particularly limited, but in the present invention, the voltage range was 2.0 to 4.5V.
  • Example 1 A solution of MnSO 4, H 3 PO 4 , and NH 4 OH was mixed, and NH 4 MnPO 4 was precipitated by a neutralization reaction at room temperature. After the precipitate was filtered off and washed with pure water, a solution of LiOH.H 2 O, FeSO 4 , H 3 PO 4 , and ascorbic acid was added, and the aqueous slurry adjusted to the raw material charge ratio shown in Table 1 Got.
  • the slurry was mixed with a ball mill, and the aggregated particles were pulverized to adjust the particle size.
  • the slurry was hydrothermally treated at 180 ° C. for 3 hours, and the resulting compound was filtered off, washed with pure water, and dried at 70 ° C. overnight. From the Rietveld analysis of the XRD pattern, the obtained dry powder has a production rate of LiMn 1-x Fe x PO 4 of 95% and 5 wt% of Li 3 PO 4 as an impurity crystal phase other than the olivine structure. confirmed.
  • the crystallite size was 70 nm according to Scherrer's equation. Further, the content of impurity sulfur in the dry powder was 0.1 wt% or less (second step).
  • the precursor powder obtained in the third step was put in an alumina crucible and baked in a nitrogen atmosphere at 650 ° C. for 5 hours.
  • the temperature increase rate was 200 ° C./hr, and the N 2 gas flow rate was 1 L / min (fourth step).
  • the obtained powder was lithium iron manganese phosphate particles having an olivine structure, and the composition ratio thereof was the same as the composition ratio of Li, Mn, Fe, and P adjusted in the third step.
  • FIG. 1 shows an SEM photograph (secondary electron image) of the olivine-type lithium iron manganese phosphate particles obtained.
  • Table 1 shows the manufacturing conditions of the first step and the properties of the obtained slurry
  • Table 2 shows the characteristics of the powder in the second step and the manufacturing conditions of the third step
  • Table 3 shows the obtained lithium iron manganese phosphate.
  • the powder characteristics of the particle powder are shown in Table 4 and FIG. 2 as the battery characteristics evaluated by a coin cell using the obtained lithium iron manganese phosphate particle powder as a positive electrode. Further, the change rate of the primary particle size before and after the removal of Li by chemical oxidation was about 10%.
  • Example 2 The same processing as in Example 1 was performed except that the raw material charging ratio was changed as shown in Table 1.
  • Example 3 A solution of Fe 3 (PO 4 ) 2 .8H 2 O, Li 3 PO 4 and LiOH.H 2 O was added to NH 4 MnPO 4 obtained in the same manner as in Example 1, and the raw material charging ratios are as shown in Table 1.
  • An aqueous slurry was obtained in the same manner as in Example 1 except that Thereafter, PVA was added as an organic substance in the third step to the slurry after the hydrothermal reaction, and the same treatment as in Example 1 was performed except that the slurry was evaporated to dryness.
  • Example 4 A solution of MnSO 4 , FeSO 4 , H 3 PO 4 , NH 4 OH was mixed, and NH 4 Mn 0.7 Fe 0.3 PO 4 was precipitated by a neutralization reaction at room temperature. The obtained precipitate was separated by filtration and washed with pure water, and then LiOH.H 2 O, H 3 PO 4 and sucrose were added to obtain an aqueous slurry adjusted to the raw material charging ratio shown in Table 1. Thereafter, the same treatment as in Example 1 was carried out except that 15 wt% of polyethylene and stearic acid were used as organic substances in the third step.
  • Example 5 A solution of MnSO 4 and Na 2 CO 3 was mixed, and MnCO 3 was precipitated by a neutralization reaction at room temperature. The obtained precipitate was separated by filtration and washed with pure water, and then H 3 PO 4 was added to precipitate HMnPO 4 . Thereafter, the same processing as in Example 1 was performed except that the raw material charging ratio was changed as shown in Table 1.
  • Example 6 A solution of MnSO 4 , FeSO 4 , and Na 2 CO 3 was mixed, and HMn 0.9 Fe 0.1 CO 3 was precipitated by a neutralization reaction at room temperature. The resulting precipitate was filtered and washed with pure water, and then a solution of H 3 PO 4 was added to precipitate HMn 0.9 Fe 0.1 PO 4 . Thereafter, the same processing as in Example 1 was performed except that the raw material charging ratio was changed as shown in Table 1.
  • Example 7 The raw material charging ratio was changed as shown in Table 1, and treatment was performed in the same manner as in Example 1 except that 20 wt% of sucrose and carbon black were used as organic substances in the third step.
  • the agglomerated particles of the slurry were not pulverized, so the median diameter D 50 of the agglomerated particles was as large as 16 ⁇ m, and the yield of LiMnPO 4 having a olivine structure of the compound obtained after hydrothermal treatment was as low as 71 wt%. It was. Even in the lithium manganese iron phosphate particles powder obtained by firing, 7 wt% of Li 3 PO 4 which is an impurity crystal phase was present, and the battery characteristics deteriorated.
  • Example 2 An aqueous system adjusted to the raw material charge ratio shown in Table 1, including a precipitate obtained by mixing a solution of MnSO 4, FeSO 4 , H 3 PO 4 , and LiOH ⁇ H 2 O and neutralizing reaction at room temperature A slurry was obtained. The slurry was mixed with a ball mill, the aggregated particles were pulverized to adjust the particle size, then hydrothermally treated at 180 ° C. for 3 hours, the resulting precipitate was filtered, washed with pure water, and dried at 70 ° C. overnight. . Thereafter, the same processing as in Example 1 was performed. The crystallite size of the obtained dry powder was as large as 260 nm, and impurity sulfur in the dry powder was 0.12 wt%. The lithium manganese iron phosphate particle powder obtained by firing had a large sulfur content and crystallite size, and the battery characteristics were poor.
  • Example 3 The same process as in Example 2 was performed except that the amount of sucrose, which is an organic substance, was changed to 1 wt% in the third step of Example 2.
  • the lithium manganese iron phosphate particles obtained by firing were coarse particles, had high electric resistance, and had poor battery characteristics.
  • Li 2 CO 3 , MnCO 3 , (NH 4 ) H 2 PO 4 are mixed so that the ratio of Li, Mn, and P is 1: 1: 1, and a mixed solvent composed of ethanol and water to which PVA is further added.
  • the obtained compound was separated by filtration and fired in air at 700 ° C. for 2 hours to obtain lithium iron manganese phosphate particles.
  • the obtained lithium iron manganese phosphate particles were coarse particles, had high electric resistance, and had poor battery characteristics.
  • FIG. 3 shows an SEM photograph of the obtained lithium iron manganese phosphate particle powder
  • FIG. 4 shows an SEM photograph when Li is eliminated by chemical oxidation
  • FIG. 5 shows a Rietveld analysis result of the XRD pattern. It was confirmed that LiMnPO 4 was changed to fine MnPO 4 by chemical oxidation.
  • Example 5 An aqueous slurry was obtained in the same manner as in Example 3. Without performing the hydrothermal reaction in the second step, the precipitate in the slurry was separated by filtration, washed with pure water, and dried at 70 ° C. overnight. Thereafter, the same processing as in Example 1 was performed.
  • the lithium manganese iron phosphate particle powder obtained by firing contained a large amount of impurity crystal phase Li 3 PO 4 , and the battery characteristics were poor.
  • the non-aqueous electrolyte secondary battery using the olivine type lithium iron manganese phosphate particles according to the present invention as a positive electrode active material has a discharge capacity of 115 mAh / g or more at C / 10 at room temperature and 1 C at room temperature.
  • the discharge capacity was 95 mAh / g or more, and the discharge capacity at 5 C at room temperature was 80 mAh / g or more.
  • Example 8 to 15 The precursor powder obtained in the second step was changed to Li 2 CO 3 , MnCO 3 , FeC 2 O 4 , (NH 4 ) in the same manner as in Example 1 except that the raw material charging ratio was changed as shown in Table 5. Fine powders of H 2 PO 4 and (NH 4 ) 2 HPO 4 were added as necessary and mixed by a ball mill, and the composition ratios of Li, Mn, Fe, and P were adjusted as shown in Table 5. Thereafter, the same processing as in Example 1 was performed.
  • the main component of the obtained powder was lithium iron manganese phosphate particles having an olivine structure, and the composition ratio was the same as the composition ratio of Li, Mn, Fe, and P adjusted in the third step.
  • Table 5 shows the manufacturing conditions of the first step and the properties of the obtained slurry
  • Table 6 shows the characteristics of the powder in the second step and the manufacturing conditions of the third step
  • Tables 7 and 8 show the phosphoric acid obtained.
  • the battery characteristics of the manganese iron lithium particle powder are shown in Table 9 and evaluated by a coin cell using the obtained lithium manganese iron phosphate particle powder as a positive electrode.
  • lithium iron manganese phosphate particles having an olivine structure when the lithium and phosphorus contents satisfy Li ⁇ P, the formation of an Mn 2 P 2 O 7 impurity crystal phase that deteriorates battery characteristics Tended to be suppressed.
  • the impurity crystal phase is not detected, but when Li and P are present out of the stoichiometric ratio, the excess Li It is believed that P and P do not adversely affect battery characteristics by forming an ion conductive amorphous phase.
  • a coin cell using an electrode in which the amount of the conductive material is doubled with respect to the evaluation method is 5C.
  • the discharge capacity was improved by 10 to 30%, and a further increase in capacity was confirmed.
  • the method for producing olivine-type lithium iron manganese phosphate particles according to the present invention can be achieved by using an approximately equal amount of raw material without using an excessive amount of raw material, and a low-cost and efficient production method. is there.
  • the olivine-type lithium manganese iron particle powder having the olivine structure according to the present invention makes it possible to produce a positive electrode sheet having a high filling property, and a secondary battery using the same has a high capacity in terms of current load characteristics. It was confirmed that it was obtained.
  • the present invention uses olivine-type lithium iron manganese phosphate particles produced by a low-cost and efficient production method as a positive electrode active material, so that the energy density per volume is high and the capacity is high even in high current load characteristics.
  • a non-aqueous electrolyte secondary battery can be obtained.

Abstract

Disclosed is a method for producing an olivine structured lithium manganese iron phosphate, LiMn1-xFexPO4 (0.05 ≤ x ≤ 0.5), particulate powder. The method is characterized by a first step for obtaining a water-based slurry by the neutralization reaction of a mixed solution of starting materials and a second step of carrying out heat treatment of the slurry obtained in the first step, having a production rate of 75 wt% or greater for the LiMn1-xFexPO4 (0.05 ≤ x ≤ 0.5) compound obtained and washing that compound after making the crystallite size 10 - 250 nm. The method is further characterized by a third step for obtaining a precursor powder with 3 - 40 wt% carbon content by adding an organic substance to the compound obtained in the second step and a fourth process for firing the precursor powder obtained in the third step. The particulate powder can be produced easily at low cost, and the charge and discharge capacity is large for secondary batteries. Also disclosed is a secondary battery using the method for producing the lithium manganese iron phosphate particulate powder, which has superior filling properties and repeated charging and discharging characteristics.

Description

リン酸マンガン鉄リチウム粒子粉末の製造方法、リン酸マンガン鉄リチウム粒子粉末、及び該粒子粉末を用いた非水電解質二次電池Method for producing lithium manganese iron phosphate particle powder, lithium manganese iron phosphate particle powder, and nonaqueous electrolyte secondary battery using the particle powder
 本発明は、低コストで、安易に製造できるオリビン型構造のリン酸マンガン鉄リチウム粒子粉末の製造方法であり、且つ、高出力二次電池として用いた場合にエネルギー密度が高いオリビン型構造のリン酸マンガン鉄リチウム粒子粉末、及びそれを用いた二次電池を提供する。 The present invention is a method for producing olivine-type lithium iron manganese phosphate particles that can be easily produced at low cost, and has a high energy density when used as a high-power secondary battery. Provided are lithium iron manganese oxide particles and a secondary battery using the same.
 近年、AV機器やパソコン等の電子機器、電動工具等のパワーツールのポータブル化、コードレス化が急速に進んでおり、これらの駆動用電源として小型、軽量で高エネルギー密度を有する二次電池への要求が高くなっている。また、地球環境への配慮から、ハイブリッド自動車、電気自動車の開発及び実用化がなされ、出力特性にも優れた二次電池への要求が高くなっている。このような状況下において、充放電容量が大きく、且つ安全性が高いという長所を有するリチウムイオン二次電池が注目されている。 In recent years, electronic devices such as AV equipment and personal computers, and power tools such as electric tools have been rapidly becoming portable and cordless. As a power source for driving these, secondary batteries having a small size, light weight and high energy density have been developed. The demand is high. In consideration of the global environment, hybrid vehicles and electric vehicles have been developed and put into practical use, and the demand for secondary batteries with excellent output characteristics is increasing. Under such circumstances, a lithium ion secondary battery having advantages such as a large charge / discharge capacity and high safety has been attracting attention.
 最近、高エネルギー密度型のリチウムイオン二次電池に有用な正極活物質として、3.5V級オリビン型構造LiFePOから4.1V級の同構造LiMnPOにも注目されている。しかしながら、LiMnPOは、LiFePOよりもLiの出入りがしにくい為、充放電特性の改善が求められている。 Recently, attention has been focused on 3.5V class olivine type structure LiFePO 4 to 4.1V class LiMnPO 4 as a positive electrode active material useful for a high energy density type lithium ion secondary battery. However, since LiMnPO 4 is less liable to enter and exit Li than LiFePO 4 , improvement of charge / discharge characteristics is required.
 即ち、オリビン型構造のLiMnPOは強固なリン酸4面体骨格と酸化還元に寄与するマンガンイオンを中心にもつ酸素8面体と電流の担い手であるリチウムイオンから構成される。また、電子伝導性を補うため、粒子表面に炭素を被覆させる傾向がある。これらにより二次電池の電極として機能し、Liを負極とする充放電時には、容量と電圧で示される充放電特性におけるプラトー領域の存在から、下式の二相反応に従うと言われている。 That is, LiMnPO 4 having an olivine structure is composed of a strong phosphoric acid tetrahedral skeleton, an oxygen octahedron centered on manganese ions that contribute to redox, and lithium ions that are current carriers. Moreover, in order to supplement electron conductivity, there exists a tendency which coat | covers carbon on the particle | grain surface. Thus, it functions as an electrode of a secondary battery, and at the time of charge / discharge using Li as a negative electrode, it is said that it follows a two-phase reaction of the following formula due to the presence of a plateau region in charge / discharge characteristics indicated by capacity and voltage.
 充電:LiMnPO→MnPO+Li+e
 放電:MnPO+Li+e→LiMnPO
Charging: LiMnPO 4 → MnPO 4 + Li + + e
Discharge: MnPO 4 + Li + + e → LiMnPO 4
 ところで、LiMnPO正極についてLiの出入りの容易性及びLiの脱離したMnPOの安定性については種々の説がある。そのため、充電反応によるLiを脱離させた物質の結晶構造が安定で、且つ、充放電前後の粒子サイズの変化を少なくする必要があると考えている。その一つとして、MnのサイトにFeを固溶させる手法がある(非特許文献1~6)。 By the way, there are various theories about the ease of Li in and out of the LiMnPO 4 positive electrode and the stability of MnPO 4 from which Li is desorbed. For this reason, it is considered that the crystal structure of the substance from which Li is eliminated by the charging reaction is stable, and it is necessary to reduce the change in the particle size before and after charging and discharging. One of them is a method in which Fe is dissolved in Mn sites (Non-Patent Documents 1 to 6).
 LiMn1-xFePO(0.05≦x≦0.5)も粒子表面に炭素が被覆されているほど低電流時の充放電特性が良好である。また、前記条件を満たし、且つ、結晶子サイズの小さい粒子であるほど、高い電流負荷での充放電特性がよい傾向がある。また、電極として、高い成型体密度を得るにはそれらが適度に凝集した二次粒子で、且つ、グラファイト化率の高い炭素のような導電性補助剤でネットワークを形成するように、各々の集合状態を制御する必要がある。一方、多量の炭素と複合化された正極は嵩高く、単位体積当たりに充填できる実質的なリチウムイオン密度が低くなるといった欠点が生じる。そこで、単位体積当たりの充放電容量を確保するためには、微細で適度に炭素が被覆されたオリビン型リン酸マンガン鉄リチウムを得ると共に、少量の導電性補助剤を介して高い密度を持った凝集体を形成することが必要とされている。 LiMn 1-x Fe x PO 4 (0.05 ≦ x ≦ 0.5) also has better charge / discharge characteristics at low current as the particle surface is coated with carbon. In addition, the smaller the crystallite size satisfies the above condition, the better the charge / discharge characteristics at a high current load. Moreover, as an electrode, in order to obtain a high molding density, each aggregate is formed so as to form a network of secondary particles that are appropriately aggregated and a conductive auxiliary agent such as carbon having a high graphitization rate. The state needs to be controlled. On the other hand, the positive electrode combined with a large amount of carbon is bulky, and there is a disadvantage that the substantial lithium ion density that can be filled per unit volume is lowered. Therefore, in order to secure charge / discharge capacity per unit volume, olivine-type lithium iron manganese phosphate coated with fine and moderate carbon was obtained and high density was obtained through a small amount of conductive auxiliary agent. There is a need to form aggregates.
 即ち、非水電解質二次電池用の正極活物質粉末としては、充放電に伴う粒子サイズの変化が少なく、電気抵抗が小さく、充填性が高いオリビン型構造のリン酸マンガン鉄リチウム粒子粉末を環境負荷が小さな工業的な方法で生産することが要求されている。 In other words, as the positive electrode active material powder for non-aqueous electrolyte secondary batteries, lithium manganese iron phosphate particles having an olivine structure with a small change in particle size, low electrical resistance, and high filling property due to charge / discharge are used. It is required to produce by an industrial method with a small load.
 従来、オリビン型構造のリン酸マンガン鉄リチウム粒子粉末の諸特性改善のために、種々の改良が行われている。例えば、充放電サイクル試験後の劣化を低減させる技術(特許文献1)、異種金属元素を添加し、電気抵抗を低減する技術(特許文献2)、異種金属元素添加と炭素被覆で電気抵抗を低減する技術(特許文献3)、水熱法で合成する技術(特許文献4~6)等が知られている。 Conventionally, various improvements have been made to improve various characteristics of olivine-type lithium iron manganese phosphate particles. For example, technology to reduce deterioration after charge / discharge cycle test (Patent Document 1), technology to add different metal elements to reduce electrical resistance (Patent Document 2), and to reduce electrical resistance by adding different metal elements and carbon coating Technology (Patent Document 3), technology synthesized by hydrothermal method (Patent Documents 4 to 6), and the like are known.
特開2003-257429号公報JP 2003-257429 A 特開2004-063270号公報JP 2004-063270 A 特表2008-130525号公報Special table 2008-130525 gazette 特開2007-035358号公報JP 2007-035358 A 特開2007-119304号公報JP 2007-119304 A 特開2008-066019号公報JP 2008-066019 A
 非水電解質二次電池用の正極活物質として前記諸特性を満たすオリビン型構造のリン酸マンガン鉄リチウム粒子粉末の安価で効率的な製造方法について、現在最も要求されているところであるが、未だ確立されていない。 As a positive electrode active material for non-aqueous electrolyte secondary batteries, an inexpensive and efficient production method of lithium manganese iron phosphate particles having an olivine structure that satisfies the above-mentioned characteristics is currently the most demanded, but it is still established. It has not been.
 即ち、前記非特許文献1~6に記載された技術では、充放電に伴う粒子サイズの変化が少なく、電気抵抗が小さく、充填性が高いオリビン型構造のLiMn1-xFePO(0.05≦x≦0.5)を工業的に得られるものではない。 That is, in the techniques described in Non-Patent Documents 1 to 6, LiMn 1-x Fe x PO 4 (0) having an olivine structure with little change in particle size due to charge / discharge, low electrical resistance, and high filling properties. .05 ≦ x ≦ 0.5) cannot be obtained industrially.
 また、特許文献1記載の技術は、オリビン型構造のLiMn1-xFePO粒子粉末を正極として用いた時の充放電繰返し特性を向上させる技術であり、電極への充填性や二次集合状態のコントロールについては触れられていない。 The technique described in Patent Document 1 is a technique for improving charge / discharge repetition characteristics when LiMn 1-x Fe x PO 4 particle powder having an olivine type structure is used as a positive electrode. There is no mention of collective control.
 また、特許文献2記載の技術は、オリビン型構造のLiMnPO粒子粉末と炭素との複合化に関する技術ではない。 The technique described in Patent Document 2 is not a technique related to the composite of LiMnPO 4 particle powder having an olivine structure and carbon.
 更に、特許文献3記載の技術は、固相反応法での製法であり、2回の熱処理を有するため、低コストとは言い難い。 Furthermore, the technique described in Patent Document 3 is a production method using a solid-phase reaction method, and since it has two heat treatments, it is difficult to say that the cost is low.
 特許文献4~6記載の水熱法は、1)原料のリン酸、或いは硫酸塩を中和するために水酸化リチウムを過剰に仕込む方法、2)原料のリン酸、或いは遷移金属含有硫酸塩から沈殿物を生成し、リチウム原料と混合し、Li:Mn+Fe:P=1:1:1mol比で仕込む方法に分けられる。1)の場合、製造コストの観点からLiの回収が要求されるが、比較的困難な手法と考えている。2)の場合、LiMn1-xFePO(0.05≦x≦0.5)の報告例がほとんどなく、水熱処理を行う前駆体に関する言及もほとんどなく、その凝集粒子径制御に関する記述は見当たらなかった。 The hydrothermal methods described in Patent Documents 4 to 6 are: 1) a method in which lithium hydroxide is excessively charged to neutralize the raw material phosphoric acid or sulfate, and 2) the raw material phosphoric acid or transition metal-containing sulfate. From this method, a precipitate is produced, mixed with a lithium raw material, and charged at a Li: Mn + Fe: P = 1: 1: 1 mol ratio. In the case of 1), recovery of Li is required from the viewpoint of manufacturing cost, but it is considered a relatively difficult method. In the case of 2), there are almost no reported examples of LiMn 1-x Fe x PO 4 (0.05 ≦ x ≦ 0.5), there is almost no mention of a precursor that performs hydrothermal treatment, and a description of controlling the aggregated particle size Was not found.
 そこで、本発明は、充放電に伴う粒子サイズの変化が少なく、電気抵抗が小さく、充填性が高いオリビン型構造のリン酸マンガン鉄リチウム粒子粉末の工業的手法を確立すること、及び充填性の高い正極活物質を含有する非水電解質二次電池として、電流負荷特性においても高容量を得ることを技術的課題とする。 Therefore, the present invention establishes an industrial method of olivine-type lithium iron phosphate particles with a small olivine structure, which has a small change in particle size due to charge / discharge, low electrical resistance, and high packing properties, As a non-aqueous electrolyte secondary battery containing a high positive electrode active material, it is a technical subject to obtain a high capacity also in current load characteristics.
 前記技術的課題は、次の通りの本発明によって達成できる。 The technical problem can be achieved by the present invention as follows.
 即ち、本発明は、オリビン型構造のリン酸マンガン鉄リチウムLiMn1-xFePO(0.05≦x≦0.5)粒子粉末の製造方法であって、原料としてLi化合物、Mn化合物、Fe化合物、P化合物及び糖又は有機酸を用い、原料仕込み比がmol比で0.95≦Li/(Mn+Fe)≦2.0、0.95≦P/(Mn+Fe)≦1.3であり、(Mn+Fe)に対し1~20mol%の糖又は有機酸を含む混合溶液の中和反応によってpHが5.5~12.5である水系スラリーを得る第一工程、第一工程で得られたスラリーを反応温度120~220℃で水熱処理を行い、得られる化合物のLiMn1-xFePO(0.05≦x≦0.5)の生成率が75wt%以上であって、結晶子サイズを10~250nmとした後、該化合物を洗浄する第二工程、第二工程で得られた化合物に有機物を3~40wt%添加して前駆体粉末を得る第三工程、第三工程で得られた前駆体粉末を酸素濃度0.1%以下の不活性ガス又は還元性ガス雰囲気下で、温度250~850℃で焼成する第四工程からなるオリビン型構造のリン酸マンガン鉄リチウム粒子粉末の製造方法である(本発明1)。 That is, the present invention relates to a method for producing olivine-type lithium manganese iron phosphate LiMn 1-x Fe x PO 4 (0.05 ≦ x ≦ 0.5) particle powder, wherein the raw material is Li compound, Mn compound , Fe compound, P compound and sugar or organic acid, and the raw material charge ratio is 0.95 ≦ Li / (Mn + Fe) ≦ 2.0, 0.95 ≦ P / (Mn + Fe) ≦ 1.3 in terms of mol ratio Obtained in the first step and the first step of obtaining an aqueous slurry having a pH of 5.5 to 12.5 by a neutralization reaction of a mixed solution containing 1 to 20 mol% of sugar or organic acid with respect to (Mn + Fe) The slurry is hydrothermally treated at a reaction temperature of 120 to 220 ° C., and the resulting compound has a production rate of LiMn 1-x Fe x PO 4 (0.05 ≦ x ≦ 0.5) of 75 wt% or more, Size 10-250nm After that, the second step of washing the compound, the third step of obtaining a precursor powder by adding 3 to 40 wt% of organic substances to the compound obtained in the second step, the precursor powder obtained in the third step This is a method for producing olivine-type lithium iron manganese phosphate particles comprising a fourth step of firing at a temperature of 250 to 850 ° C. in an inert gas or reducing gas atmosphere having an oxygen concentration of 0.1% or less (this book) Invention 1).
 また、本発明は、上記第一工程において、スラリー中の凝集粒子のメジアン径が0.1~10μmであって、結晶相が(NH)Mn1-αFeαPO(0≦α<1)又はHMn1-βFeβPO(0≦β<1)である凝集粒子を含む水系スラリーを得る本発明1に記載の製造方法である(本発明2)。 Further, according to the present invention, in the first step, the median diameter of the aggregated particles in the slurry is 0.1 to 10 μm, and the crystal phase is (NH 4 ) Mn 1-α Fe α PO 4 (0 ≦ α < 1) or a manufacturing method according to the first aspect of the present invention for obtaining an aqueous slurry containing aggregated particles satisfying HMn 1-β Fe β PO 4 (0 ≦ β <1) (Invention 2).
 また、本発明は、上記第一工程において用いる糖又は有機酸が、ショ糖、アスコルビン酸、及びクエン酸のうち少なくとも1種である本発明1又は2に記載の製造方法である(本発明3)。 Moreover, this invention is the manufacturing method of this invention 1 or 2 whose saccharide | sugar or organic acid used in said 1st process is at least 1 sort (s) among sucrose, ascorbic acid, and a citric acid (this invention 3). ).
 また、本発明は、上記第二工程において、化合物中の硫黄含有量が0.1wt%以下になるように洗浄する本発明1~3のいずれかに記載の製造方法である(本発明4)。 Further, the present invention is the production method according to any one of the present inventions 1 to 3, wherein in the second step, washing is performed so that the sulfur content in the compound is 0.1 wt% or less (Invention 4). .
 また、本発明は、上記第三工程において、添加する有機物がカーボンブラック、油脂化合物、糖化合物、及び合成樹脂のうち少なくとも1種である本発明1~4のいずれかに記載の製造方法である(本発明5)。 Further, the present invention is the production method according to any one of the present inventions 1 to 4, wherein in the third step, the organic substance to be added is at least one of carbon black, an oil and fat compound, a sugar compound, and a synthetic resin. (Invention 5).
 また、本発明は、オリビン型構造のリン酸マンガン鉄リチウムLiMn1-xFePO(0.05≦x≦0.5)粒子粉末であって、リチウムとリンの含有量がmol比で0.9≦Li/(Mn+Fe)≦1.2、0.9≦P/(Mn+Fe)≦1.2であり、BET比表面積が6~70m/gであり、炭素含有量が0.5~8wt%であり、硫黄含有量が0.08wt%以下であり、オリビン型構造の結晶相LiMn1-xFePO(0.05≦x≦0.5)の量が95wt%以上であり、結晶子サイズが25~300nmであり、凝集粒子のメジアン径が0.3~20μmであり、粉体電気抵抗率が1~1.0×10Ω・cmであることを特徴とするオリビン型構造のリン酸マンガン鉄リチウム粒子粉末である(本発明6)。 The present invention also relates to olivine type lithium manganese iron phosphate LiMn 1-x Fe x PO 4 (0.05 ≦ x ≦ 0.5) particle powder, wherein the content of lithium and phosphorus is in a molar ratio. 0.9 ≦ Li / (Mn + Fe) ≦ 1.2, 0.9 ≦ P / (Mn + Fe) ≦ 1.2, the BET specific surface area is 6 to 70 m 2 / g, and the carbon content is 0.5 8 wt%, the sulfur content is 0.08 wt% or less, and the amount of the crystalline phase LiMn 1-x Fe x PO 4 (0.05 ≦ x ≦ 0.5) of the olivine type structure is 95 wt% or more. The crystallite size is 25 to 300 nm, the median diameter of the aggregated particles is 0.3 to 20 μm, and the electrical resistivity of the powder is 1 to 1.0 × 10 6 Ω · cm. This is an olivine-type lithium iron manganese phosphate powder (this Invention 6).
 また、本発明は、リチウムとリンの含有量がLi≧Pを満たす本発明6に記載のオリビン型構造のリン酸マンガン鉄リチウム粒子粉末である(本発明7)。 The present invention also relates to lithium iron manganese phosphate particles having an olivine structure according to the present invention 6, wherein the lithium and phosphorus contents satisfy Li ≧ P (the present invention 7).
 また、本発明は、単位胞体積VUCが下記式(1)の関係にある本発明6又は7に記載のオリビン型構造のリン酸マンガン鉄リチウム粒子粉末である(本発明8)。
  VUC(Å)<11.4×(1-x)+291.21 ・・・(1)
The present invention also relates to lithium iron manganese phosphate particles having an olivine structure according to the present invention 6 or 7, wherein the unit cell volume V UC has the relationship represented by the following formula (1) (the present invention 8).
V UC3 ) <11.4 × (1-x) +291.21 (1)
 また、本発明は、本発明6~8のいずれかに記載のオリビン型構造のリン酸マンガン鉄リチウム粒子粉末を用いて作製した非水電解質二次電池である(本発明9)。 Further, the present invention is a non-aqueous electrolyte secondary battery produced using the olivine-type lithium manganese iron phosphate particles according to any one of the present inventions 6 to 8 (Invention 9).
 本発明に係るオリビン型構造のリン酸マンガン鉄リチウム粒子粉末の製造方法は低コストで、ほぼ等量の原料から効率的に製造できるのでオリビン型構造のリン酸マンガン鉄リチウム粒子粉末の製造方法として好適である。 The method for producing olivine-type lithium iron manganese phosphate particles according to the present invention is low-cost and can be produced efficiently from almost equal amounts of raw materials. Is preferred.
 また、本発明に係るオリビン型構造のリン酸マンガン鉄リチウム粒子粉末は充放電に伴う粒子サイズの変化が少なく、電気抵抗が小さく、充填性が高いものであり、非水電解質二次電池用の正極活物質として好適である。 In addition, the lithium olivine manganese phosphate particles having an olivine structure according to the present invention have little change in particle size due to charge / discharge, low electrical resistance, and high filling properties, and are used for non-aqueous electrolyte secondary batteries. Suitable as a positive electrode active material.
 また、本発明に係るオリビン型構造のリン酸マンガン鉄リチウム粒子粉末を正極活物質として用いた二次電池は電流負荷特性においても高容量が得られ、且つ十分に繰り返し充放電に耐えられる。 Further, the secondary battery using the olivine-type lithium manganese iron phosphate particles having the olivine structure as the positive electrode active material according to the present invention has a high capacity in the current load characteristics and can sufficiently withstand repeated charge and discharge.
実施例1で得られたオリビン型構造のリン酸マンガン鉄リチウム粒子粉末の走査型電子顕微鏡による二次電子像である。2 is a secondary electron image of the olivine-type lithium manganese iron phosphate particles obtained in Example 1 by a scanning electron microscope. 実施例1で得られたオリビン型構造のリン酸マンガン鉄リチウム粒子粉末を正極化し、コインセルで評価した放電特性である。It is the discharge characteristic which made the positive electrode the olivine type structure lithium iron iron phosphate particle powder obtained in Example 1, and evaluated it by the coin cell. 比較例4で得られたオリビン型構造のリン酸マンガン鉄リチウム粒子粉末の走査型電子顕微鏡による二次電子像である。It is a secondary electron image by the scanning electron microscope of the lithium iron manganese phosphate particle powder of the olivine type structure obtained in Comparative Example 4. 比較例4で得られたオリビン型構造のリン酸マンガン鉄リチウム粒子粉末を化学酸化して得られた粒子粉末の走査型電子顕微鏡による二次電子像である。It is a secondary electron image by the scanning electron microscope of the particle powder obtained by chemically oxidizing the lithium iron manganese phosphate particle powder of the olivine type structure obtained in Comparative Example 4. 比較例4で得られたオリビン型構造のリン酸マンガン鉄リチウム粒子粉末を化学酸化して得られた粒子粉末のX線回折パターンのRietveld解析結果である。It is a Rietveld analysis result of the X-ray-diffraction pattern of the particle powder obtained by chemically oxidizing the lithium iron manganese phosphate particle powder of the olivine type structure obtained in Comparative Example 4.
 本発明の構成をより詳しく説明すれば次の通りである。 The configuration of the present invention will be described in more detail as follows.
 まず、本発明に係るオリビン型構造のリン酸マンガン鉄リチウムの製造方法について述べる。 First, a method for producing olivine-type lithium iron manganese phosphate according to the present invention will be described.
 本発明に係るオリビン型構造のリン酸マンガン鉄リチウムLiMn1-xFePO(0.05≦x≦0.5)粒子粉末の製造方法は、原料としてLi化合物、Mn化合物、Fe化合物、P化合物及び糖又は有機酸を用い、原料仕込み比がmol比で0.95≦Li/(Mn+Fe)≦2.0、0.95≦P/(Mn+Fe)≦1.3であり、(Mn+Fe)に対し1~20mol%の糖又は有機酸を含む混合溶液の中和反応によってpHが5.5~12.5である水系スラリーを得る第一工程、第一工程で得られたスラリーを反応温度120~220℃で水熱処理を行い、得られる化合物のLiMn1-xFePO(0.05≦x≦0.5)の生成率が75wt%以上であって、結晶子サイズを10~250nmとした後、該化合物を洗浄する第二工程、第二工程で得られた化合物に有機物を3~40wt%添加して前駆体粉末を得る第三工程、第三工程で得られた前駆体粉末を酸素濃度0.1%以下の不活性ガス又は還元性ガス雰囲気下で、温度250~850℃で焼成する第四工程からなることを特徴とする。 The method for producing olivine-type lithium manganese iron phosphate LiMn 1-x Fe x PO 4 (0.05 ≦ x ≦ 0.5) particle powder according to the present invention includes a Li compound, a Mn compound, an Fe compound, Using a P compound and a sugar or an organic acid, the raw material charge ratio is 0.95 ≦ Li / (Mn + Fe) ≦ 2.0, 0.95 ≦ P / (Mn + Fe) ≦ 1.3 in terms of mol ratio, and (Mn + Fe) The first step of obtaining an aqueous slurry having a pH of 5.5 to 12.5 by the neutralization reaction of a mixed solution containing 1 to 20 mol% of sugar or organic acid with respect to the reaction temperature, the slurry obtained in the first step is the reaction temperature Hydrothermal treatment is performed at 120 to 220 ° C., and the resulting compound has a production rate of LiMn 1-x Fe x PO 4 (0.05 ≦ x ≦ 0.5) of 75 wt% or more, and a crystallite size of 10 to After 250 nm, The second step of washing the compound, the third step of obtaining a precursor powder by adding 3 to 40 wt% of organic substances to the compound obtained in the second step, and the oxygen concentration of the precursor powder obtained in the third step of 0. It is characterized by comprising a fourth step of baking at a temperature of 250 to 850 ° C. in an inert gas or reducing gas atmosphere of 1% or less.
 第一工程で用いられる原料は、Li化合物としてはLiOH、LiPOが好ましく、Mn化合物としてはMnSO、MnCOが好ましく、Fe化合物としてはFeSO、FeCOが好ましく、P化合物としてはHPO、(NH)HPO、(NHHPO、NaHPO、NaHPO、NaPOが好ましい。 The raw materials used in the first step are preferably LiOH and Li 3 PO 4 as the Li compound, MnSO 4 and MnCO 3 as the Mn compound, FeSO 4 and FeCO 3 as the Fe compound, and P compound as the P compound. H 3 PO 4 , (NH 4 ) H 2 PO 4 , (NH 4 ) 2 HPO 4 , NaH 2 PO 4 , Na 2 HPO 4 , and Na 3 PO 4 are preferred.
 第一工程におけるLi化合物、Mn化合物、Fe化合物、P化合物は、原料仕込み比がmol比で0.95≦Li/(Mn+Fe)≦2.0、0.95≦P/(Mn+Fe)≦1.3となるように混合される。原料の仕込み比が前記範囲外の場合には、目的とするリン酸マンガン鉄リチウムを得ることができない。より好ましくはmol比で0.98≦Li/(Mn+Fe)≦1.8、0.98≦P/(Mn+Fe)≦1.2である。 The Li compound, Mn compound, Fe compound, and P compound in the first step have a raw material charge ratio of 0.95 ≦ Li / (Mn + Fe) ≦ 2.0 and 0.95 ≦ P / (Mn + Fe) ≦ 1. 3 to be mixed. When the raw material charge ratio is outside the above range, the target lithium iron manganese phosphate cannot be obtained. More preferably, the molar ratio is 0.98 ≦ Li / (Mn + Fe) ≦ 1.8 and 0.98 ≦ P / (Mn + Fe) ≦ 1.2.
 また、第一工程で用いられる糖又は有機酸はショ糖、アスコルビン酸、又はクエン酸が好ましい。糖又は有機酸の添加量は、(Mn+Fe)に対し1~20mol%、より好ましくは1.5~18mol%であり、添加した糖又は有機酸は遷移金属還元剤として働いて、水熱反応後のLiMn1-xFePO(0.05≦x≦0.5)の生成率を上げ、且つ、生成物の一次粒子径を微細化させる。 The sugar or organic acid used in the first step is preferably sucrose, ascorbic acid, or citric acid. The addition amount of sugar or organic acid is 1 to 20 mol%, more preferably 1.5 to 18 mol%, based on (Mn + Fe). The added sugar or organic acid works as a transition metal reducing agent, and after hydrothermal reaction. The production rate of LiMn 1-x Fe x PO 4 (0.05 ≦ x ≦ 0.5) is increased, and the primary particle diameter of the product is refined.
 第一工程で用いられるアルカリ源は、LiOH、NaOH、NaCO、NH、尿素、エタノールアミン等が用いられる。 As the alkali source used in the first step, LiOH, NaOH, Na 2 CO 3 , NH 3 , urea, ethanolamine or the like is used.
 第一工程における水系スラリーは、第二工程における水熱処理によって得られる化合物のLiMn1-xFePO(0.05≦x≦0.5)の生成率を上げるためにpHが5.5~12.5である必要がある。 The aqueous slurry in the first step has a pH of 5.5 in order to increase the production rate of LiMn 1-x Fe x PO 4 (0.05 ≦ x ≦ 0.5) of the compound obtained by the hydrothermal treatment in the second step. Must be ~ 12.5.
 第一工程におけるスラリー中の凝集粒子のメジアン径は0.1~10μmであることが好ましい。 The median diameter of the aggregated particles in the slurry in the first step is preferably 0.1 to 10 μm.
 第一工程におけるスラリーは、スラリー中の凝集粒子の結晶相が(NH)Mn1-αFeαPO(0≦α<1)又はHMn1-βFeβPO(0≦β<1)である凝集粒子を含むことが好ましい。前記2相のいずれかを含まない場合には、目的とするリン酸マンガン鉄リチウムを得ることができない。 In the slurry in the first step, the crystal phase of the aggregated particles in the slurry is (NH 4 ) Mn 1-α Fe α PO 4 (0 ≦ α <1) or HMn 1-β Fe β PO 4 (0 ≦ β <1). It is preferable that the agglomerated particles are included. When one of the two phases is not included, the target lithium manganese iron phosphate cannot be obtained.
 上記メジアン径及び結晶相を持つ凝集粒子は、結晶核が生成・成長する条件下での原料混合(多数の結晶核発生)や、生成物の粉砕によって得ることができる。粉砕に使用する装置として、ボールミル、媒体攪拌型ミル等が上げられる。 The agglomerated particles having the median diameter and the crystal phase can be obtained by mixing raw materials under conditions where crystal nuclei are generated and grown (generation of a large number of crystal nuclei) or by pulverization of the product. Examples of the apparatus used for pulverization include a ball mill and a medium stirring mill.
 第二工程における水熱処理は、120~220℃で行うことが好ましい。また、水熱処理の時間は1~10時間であることが好ましい。 The hydrothermal treatment in the second step is preferably performed at 120 to 220 ° C. The hydrothermal treatment time is preferably 1 to 10 hours.
 第二工程の水熱処理を行って得られた化合物は、LiMn1-xFePO(0.05≦x≦0.5)の生成率が75wt%以上である。生成率が75wt%未満では、これ以降の工程を行ってもLiMn1-xFePO(0.05≦x≦0.5)の生成率が低いままとなる。より好ましい生成率は80wt%以上である。また、得られた化合物のLiMn1-xFePO(0.05≦x≦0.5)に基づく結晶子サイズは10~250nmである。結晶子サイズが10nm未満の化合物は工業的に製造が困難であり、結晶子サイズが250nmを超えるものは良好な電池特性を得ることができない。より好ましい結晶子サイズは30~150nmである。第二工程の水熱処理は、上記生成率および結晶子サイズを満足するように、処理温度と処理時間を適宜選択して行う必要がある。水熱処理の処理温度が低く処理時間が短い場合、上記の生成率に達しなかったり、上記の結晶子サイズに達しない場合があり、水熱処理の処理温度が高く処理時間が長い場合、上記の結晶子サイズを超える場合がある。 In the compound obtained by performing the hydrothermal treatment in the second step, the production rate of LiMn 1-x Fe x PO 4 (0.05 ≦ x ≦ 0.5) is 75 wt% or more. When the production rate is less than 75 wt%, the production rate of LiMn 1-x Fe x PO 4 (0.05 ≦ x ≦ 0.5) remains low even after the subsequent steps. A more preferable production rate is 80 wt% or more. The crystallite size of the obtained compound based on LiMn 1-x Fe x PO 4 (0.05 ≦ x ≦ 0.5) is 10 to 250 nm. A compound having a crystallite size of less than 10 nm is industrially difficult to produce, and a compound having a crystallite size of more than 250 nm cannot obtain good battery characteristics. A more preferable crystallite size is 30 to 150 nm. The hydrothermal treatment in the second step needs to be performed by appropriately selecting the treatment temperature and the treatment time so as to satisfy the above generation rate and crystallite size. If the hydrothermal treatment temperature is low and the treatment time is short, the above-mentioned production rate may not be reached, or the crystallite size may not be reached, and if the hydrothermal treatment temperature is high and the treatment time is long, the above crystals May exceed child size.
 第二工程における水熱処理によって得られた化合物は、不純物硫酸イオンの除去と組成比制御のため、濾過洗浄或いはデカンテーション洗浄を行う。洗浄に用いられる装置として、プレスフィルター、フィルターシックナー等が挙げられる。 The compound obtained by the hydrothermal treatment in the second step is subjected to filtration washing or decantation washing in order to remove impurity sulfate ions and control the composition ratio. Examples of the apparatus used for cleaning include a press filter and a filter thickener.
 第二工程における水熱処理によって得られた化合物の洗浄は、化合物中の硫黄含有量が0.1wt%以下になるように行うことが好ましい。洗浄は、化合物中の硫黄を充分に除くことができればよく、通常は水洗を行えばよい。 The washing of the compound obtained by the hydrothermal treatment in the second step is preferably performed so that the sulfur content in the compound is 0.1 wt% or less. Washing is sufficient if sulfur in the compound can be sufficiently removed, and usually washing with water may be performed.
 リン酸マンガン鉄リチウム固溶体を形成させるためには、第三工程において主成分元素組成比を調整することが好ましい。第二工程で得られた化合物にLi化合物、Mn化合物、Fe化合物、及びP化合物を必要により、添加して主成分元素組成比をLi:(Mn+Fe):P=0.90:1:0.90~1.20:1:1.20(mol比)の範囲に調整することが好ましい。 In order to form a lithium manganese iron phosphate solid solution, it is preferable to adjust the composition ratio of the main component elements in the third step. If necessary, Li compound, Mn compound, Fe compound, and P compound are added to the compound obtained in the second step, and the composition ratio of main component elements is Li: (Mn + Fe): P = 0.90: 1: 0. It is preferable to adjust to a range of 90 to 1.20: 1: 1.20 (mol ratio).
 主成分元素の組成比の調整には、Liの調整にLiOH、LiCO等のリチウム化合物、Mnの調整にMnCO、MnC等のマンガン化合物、Feの調整にFeCO、FeC等の鉄化合物、Pの調整にHPO、(NH)HPO、(NHHPO等のPO含有化合物を用いることが好ましい。 For the adjustment of the composition ratio of the main component elements, lithium compounds such as LiOH and Li 2 CO 3 are used for adjusting Li, manganese compounds such as MnCO 3 and MnC 2 O 4 are used for adjusting Mn, and FeCO 3 and FeC are used for adjusting Fe. It is preferable to use an iron compound such as 2 O 4 and a PO 4 -containing compound such as H 3 PO 4 , (NH 4 ) H 2 PO 4 , (NH 4 ) 2 HPO 4 for adjusting P.
 また、炭素を被覆させた微細なリン酸マンガン鉄リチウム固溶体を形成させるため、第三工程において有機物を3~40wt%添加して前駆体粉末とする。その際、前駆体粉末の一次粒子径を小さくし、有機物と均一混合する必要がある。混合に用いられる装置として、ヘンシェルミキサー、らいかい機、ハイスピードミキサー、媒体攪拌型ミル等が挙げられる。 Also, in order to form a fine lithium iron manganese phosphate solid solution coated with carbon, 3 to 40 wt% of an organic substance is added in the third step to obtain a precursor powder. At that time, it is necessary to reduce the primary particle size of the precursor powder and to uniformly mix with the organic matter. Examples of the apparatus used for mixing include a Henschel mixer, a raking machine, a high speed mixer, a medium stirring mill, and the like.
 添加する有機物としては、カーボンブラック、油脂化合物、糖化合物、及び合成樹脂のうち少なくとも1種であることが好ましい。 The organic substance to be added is preferably at least one of carbon black, an oil and fat compound, a sugar compound, and a synthetic resin.
 微細なリン酸マンガン鉄リチウム粒子粉末の表面に炭素を被覆させるために、また、凝集粒子径を制御するために添加する有機物は油脂化合物、糖化合物、及び合成樹脂のうち少なくとも1種が好ましい。 In order to coat the surface of fine lithium iron manganese phosphate particles with carbon and to control the aggregated particle diameter, the organic substance added is preferably at least one of an oil and fat compound, a sugar compound, and a synthetic resin.
 また、添加する有機物として導電性の高いカーボンブラックを用いた場合には、第四工程において低温での焼成が可能となる。カーボンブラックを用いることにより、400~500℃といった低温焼成でも、得られるオリビン型構造のリン酸マンガン鉄リチウム粒子粉末の圧縮成型体は1~1.0×10Ω・cmの電気抵抗率を満たし、性能の高い二次電池特性を示す。 Further, when carbon black having high conductivity is used as the organic substance to be added, firing at a low temperature is possible in the fourth step. By using carbon black, the resulting compacted compact of olivine-type lithium manganese iron phosphate particles even at low temperatures such as 400 to 500 ° C. has an electrical resistivity of 1 to 1.0 × 10 6 Ω · cm. Satisfying and high performance secondary battery characteristics.
 油脂化合物としては、ステアリン酸、オレイン酸、糖化合物としてはショ糖、デキストリン、合成樹脂としてはポリエチレン、ポリプロピレン、ポリビニルアルコール(PVA)が挙げられる。 Examples of the oil and fat compound include stearic acid and oleic acid, examples of the sugar compound include sucrose and dextrin, and examples of the synthetic resin include polyethylene, polypropylene, and polyvinyl alcohol (PVA).
 また、カーボンブラックとしては、例えば、アセチレンブラック(電気化学工業(株)製)やケッチェンブラック(ライオン(株)製)が挙げられる。 Further, examples of carbon black include acetylene black (manufactured by Denki Kagaku Kogyo Co., Ltd.) and ketjen black (manufactured by Lion Corporation).
 また、第三工程において添加する有機物で粒子同士を結着させることにより前駆体粉末の凝集粒子径を0.3~30μmに調整することが好ましい。好ましい結着剤として、ポリビニルアルコール(PVA)、ポリビニルブチラール、でんぷん、カルボキシメチルセルロース等が挙げられる。 In addition, it is preferable to adjust the aggregate particle diameter of the precursor powder to 0.3 to 30 μm by binding particles with an organic substance added in the third step. Preferred binders include polyvinyl alcohol (PVA), polyvinyl butyral, starch, carboxymethyl cellulose and the like.
 第三工程で得られた前駆体粉末を、酸素濃度0.1%以下の不活性ガス又は還元性ガス雰囲気下で、温度250~850℃で焼成を行う。不活性ガスとして、N、Ar、HO、CO或いはその混合ガスが用いられる。還元性ガスとして、H、又はCO、或いはこれらのガスと前記不活性ガスの混合ガスが用いられる。焼成に用いられる装置として、ガス流通式箱型マッフル炉、ガス流通式回転炉、流動熱処理炉等が挙げられる。 The precursor powder obtained in the third step is fired at a temperature of 250 to 850 ° C. in an inert gas or reducing gas atmosphere having an oxygen concentration of 0.1% or less. As the inert gas, N 2 , Ar, H 2 O, CO 2 or a mixed gas thereof is used. As the reducing gas, H 2 , CO, or a mixed gas of these gases and the inert gas is used. Examples of the apparatus used for firing include a gas flow type box muffle furnace, a gas flow type rotary furnace, and a fluidized heat treatment furnace.
 酸素濃度0.1%以下の雰囲気で焼成を行うことによって、Fe原料中に含まれる微量なFe3+は添加した有機物、或いは還元性ガスによりFe2+へと変化し、LiMn1-xFePO(0.05≦x≦0.5)が生成する。LiMn1-xFePO(0.05≦x≦0.5)の生成には、焼成温度は、250℃以上であればよいが、未反応物の反応を完結させ、且つ、添加有機物から電子伝導性の高いグラファイト相を形成させるためには、好ましくは350~850℃、より好ましくは400~750℃で1~10時間焼成する。 By firing in an atmosphere with an oxygen concentration of 0.1% or less, a small amount of Fe 3+ contained in the Fe raw material is changed to Fe 2+ by the added organic substance or reducing gas, and LiMn 1-x Fe x PO 4 (0.05 ≦ x ≦ 0.5) is generated. For the production of LiMn 1-x Fe x PO 4 (0.05 ≦ x ≦ 0.5), the calcination temperature may be 250 ° C. or higher, but the reaction of unreacted substances is completed, and the added organic matter In order to form a graphite phase having a high electron conductivity from 350 to 850 ° C., it is preferably calcined at 350 to 850 ° C., more preferably at 400 to 750 ° C. for 1 to 10 hours.
 本発明に係るリン酸マンガン鉄リチウム粒子粉末は、適切な前駆体スラリーを調整することで、水熱処理後において、LiMn1-xFePO(0.05≦x≦0.5)の生成率を高めることができる。その後、有機物と均一混合し、さらに焼成することによりLiMn1-xFePO(0.05≦x≦0.5)の生成率が高く、炭素が十分に被覆された微細なリン酸マンガン鉄リチウム粒子粉末を得ることができる。 The lithium iron manganese phosphate particles according to the present invention can produce LiMn 1-x Fe x PO 4 (0.05 ≦ x ≦ 0.5) after hydrothermal treatment by adjusting an appropriate precursor slurry. The rate can be increased. Thereafter, the mixture is uniformly mixed with an organic substance and further baked, whereby the production rate of LiMn 1-x Fe x PO 4 (0.05 ≦ x ≦ 0.5) is high, and fine manganese phosphate sufficiently covered with carbon Iron lithium particle powder can be obtained.
 次に、本発明に係る非水電解質二次電池用オリビン型構造のリン酸マンガン鉄リチウムLiMn1-xFePO(0.05≦x≦0.5)粒子粉末について述べる。本発明に係るリン酸マンガン鉄リチウム粒子粉末は、好ましくは上記の本発明1に係る製造方法によって製造される。 Next, the olivine type lithium manganese phosphate LiMn 1-x Fe x PO 4 (0.05 ≦ x ≦ 0.5) particle powder for non-aqueous electrolyte secondary battery according to the present invention will be described. The lithium iron manganese phosphate particles according to the present invention are preferably produced by the production method according to the present invention 1 described above.
 本発明に係るリン酸マンガン鉄リチウム粒子粉末は、リチウムとリンの含有量がmol比で0.9≦Li/(Mn+Fe)≦1.2、0.9≦P/(Mn+Fe)≦1.2である。リチウムとリンの含有量が前記範囲以外の場合には異相を形成しやすく、場合によっては粒成長を促進し、性能の高い電池特性を有するリン酸マンガン鉄リチウム粒子粉末を得ることができない。好ましいリチウムとリンの含有量はmol比で0.98≦Li/(Mn+Fe)≦1.05、0.98≦P/(Mn+Fe)≦1.05であり、より好ましくは1≦Li/(Mn+Fe)≦1.05、1≦P/(Mn+Fe)≦1.05である。 In the lithium iron manganese phosphate particles according to the present invention, the content of lithium and phosphorus is 0.9 ≦ Li / (Mn + Fe) ≦ 1.2 and 0.9 ≦ P / (Mn + Fe) ≦ 1.2 in terms of mol ratio. It is. When the content of lithium and phosphorus is outside the above range, a heterogeneous phase is likely to be formed, and in some cases, grain growth is promoted and lithium manganese iron phosphate particles having high battery characteristics cannot be obtained. Preferable lithium and phosphorus contents are 0.98 ≦ Li / (Mn + Fe) ≦ 1.05, 0.98 ≦ P / (Mn + Fe) ≦ 1.05, and more preferably 1 ≦ Li / (Mn + Fe) in molar ratio. ) ≦ 1.05, 1 ≦ P / (Mn + Fe) ≦ 1.05.
 さらに、本発明に係るリン酸マンガン鉄リチウム粒子粉末は、リチウムとリンの含有量がLi≧Pであることが好ましい。 Furthermore, the lithium manganese iron particle powder according to the present invention preferably has a lithium and phosphorus content of Li ≧ P.
 本発明に係るリン酸マンガン鉄リチウム粒子粉末のBET比表面積は6~70m/gである。BET比表面積が6m/g未満の場合には、リン酸マンガン鉄リチウム粒子粉末中のLiイオンの移動が遅いため、電流を取出すことが困難である。70m/gを超える場合には、正極の充填密度が低下し、また、電解液との反応性が増加するため好ましくない。好ましいBET比表面積は10~65m/gであり、より好ましくは15~60m/gである。 The BET specific surface area of the lithium iron manganese phosphate particles according to the present invention is 6 to 70 m 2 / g. When the BET specific surface area is less than 6 m 2 / g, the movement of Li ions in the lithium iron manganese phosphate particle powder is slow, so that it is difficult to take out the current. When exceeding 70 m < 2 > / g, since the packing density of a positive electrode falls and the reactivity with electrolyte solution increases, it is unpreferable. A preferred BET specific surface area is 10 to 65 m 2 / g, more preferably 15 to 60 m 2 / g.
 本発明に係るリン酸マンガン鉄リチウム粒子粉末の炭素含有量は0.5~8.0wt%である。炭素含有量が0.5wt%未満の場合、熱処理時の粒子成長を抑制できず、また、得られた粉体の電気抵抗が高くなり、二次電池の充放電特性を悪化させる。また炭素含有量が8.0wt%を超える場合、正極の充填密度が低下し、二次電池の体積当たりのエネルギー密度が小さくなる。より好ましい炭素含有量は1.0~6.0wt%である。 The carbon content of the lithium iron manganese phosphate particles according to the present invention is 0.5 to 8.0 wt%. When the carbon content is less than 0.5 wt%, the particle growth during the heat treatment cannot be suppressed, and the electric resistance of the obtained powder is increased, which deteriorates the charge / discharge characteristics of the secondary battery. On the other hand, when the carbon content exceeds 8.0 wt%, the packing density of the positive electrode is lowered, and the energy density per volume of the secondary battery is reduced. A more preferable carbon content is 1.0 to 6.0 wt%.
 本発明に係るリン酸マンガン鉄リチウム粒子粉末は、不純物の硫黄含有量が0.08wt%以下で、非水電解質二次電池において良好な保存特性が得られる。硫黄含有量が0.08wt%を超える場合、硫酸リチウムなどの不純物が形成され、充放電中にそれらの不純物が分解反応を起こして、高温保存時の電解液との反応が促進され保存後の抵抗上昇が激しくなる。より好ましい硫黄含有量は500ppm以下である。 The lithium iron manganese phosphate particles according to the present invention have an impurity sulfur content of 0.08 wt% or less, and good storage characteristics can be obtained in a nonaqueous electrolyte secondary battery. When the sulfur content exceeds 0.08 wt%, impurities such as lithium sulfate are formed, and these impurities undergo a decomposition reaction during charge and discharge, and the reaction with the electrolyte during high-temperature storage is promoted, and after storage Resistance rises intensely. A more preferable sulfur content is 500 ppm or less.
 本発明に係るリン酸マンガン鉄リチウム粒子粉末は、オリビン型構造のLiMn1-xFePO(0.05≦x≦0.5)の結晶相が95wt%以上である。不純物結晶相としてLiPOが検出される場合、焼成後に得られたLiMn1-xFePO(0.05≦x≦0.5)粒子が微細となり、放電容量も高くなる場合があるが、LiPO自身は充放電に寄与しないため5wt%未満が望ましい。 In the lithium iron manganese phosphate particles according to the present invention, the crystal phase of LiMn 1-x Fe x PO 4 (0.05 ≦ x ≦ 0.5) having an olivine structure is 95 wt% or more. When Li 3 PO 4 is detected as the impurity crystal phase, LiMn 1-x Fe x PO 4 (0.05 ≦ x ≦ 0.5) particles obtained after firing may be fine and the discharge capacity may be high. However, since Li 3 PO 4 itself does not contribute to charging and discharging, it is desirable that it be less than 5 wt%.
 本発明に係るリン酸マンガン鉄リチウム粒子粉末の結晶子サイズは25~300nmである。他の粉体特性を満たしながら結晶子サイズが25nm未満の粉末を本発明の製造方法で量産することは極めて困難であり、また、300nmを超える結晶子サイズではLiが粒子内を移動するのに時間を要し、二次電池の電流負荷特性が悪化する。好ましい結晶子サイズは30nm~200nm、より好ましくは40nm~150nmである。 The crystallite size of the lithium iron manganese phosphate particles according to the present invention is 25 to 300 nm. It is extremely difficult to mass-produce a powder having a crystallite size of less than 25 nm while satisfying other powder characteristics by the production method of the present invention, and Li moves inside the particle at a crystallite size exceeding 300 nm. Time is required and the current load characteristics of the secondary battery are deteriorated. The preferred crystallite size is 30 nm to 200 nm, more preferably 40 nm to 150 nm.
 本発明に係るリン酸マンガン鉄リチウム粒子粉末の凝集粒子のメジアン径は0.3~30μmである。メジアン径が0.3μm未満の場合には、正極充填密度の低下や電解液との反応性が増加するため好ましくない。一方、メジアン径が30μmを超えると、電極膜厚に対して大きすぎ、シート化が極めて困難である。好ましい凝集粒子のメジアン径は0.5~15μmである。 The median diameter of the aggregated particles of the lithium iron manganese phosphate particles according to the present invention is 0.3 to 30 μm. When the median diameter is less than 0.3 μm, the positive electrode packing density is decreased and the reactivity with the electrolytic solution is increased. On the other hand, when the median diameter exceeds 30 μm, it is too large for the electrode film thickness and it is extremely difficult to form a sheet. A preferable median diameter of the aggregated particles is 0.5 to 15 μm.
 本発明に係るリン酸マンガン鉄リチウム粒子粉末の圧縮成型体密度は、1.8g/cc以上であることが好ましい。LiMn1-xFePO(0.05≦x≦0.5)の真密度は3.6g/ccであり、真密度に近いほど充填性は良い。そのため、好ましい圧縮成型体密度は真密度の50%を超える2.0g/cc以上である。一方、他の粉体特性を満たしながら圧縮成形体密度が2.8g/cc以上の粉末を本発明の製造方法で量産することは極めて困難である。本発明に係るリン酸マンガン鉄リチウム粒子粉末は、残存する炭素量が少なく、一次粒子同士が適度に凝集しているため、圧縮成型体密度が高いと考えられる。 The density of the compression molded body of the lithium iron manganese phosphate particles according to the present invention is preferably 1.8 g / cc or more. The true density of LiMn 1-x Fe x PO 4 (0.05 ≦ x ≦ 0.5) is 3.6 g / cc, and the closer to the true density, the better the filling property. Therefore, a preferable compression molding density is 2.0 g / cc or more exceeding 50% of the true density. On the other hand, it is extremely difficult to mass-produce a powder having a compression molded body density of 2.8 g / cc or more while satisfying other powder characteristics by the production method of the present invention. The lithium manganese iron phosphate particle powder according to the present invention is considered to have a high compression-molded body density because the amount of remaining carbon is small and primary particles are appropriately aggregated.
 本発明に係るリン酸マンガン鉄リチウム粒子粉末の粉体電気抵抗率は、1~1.0×10Ω・cmである。粉体電気抵抗率が1.0×10Ω・cm程度であるリン酸マンガン鉄リチウムに炭素を複合化させることにより、粉体電気抵抗率を低下させることができたものである。好ましい粉体電気抵抗率は1~5.0×10Ω・cmであり、より好ましくは5~1.0×10Ω・cmである。 The powder electrical resistivity of the lithium iron manganese phosphate particles according to the present invention is 1 to 1.0 × 10 6 Ω · cm. By combining carbon with lithium manganese iron phosphate having a powder electrical resistivity of about 1.0 × 10 8 Ω · cm, the powder electrical resistivity could be reduced. The powder electrical resistivity is preferably 1 to 5.0 × 10 5 Ω · cm, more preferably 5 to 1.0 × 10 5 Ω · cm.
 本発明に係るリン酸マンガン鉄リチウム粒子粉末の単位胞体積VUCは式(1)の関係にあることが好ましい。
  VUC(Å)<11.4×(1-x)+291.21 ・・・(1)
The unit cell volume V UC of the lithium iron manganese phosphate particles according to the present invention is preferably in the relationship of formula (1).
V UC3 ) <11.4 × (1-x) +291.21 (1)
 通常、オリビン型構造のLiMn1-xFePOのxの値の増加と共に、格子定数と単位胞体積は線形的に低下し、ベガード則に従うことが良く知られている。べガード則の線形性から推測されるオリビン型構造のLiMn1-xFePO(0.05≦x≦0.5)の単位胞体積は10.9×(1-x)+291.36であった。この単位胞体積に近づくほどLiサイトへの遷移金属置換やP及びOの欠損が低減され、また、該単位胞体積より小さい場合、遷移金属のサイトにLiが置換され、電極としての理論容量が増加すると考えている。 In general, it is well known that the lattice constant and the unit cell volume decrease linearly with the increase of the value of x in LiMn 1-x Fe x PO 4 having an olivine structure, and follow Vegard's law. The unit cell volume of LiMn 1-x Fe x PO 4 (0.05 ≦ x ≦ 0.5) having an olivine structure inferred from the linearity of the Vegard rule is 10.9 × (1-x) +291.36 Met. The closer to the unit cell volume, the transition metal substitution to the Li site and the loss of P and O are reduced. When the volume is smaller than the unit cell volume, Li is substituted to the transition metal site, and the theoretical capacity as an electrode is reduced. I think it will increase.
 本発明者らは、オリビン型構造のLiMn1-xFePOの化学量論比からずれた組成比を持つ前駆体の熱処理によると、オリビン型構造のLiMn1-xFePO(0.05≦x≦0.5)よりも安定に存在する不純物結晶相が生成する傾向があることを確認した。また、Li、Mn、Fe、Pの組成比のずれが僅かであって、オリビン型構造のLiMn1-xFePO単一結晶相が生成しているにも関わらず、異なる格子定数を示し、上記記載の式(1)以上の単位胞体積を示すこともあった。その場合には、Liサイトへの遷移金属置換やP及びOの欠損が生じ、電池特性が低下したものと推察している。 According to the heat treatment of a precursor having a composition ratio deviated from the stoichiometric ratio of LiMn 1-x Fe x PO 4 having an olivine structure, the present inventors have made LiMn 1-x Fe x PO 4 ( It was confirmed that an impurity crystal phase that exists more stably than 0.05 ≦ x ≦ 0.5) tends to be generated. In addition, although the composition ratio of Li, Mn, Fe, and P is slight and a olivine-type LiMn 1-x Fe x PO 4 single crystal phase is formed, different lattice constants are obtained. In some cases, the unit cell volume is more than the above formula (1). In that case, it is assumed that the transition metal substitution to the Li site and the loss of P and O occur, and the battery characteristics deteriorate.
 次に、本発明に係るオリビン型構造のリン酸マンガン鉄リチウム粒子粉末を正極活物質として用いた非水電解質二次電池について述べる。 Next, a nonaqueous electrolyte secondary battery using the olivine-type lithium manganese iron phosphate particles according to the present invention as a positive electrode active material will be described.
 本発明に係るリン酸マンガン鉄リチウム粒子粉末を正極活物質として用いて正極シートを製造する場合には、常法に従って、導電剤と結着剤とを添加混合する。導電剤としてはアセチレンブラック、カーボンブラック、グラファイト等が好ましく、結着剤としてはポリテトラフルオロエチレン、ポリフッ化ビニリデン等が好ましい。溶媒として、例えば、N-メチル-ピロリドンを用い、45~105μm以下に篩い分けられた該正極活物質と該添加物を含むスラリーを蜂蜜状になるまで混練する。得られたスラリーを溝が25μm~500μmのドクターブレードで集電体上に塗布する。該塗布速度は約60cm/secで、集電体として、通常約20μmのAl箔を用いる。溶媒除去と結着剤軟化のため、乾燥は80~180℃で、Fe2+の非酸化性雰囲気で行う。該シートを1~3t/cmの圧力になるようカレンダーロール処理を行う。前記シート化の工程で、室温においてもFe2+のFe3+への酸化反応が生じるため、極力、非酸化性雰囲気で行うことが望ましい。 When a positive electrode sheet is produced using the lithium iron manganese phosphate particles according to the present invention as a positive electrode active material, a conductive agent and a binder are added and mixed according to a conventional method. As the conductive agent, acetylene black, carbon black, graphite and the like are preferable, and as the binder, polytetrafluoroethylene, polyvinylidene fluoride and the like are preferable. As the solvent, for example, N-methyl-pyrrolidone is used, and the positive electrode active material sieved to 45 to 105 μm or less and the slurry containing the additive are kneaded until they become honey. The obtained slurry is applied onto the current collector with a doctor blade having a groove of 25 μm to 500 μm. The coating speed is about 60 cm / sec, and an Al foil of about 20 μm is usually used as a current collector. In order to remove the solvent and soften the binder, drying is performed at 80 to 180 ° C. in a non-oxidizing atmosphere of Fe 2+ . The sheet is subjected to a calender roll treatment so as to have a pressure of 1 to 3 t / cm 2 . In the step of forming the sheet, an oxidation reaction of Fe 2+ to Fe 3+ occurs even at room temperature.
 本発明における正極シートは、該正極活物質の圧縮成型体密度が1.8g/cc以上と高く、また、該正極活物質の圧縮成型体の電気抵抗率が1~1.0×10Ω・cmと低いためシート作製時の炭素添加量を抑制でき、また、該正極活物質のBET比表面積が6~70m/gと低いため、結着剤添加量を抑制でき、結果として密度の高い正極シートが得られる。 In the positive electrode sheet of the present invention, the density of the compression molded body of the positive electrode active material is as high as 1.8 g / cc or more, and the electrical resistivity of the compression molded body of the positive electrode active material is 1 to 1.0 × 10 6 Ω.・ Because it is as low as cm, the amount of carbon added during sheet preparation can be suppressed, and since the BET specific surface area of the positive electrode active material is as low as 6 to 70 m 2 / g, the amount of binder added can be suppressed, resulting in density A high positive electrode sheet is obtained.
 負極活物質としては、リチウム金属、リチウム/アルミニウム合金、リチウム/スズ合金、黒鉛等を用いることができ、正極と同様のドクターブレード法や金属圧延により負極シートは作製される。 As the negative electrode active material, lithium metal, lithium / aluminum alloy, lithium / tin alloy, graphite or the like can be used, and the negative electrode sheet is produced by the same doctor blade method or metal rolling as the positive electrode.
 また、電解液の溶媒としては、炭酸エチレンと炭酸ジエチルの組み合わせ以外に、炭酸プロピレン、炭酸ジメチル等のカーボネート類や、ジメトキシエタン等のエーテル類の少なくとも1種類を含む有機溶媒を用いることができる。 In addition to the combination of ethylene carbonate and diethyl carbonate, an organic solvent containing at least one of carbonates such as propylene carbonate and dimethyl carbonate and ethers such as dimethoxyethane can be used as the solvent for the electrolytic solution.
 さらに、電解質としては、六フッ化リン酸リチウム以外に、過塩素酸リチウム、四フッ化ホウ酸リチウム等のリチウム塩の少なくとも1種類を上記溶媒に溶解して用いることができる。 Further, as the electrolyte, in addition to lithium hexafluorophosphate, at least one lithium salt such as lithium perchlorate and lithium tetrafluoroborate can be dissolved in the above solvent and used.
<作用>
 本発明に係るオリビン型構造のリン酸マンガン鉄リチウムLiMn1-xFePO(0.05≦x≦0.5)粒子粉末は水熱反応と焼成により製造され、低コストで、小さい環境負荷で製造できる。
<Action>
The olivine-type lithium iron manganese phosphate LiMn 1-x Fe x PO 4 (0.05 ≦ x ≦ 0.5) particle powder according to the present invention is produced by hydrothermal reaction and firing, and is low in cost and in a small environment Can be manufactured with load.
 即ち、本発明はオリビン型構造のLiMn1-xFePO(0.05≦x≦0.5)の製造方法において、水熱反応によってLiMn1-xFePO(0.05≦x≦0.5)を高い生成率で作製後、均一に有機物と混合して凝集粒子径を制御し、不活性又は還元性雰囲気下の条件で焼成を行って、微細で、炭素で被覆された、充填性が高い粒子粉末を得るものである。 That is, the present invention is the manufacturing method of LiMn 1-x Fe x PO 4 of olivine (0.05 ≦ x ≦ 0.5), LiMn 1-x Fe x PO 4 by hydrothermal reaction (0.05 ≦ x ≦ 0.5) is produced at a high production rate, then uniformly mixed with an organic substance to control the aggregated particle size, and fired under conditions of an inert or reducing atmosphere, and is finely coated with carbon. In addition, it is possible to obtain a particle powder having a high filling property.
 また、本発明の製造方法によって作製されたリン酸マンガン鉄リチウム粒子粉末は、炭素被覆と凝集粒子径を制御したため、これを正極活物質として用いた非水電解質二次電池は電流負荷特性においても高容量が得られ、且つ十分に繰返し充放電に耐えられると本発明者は推定している。 In addition, since the lithium iron manganese phosphate particles produced by the production method of the present invention controlled the carbon coating and the aggregated particle size, the nonaqueous electrolyte secondary battery using this as a positive electrode active material also has a current load characteristic. The present inventor estimates that a high capacity can be obtained and that it can sufficiently withstand repeated charge and discharge.
 本発明に係るオリビン型構造のリン酸マンガン鉄リチウム粒子粉末を正極活物質として用いた非水電解質二次電池は、室温(25℃)でのC/10における放電容量は115mAh/g以上、室温での1Cにおける放電容量は95mAh/g以上、室温での5Cにおける放電容量は80mAh/g以上の特性を示す。 The non-aqueous electrolyte secondary battery using the olivine-type lithium iron manganese phosphate particles according to the present invention as a positive electrode active material has a discharge capacity at 115 Ch / g at room temperature (25 ° C.) of 115 mAh / g or more. The discharge capacity at 1 C at 95 ° C. is at least 95 mAh / g, and the discharge capacity at 5 C at room temperature is at least 80 mAh / g.
 本発明の代表的な実施の形態は次の通りである。 A typical embodiment of the present invention is as follows.
 リチウム、及びリン含有主原料のLi、P濃度はpH計と塩酸、又はNaOH試薬を用いた中和滴定により測定した。鉄原料のFe濃度は滴定(JIS K5109)により、マンガン原料のMn濃度も滴定(分析化学便覧 日本分析化学会編)により定量化した。これらの分析結果を元に、反応濃度と原料仕込み比を決定した。 The Li and P concentrations of the lithium and phosphorus-containing main raw materials were measured by neutralization titration using a pH meter and hydrochloric acid or NaOH reagent. The Fe concentration of the iron raw material was quantified by titration (JIS K5109), and the Mn concentration of the manganese raw material was also quantified by titration (Analytical Chemistry Handbook, edited by the Japan Analytical Chemical Society). Based on these analysis results, the reaction concentration and the raw material charge ratio were determined.
 第一工程におけるスラリー中の凝集粒子の粒子径は、レーザー回折・散乱型粒度分布計であるHELOS((株)日本レーザー製)を用い、湿式法でメジアン径D50を測定した。 Particle size of the aggregated particles in the slurry in the first step, using a laser diffraction scattering type particle size distribution meter HELOS ((KK) Japan Laser) were measured median diameter D 50 by a wet method.
 第一工程におけるスラリー中の凝集粒子の結晶相は、前記スラリー中の凝集粒子を濾別後、湿潤ケーキをX線回折装置RINT-2500[(株)リガク製]を用いて、Cu-Kα、40kV,300mAの条件下で測定し、結晶相を同定した。 The crystal phase of the aggregated particles in the slurry in the first step was obtained by filtering the aggregated particles in the slurry, and using Cu-Kα, a wet cake using an X-ray diffractometer RINT-2500 [manufactured by Rigaku Corporation]. Measurement was performed under conditions of 40 kV and 300 mA, and the crystal phase was identified.
 第二工程の水熱処理で得られる化合物及び本発明におけるリン酸鉄リチウム粒子粉末の結晶相と結晶子サイズ、及びLiMn1-xFePO(0.05≦x≦0.5)の生成率はX線回折装置RINT-2500[(株)リガク製]を用いて測定したX線回折パターンのRietveld解析により算出した。X線回折パターンは最高ピーク強度のcount数が8000~15000になるよう、0.02°のステップで、1.0°/minで2θが15~90°の範囲で測定した。Rietveld解析プログラムにRIETAN2000を用いた。その際、結晶子の異方的な広がりが無いと仮定し、プロファイル関数としてTCH擬ヴォイド関数を用い、その関数の非対称化にFinger等の手法を用い、信頼度因子S値が2.0を切るように解析した。 Compound obtained by hydrothermal treatment in the second step, crystal phase and crystallite size of lithium iron phosphate particles in the present invention, and formation of LiMn 1-x Fe x PO 4 (0.05 ≦ x ≦ 0.5) The rate was calculated by Rietveld analysis of an X-ray diffraction pattern measured using an X-ray diffractometer RINT-2500 [manufactured by Rigaku Corporation]. The X-ray diffraction pattern was measured in steps of 0.02 ° and 1.0 ° / min in the range of 2θ of 15 to 90 ° so that the count number of the maximum peak intensity was 8000 to 15000. Rietan 2000 was used as the Rietveld analysis program. At that time, assuming that there is no anisotropic broadening of the crystallite, the TCH pseudo-void function is used as the profile function, the method such as Finger is used for asymmetry of the function, and the reliability factor S value is 2.0. Analyzed to cut.
<参考文献>
 F.Izumi and T.Ikeda, Mater.Sci.Forum, 2000,Vol.198,p.321-324.
<References>
F. Izumi and T. Ikeda, Mater. Sci. Forum, 2000, Vol. 198, p. 321-324.
 本発明に係るオリビン型構造(空間群Pnma)のリン酸マンガン鉄リチウム粒子粉末の単位胞体積は、上記Rietveld解析により算出した格子定数a,b,cの積から算出した。 The unit cell volume of the lithium iron manganese phosphate particles having the olivine structure (space group Pnma) according to the present invention was calculated from the product of the lattice constants a, b and c calculated by the Rietveld analysis.
 第三工程において、第二工程の水熱処理で得られる化合物の組成比を調整した後の化合物粉末及び本発明に係るリン酸マンガン鉄リチウム粒子粉末の組成比は発光プラズマ分析装置ICAP-6500[サーモフィッシャーサイエンティフィク社製]を用いて測定した。試料溶解にオートクレーブを用い、200℃の酸溶液中で溶解させた。 In the third step, the composition ratio of the compound powder after adjusting the composition ratio of the compound obtained by the hydrothermal treatment in the second step and the lithium manganese iron phosphate particle powder according to the present invention is determined by the emission plasma analyzer ICAP-6500 [Thermo [Fischer Scientific]. The sample was dissolved in an acid solution at 200 ° C. using an autoclave.
 本発明に係るリン酸マンガン鉄リチウム粒子粉末の比表面積は、試料を窒素ガス下で120℃、45分間乾燥脱気した後、MONOSORB[ユアサアイオニックス(株)製]を用いて測定した。 The specific surface area of the lithium iron manganese phosphate particles according to the present invention was measured using MONOSORB [manufactured by Yuasa Ionics Co., Ltd.] after drying and deaeration of the sample under nitrogen gas at 120 ° C. for 45 minutes.
 本発明に係るリン酸マンガン鉄リチウム粒子粉末の凝集粒子の粒子径は、レーザー回折・散乱型粒度分布計であるHELOS[(株)日本レーザー製]を用い、乾式法でメジアン径D50を測定した。 Particle size of the manganese phosphate lithium iron particles of agglomerated particles according to the present invention, using a HELOS [(KK) Japan Laser is a laser diffraction scattering type particle size distribution meter, measuring the median diameter D 50 by a dry process did.
 炭素、硫黄量はEMIA-820[(株)ホリバ製作所製]を用いて燃焼炉で酸素気流中にて燃焼させ、定量化した。 Carbon and sulfur amounts were quantified by burning them in an oxygen stream in a combustion furnace using EMIA-820 [manufactured by Horiba Ltd.].
 本発明に係るリン酸マンガン鉄リチウム粒子粉末の圧縮成型体密度は13mmφの治具で1.5t/cmに圧粉した際の圧縮成形体の重量と体積から算出した。また、前記圧縮成形体を用いて2端子法により粉体電気抵抗率を測定した。 The density of the compression molded body of the lithium iron manganese phosphate particles according to the present invention was calculated from the weight and volume of the compression molded body when compacted to 1.5 t / cm 2 with a 13 mmφ jig. Moreover, the powder electrical resistivity was measured by the two-terminal method using the compression molded body.
 本発明に係るリン酸マンガン鉄リチウム粒子粉末の充放電に伴う粒子径の変化の評価として、NOBFによる化学酸化によってLiが脱離した擬似充電状態を作り出し、化学酸化前後の一次粒子径の変化率を計算した。 As an evaluation of the change of the particle size accompanying charging / discharging of the lithium iron manganese phosphate particles according to the present invention, a pseudo charged state in which Li is desorbed by chemical oxidation with NO 2 BF 4 is created, and the primary particle size before and after the chemical oxidation The rate of change was calculated.
 アセトニトリル溶媒中で、リン酸マンガン鉄リチウム粒子粉末に該粒子粉末のLiに対し2倍のモル数のNOBFを添加し、一日放置して化学酸化させ、アセトニトリルで洗浄してLiを全て取り除いた粒子粉末を得た。化学酸化前後の粒子粉末について、日立製S-4800型の走査型電子顕微鏡(SEM)で得られるSEM写真によって一次粒子径を測定し、化学酸化前後での一次粒子径の変化率を計算した。 In an acetonitrile solvent, NO 2 BF 4 having a molar number twice that of Li in the powder iron manganese phosphate is added to the powder of lithium manganese phosphate, left to stand for chemical oxidation, washed with acetonitrile and washed with Li. A particle powder with all removed was obtained. For the particle powder before and after chemical oxidation, the primary particle diameter was measured by SEM photographs obtained with a scanning electron microscope (SEM) of Hitachi S-4800 type, and the change rate of the primary particle diameter before and after chemical oxidation was calculated.
 本発明に係るオリビン型構造のリン酸マンガン鉄リチウム粒子粉末を用いてCR2032型コインセルによる二次電池特性を評価した。 The secondary battery characteristics of the CR2032-type coin cell were evaluated using the lithium iron manganese phosphate particles having an olivine structure according to the present invention.
 導電材としてアセチレンブラック、バインダーとしてN-メチルピロリドン(関東化学(株)製)に溶解した重合度54万のポリフッ化ビニリデン(Aldrich製)を混合し、正極活物質:アセチレンブラック:PVDF=88:4:8wt%になるよう正極材スラリーを調整し、ドクターブレードでAl集電体上に塗布し、120℃、10分間空気中で乾燥し、乾燥したシートを3t/cmに加圧して正極シートを作製した。 Acetylene black as a conductive material and polyvinylidene fluoride having a polymerization degree of 540,000 (manufactured by Aldrich) dissolved in N-methylpyrrolidone (manufactured by Kanto Chemical Co., Ltd.) as a binder are mixed, and positive electrode active material: acetylene black: PVDF = 88 4: The positive electrode material slurry was adjusted to 8 wt%, applied onto an Al current collector with a doctor blade, dried in air at 120 ° C. for 10 minutes, and the dried sheet was pressurized to 3 t / cm 2 to form a positive electrode A sheet was produced.
 2cmに打ち抜いた正極シート、17mmφに打ち抜いた厚さ0.15mmLi負極、19mmφにセパレーター(セルガード#2400)、1mol/lのLiPFを溶解したECとDEC(体積比3:7)で混合した電解液(キシダ化学製)用いて、CR22032型コインセル((株)宝泉製)を作製した。 Positive electrode sheet punched to 2 cm 2 , 0.15 mm Li negative electrode punched to 17 mmφ, separator (Celguard # 2400) to 19 mmφ, EC and DEC (volume ratio 3: 7) in which 1 mol / l LiPF 6 was dissolved were mixed A CR22032 type coin cell (manufactured by Hosen Co., Ltd.) was prepared using an electrolytic solution (manufactured by Kishida Chemical).
 本発明に係るオリビン型構造のリン酸マンガン鉄リチウム粒子粉末を正極活物質として用いた非水電解質二次電池の充放電特性は、室温においてC/10、1C、5Cでの放電容量を測定して評価した。ここで、C/10とは10時間で、1Cとは1時間で、5Cとは1/5時間で、LiMn1-xFePO(0.05≦x≦0.5)の理論容量170mAh/gの電流が流れるよう固定した電流値である。Cの係数が高くなるほど、高い電流負荷特性を意味する。また、充電と放電時の電圧範囲は特に限定しないが、本発明において、2.0~4.5V間で行った。 The charge / discharge characteristics of the non-aqueous electrolyte secondary battery using the olivine type lithium iron manganese phosphate particles according to the present invention as the positive electrode active material were measured by measuring the discharge capacity at C / 10, 1C, and 5C at room temperature. And evaluated. Here, C / 10 is 10 hours, 1C is 1 hour, 5C is 1/5 hour, and the theoretical capacity of LiMn 1-x Fe x PO 4 (0.05 ≦ x ≦ 0.5). The current value is fixed so that a current of 170 mAh / g flows. A higher C coefficient means higher current load characteristics. The voltage range during charging and discharging is not particularly limited, but in the present invention, the voltage range was 2.0 to 4.5V.
[実施例1]
 MnSO4、PO、NHOHの溶液を混合し、室温での中和反応によりNHMnPOを沈殿させた。沈殿物を濾別し、純水で洗浄した後、LiOH・HO、FeSO、HPO、及びアスコルビン酸の溶液を加え、表1に記載の原料仕込み比に調整された水系スラリーを得た。
[Example 1]
A solution of MnSO 4, H 3 PO 4 , and NH 4 OH was mixed, and NH 4 MnPO 4 was precipitated by a neutralization reaction at room temperature. After the precipitate was filtered off and washed with pure water, a solution of LiOH.H 2 O, FeSO 4 , H 3 PO 4 , and ascorbic acid was added, and the aqueous slurry adjusted to the raw material charge ratio shown in Table 1 Got.
 前記スラリーをボールミルで混合し、凝集粒子を粉砕して粒度を調整した。調整後のスラリーはpH=11、凝集粒子のメジアン径はD50=5.0μm、濾別後の凝集粒子の主結晶相はNHMnPOであった(第一工程)。 The slurry was mixed with a ball mill, and the aggregated particles were pulverized to adjust the particle size. The adjusted slurry had a pH of 11, the median diameter of the aggregated particles was D 50 = 5.0 μm, and the main crystal phase of the aggregated particles after filtration was NH 4 MnPO 4 (first step).
 前記スラリーを180℃で3時間水熱処理し、得られた化合物を濾別して純水で洗浄し、70℃で一晩乾燥した。得られた乾燥粉末はXRDパターンのRietveld解析から、LiMn1-xFePOの生成率が95%であり、オリビン型構造以外の不純物結晶相としてLiPOが5wt%存在することが確認された。また、結晶子サイズはシェラーの式から70nmであった。また、乾燥粉末中の不純物硫黄の含有量は0.1wt%以下であった(第二工程)。 The slurry was hydrothermally treated at 180 ° C. for 3 hours, and the resulting compound was filtered off, washed with pure water, and dried at 70 ° C. overnight. From the Rietveld analysis of the XRD pattern, the obtained dry powder has a production rate of LiMn 1-x Fe x PO 4 of 95% and 5 wt% of Li 3 PO 4 as an impurity crystal phase other than the olivine structure. confirmed. The crystallite size was 70 nm according to Scherrer's equation. Further, the content of impurity sulfur in the dry powder was 0.1 wt% or less (second step).
 組成比調整のため、上記乾燥粉末に微細な(NH)HPOを添加した。調整後の粉末の組成は、ICPを用いて分析したところ、Li:Mn:Fe:P=1.01:0.80:0.20:1.00(mol比)であった。 In order to adjust the composition ratio, fine (NH 4 ) H 2 PO 4 was added to the dry powder. The composition of the powder after adjustment was analyzed using ICP, and was Li: Mn: Fe: P = 1.01: 0.80: 0.20: 1.00 (mol ratio).
 得られた乾燥粉末に対して10wt%のショ糖をメノウ乳鉢で混合し、純水を微量添加し、ヘンシェルミキサーで凝集粒子径を調整して前駆体粉末を得た(第三工程)。 10 wt% sucrose was mixed in the agate mortar with respect to the obtained dry powder, a small amount of pure water was added, and the aggregated particle diameter was adjusted with a Henschel mixer to obtain a precursor powder (third step).
 第三工程で得られた前駆体粉末をアルミナ製坩堝に入れ、650℃、5時間、窒素雰囲気下で焼成した。昇温速度を200℃/hr、Nガス流量を1L/minとした(第四工程)。 The precursor powder obtained in the third step was put in an alumina crucible and baked in a nitrogen atmosphere at 650 ° C. for 5 hours. The temperature increase rate was 200 ° C./hr, and the N 2 gas flow rate was 1 L / min (fourth step).
 得られた粉末はオリビン型構造を有するリン酸マンガン鉄リチウム粒子粉末であり、その組成比は第三工程で調整したLi、Mn、Fe、Pの組成比と同じであった。 The obtained powder was lithium iron manganese phosphate particles having an olivine structure, and the composition ratio thereof was the same as the composition ratio of Li, Mn, Fe, and P adjusted in the third step.
 図1に得られたオリビン型構造のリン酸マンガン鉄リチウム粒子粉末のSEM写真(二次電子像)を示す。また、表1に第一工程の製造条件と得られたスラリーの特性を、表2に第二工程における粉末の特性と第三工程の製造条件を、表3に得られたリン酸マンガン鉄リチウム粒子粉末の粉体特性を、表4及び図2に得られたリン酸マンガン鉄リチウム粒子粉末を正極化しコインセルで評価した電池特性を示す。
 また、化学酸化による脱Li前後の一次粒子サイズの変化率は10%程度であった。
FIG. 1 shows an SEM photograph (secondary electron image) of the olivine-type lithium iron manganese phosphate particles obtained. Table 1 shows the manufacturing conditions of the first step and the properties of the obtained slurry, Table 2 shows the characteristics of the powder in the second step and the manufacturing conditions of the third step, and Table 3 shows the obtained lithium iron manganese phosphate. The powder characteristics of the particle powder are shown in Table 4 and FIG. 2 as the battery characteristics evaluated by a coin cell using the obtained lithium iron manganese phosphate particle powder as a positive electrode.
Further, the change rate of the primary particle size before and after the removal of Li by chemical oxidation was about 10%.
[実施例2]
 原料仕込み比を表1のように変えたほかは実施例1と同様に処理した。
[Example 2]
The same processing as in Example 1 was performed except that the raw material charging ratio was changed as shown in Table 1.
[実施例3]
 実施例1と同様にして得られたNHMnPOにFe(PO・8HO、LiPO及びLiOH・HOの溶液を加え、原料仕込み比を表1のように変えたほかは実施例1と同様にして水系スラリーを得た。以後、水熱反応後のスラリーに第三工程における有機物としてPVAを添加し、蒸発乾固したほかは実施例1と同様に処理した。
[Example 3]
A solution of Fe 3 (PO 4 ) 2 .8H 2 O, Li 3 PO 4 and LiOH.H 2 O was added to NH 4 MnPO 4 obtained in the same manner as in Example 1, and the raw material charging ratios are as shown in Table 1. An aqueous slurry was obtained in the same manner as in Example 1 except that Thereafter, PVA was added as an organic substance in the third step to the slurry after the hydrothermal reaction, and the same treatment as in Example 1 was performed except that the slurry was evaporated to dryness.
[実施例4]
 MnSO、FeSO、HPO、NHOHの溶液を混合し、室温での中和反応によりNHMn0.7Fe0.3POを沈殿させた。得られた沈殿物を濾別して純水で洗浄後、LiOH・HO、HPO、及びショ糖を加え、表1に記載の原料仕込み比に調整された水系スラリーを得た。以後、第三工程における有機物としてポリエチレンとステアリン酸を合計15wt%用いたほかは実施例1と同様に処理した。
[Example 4]
A solution of MnSO 4 , FeSO 4 , H 3 PO 4 , NH 4 OH was mixed, and NH 4 Mn 0.7 Fe 0.3 PO 4 was precipitated by a neutralization reaction at room temperature. The obtained precipitate was separated by filtration and washed with pure water, and then LiOH.H 2 O, H 3 PO 4 and sucrose were added to obtain an aqueous slurry adjusted to the raw material charging ratio shown in Table 1. Thereafter, the same treatment as in Example 1 was carried out except that 15 wt% of polyethylene and stearic acid were used as organic substances in the third step.
[実施例5]
 MnSOとNaCOの溶液を混合し、室温での中和反応によりMnCOを沈殿させた。得られた沈殿物を濾別して純水で洗浄後、HPOを加え、HMnPOを沈殿させた。以後、原料仕込み比を表1のように変えたほかは実施例1と同様に処理した。
[Example 5]
A solution of MnSO 4 and Na 2 CO 3 was mixed, and MnCO 3 was precipitated by a neutralization reaction at room temperature. The obtained precipitate was separated by filtration and washed with pure water, and then H 3 PO 4 was added to precipitate HMnPO 4 . Thereafter, the same processing as in Example 1 was performed except that the raw material charging ratio was changed as shown in Table 1.
[実施例6]
 MnSO、FeSO、NaCOの溶液を混合し、室温での中和反応によりHMn0.9Fe0.1COを沈殿させた。得られた沈殿物を濾別して純水で洗浄後、HPOの溶液を加え、HMn0.9Fe0.1POを沈殿させた。以後、原料仕込み比を表1のように変えたほかは実施例1と同様に処理した。
[Example 6]
A solution of MnSO 4 , FeSO 4 , and Na 2 CO 3 was mixed, and HMn 0.9 Fe 0.1 CO 3 was precipitated by a neutralization reaction at room temperature. The resulting precipitate was filtered and washed with pure water, and then a solution of H 3 PO 4 was added to precipitate HMn 0.9 Fe 0.1 PO 4 . Thereafter, the same processing as in Example 1 was performed except that the raw material charging ratio was changed as shown in Table 1.
[実施例7]
 原料仕込み比を表1のように変え、第三工程での有機物としてショ糖とカーボンブラックを合計20wt%用いたほかは実施例1と同様に処理した。
[Example 7]
The raw material charging ratio was changed as shown in Table 1, and treatment was performed in the same manner as in Example 1 except that 20 wt% of sucrose and carbon black were used as organic substances in the third step.
[比較例1]
 MnSO4、PO、NHOHの溶液を混合し、室温での中和反応によりNHMnPOを沈殿させた。得られた沈殿物を濾別して純水で洗浄後、LiOH・HO及びアスコルビン酸の溶液を加え、表1に記載の原料仕込み比に調整された水系スラリーを得た。スラリーの凝集粒子の粒度を調整しなかったほかは実施例1と同様に処理した。
[Comparative Example 1]
A solution of MnSO 4, H 3 PO 4 , and NH 4 OH was mixed, and NH 4 MnPO 4 was precipitated by a neutralization reaction at room temperature. The obtained precipitate was separated by filtration and washed with pure water, and then a solution of LiOH.H 2 O and ascorbic acid was added to obtain an aqueous slurry adjusted to the raw material charge ratio shown in Table 1. The same treatment as in Example 1 was performed except that the particle size of the aggregated particles of the slurry was not adjusted.
 第一工程において、スラリーの凝集粒子の粉砕を行わなかったため、凝集粒子のメジアン径D50は16μmと大きく、水熱処理後に得られた化合物のオリビン型構造のLiMnPOの生成率は71wt%と低かった。焼成して得られたリン酸マンガン鉄リチウム粒子粉末においても不純物結晶相であるLiPOが7wt%存在し、電池特性が悪化した。 In the first step, the agglomerated particles of the slurry were not pulverized, so the median diameter D 50 of the agglomerated particles was as large as 16 μm, and the yield of LiMnPO 4 having a olivine structure of the compound obtained after hydrothermal treatment was as low as 71 wt%. It was. Even in the lithium manganese iron phosphate particles powder obtained by firing, 7 wt% of Li 3 PO 4 which is an impurity crystal phase was present, and the battery characteristics deteriorated.
[比較例2]
 MnSO4、FeSO、HPO、LiOH・HOの溶液を混合し、室温での中和反応により得られた沈殿物を含む、表1に記載の原料仕込み比に調整された水系スラリーを得た。前記スラリーをボールミルで混合し、凝集粒子を粉砕して粒度を調整した後、180℃、3時間水熱処理し、得られた沈殿物を濾別して純水で洗浄し、70℃で一晩乾燥した。以後、実施例1と同様に処理した。得られた乾燥粉末の結晶子サイズは260nmと大きく、また、乾燥粉末中の不純物硫黄は0.12wt%であった。焼成して得られたリン酸マンガン鉄リチウム粒子粉末は硫黄含有量と結晶子サイズが大きく、電池特性が不良であった。
[Comparative Example 2]
An aqueous system adjusted to the raw material charge ratio shown in Table 1, including a precipitate obtained by mixing a solution of MnSO 4, FeSO 4 , H 3 PO 4 , and LiOH · H 2 O and neutralizing reaction at room temperature A slurry was obtained. The slurry was mixed with a ball mill, the aggregated particles were pulverized to adjust the particle size, then hydrothermally treated at 180 ° C. for 3 hours, the resulting precipitate was filtered, washed with pure water, and dried at 70 ° C. overnight. . Thereafter, the same processing as in Example 1 was performed. The crystallite size of the obtained dry powder was as large as 260 nm, and impurity sulfur in the dry powder was 0.12 wt%. The lithium manganese iron phosphate particle powder obtained by firing had a large sulfur content and crystallite size, and the battery characteristics were poor.
[比較例3]
 実施例2の第三工程において有機物であるショ糖量を1wt%としたほかは実施例2と同様に処理をした。焼成して得られたリン酸マンガン鉄リチウム粒子粉末は粗大粒子であり、電気抵抗が高く、電池特性は不良であった。
[Comparative Example 3]
The same process as in Example 2 was performed except that the amount of sucrose, which is an organic substance, was changed to 1 wt% in the third step of Example 2. The lithium manganese iron phosphate particles obtained by firing were coarse particles, had high electric resistance, and had poor battery characteristics.
[比較例4]
 Li、Mn、Pの比が1:1:1となるように、LiCO、MnCO、(NH)HPOを混合し、さらにPVAを添加したエタノールと水からなる混合溶媒中、ボールミルで粉砕、混合後、得られた化合物を濾別して空気中700℃、2時間で焼成し、リン酸マンガン鉄リチウム粒子粉末を得た。得られたリン酸マンガン鉄リチウム粒子粉末は粗大粒子であり、電気抵抗が高く、電池特性は不良であった。
[Comparative Example 4]
Li 2 CO 3 , MnCO 3 , (NH 4 ) H 2 PO 4 are mixed so that the ratio of Li, Mn, and P is 1: 1: 1, and a mixed solvent composed of ethanol and water to which PVA is further added. After pulverizing and mixing with a ball mill, the obtained compound was separated by filtration and fired in air at 700 ° C. for 2 hours to obtain lithium iron manganese phosphate particles. The obtained lithium iron manganese phosphate particles were coarse particles, had high electric resistance, and had poor battery characteristics.
 図3に得られたリン酸マンガン鉄リチウム粒子粉末のSEM写真を、また、化学酸化によってLiを脱離したときのSEM写真を図4に、XRDパターンのRietveld解析結果を図5に示す。化学酸化によって、LiMnPOが微細なMnPOへと変化したことを確認した。 FIG. 3 shows an SEM photograph of the obtained lithium iron manganese phosphate particle powder, FIG. 4 shows an SEM photograph when Li is eliminated by chemical oxidation, and FIG. 5 shows a Rietveld analysis result of the XRD pattern. It was confirmed that LiMnPO 4 was changed to fine MnPO 4 by chemical oxidation.
[比較例5]
 実施例3と同様にして水系スラリーを得た。第二工程の水熱反応を行わず、前記スラリー中の沈殿物を濾別して純水で洗浄し、70℃で一晩乾燥した。以後、実施例1と同様に処理をした。焼成して得られたリン酸マンガン鉄リチウム粒子粉末は不純物結晶相であるLiPOを多く含み、電池特性は不良であった。
[Comparative Example 5]
An aqueous slurry was obtained in the same manner as in Example 3. Without performing the hydrothermal reaction in the second step, the precipitate in the slurry was separated by filtration, washed with pure water, and dried at 70 ° C. overnight. Thereafter, the same processing as in Example 1 was performed. The lithium manganese iron phosphate particle powder obtained by firing contained a large amount of impurity crystal phase Li 3 PO 4 , and the battery characteristics were poor.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 本発明に係るオリビン型構造のリン酸マンガン鉄リチウム粒子粉末を正極活物質として用いた非水電解質二次電池は、室温でのC/10における放電容量は115mAh/g以上、室温での1Cにおける放電容量は95mAh/g以上、室温での5Cにおける放電容量は80mAh/g以上の特性を示した。 The non-aqueous electrolyte secondary battery using the olivine type lithium iron manganese phosphate particles according to the present invention as a positive electrode active material has a discharge capacity of 115 mAh / g or more at C / 10 at room temperature and 1 C at room temperature. The discharge capacity was 95 mAh / g or more, and the discharge capacity at 5 C at room temperature was 80 mAh / g or more.
 また、擬似充電状態を作り出すためにLiに対し半分のモル数のNOBFで化学酸化させ、Liを脱離したときの一次粒子径は50~100nmになりやすく、化学酸化させる前の一次粒子サイズが200nm以上の粗大粒子ほど、化学酸化前後の一次粒子径の変化率は高かった。 Further, in order to create a pseudo-charged state, chemical oxidation is performed with NO 2 BF 4, which is half the number of moles of Li, and when Li is desorbed, the primary particle diameter tends to be 50 to 100 nm. The larger the particle size is 200 nm or more, the higher the change rate of the primary particle size before and after chemical oxidation.
[実施例8~15]
 原料仕込み比を表5のように変えたほかは実施例1と同様にして第二工程で得られた前駆体の粉末に、LiCO、MnCO、FeC、(NH)HPO、(NHHPOの微細な粉末を必要に応じ添加してボールミルで混合し、Li、Mn、Fe、P組成比を表5のとおりに調整した。以後、実施例1と同様に処理した。
[Examples 8 to 15]
The precursor powder obtained in the second step was changed to Li 2 CO 3 , MnCO 3 , FeC 2 O 4 , (NH 4 ) in the same manner as in Example 1 except that the raw material charging ratio was changed as shown in Table 5. Fine powders of H 2 PO 4 and (NH 4 ) 2 HPO 4 were added as necessary and mixed by a ball mill, and the composition ratios of Li, Mn, Fe, and P were adjusted as shown in Table 5. Thereafter, the same processing as in Example 1 was performed.
 得られた粉末の主成分はオリビン型構造を有するリン酸マンガン鉄リチウム粒子粉末であり、その組成比は第三工程で調整したLi、Mn、Fe、Pの組成比と同じであった。 The main component of the obtained powder was lithium iron manganese phosphate particles having an olivine structure, and the composition ratio was the same as the composition ratio of Li, Mn, Fe, and P adjusted in the third step.
 また、表5に第一工程の製造条件と得られたスラリーの特性を、表6に第二工程における粉末の特性と第三工程の製造条件を、表7及び表8に得られたリン酸マンガン鉄リチウム粒子粉末の粉体特性を、表9に得られたリン酸マンガン鉄リチウム粒子粉末を正極化しコインセルで評価した電池特性を示す。 Table 5 shows the manufacturing conditions of the first step and the properties of the obtained slurry, Table 6 shows the characteristics of the powder in the second step and the manufacturing conditions of the third step, and Tables 7 and 8 show the phosphoric acid obtained. The battery characteristics of the manganese iron lithium particle powder are shown in Table 9 and evaluated by a coin cell using the obtained lithium manganese iron phosphate particle powder as a positive electrode.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 本発明に係るオリビン型構造を有するリン酸マンガン鉄リチウム粒子粉末において、リチウムとリンの含有量がLi≧Pを満たす場合には、電池特性を悪くするMn7不純物結晶相の生成が抑制される傾向が見られた。 In the lithium iron manganese phosphate particles having an olivine structure according to the present invention, when the lithium and phosphorus contents satisfy Li ≧ P, the formation of an Mn 2 P 2 O 7 impurity crystal phase that deteriorates battery characteristics Tended to be suppressed.
 また、単位胞体積VUC(Å)が式(1)に示す関係にある場合には、より高い放電容量を示し、電池性能は良い傾向にあった。これは、小さい単位胞体積を示すほど、Liサイトへの遷移金属置換やP及びOの欠損の少ないオリビン型構造を有するリン酸マンガン鉄リチウムが得られているためであると推測される。 In addition, when the unit cell volume V UC ( 3 3 ) is in the relationship shown in the formula (1), the discharge capacity was higher and the battery performance tended to be good. This is presumably because the smaller the unit cell volume, the more lithium iron manganese phosphate having an olivine-type structure with less transition metal substitution to the Li site and fewer P and O defects.
 なお、本発明に係るオリビン型構造を有するリン酸マンガン鉄リチウム粒子粉末において、不純物結晶相は検出されないもののLi及びPが理論上の化学量論比からずれて存在する場合には、余剰のLiやPはイオン伝導性のアモルファス相を形成して、電池特性に悪影響を及ぼしていないと考えている。 In addition, in the lithium iron manganese phosphate particles having the olivine structure according to the present invention, the impurity crystal phase is not detected, but when Li and P are present out of the stoichiometric ratio, the excess Li It is believed that P and P do not adversely affect battery characteristics by forming an ion conductive amorphous phase.
 また、本発明に係るリン酸マンガン鉄リチウム粒子粉末を正極化しコインセルで電池特性を評価する際に、前記評価方法に対して導電材の量を2倍に増やした電極を用いたコインセルでは、5Cでの放電容量が10~30%向上し、更なる容量増加が確認された。 Further, when the battery characteristics are evaluated with a coin cell by converting the lithium iron manganese phosphate particles according to the present invention into a positive electrode, a coin cell using an electrode in which the amount of the conductive material is doubled with respect to the evaluation method is 5C. The discharge capacity was improved by 10 to 30%, and a further increase in capacity was confirmed.
 以上の結果から本発明に係るオリビン型構造のリン酸マンガン鉄リチウム粒子粉末の製造方法は、過剰量の原料を用いることなくほぼ等量の原料を用いればよく、低コストで効率的な製法である。また、本発明に係るオリビン型構造のリン酸マンガン鉄リチウム粒子粉末は、高充填性の正極シートを作製することが可能であり、それを用いた二次電池は電流負荷特性においても高容量が得られることが確認された。 From the above results, the method for producing olivine-type lithium iron manganese phosphate particles according to the present invention can be achieved by using an approximately equal amount of raw material without using an excessive amount of raw material, and a low-cost and efficient production method. is there. In addition, the olivine-type lithium manganese iron particle powder having the olivine structure according to the present invention makes it possible to produce a positive electrode sheet having a high filling property, and a secondary battery using the same has a high capacity in terms of current load characteristics. It was confirmed that it was obtained.
 本発明は低コストで効率的な製法で作製されたオリビン型構造のリン酸マンガン鉄リチウム粒子粉末を正極活物質として用いることで、体積当りのエネルギー密度が高く、高電流負荷特性においても高容量が得られる非水電解質二次電池を得ることができる。
 
The present invention uses olivine-type lithium iron manganese phosphate particles produced by a low-cost and efficient production method as a positive electrode active material, so that the energy density per volume is high and the capacity is high even in high current load characteristics. A non-aqueous electrolyte secondary battery can be obtained.

Claims (9)

  1.  オリビン型構造のリン酸マンガン鉄リチウムLiMn1-xFePO(0.05≦x≦0.5)粒子粉末の製造方法であって、原料としてLi化合物、Mn化合物、Fe化合物、P化合物及び糖又は有機酸を用い、原料仕込み比がmol比で0.95≦Li/(Mn+Fe)≦2.0、0.95≦P/(Mn+Fe)≦1.3であり、(Mn+Fe)に対し1~20mol%の糖又は有機酸を含む混合溶液の中和反応によってpHが5.5~12.5である水系スラリーを得る第一工程、第一工程で得られたスラリーを反応温度120~220℃で水熱処理を行い、得られる化合物のLiMn1-xFePO(0.05≦x≦0.5)の生成率が75wt%以上であって、結晶子サイズを10~250nmとした後、該化合物を洗浄する第二工程、第二工程で得られた化合物に有機物を3~40wt%添加して前駆体粉末を得る第三工程、第三工程で得られた前駆体粉末を酸素濃度0.1%以下の不活性ガス又は還元性ガス雰囲気下で、温度250~850℃で焼成する第四工程からなるオリビン型構造のリン酸マンガン鉄リチウム粒子粉末の製造方法。 Lithium iron manganese phosphate LiMn 1-x Fe x PO 4 (0.05 ≦ x ≦ 0.5) particle powder manufacturing method of olivine type structure, with Li compound, Mn compound, Fe compound, P compound as raw material And sugar or organic acid, the raw material charge ratio is 0.95 ≦ Li / (Mn + Fe) ≦ 2.0, 0.95 ≦ P / (Mn + Fe) ≦ 1.3 in terms of mol ratio, and (Mn + Fe) A first step of obtaining an aqueous slurry having a pH of 5.5 to 12.5 by a neutralization reaction of a mixed solution containing 1 to 20 mol% of sugar or organic acid, the slurry obtained in the first step is reacted at a reaction temperature of 120 to Hydrothermal treatment is performed at 220 ° C., and the resulting compound has a production rate of LiMn 1-x Fe x PO 4 (0.05 ≦ x ≦ 0.5) of 75 wt% or more, and the crystallite size is 10 to 250 nm. After the compound In the second step, the organic compound is added to the compound obtained in the second step in an amount of 3 to 40 wt% to obtain a precursor powder, and the precursor powder obtained in the third step has an oxygen concentration of 0.1. A method for producing olivine-type lithium iron manganese phosphate particles comprising a fourth step of baking at a temperature of 250 to 850 ° C. in an inert gas or reducing gas atmosphere of not more than 10%.
  2.  第一工程において、スラリー中の凝集粒子のメジアン径が0.1~10μmであって、結晶相が(NH)Mn1-αFeαPO(0≦α<1)又はHMn1-βFeβPO(0≦β<1)である凝集粒子を含む水系スラリーを得る請求項1に記載の製造方法。 In the first step, the median diameter of the aggregated particles in the slurry is 0.1 to 10 μm, and the crystal phase is (NH 4 ) Mn 1-α Fe α PO 4 (0 ≦ α <1) or HMn 1-β Fe beta PO 4 the method according to claim 1 to obtain an aqueous slurry containing the aggregated particles is (0 ≦ β <1).
  3.  第一工程において用いる糖又は有機酸が、ショ糖、アスコルビン酸、及びクエン酸のうち少なくとも1種である請求項1又は2に記載の製造方法。 The method according to claim 1 or 2, wherein the sugar or organic acid used in the first step is at least one of sucrose, ascorbic acid, and citric acid.
  4.  第二工程において、化合物中の硫黄含有量が0.1wt%以下になるように洗浄する請求項1~3のいずれかに記載の製造方法。 The production method according to any one of claims 1 to 3, wherein in the second step, washing is performed so that the sulfur content in the compound is 0.1 wt% or less.
  5.  第三工程において、添加する有機物がカーボンブラック、油脂化合物、糖化合物、及び合成樹脂のうち少なくとも1種である請求項1~4のいずれかに記載の製造方法。 The method according to any one of claims 1 to 4, wherein in the third step, the organic substance to be added is at least one of carbon black, an oil and fat compound, a sugar compound, and a synthetic resin.
  6.  オリビン型構造のリン酸マンガン鉄リチウムLiMn1-xFePO(0.05≦x≦0.5)粒子粉末であって、リチウムとリンの含有量がmol比で0.9≦Li/(Mn+Fe)≦1.2、0.9≦P/(Mn+Fe)≦1.2であり、BET比表面積が6~70m/gであり、炭素含有量が0.5~8wt%であり、硫黄含有量が0.08wt%以下であり、オリビン型構造の結晶相LiMn1-xFePO(0.05≦x≦0.5)の量が95wt%以上であり、結晶子サイズが25~300nmであり、凝集粒子のメジアン径が0.3~20μmであり、粉体電気抵抗率が1~1.0×106Ω・cmであることを特徴とするオリビン型構造のリン酸マンガン鉄リチウム粒子粉末。 Lithium manganese iron phosphate LiMn 1-x Fe x PO 4 (0.05 ≦ x ≦ 0.5) particle powder having an olivine type structure, wherein the lithium and phosphorus content is 0.9 ≦ Li / mol (Mn + Fe) ≦ 1.2, 0.9 ≦ P / (Mn + Fe) ≦ 1.2, the BET specific surface area is 6 to 70 m 2 / g, and the carbon content is 0.5 to 8 wt%. The sulfur content is 0.08 wt% or less, the amount of the crystalline phase LiMn 1-x Fe x PO 4 (0.05 ≦ x ≦ 0.5) of the olivine structure is 95 wt% or more, and the crystallite size is Phosphoric acid having an olivine structure characterized in that it has a median diameter of 25 to 300 nm, a median diameter of aggregated particles of 0.3 to 20 μm, and a powder electrical resistivity of 1 to 1.0 × 10 6 Ω · cm Manganese iron lithium particle powder.
  7.  リチウムとリンの含有量がLi≧Pを満たす請求項6に記載のオリビン型構造のリン酸マンガン鉄リチウム粒子粉末。 The olivine-type lithium manganese iron phosphate particle powder according to claim 6, wherein the lithium and phosphorus contents satisfy Li ≧ P.
  8.  単位胞体積VUCが式(1)の関係にある請求項6又は7に記載のオリビン型構造のリン酸マンガン鉄リチウム粒子粉末。
     VUC(Å)<11.4×(1-x)+291.21・・・(1)
    The olivine type lithium manganese iron phosphate particle powder according to claim 6 or 7, wherein the unit cell volume V UC is in the relationship of the formula (1).
    V UC3 ) <11.4 × (1-x) +291.21 (1)
  9.  請求項6~8のいずれかに記載のオリビン型構造のリン酸マンガン鉄リチウム粒子粉末を用いて作製した非水電解質二次電池。 A non-aqueous electrolyte secondary battery produced using the olivine-type lithium iron manganese phosphate particles according to any one of claims 6 to 8.
PCT/JP2011/056397 2010-03-19 2011-03-17 Method for producing lithium manganese iron phosphate particulate powder, lithium manganese iron phosphate particulate powder and non-aqueous electrolyte secondary battery using that particulate powder WO2011115211A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201180011603.6A CN102781827B (en) 2010-03-19 2011-03-17 Manufacture method, the iron manganese phosphate for lithium particle powder of iron manganese phosphate for lithium particle powder and use the rechargeable nonaqueous electrolytic battery of this particle powder
KR1020127022574A KR101810259B1 (en) 2010-03-19 2011-03-17 Method for producing lithium manganese iron phosphate particulate powder, lithium manganese iron phosphate particulate powder and non-aqueous electrolyte secondary battery using that particulate powder

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-063626 2010-03-19
JP2010063626 2010-03-19

Publications (1)

Publication Number Publication Date
WO2011115211A1 true WO2011115211A1 (en) 2011-09-22

Family

ID=44649294

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/056397 WO2011115211A1 (en) 2010-03-19 2011-03-17 Method for producing lithium manganese iron phosphate particulate powder, lithium manganese iron phosphate particulate powder and non-aqueous electrolyte secondary battery using that particulate powder

Country Status (4)

Country Link
JP (1) JP5817963B2 (en)
KR (1) KR101810259B1 (en)
CN (1) CN102781827B (en)
WO (1) WO2011115211A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012229147A (en) * 2011-04-27 2012-11-22 Nichia Corp Olivine-type lithium transition metal oxide, and method of producing the same
JP2013120621A (en) * 2011-12-06 2013-06-17 Toyota Motor Corp Nonaqueous secondary battery
CN103708434A (en) * 2012-10-09 2014-04-09 上海交通大学 Lithium iron phosphate material and preparation method thereof
WO2014098933A1 (en) * 2012-12-21 2014-06-26 Dow Global Technologies Llc Method for making lithium transition metal olivines using water/cosolvent mixtures
JP2015076155A (en) * 2013-10-07 2015-04-20 太平洋セメント株式会社 Method of producing lithium manganese phosphate positive electrode active material
CN104718657A (en) * 2012-11-21 2015-06-17 株式会社Lg化学 Lithium secondary battery
US9660266B2 (en) 2012-11-21 2017-05-23 Lg Chem, Ltd. Lithium secondary battery
JP2018008877A (en) * 2010-10-08 2018-01-18 株式会社半導体エネルギー研究所 Method for manufacturing lithium iron phosphate
CN116081589A (en) * 2022-10-12 2023-05-09 北京钠谛科技有限公司 Lithium-rich lithium iron manganese phosphate material and preparation method thereof
EP4282827A1 (en) * 2022-05-25 2023-11-29 Hubei RT Advanced Materials Co., Ltd. Preparation method of high-safety high-capacity lithium manganese iron phosphate

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9318741B2 (en) 2010-04-28 2016-04-19 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material of power storage device, power storage device, electrically propelled vehicle, and method for manufacturing power storage device
JP2012059570A (en) * 2010-09-09 2012-03-22 Gs Yuasa Corp Cathode active material for lithium secondary battery and method for manufacturing the same
KR20140053875A (en) * 2011-03-28 2014-05-08 미쯔이 죠센 가부시키가이샤 Electrode material for secondary battery, method for producing electrode material for secondary battery, and secondary battery
CN103503206B (en) * 2011-04-22 2016-03-02 昭和电工株式会社 The manufacture method of positive active material for lithium secondary battery
US10096821B2 (en) 2011-05-02 2018-10-09 Toyota Jidosha Kabushiki Kaisha Lithium secondary battery
JP2013101883A (en) * 2011-11-09 2013-05-23 Hitachi Ltd Positive electrode active material for lithium ion secondary battery
JP5839227B2 (en) 2011-11-10 2016-01-06 トヨタ自動車株式会社 Lithium secondary battery and manufacturing method thereof
JP5853662B2 (en) * 2011-12-15 2016-02-09 株式会社Gsユアサ Method of using nonaqueous electrolyte battery and plug-in hybrid vehicle equipped with nonaqueous electrolyte battery
JP2013175374A (en) * 2012-02-27 2013-09-05 Gs Yuasa Corp Positive electrode active material for secondary battery, active material particle, and positive electrode and secondary battery using those
JP5712959B2 (en) * 2012-03-30 2015-05-07 住友金属鉱山株式会社 Precursor of positive electrode active material for lithium secondary battery, method for producing the same, and method for producing positive electrode active material for lithium secondary battery using the precursor
TW201342697A (en) * 2012-03-30 2013-10-16 Sumitomo Osaka Cement Co Ltd Electrode material
JP2013246936A (en) * 2012-05-24 2013-12-09 Hitachi Ltd Positive-electrode active material for nonaqueous secondary batteries
EP2698346A1 (en) * 2012-08-14 2014-02-19 Clariant International Ltd. Mixed sulphate containing lithium-manganese-metal phosphate
KR101787212B1 (en) * 2012-08-28 2017-10-18 어드밴스드 리튬 일렉트로케미스트리 컴퍼니 리미티드 Method of producing battery composite material and its precursor
JP6143216B2 (en) * 2012-08-29 2017-06-07 株式会社デンソー Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
WO2014034775A1 (en) * 2012-08-31 2014-03-06 戸田工業株式会社 Method for producing carbon composite lithium manganese iron phosphate particle powder, carbon composite lithium manganese iron phosphate particle powder, and nonaqueous electrolyte secondary battery using carbon composite lithium manganese iron phosphate particle powder
KR101498971B1 (en) * 2012-10-17 2015-03-04 한화케미칼 주식회사 Novel method for preparing olivine type electrode material using formic acid derivative
JP2014216240A (en) * 2013-04-26 2014-11-17 住友大阪セメント株式会社 Electrode active material and electrode material, electrode, lithium ion battery, and method for producing electrode material
JP5783295B2 (en) * 2013-04-30 2015-09-24 住友大阪セメント株式会社 Electrode material, paste, electrode plate and lithium ion battery
JP6232493B2 (en) * 2013-05-08 2017-11-15 台湾立凱電能科技股▲ふん▼有限公司 Battery composite material and method for producing precursor thereof
TWI617074B (en) 2013-05-08 2018-03-01 台灣立凱電能科技股份有限公司 Preparation method of battery composite material and precursor thereof
KR101631736B1 (en) * 2013-08-01 2016-06-17 주식회사 엘지화학 Lithium manganese phosphate based anode active material, preparation method thereof, and lithium secondary battery or hybrid capacitor comprising the same
KR101925041B1 (en) * 2013-11-14 2018-12-04 주식회사 엘지화학 Cathode Active Material and Lithium Secondary Battery
JP5836461B1 (en) * 2014-09-29 2015-12-24 太平洋セメント株式会社 Positive electrode material for lithium secondary battery
JP5892270B1 (en) * 2015-01-30 2016-03-23 住友大阪セメント株式会社 Method for producing positive electrode material for lithium ion secondary battery, positive electrode material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, lithium ion secondary battery
JP6341516B2 (en) * 2015-02-09 2018-06-13 株式会社三井E&Sホールディングス Method for producing positive electrode material for lithium secondary battery
JP2015143189A (en) * 2015-04-23 2015-08-06 日亜化学工業株式会社 Olivine-type lithium transition metal oxide and manufacturing method therefor
CN105226245B (en) * 2015-08-27 2018-03-09 青海泰丰先行锂能科技有限公司 A kind of anode material for lithium-ion batteries and preparation method thereof
JP2018041683A (en) * 2016-09-09 2018-03-15 太平洋セメント株式会社 Method for manufacturing olivine type lithium phosphate-based positive electrode material
TWI625888B (en) * 2017-07-14 2018-06-01 Hcm Co Ltd Lithium iron manganese phosphate particles, lithium iron manganese phosphate powder and preparation method thereof
JP6527201B2 (en) * 2017-09-08 2019-06-05 太平洋セメント株式会社 Method of manufacturing positive electrode active material complex for lithium ion secondary battery
JP6501014B1 (en) * 2018-03-13 2019-04-17 住友大阪セメント株式会社 Positive electrode material for lithium ion secondary battery, method for producing the same, electrode for lithium ion secondary battery, and lithium ion secondary battery
CN108408709B (en) * 2018-03-30 2021-12-14 南阳逢源新能源科技有限公司 Preparation process of pollution-free low-cost lithium manganese iron phosphate crystal material
JP6627932B1 (en) * 2018-08-21 2020-01-08 住友大阪セメント株式会社 Positive electrode material for lithium ion secondary battery, electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2024054046A1 (en) * 2022-09-06 2024-03-14 주식회사 엘지에너지솔루션 Lithium secondary battery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008077448A1 (en) * 2006-12-22 2008-07-03 Umicore SYNTHESIS OF CRYSTALLINE NANOMETRIC LiFeMPO4
WO2009122686A1 (en) * 2008-03-31 2009-10-08 戸田工業株式会社 Lithium iron phosphate powder manufacturing method, olivine structured lithium iron phosphate powder, cathode sheet using said lithium iron phosphate powder, and non-aqueous solvent secondary battery

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101401836B1 (en) * 2006-12-22 2014-05-29 썽뜨르 나쇼날르 드 라 르쉐르쉐 씨엉띠삐끄 SYNTHESIS OF CRYSTALLINE NANOMETRIC LiFeMPO4

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008077448A1 (en) * 2006-12-22 2008-07-03 Umicore SYNTHESIS OF CRYSTALLINE NANOMETRIC LiFeMPO4
EP2094605A1 (en) * 2006-12-22 2009-09-02 Umicore SYNTHESIS OF CRYSTALLINE NANOMETRIC LiFeMPO4
US20100084615A1 (en) * 2006-12-22 2010-04-08 Stephane Levasseur Synthesis of Crystalline Nanometric LiFeMPO4
JP2010513193A (en) * 2006-12-22 2010-04-30 ユミコア ソシエテ アノニム Synthesis of crystalline nano LiFeMPO4
US20100327222A1 (en) * 2006-12-22 2010-12-30 Umicore Synthesis of Crystalline Nanometric LiFeMPO4
WO2009122686A1 (en) * 2008-03-31 2009-10-08 戸田工業株式会社 Lithium iron phosphate powder manufacturing method, olivine structured lithium iron phosphate powder, cathode sheet using said lithium iron phosphate powder, and non-aqueous solvent secondary battery
JP2009263222A (en) * 2008-03-31 2009-11-12 Toda Kogyo Corp Method for producing lithium iron phosphate powder, olivine-structured lithium iron phosphate powder, cathode sheet using the lithium iron phosphate powder and non-aqueous solvent secondary battery

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10135069B2 (en) 2010-10-08 2018-11-20 Semiconductor Energy Laboratory Co., Ltd. Electrode material and method for manufacturing power storage device
JP2018008877A (en) * 2010-10-08 2018-01-18 株式会社半導体エネルギー研究所 Method for manufacturing lithium iron phosphate
JP2012229147A (en) * 2011-04-27 2012-11-22 Nichia Corp Olivine-type lithium transition metal oxide, and method of producing the same
JP2013120621A (en) * 2011-12-06 2013-06-17 Toyota Motor Corp Nonaqueous secondary battery
CN103708434A (en) * 2012-10-09 2014-04-09 上海交通大学 Lithium iron phosphate material and preparation method thereof
US9660266B2 (en) 2012-11-21 2017-05-23 Lg Chem, Ltd. Lithium secondary battery
CN104718657A (en) * 2012-11-21 2015-06-17 株式会社Lg化学 Lithium secondary battery
US9853288B2 (en) 2012-11-21 2017-12-26 Lg Chem, Ltd. Lithium secondary battery
CN104718657B (en) * 2012-11-21 2018-01-12 株式会社Lg 化学 Lithium secondary battery
WO2014098933A1 (en) * 2012-12-21 2014-06-26 Dow Global Technologies Llc Method for making lithium transition metal olivines using water/cosolvent mixtures
JP2015076155A (en) * 2013-10-07 2015-04-20 太平洋セメント株式会社 Method of producing lithium manganese phosphate positive electrode active material
EP4282827A1 (en) * 2022-05-25 2023-11-29 Hubei RT Advanced Materials Co., Ltd. Preparation method of high-safety high-capacity lithium manganese iron phosphate
CN116081589A (en) * 2022-10-12 2023-05-09 北京钠谛科技有限公司 Lithium-rich lithium iron manganese phosphate material and preparation method thereof
CN116081589B (en) * 2022-10-12 2024-03-29 北京钠谛科技有限公司 Lithium-rich lithium iron manganese phosphate material and preparation method thereof

Also Published As

Publication number Publication date
CN102781827A (en) 2012-11-14
JP5817963B2 (en) 2015-11-18
KR20130057414A (en) 2013-05-31
JP2011213587A (en) 2011-10-27
KR101810259B1 (en) 2017-12-18
CN102781827B (en) 2016-05-04

Similar Documents

Publication Publication Date Title
JP5817963B2 (en) Method for producing lithium manganese iron phosphate particle powder, lithium manganese iron phosphate particle powder, and nonaqueous electrolyte secondary battery using the particle powder
JP5464322B2 (en) Method for producing lithium iron phosphate particle powder, lithium iron phosphate particle powder having olivine structure, positive electrode material sheet using the lithium iron phosphate particle powder, and nonaqueous solvent secondary battery
KR101369658B1 (en) Li-Ni COMPOSITE OXIDE PARTICLE POWDER FOR RECHARGEABLE BATTERY WITH NONAQUEOUS ELECTROLYTE, PROCESS FOR PRODUCING THE Li-Ni COMPOSITE OXIDE PARTICLE POWDER, AND RECHARGEABLE BATTERY WITH NONAQUEOUS ELECTROLYTE
JP6107832B2 (en) Li-Ni composite oxide particle powder, method for producing the same, and nonaqueous electrolyte secondary battery
JP6260535B2 (en) Method for producing carbon composite lithium manganese iron phosphate particle powder, and method for producing a non-aqueous electrolyte secondary battery using the particle powder
JP6112118B2 (en) Li-Ni composite oxide particle powder and non-aqueous electrolyte secondary battery
JP5835334B2 (en) Ammonium manganese iron phosphate, method for producing the same, and method for producing positive electrode active material for lithium secondary battery using the ammonium manganese iron phosphate
WO2013035572A1 (en) Method for producing lithium- or sodium-containing oxoate compound
WO2010104137A1 (en) Process for producing lithium borate compound
JP5120523B1 (en) Ammonium manganese iron magnesium phosphate and its production method, positive electrode active material for lithium secondary battery using said ammonium manganese iron magnesium magnesium, its production method, and lithium secondary battery using said positive electrode active material
JP2006286208A (en) Lithium-ion secondary battery and cathode active material
JP5505868B2 (en) Precursor of positive electrode active material for lithium secondary battery and method for producing the same
JP2010232091A (en) Method for manufacturing positive active material for lithium ion battery, positive active material for lithium ion battery, electrode for lithium ion battery, and lithium ion battery
JP5901492B2 (en) Method for producing lithium silicate compound, method for producing lithium silicate compound aggregate, and method for producing lithium ion battery
JP5364865B2 (en) Method for producing positive electrode active material for lithium secondary battery
JP5909131B2 (en) Active material for lithium secondary battery, electrode for lithium secondary battery and lithium secondary battery using the same
JP5988095B2 (en) Precursor of positive electrode active material for lithium secondary battery and method for producing the same, positive electrode active material for lithium secondary battery using the precursor and method for producing the same, and lithium secondary battery using the positive electrode active material
JP5862172B2 (en) Secondary battery active material, secondary battery active material electrode, and secondary battery using the same
Yamashita et al. Hydrothermal synthesis and electrochemical properties of Li2FexMnxCo1− 2xSiO4/C cathode materials for lithium-ion batteries
JP5769140B2 (en) Method for producing positive electrode active material for lithium secondary battery
JP6064309B2 (en) Precursor of positive electrode active material for lithium secondary battery and method for producing the same, positive electrode active material for lithium secondary battery using the precursor and method for producing the same, and lithium secondary battery using the positive electrode active material
JP2018147696A (en) Positive electrode active material for nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180011603.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11756395

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127022574

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11756395

Country of ref document: EP

Kind code of ref document: A1