JP2006286208A - Lithium-ion secondary battery and cathode active material - Google Patents

Lithium-ion secondary battery and cathode active material Download PDF

Info

Publication number
JP2006286208A
JP2006286208A JP2005100480A JP2005100480A JP2006286208A JP 2006286208 A JP2006286208 A JP 2006286208A JP 2005100480 A JP2005100480 A JP 2005100480A JP 2005100480 A JP2005100480 A JP 2005100480A JP 2006286208 A JP2006286208 A JP 2006286208A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
ion secondary
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005100480A
Other languages
Japanese (ja)
Other versions
JP4655721B2 (en
Inventor
Takahiro Yamaki
孝博 山木
Juichi Arai
寿一 新井
Toyotaka Yuasa
豊隆 湯浅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2005100480A priority Critical patent/JP4655721B2/en
Publication of JP2006286208A publication Critical patent/JP2006286208A/en
Application granted granted Critical
Publication of JP4655721B2 publication Critical patent/JP4655721B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lithium-ion secondary battery having an excellent safety property as well as an excellent output characteristics, and a cathode active material necessary for making the above battery. <P>SOLUTION: The cathode active material consists of a phosphoric acid compound having a general formula LiMn<SB>1-x</SB>M<SB>x</SB>PO<SB>4</SB>of which the space group is rhombic with a symmetry of Pmnb with a lattice constant of the a-axis, b-axis, and c-axis being 1.060≤a≤1.120 nm, 0.620≤b≤0.66 nm, and 0.486≤c≤0.515 nm respectively. In the general formula, M stands for a bivalent cation other than Mn, and 0.01≤X≤0.4. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、リチウムイオン二次電池とそれに用いる正極活物質に関する。   The present invention relates to a lithium ion secondary battery and a positive electrode active material used therefor.

リチウムイオン二次電池はその正極に正極活物質を有し、負極においてはリチウムを吸蔵する黒鉛や非晶質炭素等の炭素を主とする負極活物質を有する。そして正極と負極を電気化学的に結合するリチウムイオンを有する非水電解液を有する。   A lithium ion secondary battery has a positive electrode active material at its positive electrode, and a negative electrode has a negative electrode active material mainly composed of carbon such as graphite or amorphous carbon that occludes lithium. And it has the non-aqueous electrolyte which has the lithium ion which couple | bonds a positive electrode and a negative electrode electrochemically.

リチウムイオン二次電池の正極活物質としては、LiNiO2,LiCoO2及び
LiMnO2に代表される層状系酸化物や、LiMn24に代表されるスピネル系正極材料が良く知られている。層状系酸化物の理論容量は約270mAh/gであり、実用容量でも140mAh/gないし200mAh/gと高いものの、充電生成物が熱安定性に劣り、特に過充電時における安全性に課題があることが良く知られている。一方スピネル系正極材料は、充電生成物の熱安定性に優れ安全性が高いものの、その実用容量は100
mAh/g程度と小さいのが現状である。
As a positive electrode active material of a lithium ion secondary battery, a layered oxide typified by LiNiO 2 , LiCoO 2 and LiMnO 2 and a spinel positive electrode material typified by LiMn 2 O 4 are well known. The theoretical capacity of the layered oxide is about 270 mAh / g, and although the practical capacity is as high as 140 mAh / g to 200 mAh / g, the charged product is inferior in thermal stability, and there is a problem in safety especially during overcharging. It is well known. On the other hand, the spinel positive electrode material has excellent thermal stability of the charged product and high safety, but its practical capacity is 100
The current situation is as small as about mAh / g.

最近、オリビン系化合物と総称される、一般式LiMPO4(MはMn,Fe等)で表記されるリン酸化合物がリチウムイオン二次電池の正極活物質として注目されつつある。例えば特許文献1にはリン酸化合物の一つとしてLiMnPO4の開示がある。 Recently, a phosphate compound represented by a general formula LiMPO 4 (M is Mn, Fe, etc.), which is generically referred to as an olivine compound, has been attracting attention as a positive electrode active material of a lithium ion secondary battery. For example, Patent Document 1 discloses LiMnPO 4 as one of phosphoric acid compounds.

上述のリン酸化合物はその容量が170mAh/g程度とされ、実用容量も100mAh/gを超えるものが合成されつつある。かつ上述のリン酸化合物は充電生成物の熱安定性に優れることが明らかとなりつつあり、電池の高い安全性も期待できる。正極活物質としてのリン酸化合物は、現在、LiFePO4とLiMnPO4の検討が進んでいるが、前者の放電電圧が約3.5Vであるのに対し、後者の放電電圧は3.8V前後であり、エネルギー密度の点でLiMnPO4が優れている。 The above phosphoric acid compound has a capacity of about 170 mAh / g, and a practical capacity exceeding 100 mAh / g is being synthesized. And it is becoming clear that the above-mentioned phosphoric acid compound is excellent in the thermal stability of a charge product, and the high safety | security of a battery can also be anticipated. As for the phosphoric acid compound as the positive electrode active material, studies on LiFePO 4 and LiMnPO 4 are currently in progress. The former discharge voltage is about 3.5V, while the latter discharge voltage is around 3.8V. Yes, LiMnPO 4 is excellent in terms of energy density.

しかしながら、従来のLiMnPO4を用いたリチウムイオン二次電池では、その電池抵抗が高く、出力特性に劣る課題があった。これは正極活物質であるLiMnPO4の抵抗が高いことに起因するものと考えられる。従って安全性に優れ、かつ容量と出力特性に優れたリチウムイオン二次電池を実現するには、従来技術では困難であった。 However, the conventional lithium ion secondary battery using LiMnPO 4 has a problem that its battery resistance is high and output characteristics are inferior. This is considered to be caused by the high resistance of LiMnPO 4 which is a positive electrode active material. Therefore, it has been difficult to realize a lithium ion secondary battery having excellent safety and capacity and output characteristics by the conventional technology.

特開平11−25983号公報JP-A-11-259593

本発明は、安全性に優れ、かつ出力特性に優れたリチウムイオン二次電池と、その実現に必要な正極活物質を実現することにある。   An object of the present invention is to realize a lithium ion secondary battery having excellent safety and output characteristics, and a positive electrode active material necessary for realizing the lithium ion secondary battery.

本発明のリチウムイオン二次電池は正極活物質を有する正極と、負極と、電解液とを有するリチウムイオン二次電池であって、前記正極活物質が一般式LiMn1-xxPO4
(M:Mn以外の2価のカチオン、0.01≦X≦0.4)である空間群Pmnbの対称性を有する斜方晶のリン酸化合物を有し、かつ前記リン酸化合物のa軸,b軸及びc軸の格子定数がそれぞれ1.060nm≦a≦1.120nm,0.620nm≦b≦0.66nm,0.486nm≦c≦0.515nmであることを主要な特徴とする。
The lithium ion secondary battery of the present invention is a lithium ion secondary battery having a positive electrode having a positive electrode active material, a negative electrode, and an electrolyte solution, wherein the positive electrode active material has the general formula LiMn 1-x M x PO 4.
(M: a divalent cation other than Mn, 0.01 ≦ X ≦ 0.4) having an orthorhombic phosphate compound having the symmetry of the space group Pmnb, and the a-axis of the phosphate compound , B-axis and c-axis lattice constants are 1.060 nm ≦ a ≦ 1.120 nm, 0.620 nm ≦ b ≦ 0.66 nm, 0.486 nm ≦ c ≦ 0.515 nm, respectively.

また、本発明のリチウムイオン二次電池用の正極活物質は、一般式LiMn1-xxPO4(M:Mn以外の2価のカチオン、0.01≦X≦0.4)である空間群Pmnbの対称性を有する斜方晶のリン酸化合物を有し、かつ前記リン酸化合物のa軸,b軸及びc軸の格子定数がそれぞれ1.060nm≦a≦1.120nm,0.620nm≦b≦0.66nm,0.486nm≦c≦0.515nmであることを主要な特徴とする。 The positive electrode active material for a lithium ion secondary battery of the present invention is of the general formula LiMn 1-x M x PO 4 (M: divalent cation other than Mn, 0.01 ≦ X ≦ 0.4). It has an orthorhombic phosphate compound having symmetry of the space group Pmnb, and the lattice constants of the a-axis, b-axis and c-axis of the phosphate compound are 1.060 nm ≦ a ≦ 1.120 nm and 0.1, respectively. The main features are 620 nm ≦ b ≦ 0.66 nm and 0.486 nm ≦ c ≦ 0.515 nm.

また本発明の別の形態のリチウムイオン二次電池は、正極活物質を有する正極と、負極と、電解液とを有するリチウムイオン二次電池であって、前記正極活物質が一般式
LiMn1-xxPO4(M:Mn以外の2価のカチオン、0≦X≦0.4)である空間群
Pmnbの対称性を有する斜方晶のリン酸化合物を有し、かつ前記リン酸化合物のa軸,b軸及びc軸の格子定数がそれぞれ1.060nm≦a≦1.120nm,0.620nm≦b≦0.66nm,0.486nm≦c≦0.515nmであり、かつ前記正極にカーボンブラックもしくはアセチレンブラックを1〜10重量%有しかつ平均粒系1ないし20μmの炭素材粒子を5〜20重量%有することを主要な特徴とする。
A lithium ion secondary battery according to another embodiment of the present invention is a lithium ion secondary battery having a positive electrode having a positive electrode active material, a negative electrode, and an electrolyte solution, wherein the positive electrode active material has the general formula LiMn 1− x M x PO 4 (M: 2 -valent cations other than Mn, 0 ≦ X ≦ 0.4) having a phosphoric acid compound orthorhombic with symmetry space group Pmnb is, and the phosphoric acid compound The lattice constants of the a-axis, b-axis and c-axis are 1.060 nm ≦ a ≦ 1.120 nm, 0.620 nm ≦ b ≦ 0.66 nm and 0.486 nm ≦ c ≦ 0.515 nm, respectively. The main feature is that it has 1 to 10% by weight of carbon black or acetylene black and 5 to 20% by weight of carbon material particles having an average grain size of 1 to 20 μm.

本発明により安全性に優れ、かつ容量と出力特性に優れたリチウムイオン二次電池と、その実現に必要な正極活物質が提供できる。   According to the present invention, it is possible to provide a lithium ion secondary battery that is excellent in safety, excellent in capacity and output characteristics, and a positive electrode active material necessary for the realization thereof.

本発明のリチウムイオン二次電池はその正極活物質として、一般式LiMn1-xxPO4(M:Mn以外の2価のカチオン、0.01≦X≦0.4)であり、その空間群がPmnbの対称性を有する斜方晶であり、そのa軸,b軸及びc軸の格子定数がそれぞれ1.060nm≦a≦1.120nm,0.620nm≦b≦0.66nm,0.486nm≦c≦
0.515nmである本発明のリン酸化合物を有する。LiMn1-xxPO4で表記されるリン酸化合物中のMnはその化合物内で2価のカチオンとして存在すると考えられる。本発明のリン酸化合物は2価のカチオンとして主としてMnで構成され、かつMn以外の2価のカチオンで構成されるものである。
The lithium ion secondary battery of the present invention has a general formula LiMn 1-x M x PO 4 (M: divalent cation other than Mn, 0.01 ≦ X ≦ 0.4) as the positive electrode active material, The space group is an orthorhombic crystal having Pmnb symmetry, and the lattice constants of its a-axis, b-axis, and c-axis are 1.060 nm ≦ a ≦ 1.120 nm, 0.620 nm ≦ b ≦ 0.66 nm, and 0, respectively. .486 nm ≦ c ≦
It has the phosphoric acid compound of the present invention which is 0.515 nm. It is considered that Mn in the phosphoric acid compound represented by LiMn 1-x M x PO 4 exists as a divalent cation in the compound. The phosphoric acid compound of the present invention is mainly composed of Mn as a divalent cation, and is composed of a divalent cation other than Mn.

本発明の正極活物質におけるリン酸化合物は、その格子定数を適切に制御することで、結晶構造中のLiイオンの拡散が優れ、低抵抗となり出力特性に優れるものと考えられる。すなわち、a軸,b軸及びc軸の格子定数がそれぞれ1.060nm≦a≦1.120
nm,0.620nm≦b≦0.66nm,0.486nm≦c≦0.515nmであることが望ましく、格子定数がこれより小さいとLiイオンの拡散に必要な空間が狭められ、また格子定数が上述より大きいと、結晶構造が著しく乱れることでLiイオンの拡散が阻害されるものと考えられる。
It is considered that the phosphoric acid compound in the positive electrode active material of the present invention is excellent in output characteristics due to excellent diffusion of Li ions in the crystal structure and low resistance by appropriately controlling the lattice constant. That is, the lattice constants of the a-axis, b-axis, and c-axis are 1.060 nm ≦ a ≦ 1.120, respectively.
Desirably, nm, 0.620 nm ≦ b ≦ 0.66 nm, 0.486 nm ≦ c ≦ 0.515 nm. If the lattice constant is smaller than this, the space necessary for the diffusion of Li ions is narrowed, and the lattice constant is If it is larger than the above, it is considered that the diffusion of Li ions is inhibited by the crystal structure being significantly disturbed.

また本発明のリン酸化合物における、Mnと異なる2価のカチオンが存在することにより出力特性に優れる機構は必ずしも明らかではないが、結晶構造中でイオン半径がMnと異なる2価のカチオンを適切な比率で存在させることが、結晶構造中におけるLiイオンの拡散移動の促進に効果があるものと考えられる。   In addition, although the mechanism of excellent output characteristics due to the presence of a divalent cation different from Mn in the phosphate compound of the present invention is not necessarily clear, a divalent cation having an ionic radius different from Mn in the crystal structure is not suitable. It is considered that the presence at a ratio is effective in promoting the diffusion movement of Li ions in the crystal structure.

本発明における一般式LiMn1-xxPO4 であるリン酸化合物におけるMnと異なる2価のカチオンMの存在比率xは0.01≦X≦0.4の範囲である。Xが0.01 未満であれば、上述の2価のカチオンによる低抵抗への効果が不十分であり、またXが0.4 を超えると、単一相のリン酸化合物の合成が困難になり望ましくない。 In the present invention, the abundance ratio x of divalent cations M different from Mn in the phosphoric acid compound having the general formula LiMn 1-x M x PO 4 is in the range of 0.01 ≦ X ≦ 0.4. If X is less than 0.01, the effect of the above-mentioned divalent cation on the low resistance is insufficient, and if X exceeds 0.4, it becomes difficult to synthesize a single-phase phosphate compound. It is not desirable.

本発明のリン酸化合物におけるMn以外の2価のカチオンとしては、2価のカチオンとなりうる遷移金属元素が好ましく、特にCo,Fe,Ni,Cuから選ばれる1種以上とすることで合成が容易であり、かつより低抵抗の正極活物質が得られることからより好ましい。   As the divalent cation other than Mn in the phosphoric acid compound of the present invention, a transition metal element that can be a divalent cation is preferable, and the synthesis is particularly easy by using at least one selected from Co, Fe, Ni, and Cu. It is more preferable because a positive electrode active material having a lower resistance can be obtained.

本発明におけるリン酸化合物の組成を求めるには、リン酸化合物を例えば硫酸に溶解させた溶液を原子吸光スペクトル等で各元素比を定量することで求めることができる。   The composition of the phosphoric acid compound in the present invention can be determined by quantifying the ratio of each element in an atomic absorption spectrum or the like in a solution in which the phosphoric acid compound is dissolved in, for example, sulfuric acid.

本発明におけるリン酸化合物の格子定数を求めるには、反射回折式の粉末X線回折法を用いる。Cuをターゲットとし、管電圧50kV,管電流150mAでCuKα線を正極活物質に照射し、回折線をゴニオメータで測定し、粉末X線回折スペクトルを得る。得られた回折線の回折角とPmnbの対称性を有する斜方晶で指数付けした値を持って格子定数を求める。   In order to determine the lattice constant of the phosphoric acid compound in the present invention, a reflection diffraction type powder X-ray diffraction method is used. Using Cu as a target, a positive electrode active material is irradiated with CuKα rays at a tube voltage of 50 kV and a tube current of 150 mA, and diffraction lines are measured with a goniometer to obtain a powder X-ray diffraction spectrum. A lattice constant is obtained by using a value indexed by an orthorhombic crystal having a diffraction angle of the obtained diffraction line and a symmetry of Pmnb.

本発明の正極活物質であるリン酸化合物を実現する方法は特に限定されるものではないが、リン酸化合物の格子定数を適切に制御するためには500〜900℃で焼成することが好ましい。このためには粉末原料を混合焼成するいわゆる固相法に比べ、原料を溶液としたものを由来として前駆体を得る液相法を経たほうが、原料の元素がより均質に混合し、より低温での合成が可能となることから好ましい。同時に液相法であるほうが、Li,Mn,P以外の複数の元素を均質に混合することができ好ましい。液相法として、例えば原料を溶解した酸性溶液にアルカリ成分を添加し活物質の構成元素を沈殿させ前駆体を得てこの前駆体を焼成するいわゆるゾル−ゲル法、あるいは溶液を高温の気相中に噴霧乾燥し前駆体を得てこの前駆体を焼成するいわゆるスプレードライ法がある。特にスプレードライ法では、原料を溶解した溶液中の各元素の構成比率がそのまま前駆体の元素構成比率とすることが容易であることから、合成上より好ましい。液相法に用いる各元素の原料としては特に限定されるものではなく、Liや2価のカチオンについては硝酸塩,リン酸塩等の無機酸塩や酢酸塩等の有機酸塩を用いることができ、Pについてはアンモニウム塩等を用いることができる。   Although the method for realizing the phosphoric acid compound which is the positive electrode active material of the present invention is not particularly limited, it is preferably fired at 500 to 900 ° C. in order to appropriately control the lattice constant of the phosphoric acid compound. For this purpose, compared to the so-called solid phase method in which powder raw materials are mixed and fired, the liquid phase method in which the precursor is obtained from the raw material as a solution is mixed more uniformly with the raw material elements at a lower temperature. This is preferable because it can be synthesized. At the same time, the liquid phase method is preferable because a plurality of elements other than Li, Mn and P can be homogeneously mixed. As a liquid phase method, for example, a so-called sol-gel method in which an alkali component is added to an acidic solution in which raw materials are dissolved to precipitate a constituent element of an active material to obtain a precursor, and this precursor is fired, or a solution is heated to a high-temperature gas phase There is a so-called spray drying method in which a precursor is obtained by spray-drying and the precursor is fired. In particular, in the spray drying method, the constituent ratio of each element in the solution in which the raw material is dissolved can be easily set as the element constituent ratio of the precursor as it is. The raw material for each element used in the liquid phase method is not particularly limited. For Li and divalent cations, inorganic acid salts such as nitrates and phosphates and organic acid salts such as acetates can be used. , P can be an ammonium salt or the like.

合成した正極活物質の形態として、その平均粒径として0.1〜30μm とすることができ好ましく、またその比表面積として2〜50m2/g とすることが好ましい。これらの形態は前駆体の形成方法と条件、及び焼成条件の制御により実現できる。 As a form of the synthesized positive electrode active material, the average particle diameter can be preferably 0.1 to 30 μm, and the specific surface area is preferably 2 to 50 m 2 / g. These forms can be realized by controlling the formation method and conditions of the precursor and the firing conditions.

本発明の正極活物質は、一般式LiMn1-xxPO4 (M:Mn以外の2価のカチオン、0.01≦X≦0.4)であり、その空間群がPmnbの対称性を有する斜方晶であり、そのa軸,b軸及びc軸の格子定数がそれぞれ1.060nm≦a≦1.120nm,
0.620nm≦b≦0.66nm,0.486nm≦c≦0.515nmである本発明のリン酸化合物を有するものであり、上述のリン酸化合物の単体でもよく、あるいは炭素材等の他の材料との複合材でもよい。例えばリン酸化合物に気相反応を用いて炭素被覆を形成した複合材においては、正極活物質としての電子伝導性が向上し、より低抵抗の正極活物質と出力に優れたリチウムイオン二次電池が期待できる。
The positive electrode active material of the present invention has the general formula LiMn 1-x M x PO 4 (M: divalent cation other than Mn, 0.01 ≦ X ≦ 0.4), and its space group is Pmnb symmetry. The lattice constants of the a-axis, b-axis, and c-axis are 1.060 nm ≦ a ≦ 1.120 nm, respectively.
The phosphoric acid compound of the present invention satisfying 0.620 nm ≦ b ≦ 0.66 nm and 0.486 nm ≦ c ≦ 0.515 nm may be used alone, or may be another material such as a carbon material. A composite material with a material may be used. For example, in a composite material in which a carbon coating is formed on a phosphoric acid compound using a gas phase reaction, the electron conductivity as a positive electrode active material is improved, and a lithium ion secondary battery with a lower resistance positive electrode active material and excellent output Can be expected.

また本発明の別の形態のリチウムイオン二次電池は、正極活物質を有する正極と、負極と、電解液とを有するリチウムイオン二次電池であって、前記正極活物質が一般式
LiMn1-xxPO4(M:Mn以外の2価のカチオン、0≦X≦0.4)である空間群
Pmnbの対称性を有する斜方晶のリン酸化合物を有し、かつ前記リン酸化合物のa軸,b軸及びc軸の格子定数がそれぞれ1.060nm≦a≦1.120nm,0.620nm≦b≦0.66nm,0.486nm≦c≦0.515nm であり、かつ前記正極にカーボンブラックもしくはアセチレンブラックを1〜10重量%有しかつ平均粒系1ないし20
μmの炭素材粒子を5〜20重量%有するリチウムイオン二次電池である。
A lithium ion secondary battery according to another embodiment of the present invention is a lithium ion secondary battery having a positive electrode having a positive electrode active material, a negative electrode, and an electrolyte solution, wherein the positive electrode active material has the general formula LiMn 1− x M x PO 4 (M: 2 -valent cations other than Mn, 0 ≦ X ≦ 0.4) having a phosphoric acid compound orthorhombic with symmetry space group Pmnb is, and the phosphoric acid compound The lattice constants of the a-axis, b-axis and c-axis are 1.060 nm ≦ a ≦ 1.120 nm, 0.620 nm ≦ b ≦ 0.66 nm and 0.486 nm ≦ c ≦ 0.515 nm, respectively, and 1 to 20% by weight of carbon black or acetylene black and an average grain system of 1 to 20
It is a lithium ion secondary battery having 5 to 20% by weight of carbon material particles of μm.

ここでカーボンブラックもしくはアセチレンブラックはその平均粒径が5ないし100nm程度と極めて小粒径の炭素質粒子であり、これらの炭素材粒子が正極活物質表面に付着し、正極活物質粒子の電子伝導性を向上し、電池出力を向上させる作用を有する。本発明においては炭素材粒子の平均粒径が5ないし100nmの範囲であれば、必ずしもカーボンブラックもしくはアセチレンブラックに限定はされない。   Here, carbon black or acetylene black is an extremely small carbonaceous particle having an average particle diameter of about 5 to 100 nm, and these carbon material particles adhere to the surface of the positive electrode active material, and the electron conduction of the positive electrode active material particles. Has the effect of improving the battery output. In the present invention, carbon black or acetylene black is not necessarily limited as long as the average particle diameter of the carbon material particles is in the range of 5 to 100 nm.

また、平均粒系1ないし20μmの炭素材粒子とは、正極活物質と同程度の粒径を有する黒鉛粒子や非晶質炭素粒子であり、これらは正極活物質間及び正極活物質と集電体との電子伝導性を向上し、電池出力を向上させる作用を有する。この炭素材粒子の形態としては特に限定はされないが、例えば燐片状,塊状のものが上げられる。   The carbon material particles having an average particle size of 1 to 20 μm are graphite particles and amorphous carbon particles having a particle size comparable to that of the positive electrode active material, and these are between the positive electrode active materials and between the positive electrode active material and the current collector. It improves the electron conductivity with the body and improves battery output. The form of the carbon material particles is not particularly limited, and for example, flakes and lumps can be used.

本発明における一般式LiMn1-xxPO4(M:Mn以外の2価のカチオン、0≦X≦0.4)である空間群Pmnbの対称性を有する斜方晶のリン酸化合物を有し、かつ前記リン酸化合物のa軸,b軸及びc軸の格子定数がそれぞれ1.060nm≦a≦1.120
nm,0.620nm≦b≦0.66nm,0.486nm≦c≦0.515nmである正極活物質を用いたリチウムイオン二次電池においては、上述のカーボンブラックもしくはアセチレンブラックと、平均粒系1ないし20μmの炭素材粒子とを適切な比率で正極に配合することにより、より優れた出力特性を発現する。すなわち上記一般式組成において
Mn以外の2価のカチオンを有さないリン酸化合物を用いたリチウムイオン二次電池においても優れた出力特性を有する。ここでカーボンブラックもしくはアセチレンブラックの電池出力に対する作用と、平均粒系1ないし20μmの炭素材粒子の作用は異なるものであることから、どちらか一方のみ正極に含有したとしても十分な出力特性は得られない。
An orthorhombic phosphate compound having the symmetry of the space group Pmnb having the general formula LiMn 1-x M x PO 4 (M: divalent cation other than Mn, 0 ≦ X ≦ 0.4) in the present invention And the lattice constant of the a-axis, b-axis and c-axis of the phosphoric acid compound is 1.060 nm ≦ a ≦ 1.120, respectively.
In the lithium ion secondary battery using the positive electrode active material satisfying nm, 0.620 nm ≦ b ≦ 0.66 nm, 0.486 nm ≦ c ≦ 0.515 nm, the above-described carbon black or acetylene black and an average grain system 1 Furthermore, by blending the carbon material particles of 20 μm with the positive electrode at an appropriate ratio, more excellent output characteristics are expressed. That is, the lithium ion secondary battery using a phosphoric acid compound having no divalent cation other than Mn in the above general formula composition has excellent output characteristics. Here, the effect of carbon black or acetylene black on the battery output is different from that of carbon material particles having an average grain size of 1 to 20 μm, so that sufficient output characteristics can be obtained even if only one of them is contained in the positive electrode. I can't.

また、カーボンブラックもしくはアセチレンブラックの含有量が1重量%未満では、正極活物質の導電性向上に対する十分な効果が得られない。逆に10重量%を超えた場合でも出力特性が低下するが、これは上記のカーボンブラックもしくはアセチレンブラックが正極活物質表面を覆ってしまい、リチウムイオンと正極活物質との反応を阻害するためと推測される。   In addition, when the content of carbon black or acetylene black is less than 1% by weight, a sufficient effect for improving the conductivity of the positive electrode active material cannot be obtained. On the other hand, the output characteristics deteriorate even when the amount exceeds 10% by weight. This is because the above-described carbon black or acetylene black covers the surface of the positive electrode active material and inhibits the reaction between lithium ions and the positive electrode active material. Guessed.

さらにまた平均粒系1ないし20μmの炭素材粒子の含有量が5重量%未満では、正極活物質間の導電性向上に対する十分な効果が得られない。逆に20重量%を超えた場合でも出力特性が低下するが、これは正極活物質の重量比率が低下したためと推測される。   Furthermore, if the content of carbon material particles having an average grain size of 1 to 20 μm is less than 5% by weight, a sufficient effect for improving the conductivity between the positive electrode active materials cannot be obtained. On the other hand, even when the content exceeds 20% by weight, the output characteristics are deteriorated. This is presumably because the weight ratio of the positive electrode active material is decreased.

次に、本発明のリチウムイオン二次電池を実現するための具体的な手段の一例を説明する。   Next, an example of specific means for realizing the lithium ion secondary battery of the present invention will be described.

まず正極を以下のとおり作製する。本発明の正極活物質粉末と導電剤をよく混合する。導電剤としては、カーボンブラックもしくはアセチレンブラックを正極合剤量に対し1〜10重量%、さらに平均粒系1ないし20μmの炭素材粒子を正極合剤に対し5〜20重量%とすることが望ましい。これに、結着剤としてのポリフッ化ビニリデン(PVDF)等をN−メチルピロリドン(NMP)等の溶媒に溶解させた溶液を加えてさらに混合しスラリーにする。前述のこのスラリーを厚さ10ないし20μmのアルミニウム箔に塗布して80ないし100℃の温度で乾燥する。同じ手順でアルミニウム箔の両面に塗布乾燥を行う。その後ロールプレス機等により圧縮成形し、所定の大きさに切断し、正極を作製する。   First, a positive electrode is produced as follows. The positive electrode active material powder of the present invention and a conductive agent are mixed well. As the conductive agent, carbon black or acetylene black is desirably 1 to 10% by weight with respect to the amount of the positive electrode mixture, and further, carbon material particles having an average particle size of 1 to 20 μm are desirably 5 to 20% by weight with respect to the positive electrode mixture. . To this, a solution prepared by dissolving polyvinylidene fluoride (PVDF) or the like as a binder in a solvent such as N-methylpyrrolidone (NMP) is added and further mixed to form a slurry. This slurry is applied to an aluminum foil having a thickness of 10 to 20 μm and dried at a temperature of 80 to 100 ° C. Apply and dry both sides of the aluminum foil in the same procedure. Thereafter, it is compression-molded by a roll press machine or the like and cut into a predetermined size to produce a positive electrode.

次に負極を作製する。負極に用いる負極活物質としては、例えば、金属リチウムや、炭素材料,リチウムを挿入もしくは化合物の形成が可能な材料を用いることが可能であるが、黒鉛や非晶質炭素等の炭素材料が特に好適である。本発明のリチウム二次電池においては、その負極にラマン分光スペクトルで測定される1300〜1400cm-1の範囲にあるピーク強度(ID)と1580〜1620cm-1の範囲にあるピーク強度(IG)の強度比であるR値(ID/IG)が0.4以上1.5以下である炭素材料を有する炭素材料を用いることで、より高出力のリチウムイオン二次電池が得られる。ラマン分光スペクトルで測定される1580〜1620cm-1の範囲にあるピークは黒鉛の六角網面の規則正しい積層を示すものとされており、1300〜1400cm-1の範囲にあるピークは六角網面の積層の乱れを示すものとされている。Liイオンの負極活物質の挿入・脱離反応は、積層した六角網面の端面で進行する。従ってR値が0.4 未満では規則正しく積層した炭素六角網面の比率が高く、従って端面の比率が小さくなるため、出力が低下する。またR値が1.5 を超えると積層の乱れが大きすぎるためLiイオンの挿入・脱離反応を阻害する可能性があり、出力が低下する可能性がある。 Next, a negative electrode is produced. As the negative electrode active material used for the negative electrode, for example, metallic lithium, a carbon material, a material capable of inserting lithium or forming a compound can be used, and carbon materials such as graphite and amorphous carbon are particularly used. Is preferred. In the lithium secondary battery of the present invention, the peak intensity in the peak intensity in the range of 1300~1400Cm -1 as measured by Raman spectroscopy on the negative electrode and (I D) in the range of 1580~1620cm -1 (I G By using a carbon material having a carbon material having an R ratio (I D / I G ) that is an intensity ratio of 0.4 or more and 1.5 or less, a higher-power lithium ion secondary battery can be obtained. Peak in the range of 1580~1620Cm -1 as measured by Raman spectroscopy spectra is intended to indicate a regular stacking of the hexagonal plane of graphite, the peak in the range of 1300~1400Cm -1 lamination of hexagonal network It is supposed to show the disturbance. The insertion / desorption reaction of the negative electrode active material of Li ion proceeds on the end face of the laminated hexagonal mesh surface. Therefore, when the R value is less than 0.4, the ratio of the regularly stacked carbon hexagonal mesh faces is high, and therefore the ratio of the end faces is small, so that the output is reduced. On the other hand, if the R value exceeds 1.5, the stacking disorder is too great, which may hinder Li ion insertion / desorption reaction, and the output may decrease.

負極の作製は以下のようにするものである。負極活物質として望ましくはR値が0.4以上1.5 以下の炭素材料を用いる。負極活物質に、結着剤としてPVDF等をNMP等の溶媒に溶解させた溶液を加えて混合しスラリーにした。このスラリーを銅箔に塗布して80ないし100℃の温度で乾燥する。同じ手順で銅箔の両面に塗布乾燥を行う。その後ロールプレス機により圧縮成形し、所定の大きさに切断し負極を作製する。   The negative electrode is produced as follows. A carbon material having an R value of 0.4 or more and 1.5 or less is desirably used as the negative electrode active material. A solution prepared by dissolving PVDF or the like as a binder in a solvent such as NMP was added to the negative electrode active material and mixed to obtain a slurry. The slurry is applied to a copper foil and dried at a temperature of 80 to 100 ° C. Apply and dry on both sides of the copper foil using the same procedure. Thereafter, it is compression molded by a roll press and cut into a predetermined size to produce a negative electrode.

円筒型電池を作製する場合には、以下のとおりするものである。得られた正極と負極を正極と負極を電気的に絶縁する機構として、正極と負極の間に厚さ15〜50μmの多孔質絶縁物フィルムからなるセパレータを挟み、これを円筒状に捲回して電極群を作製し
SUSやアルミでできた電池容器に挿入する。セパレータとして用いることが出来るものは、ポリエチレン(PE)やポリプロピレン(PP)等の樹脂製多孔質絶縁物フィルムやその積層体,アルミナなどの無機化合物を分散させたものでも構わない。
When producing a cylindrical battery, it is as follows. As a mechanism for electrically insulating the positive electrode and the negative electrode obtained from each other, a separator made of a porous insulating film having a thickness of 15 to 50 μm is sandwiched between the positive electrode and the negative electrode, and this is wound into a cylindrical shape. An electrode group is prepared and inserted into a battery container made of SUS or aluminum. What can be used as the separator may be a resin porous insulating film such as polyethylene (PE) or polypropylene (PP), a laminate thereof, or an inorganic compound such as alumina dispersed therein.

この電池容器に、乾燥空気中または不活性ガス雰囲気の作業容器内で、正極と負極を電気化学的に結合させるリチウム塩を非水溶媒に溶解した非水電解液を注入し、容器を封止して電池とする。リチウム塩は、電池の充放電により電解液中を移動するリチウムイオンを供給するもので、LiClO4,LiCF3SO3,LiPF6,LiBF4,LiAsF6などを単独もしくは2種類以上を用いることができる。有機溶媒としては、カーボネート類,エステル類,エーテル類等が挙げられ、例えばエチレンカーボネート(EC),プロピレンカーボネート,ブチレンカーボネート,ジメチルカーボネート(DMC),ジエチルカーボネート(DEC),メチルエチルカーボネート,ジエチルカーボネート,γ―ブチロラクトンなどがあげられる。これらを単独あるいは混合した非水溶媒を用いる。 A nonaqueous electrolyte solution in which a lithium salt that electrochemically bonds the positive electrode and the negative electrode is dissolved in a nonaqueous solvent is poured into the battery container in a working container in dry air or an inert gas atmosphere, and the container is sealed. Battery. Lithium salt supplies lithium ions that move in the electrolyte by charging and discharging the battery, and LiClO 4 , LiCF 3 SO 3 , LiPF 6 , LiBF 4 , LiAsF 6, etc. may be used alone or in combination of two or more. it can. Examples of the organic solvent include carbonates, esters, ethers and the like. For example, ethylene carbonate (EC), propylene carbonate, butylene carbonate, dimethyl carbonate (DMC), diethyl carbonate (DEC), methyl ethyl carbonate, diethyl carbonate, Examples thereof include γ-butyrolactone. A nonaqueous solvent in which these are used alone or in combination is used.

また、電池の副反応の抑制や高温での安定性を高める等の目的で必要に応じ各種の添加剤を添加してもよい。用いられる添加剤は、硫黄系化合物,リン系化合物等、上記の溶媒に溶解するもの、溶媒をかねるものがあげられる。   Various additives may be added as necessary for the purpose of suppressing side reactions of the battery and increasing stability at high temperatures. Examples of the additive used include sulfur compounds and phosphorus compounds that dissolve in the above-mentioned solvents and those that also serve as solvents.

また、角形電池とするためには以下のようにするものである。正極及び負極の塗布は前記円筒型電池を作製する場合と同様である。角形電池を作製するためには、角形のセンターピンを中心として、捲回群を作製する。円筒型電池と同様に、電池容器にこれを収納し電解液を注入後、電池缶を密封する。また、捲回群の代わりに、セパレータ,正極,セパレータ,負極,セパレータの順に積層していく積層体を用いることもできる。   Further, in order to obtain a square battery, it is as follows. The application of the positive electrode and the negative electrode is the same as that for producing the cylindrical battery. In order to produce a prismatic battery, a wound group is produced around a square center pin. As in the case of the cylindrical battery, the battery can is sealed after storing it in a battery container and injecting an electrolyte. Further, instead of the wound group, a laminate in which a separator, a positive electrode, a separator, a negative electrode, and a separator are laminated in this order can also be used.

本発明のリチウムイオン二次電池の用途としては特に限定されないが、各種携帯型機器や情報機器,家庭用電気機器等の電源として、あるいは電気自動車や、内燃機関等により駆動される発電機や燃料電池等の発電機関を搭載するハイブリッド型自動車、さらに内燃機関等により駆動される発電機を搭載する汽動車や、エレベータ等の動力機器用の電源として、さらに、各種業務用や家庭用の蓄電システム用の電源として用いることができる。   The use of the lithium ion secondary battery of the present invention is not particularly limited, but as a power source for various portable devices, information devices, household electrical devices, etc., or a generator or fuel driven by an electric vehicle, an internal combustion engine, or the like As a power source for hybrid vehicles equipped with power generation engines such as batteries, motor vehicles equipped with generators driven by internal combustion engines, etc., and power equipment such as elevators, power storage systems for various business and household use Can be used as a power source.

以下、本発明のリチウムイオン二次電池及びそれに用いる正極活物質のさらに詳細な実施例を示し、具体的に説明する。但し、本発明は以下に述べる実施例に限定されるものではない。   Hereinafter, more detailed examples of the lithium ion secondary battery of the present invention and the positive electrode active material used therefor will be shown and described in detail. However, the present invention is not limited to the examples described below.

(実施例1)
本発明の正極活物質1ないし正極活物質6を以下のとおり作製した。原料として、酢酸リチウム,酢酸マンガン,酢酸コバルト,酢酸ニッケル,酢酸鉄,酢酸銅、及びリン酸二水素アンモニウムを選択した。これらの原料を、各元素が所定のモル比になるよう秤量し、蒸留水に溶解し原料溶液を得た。この原料溶液をスプレードライ装置に導入し、前駆体粉末を得た。得られた前駆体粉末を350℃で1時間不活性ガス雰囲気下で熱分解した後、550℃で8時間不活性ガス下で焼成し、正極活物質を得た。得られた正極活物質1ないし正極活物質6を各々乳鉢で粉砕し、CuKα線による粉末X線回折スペクトルを測定し、得られた回折線の回折角とPmnbの対称性を有する斜方晶で指数付けした値を持って格子定数を求めた。
Example 1
The positive electrode active material 1 to the positive electrode active material 6 of the present invention were prepared as follows. As raw materials, lithium acetate, manganese acetate, cobalt acetate, nickel acetate, iron acetate, copper acetate, and ammonium dihydrogen phosphate were selected. These raw materials were weighed so that each element had a predetermined molar ratio and dissolved in distilled water to obtain a raw material solution. This raw material solution was introduced into a spray drying apparatus to obtain a precursor powder. The obtained precursor powder was pyrolyzed in an inert gas atmosphere at 350 ° C. for 1 hour and then calcined in an inert gas at 550 ° C. for 8 hours to obtain a positive electrode active material. The obtained positive electrode active material 1 to positive electrode active material 6 were each pulverized in a mortar, and the powder X-ray diffraction spectrum by CuKα ray was measured, and the obtained diffraction line was orthorhombic with symmetry of diffraction angle and Pmnb. Lattice constants were obtained with the indexed values.

表1に実施例1の正極活物質1ないし正極活物質6の組成、及び格子定数を示す。正極活物質1ないし正極活物質6いずれのa軸,b軸及びc軸の格子定数がそれぞれ1.060nm≦a≦1.120nm,0.620nm≦b≦0.66nm,0.486nm≦c≦
0.515nmの範囲にあった。
Table 1 shows the compositions and lattice constants of the positive electrode active material 1 to the positive electrode active material 6 of Example 1. The lattice constants of the a-axis, b-axis, and c-axis of each of the positive electrode active material 1 to the positive electrode active material 6 are 1.060 nm ≦ a ≦ 1.120 nm, 0.620 nm ≦ b ≦ 0.66 nm, and 0.486 nm ≦ c ≦, respectively.
It was in the range of 0.515 nm.

Figure 2006286208
Figure 2006286208

(比較例1)
比較例1として、実施例1と同様にLiMnPO4(正極活物質H1) 作製した。また正極活物質H2として、実施例1と同様にLiMn0.5Fe0.5PO4 の作製を試みたが、粉末X線回折の結果は2種類のリン酸化合物の混合物であった。さらにまた正極活物質H3として、焼成温度を500℃とした以外は実施例1と同様に組成式LiMn0.9Fe0.1PO4である正極活物質を作製した。また正極活物質H4として、実施例1と同じ原料を用いて、その原料をボールミルで混合した前駆体を用い実施例1と同じ熱処理により組成式
LiMn0.9Fe0.1PO4である正極活物質を作製した。正極活物質H1,正極活物質
H3,正極活物質H4について実施例1と同様に格子定数を求めた。
(Comparative Example 1)
As Comparative Example 1, LiMnPO 4 (positive electrode active material H1) was produced in the same manner as in Example 1. Moreover, as positive electrode active material H2, preparation of LiMn 0.5 Fe 0.5 PO 4 was attempted in the same manner as in Example 1, but the result of powder X-ray diffraction was a mixture of two types of phosphate compounds. Further, as the positive electrode active material H3, a positive electrode active material having the composition formula LiMn 0.9 Fe 0.1 PO 4 was produced in the same manner as in Example 1 except that the firing temperature was 500 ° C. A positive electrode active material having the composition formula LiMn 0.9 Fe 0.1 PO 4 was prepared by the same heat treatment as in Example 1 using the same raw material as in Example 1 as a positive electrode active material H4 and a precursor obtained by mixing the raw materials with a ball mill. did. Lattice constants were determined in the same manner as in Example 1 for the positive electrode active material H1, the positive electrode active material H3, and the positive electrode active material H4.

表1に比較例1の正極活物質H1,正極活物質H3,正極活物質H4の組成、及び格子定数を示す。正極活物質H1の格子定数は本発明の正極活物質の範囲にあるが、Mn以外の2価のカチオンを含まないものである。また、正極活物質H3、正極活物質H4はその組成はMn以外の2価のカチオンとしてFeを含むものであるが、その格子定数は本発明の正極活物質の範囲外にあった。   Table 1 shows the composition and lattice constant of the positive electrode active material H1, the positive electrode active material H3, and the positive electrode active material H4 of Comparative Example 1. The lattice constant of the positive electrode active material H1 is in the range of the positive electrode active material of the present invention, but does not include a divalent cation other than Mn. Moreover, although the composition of positive electrode active material H3 and positive electrode active material H4 contains Fe as a bivalent cation other than Mn, its lattice constant was outside the range of the positive electrode active material of the present invention.

(実施例2)
本発明のコイン型リチウムイオン二次電池(電池1ないし電池6)を以下のとおり作製した。
(Example 2)
Coin-type lithium ion secondary batteries (battery 1 to battery 6) of the present invention were produced as follows.

まず正極を作製した。正極活物質として実施例1で作製した正極活物質1ないし正極活物質6を用いた。正極活物質80重量%に、導電剤として3重量%の平均粒径10μmの鱗片状黒鉛と10重量%のアセチレンブラックと、あらかじめ結着剤として7重量%の
PVDFをNMPに溶解した溶液とを加えてさらに混合し正極合剤スラリーを作製した。このスラリーを厚さ20μmのアルミニウム箔(正極集電体)に実質的に均一かつ均等に塗布した後80℃の温度で乾燥した。このとき、正極の塗工量が正極活物質の違いによらず一定となるよう塗布量を調整した。その後径15mmに打ち抜いたものをプレス機により圧縮成形し、正極を作製した。
First, a positive electrode was produced. The positive electrode active material 1 to the positive electrode active material 6 prepared in Example 1 were used as the positive electrode active material. 80% by weight of the positive electrode active material, 3% by weight of flaky graphite having an average particle diameter of 10 μm as a conductive agent, 10% by weight of acetylene black, and a solution prepared by previously dissolving 7% by weight of PVDF as a binder in NMP In addition, the mixture was further mixed to prepare a positive electrode mixture slurry. The slurry was applied to a 20 μm thick aluminum foil (positive electrode current collector) substantially uniformly and evenly, and then dried at a temperature of 80 ° C. At this time, the coating amount was adjusted so that the coating amount of the positive electrode was constant regardless of the difference in the positive electrode active material. After that, the punched material having a diameter of 15 mm was compression-molded by a press to produce a positive electrode.

次に負極を作製した。負極活物質として、表面を非晶質炭素で被覆した黒鉛(負極活物質1)を用いた。負極活物質1のラマン分光による1300〜1400cm-1の範囲にあるピークと1580〜1620cm-1の範囲にあるピークの強度比Rは0.94 であった。負極活物質91重量%に導電剤として5重量%のアセチレンブラックと、あらかじめ4重量%のPVDFをNMPに溶解した溶液を加えて混合し負極合剤スラリーを作製した。このスラリーを正極と同様の手順で厚さ15μmの圧延銅箔(負極集電体)に実質的に均一かつ均等に塗布した後80℃の温度で乾燥した。その後径16mmに打ち抜いたものをプレス機により圧縮成形し、負極を作製した。 Next, a negative electrode was produced. As the negative electrode active material, graphite (negative electrode active material 1) whose surface was coated with amorphous carbon was used. Peak intensity ratio in the range of peak and 1580~1620Cm -1 in the range of 1300~1400Cm -1 by Raman spectroscopy of the negative electrode active material 1 R was 0.94. A negative electrode mixture slurry was prepared by adding and mixing a solution of 5 wt% acetylene black as a conductive agent and 4 wt% PVDF in NMP in advance to 91 wt% of the negative electrode active material. This slurry was applied substantially uniformly and evenly to a rolled copper foil (negative electrode current collector) having a thickness of 15 μm in the same procedure as that for the positive electrode, and then dried at a temperature of 80 ° C. Thereafter, a punched-out piece having a diameter of 16 mm was compression-molded by a press machine to produce a negative electrode.

作製した正極と負極を用いて図1に示すコイン型リチウムイオン二次電池を作製した。正極11と負極12とを厚さ25μmの微多孔性ポリプロピレン製セパレータ13を挟み、負極端子を兼ねるSUS製の電池缶14に挿入した。電池缶内に電解液を注入した後に、正極端子が取り付けられた密閉ふた部15をパッキン16を介して電池缶14にかしめて密閉してコイン型電池とした。非水電解液はEC,DMC,DECの体積比1:1:1の混合溶媒に1モル/リットルのLiPF6を溶解させたものを用いた。 A coin-type lithium ion secondary battery shown in FIG. 1 was produced using the produced positive electrode and negative electrode. The positive electrode 11 and the negative electrode 12 were sandwiched by a microporous polypropylene separator 13 having a thickness of 25 μm, and inserted into a SUS battery can 14 also serving as a negative electrode terminal. After injecting the electrolyte into the battery can, the sealing lid portion 15 to which the positive electrode terminal was attached was caulked and sealed to the battery can 14 via the packing 16 to obtain a coin-type battery. As the non-aqueous electrolyte, a solution obtained by dissolving 1 mol / liter of LiPF 6 in a mixed solvent of EC, DMC, and DEC in a volume ratio of 1: 1: 1 was used.

(比較例2)
比較例2として、比較例1の正極活物質H1,正極活物質H3,正極活物質H4を用い、それ以外は実施例2と同様にコイン型リチウムイオン二次電池を作製した。
(Comparative Example 2)
As Comparative Example 2, a coin-type lithium ion secondary battery was fabricated in the same manner as in Example 2 except that the positive electrode active material H1, the positive electrode active material H3, and the positive electrode active material H4 of Comparative Example 1 were used.

(電池の出力の測定)
作製した実施例2及び比較例2のリチウムイオン二次電池の出力を以下のように測定した。
(Measurement of battery output)
The outputs of the produced lithium ion secondary batteries of Example 2 and Comparative Example 2 were measured as follows.

作製したリチウムイオン二次電池について、20℃で充電と放電を3回繰り返し、3回目の放電容量を電池の定格容量と定めた。充電条件は、0.33C 相当の電流で上限電圧3.9Vで5時間の定電流定電圧充電後、0.33C相当の電流で下限電圧2.5V の定電流放電とした。   About the produced lithium ion secondary battery, charge and discharge were repeated 3 times at 20 degreeC, and the discharge capacity of the 3rd time was defined as the rated capacity of a battery. The charging conditions were constant current and constant voltage charging with an upper limit voltage of 3.9 V at a current equivalent to 0.33 C for 5 hours, and then a constant current discharge with a current equivalent to 0.33 C and a lower limit voltage of 2.5 V.

つぎに電池の出力を測定した。0.33C相当の電流で上限電圧3.9Vで4時間の定電流定電圧充電後、出力測定を開始した。定格容量を1Cとした際、放電電流を1Cで10秒間放電し、放電前の開回路電圧(V0 )と放電10秒目の電圧(V10)を測定し、両者の差(V0 −V10)である電圧降下(ΔV)を求めた。この後、放電した電気量に相当する充電を行い、順次放電電流を5C,10Cと変化させ同様に電圧降下(ΔV)を求めた。放電電流値に対する電圧降下(ΔV)を外挿し、10秒間で放電終止電圧2.5V に到達すると仮定した場合の最大電流値(IMAX)を求め、IMAXに2.5V を乗じたものをそのリチウムイオン二次電池の出力とした。 Next, the output of the battery was measured. Output measurement was started after charging with constant current and constant voltage for 4 hours at an upper limit voltage of 3.9 V at a current corresponding to 0.33 C. When the rated capacity is 1 C, the discharge current is discharged at 1 C for 10 seconds, the open circuit voltage (V 0 ) before the discharge and the voltage (V 10 ) at the 10th discharge are measured, and the difference (V 0 − The voltage drop (ΔV) which is V 10 ) was determined. Thereafter, charging corresponding to the discharged amount of electricity was performed, and the discharge current was sequentially changed to 5C and 10C to similarly obtain the voltage drop (ΔV). Extrapolate the voltage drop (ΔV) to the discharge current value, find the maximum current value (I MAX ) when it is assumed that the discharge end voltage of 2.5 V is reached in 10 seconds, and multiply I MAX by 2.5 V The output of the lithium ion secondary battery was used.

表2に実施例2の各電池(電池1ないし電池6)及び比較例2の各電池(電池H1,電池H3及び電池H4)について、用いた正極活物質と電池出力の結果を示す。実施例1の正極活物質を用いた実施例2のリチウムイオン二次電池は、比較例1の正極活物質を用いた比較例2のリチウム二次電池に比べ、電池出力が高い効果が得られた。   Table 2 shows the results of the positive electrode active material and the battery output used for each battery (Battery 1 to Battery 6) of Example 2 and each battery (Battery H1, Battery H3, and Battery H4) of Comparative Example 2. The lithium ion secondary battery of Example 2 using the positive electrode active material of Example 1 has a higher battery output than the lithium secondary battery of Comparative Example 2 using the positive electrode active material of Comparative Example 1. It was.

Figure 2006286208
Figure 2006286208

(実施例3)
本発明のコイン型リチウムイオン二次電池(電池A2ないし電池A5)を作製した。正極活物質に、実施例1における正極活物質3を用いた。また、負極活物質には、ラマン分光におけるR値の異なる非晶質炭素被覆黒鉛(負極活物質2ないし負極活物質5)を選択した。それ以外は実施例1と同様に、各々の負極活物質毎にコイン型リチウムイオン二次電池を作成した。
(Example 3)
Coin-type lithium ion secondary batteries (battery A2 to battery A5) of the present invention were produced. The positive electrode active material 3 in Example 1 was used as the positive electrode active material. As the negative electrode active material, amorphous carbon-coated graphite (negative electrode active material 2 to negative electrode active material 5) having different R values in Raman spectroscopy was selected. Other than that was carried out similarly to Example 1, and produced the coin-type lithium ion secondary battery for every negative electrode active material.

表3に実施例3の各電池(電池A2ないし電池A5)及び実施例2の電池3について、用いた負極活物質と電池出力の結果を示す。実施例3のリチウムイオン二次電池は、実施例1における正極活物質3を用いており、比較例1の正極活物質を用いた比較例2のリチウム二次電池に比べ、電池出力が高い効果が得られた。また、ラマン分光スペクトルで測定されるR値(ID/IG)が0.4以上1.5以下である負極活物質を用いた、電池3,電池A3及び電池A4は、電池A2及び電池A5に比べより高い電池出力が得られる効果があった。 Table 3 shows the results of the negative electrode active material and the battery output used for each battery (battery A2 to battery A5) of Example 3 and battery 3 of Example 2. The lithium ion secondary battery of Example 3 uses the positive electrode active material 3 in Example 1, and has a higher battery output than the lithium secondary battery of Comparative Example 2 using the positive electrode active material of Comparative Example 1. was gotten. In addition, the battery 3, the battery A3, and the battery A4 using the negative electrode active material whose R value (I D / I G ) measured by the Raman spectrum is 0.4 or more and 1.5 or less are the battery A2 and the battery There was an effect that a higher battery output was obtained compared to A5.

Figure 2006286208
Figure 2006286208

(実施例4)
本発明のコイン型リチウムイオン二次電池(電池D1ないし電池D3)を作製した。正極の作製においては、比較例1における正極活物質H1を用い、導電剤としての平均粒径10μmの鱗片状黒鉛を5〜20重量%の範囲で、またアセチレンブラックを1〜10重量%の範囲で用いた。また、負極活物質として、非晶質炭素を用いた。本非晶質炭素のラマン分光による1300〜1400cm-1の範囲にあるピークと1580〜1620cm-1の範囲にあるピークの強度比Rは1.05 であった。それら以外は実施例2と同様にリチウムイオン二次電池を作製した。
Example 4
Coin-type lithium ion secondary batteries (batteries D1 to D3) of the present invention were produced. In the production of the positive electrode, the positive electrode active material H1 in Comparative Example 1 was used, the scale-like graphite having an average particle diameter of 10 μm as the conductive agent was in the range of 5 to 20% by weight, and the acetylene black was in the range of 1 to 10% by weight. Used in. Further, amorphous carbon was used as the negative electrode active material. The intensity ratio R of the peak in the range of peak and 1580~1620Cm -1 in the range of 1300~1400Cm -1 by Raman spectroscopy of the amorphous carbon was 1.05. A lithium ion secondary battery was produced in the same manner as in Example 2 except for the above.

(比較例3)
比較例3として、正極に平均粒径10μmの鱗片状黒鉛を3重量%、アセチレンブラックを15重量%用いた電池H5、及び平均粒径10μmの鱗片状黒鉛を25重量%、アセチレンブラックを0.5重量%用いた電池H6を、それ以外は実施例3と同様にコイン型リチウムイオン二次電池を作製した。
(Comparative Example 3)
As Comparative Example 3, the battery H5 using 3% by weight of flaky graphite having an average particle diameter of 10 μm and 15% by weight of acetylene black on the positive electrode, 25% by weight of flaky graphite having an average particle diameter of 10 μm, and 0.1% of acetylene black. A coin-type lithium ion secondary battery was produced in the same manner as in Example 3 except that 5% by weight of the battery H6 was used.

表4に実施例4の各電池(電池D1ないし電池D3)及び比較例3の電池H5及び電池H6について、用いた黒鉛の重量%とアセチレンブラックの重量%及び電池出力の結果を示す。実施例4のリチウムイオン二次電池は、平均粒径10μmの鱗片状黒鉛を5〜20重量%の範囲で、またアセチレンブラックを1〜10重量%の範囲で用いており、比較例3のリチウムイオン二次電池に比べ、高い電池出力が得られる効果があった。   Table 4 shows the results of the weight% of graphite used, the weight% of acetylene black, and the battery output for each battery (battery D1 to battery D3) of Example 4 and battery H5 and battery H6 of Comparative Example 3. The lithium ion secondary battery of Example 4 uses flaky graphite having an average particle diameter of 10 μm in the range of 5 to 20% by weight and acetylene black in the range of 1 to 10% by weight. Compared to the ion secondary battery, there was an effect that a high battery output was obtained.

Figure 2006286208
Figure 2006286208

本発明のコイン型リチウムイオン二次電池の一例を示す模式図。The schematic diagram which shows an example of the coin-type lithium ion secondary battery of this invention.

符号の説明Explanation of symbols

11…正極、12…負極、13…セパレータ、14…電池缶、15…ふた、16…パッキン、17…負極集電体、18…負極合剤、19…正極合剤、20…正極集電体。
DESCRIPTION OF SYMBOLS 11 ... Positive electrode, 12 ... Negative electrode, 13 ... Separator, 14 ... Battery can, 15 ... Lid, 16 ... Packing, 17 ... Negative electrode collector, 18 ... Negative electrode mixture, 19 ... Positive electrode mixture, 20 ... Positive electrode collector .

Claims (8)

正極活物質を有する正極と、負極と、電解液とを有するリチウムイオン二次電池であって、前記正極活物質が一般式LiMn1-xxPO4(M:Mn以外の2価のカチオン、
0.01≦X≦0.4)である空間群Pmnbの対称性を有する斜方晶のリン酸化合物を有し、かつ前記リン酸化合物のa軸,b軸及びc軸の格子定数がそれぞれ1.060nm ≦a≦1.120nm,0.620nm≦b≦0.66nm ,0.486nm≦c≦0.515nmであることを特徴とするリチウムイオン二次電池。
A lithium ion secondary battery having a positive electrode having a positive electrode active material, a negative electrode, and an electrolyte solution, wherein the positive electrode active material has the general formula LiMn 1-x M x PO 4 (M: divalent cation other than Mn) ,
0.01 ≦ X ≦ 0.4) having orthorhombic phosphate compound having symmetry of space group Pmnb, and lattice constants of a-axis, b-axis and c-axis of said phosphate compound are respectively 1. A lithium ion secondary battery characterized in that 1.060 nm ≦ a ≦ 1.120 nm, 0.620 nm ≦ b ≦ 0.66 nm, and 0.486 nm ≦ c ≦ 0.515 nm.
請求項1記載のリン酸化合物におけるLiMn1-xxPO4の2価のカチオンMが、
Co,Fe,Ni,Cuの1種以上であることを特徴とするリチウムイオン二次電池。
The divalent cation M of LiMn 1-x M x PO 4 in the phosphate compound according to claim 1 is:
A lithium ion secondary battery comprising at least one of Co, Fe, Ni, and Cu.
負極に、ラマン分光スペクトルで測定される1300〜1400cm-1の範囲にあるピーク強度(ID)と1580〜1620cm-1の範囲にあるピーク強度(IG)の強度比であるR値(ID/IG)が0.4以上1.5以下である炭素材料を有することを特徴とする請求項1ないし請求項2記載のリチウムイオン二次電池。 A negative electrode, R value is the intensity ratio of the peak intensity (I G) in the range of the peak intensity (I D) and 1580~1620Cm -1 in the range of 1300~1400Cm -1 it measured by Raman spectrum (I 3. The lithium ion secondary battery according to claim 1, comprising a carbon material having a ratio of D / I G ) of 0.4 or more and 1.5 or less. 正極活物質を有する正極と、負極と、電解液とを有するリチウムイオン二次電池であって、前記正極活物質が一般式LiMn1-xxPO4(M:Mn以外の2価のカチオン、
0≦X≦0.4 )である空間群Pmnbの対称性を有する斜方晶のリン酸化合物を有し、かつ前記リン酸化合物のa軸,b軸及びc軸の格子定数がそれぞれ1.060nm≦a≦1.120nm,0.620nm≦b≦0.66nm ,0.486nm≦c≦0.515nmであり、かつ前記正極にカーボンブラックもしくはアセチレンブラックを1〜10重量%有しかつ平均粒系1ないし20μmの炭素材粒子を5〜20重量%有することを特徴とするリチウムイオン二次電池。
A lithium ion secondary battery having a positive electrode having a positive electrode active material, a negative electrode, and an electrolyte solution, wherein the positive electrode active material has the general formula LiMn 1-x M x PO 4 (M: divalent cation other than Mn) ,
0 ≦ X ≦ 0.4) having an orthorhombic phosphate compound having the symmetry of the space group Pmnb, and the lattice constants of the a-axis, b-axis and c-axis of the phosphate compound are 1. 060 nm ≦ a ≦ 1.120 nm, 0.620 nm ≦ b ≦ 0.66 nm, 0.486 nm ≦ c ≦ 0.515 nm, and the positive electrode has 1 to 10% by weight of carbon black or acetylene black and an average particle size A lithium ion secondary battery comprising 5 to 20% by weight of carbon material particles having a size of 1 to 20 μm.
請求項4記載のリン酸化合物におけるLiMn1-xxPO4の2価のカチオンMが、
Co,Fe,Ni,Cuの1種以上であることを特徴とするリチウムイオン二次電池。
The divalent cation M of LiMn 1-x M x PO 4 in the phosphate compound according to claim 4 is:
A lithium ion secondary battery comprising at least one of Co, Fe, Ni, and Cu.
負極に、ラマン分光スペクトルで測定される1300〜1400cm-1の範囲にあるピーク強度(ID)と1580〜1620cm-1の範囲にあるピーク強度(IG)の強度比であるR値(ID/IG)が0.4以上1.5以下である炭素材料を有することを特徴とする請求項1ないし請求項2記載のリチウムイオン二次電池。 A negative electrode, R value is the intensity ratio of the peak intensity (I G) in the range of the peak intensity (I D) and 1580~1620Cm -1 in the range of 1300~1400Cm -1 measured by Raman spectrum (I 3. The lithium ion secondary battery according to claim 1, comprising a carbon material having a ratio of D / I G ) of 0.4 or more and 1.5 or less. リチウムイオン二次電池の正極に用いる正極活物質であって、前記正極活物質が一般式LiMn1-xxPO4(M:Mn以外の2価のカチオン、0.01≦X≦0.4) である空間群Pmnbの対称性を有する斜方晶のリン酸化合物を有し、かつ前記リン酸化合物のa軸,b軸及びc軸の格子定数がそれぞれ1.060nm≦a≦1.120nm,0.620nm≦b≦0.66nm,0.486nm≦c≦0.515nmであることを特徴とするリチウムイオン二次電池用の正極活物質。 A positive electrode active material used for a positive electrode of a lithium ion secondary battery, wherein the positive electrode active material is a general formula LiMn 1-x M x PO 4 (M: a divalent cation other than Mn, 0.01 ≦ X ≦ 0.0. 4) an orthorhombic phosphate compound having the symmetry of the space group Pmnb, and the lattice constants of the a-axis, b-axis and c-axis of the phosphate compound are 1.060 nm ≦ a ≦ 1. A positive electrode active material for a lithium ion secondary battery, wherein 120 nm, 0.620 nm ≦ b ≦ 0.66 nm, 0.486 nm ≦ c ≦ 0.515 nm. 請求項4記載のリン酸化合物におけるLiMn1-xxPO4の2価のカチオンMが、
Co,Fe,Ni,Cuの1種以上であることを特徴とするリチウムイオン二次電池用の正極活物質。
The divalent cation M of LiMn 1-x M x PO 4 in the phosphate compound according to claim 4 is:
A positive electrode active material for a lithium ion secondary battery, wherein the positive electrode active material is one or more of Co, Fe, Ni, and Cu.
JP2005100480A 2005-03-31 2005-03-31 Lithium ion secondary battery and positive electrode active material Expired - Fee Related JP4655721B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005100480A JP4655721B2 (en) 2005-03-31 2005-03-31 Lithium ion secondary battery and positive electrode active material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005100480A JP4655721B2 (en) 2005-03-31 2005-03-31 Lithium ion secondary battery and positive electrode active material

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010202618A Division JP5195854B2 (en) 2010-09-10 2010-09-10 Lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2006286208A true JP2006286208A (en) 2006-10-19
JP4655721B2 JP4655721B2 (en) 2011-03-23

Family

ID=37407927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005100480A Expired - Fee Related JP4655721B2 (en) 2005-03-31 2005-03-31 Lithium ion secondary battery and positive electrode active material

Country Status (1)

Country Link
JP (1) JP4655721B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007048612A (en) * 2005-08-10 2007-02-22 Saga Univ Active material for lithium cell
JP2008130525A (en) * 2006-11-24 2008-06-05 Kyushu Univ Manufacturing method of positive active material and nonaqueous electrolyte battery using it
JP2008243662A (en) * 2007-03-28 2008-10-09 Gs Yuasa Corporation:Kk Positive active material for nonaqueous electrolyte secondary battery, and nonaqueous secondary battery using the same
JP2010009898A (en) * 2008-06-26 2010-01-14 Hitachi Maxell Ltd Nonaqueous secondary battery and nonaqueous secondary battery system
JP2010135305A (en) * 2008-11-04 2010-06-17 Gs Yuasa Corporation Positive electrode material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery having the same
WO2010082402A1 (en) * 2009-01-15 2010-07-22 株式会社Gsユアサ Positive electrode active material for lithium secondary battery, and lithium secondary battery
JP2010287450A (en) * 2009-06-12 2010-12-24 Gs Yuasa Corp Cathode active material for lithium secondary battery and lithium secondary battery
WO2011039921A1 (en) * 2009-09-30 2011-04-07 日立ビークルエナジー株式会社 Lithium secondary battery, and cathode for use in a lithium secondary battery
JP2011233438A (en) * 2010-04-28 2011-11-17 Gs Yuasa Corp Cathode active material for secondary battery and secondary battery
WO2012128215A1 (en) * 2011-03-23 2012-09-27 住友大阪セメント株式会社 Positive electrode active material for lithium ion battery and manufacturing method therefor, lithium ion battery electrode, and lithium ion battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1125983A (en) * 1997-07-04 1999-01-29 Japan Storage Battery Co Ltd Active material for lithium battery
JP2003034534A (en) * 2001-05-15 2003-02-07 Toyota Central Res & Dev Lab Inc Carbon-containing lithium iron complex oxide for positive electrode active substance for lithium secondary cell and method for producing the same
JP2004529059A (en) * 2001-05-23 2004-09-24 エヌ ヴェ ユミコア ソシエテ アノニム Lithium transition metal phosphate powder for storage batteries
JP2005071665A (en) * 2003-08-20 2005-03-17 Toyota Central Res & Dev Lab Inc Water-based lithium secondary battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1125983A (en) * 1997-07-04 1999-01-29 Japan Storage Battery Co Ltd Active material for lithium battery
JP2003034534A (en) * 2001-05-15 2003-02-07 Toyota Central Res & Dev Lab Inc Carbon-containing lithium iron complex oxide for positive electrode active substance for lithium secondary cell and method for producing the same
JP2004529059A (en) * 2001-05-23 2004-09-24 エヌ ヴェ ユミコア ソシエテ アノニム Lithium transition metal phosphate powder for storage batteries
JP2005071665A (en) * 2003-08-20 2005-03-17 Toyota Central Res & Dev Lab Inc Water-based lithium secondary battery

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007048612A (en) * 2005-08-10 2007-02-22 Saga Univ Active material for lithium cell
JP2008130525A (en) * 2006-11-24 2008-06-05 Kyushu Univ Manufacturing method of positive active material and nonaqueous electrolyte battery using it
JP2008243662A (en) * 2007-03-28 2008-10-09 Gs Yuasa Corporation:Kk Positive active material for nonaqueous electrolyte secondary battery, and nonaqueous secondary battery using the same
JP2010009898A (en) * 2008-06-26 2010-01-14 Hitachi Maxell Ltd Nonaqueous secondary battery and nonaqueous secondary battery system
JP2010135305A (en) * 2008-11-04 2010-06-17 Gs Yuasa Corporation Positive electrode material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery having the same
CN102282702A (en) * 2009-01-15 2011-12-14 株式会社杰士汤浅国际 Positive electrode active material for lithium secondary battery, and lithium secondary battery
WO2010082402A1 (en) * 2009-01-15 2010-07-22 株式会社Gsユアサ Positive electrode active material for lithium secondary battery, and lithium secondary battery
JP5440959B2 (en) * 2009-01-15 2014-03-12 株式会社Gsユアサ Positive electrode active material for lithium secondary battery and lithium secondary battery
JP2010287450A (en) * 2009-06-12 2010-12-24 Gs Yuasa Corp Cathode active material for lithium secondary battery and lithium secondary battery
WO2011039921A1 (en) * 2009-09-30 2011-04-07 日立ビークルエナジー株式会社 Lithium secondary battery, and cathode for use in a lithium secondary battery
JP2011233438A (en) * 2010-04-28 2011-11-17 Gs Yuasa Corp Cathode active material for secondary battery and secondary battery
WO2012128215A1 (en) * 2011-03-23 2012-09-27 住友大阪セメント株式会社 Positive electrode active material for lithium ion battery and manufacturing method therefor, lithium ion battery electrode, and lithium ion battery
JP2012204015A (en) * 2011-03-23 2012-10-22 Sumitomo Osaka Cement Co Ltd Positive electrode active material for lithium ion battery and method for producing the same, lithium ion battery electrode, and lithium ion battery
US9231244B2 (en) 2011-03-23 2016-01-05 Sumitomo Osaka Cement Co., Ltd. Positive electrode active material for lithium ion battery, method of producing the same, electrode for lithium ion battery, and lithium ion battery

Also Published As

Publication number Publication date
JP4655721B2 (en) 2011-03-23

Similar Documents

Publication Publication Date Title
US8951448B2 (en) Cathode material for lithium secondary battery, lithium secondary battery, and secondary battery module using the battery
JP7063981B2 (en) Negative electrode active material, negative electrode containing it and lithium secondary battery
JP5205424B2 (en) Positive electrode material for lithium secondary battery, lithium secondary battery, and secondary battery module using the same
JP3997702B2 (en) Nonaqueous electrolyte secondary battery
JP4655721B2 (en) Lithium ion secondary battery and positive electrode active material
KR100898871B1 (en) Method for preparing lithium metal phosphate
JP5199844B2 (en) Lithium secondary battery
JP5682040B2 (en) Pyrophosphate compound and method for producing the same
US20100247986A1 (en) Positive electrode material for lithium secondary battery, lithium secondary battery, and secondary battery module using lithium secondary battery
KR101473171B1 (en) Positive active material for rechargeable, method of preparing same, and rechargeable lithium battery comprising same
JP5164477B2 (en) Nonaqueous electrolyte secondary battery
CN103828099A (en) Blended cathode materials
JP2014221690A (en) Method for producing lithium-containing acid salt compound
KR20170142410A (en) Composite cathode active material for lithium battery, cathode for lithium battery including the same, and lithium battery including the cathode
JP2013095613A (en) CARBON-COATED LiVP2O7 PARTICLE, METHOD FOR PRODUCING THE SAME, AND LITHIUM ION SECONDARY BATTERY
US9853288B2 (en) Lithium secondary battery
JP5997087B2 (en) Method for producing positive electrode material for lithium secondary battery
JP5364865B2 (en) Method for producing positive electrode active material for lithium secondary battery
KR101186686B1 (en) Method of preparing positive active material for rechargeable lithium battery
CN103178265A (en) Positive active material, method of preparing the same, and rechargeable lithium battery
US9350021B2 (en) Cathode active material, cathode, and nonaqueous secondary battery
WO2014073701A1 (en) Positive electrode active material, lithium battery, and manufacturing method for positive electrode active material
KR101100029B1 (en) Method of preparing positive active material for lithium secondary battery and rechargeable lithium battery
KR101676687B1 (en) Positive active material for rechargeable lithium battery, method for manufacturing the same, and rechargeable lithium battery including the same
JP5195854B2 (en) Lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101213

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees