WO2014034775A1 - Method for producing carbon composite lithium manganese iron phosphate particle powder, carbon composite lithium manganese iron phosphate particle powder, and nonaqueous electrolyte secondary battery using carbon composite lithium manganese iron phosphate particle powder - Google Patents

Method for producing carbon composite lithium manganese iron phosphate particle powder, carbon composite lithium manganese iron phosphate particle powder, and nonaqueous electrolyte secondary battery using carbon composite lithium manganese iron phosphate particle powder Download PDF

Info

Publication number
WO2014034775A1
WO2014034775A1 PCT/JP2013/073132 JP2013073132W WO2014034775A1 WO 2014034775 A1 WO2014034775 A1 WO 2014034775A1 JP 2013073132 W JP2013073132 W JP 2013073132W WO 2014034775 A1 WO2014034775 A1 WO 2014034775A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon composite
lithium manganese
composite lithium
iron phosphate
particle powder
Prior art date
Application number
PCT/JP2013/073132
Other languages
French (fr)
Japanese (ja)
Inventor
祐司 三島
尊久 西尾
琢磨 北條
貞村 英昭
Original Assignee
戸田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 戸田工業株式会社 filed Critical 戸田工業株式会社
Priority to JP2014533075A priority Critical patent/JP6260535B2/en
Publication of WO2014034775A1 publication Critical patent/WO2014034775A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention is a carbon composite that is excellent in low-temperature current load characteristics and excellent in high-temperature repeatability.
  • lithium iron manganese phosphate particles Provided are lithium iron manganese phosphate particles and a secondary battery using the same.
  • LiMnPO 4 of 4.1 V class has attracted attention as a positive electrode active material useful for a high energy density type lithium ion secondary battery.
  • LiMnPO 4 is less liable to enter and exit Li than LiFePO 4 , it is required to improve the charge / discharge characteristics and the repetition characteristics thereof.
  • LiMnPO 4 having an olivine structure is composed of a strong phosphoric acid tetrahedral skeleton, an oxygen octahedron centered on manganese ions that contribute to redox, and lithium ions that are current carriers.
  • it is preferable to coat the particle surface of the positive electrode active material with carbon.
  • it functions as an electrode of a secondary battery, and at the time of charge / discharge using Li as a negative electrode, it is said that the following two-phase reaction is followed due to the presence of a plateau region in charge / discharge characteristics indicated by capacity and voltage.
  • LiMn 1-x Fe x PO 4 having an olivine structure the charge / discharge characteristics at low current are better as the particle surface is covered with carbon. Moreover, the charge / discharge characteristics under a high current load tended to be better as the fine particles having a crystallite size of less than 100 nm were satisfied. Moreover, in order to obtain a high molded body density as an electrode, each aggregate is formed so that they form a network with appropriately aggregated secondary particles and a conductive auxiliary agent such as carbon having a high graphitization rate. The state needs to be controlled. However, the positive electrode combined with a large amount of carbon is bulky, and there is a disadvantage that the substantial lithium ion density that can be filled per unit volume is lowered.
  • LiMn 1-x Fe x PO 4 that is fine and moderately coated with carbon is obtained, and a high density is obtained through a small amount of conductive auxiliary agent. There is a need to form aggregates.
  • LiMnPO 4 particles and carbon are mechanically mixed
  • a mechanochemical method in which LiMnPO 4 particles and carbon are mechanically mixed is generally known as a means for compounding LiMnPO 4 particles and carbon to increase the capacity.
  • LiMn 1-x Fe x PO 4 has a catalytic effect of Fe, and carbon is deposited on the particle surface by a reaction in an inert gas of an organic substance, thereby improving its electric resistance.
  • the degree of carbon coating is insufficient compared to LiFePO 4 , and further surface modification of the particles is required (Non-Patent Documents 1 to 7).
  • Patent Document 1 a technique for obtaining a high capacity by compounding with carbon having a high specific surface area
  • Patent Document 2 a technique for adding different metal elements to reduce electric resistance
  • Patent Document 3 a technique for synthesizing by a hydrothermal method, a sol-gel method
  • the most demanding method for producing particle powder at low cost and low environmental load is currently in demand, but has not yet been established.
  • LiMn 1-x Fe x PO 4 (0.02 ⁇ x ⁇ 0) having low electric resistance, high filling property, and excellent charge / discharge repetition characteristics. .5) Particle powder cannot be obtained industrially.
  • Patent Document 1 is a technique for improving the capacity when LiMn 1-x Fe x PO 4 particle powder is used as a positive electrode, and it touches on the filling property to the electrode and the control of the secondary aggregate state. Absent.
  • Patent Document 2 The technique described in Patent Document 2 is not a technique for obtaining high electronic conductivity by combining LiMnPO 4 particle powder and carbon, and it is difficult to say that a high-capacity positive electrode active material can be obtained.
  • Patent Document 3 The technique described in Patent Document 3 is a production method using a solid-phase reaction method, and since it has two heat treatments, it is difficult to say that the cost is low.
  • Patent Document 6 the main component adjustment method of Li, Mn, Fe, and P described in Patent Document 6 requires fine pulverization and high dispersion to nano-size with an apparatus such as a ball mill in order to mix adjustment additives in a dry manner. From the viewpoint of mass productivity, it was difficult to say that it was industrial.
  • the present invention improves the crystallinity and surface properties of the positive electrode active material obtained after firing by optimizing the adjustment method of the main component composition ratio before firing, and has low electrical resistance and high fillability.
  • Another object of the present invention is to provide a carbon composite lithium manganese iron phosphate particle powder that is excellent in repetitive characteristics of charge and discharge at a high temperature and a secondary battery using the same.
  • the carbon composite lithium manganese phosphate particle powder which consists of the 3rd process of baking the precursor mixed powder obtained by the 2nd process
  • the aqueous suspension or water-containing product in the first step is 0.98 ⁇ Li / (Mn + Fe) ⁇ 1.20, 0.98 ⁇ P / (Mn + Fe) ⁇ 1.20 in terms of mol ratio.
  • the present invention provides a carbon composite lithium manganese iron phosphate particle powder in which the organic substance is a water-soluble organic substance in the first step of the method for producing the carbon composite lithium iron manganese phosphate particle powder described in the present invention 1.
  • This is a manufacturing method (Invention 2).
  • the present invention provides a polyhydric alcohol, a sugar, or an organic substance in which the organic substance contains a hydroxy group (—OH) or a carboxyl group (—COOH). It is a manufacturing method of this invention 1 or 2 which is the organic substance which belongs to an acid (this invention 3).
  • the present invention is the production method according to any one of the present inventions 1 to 3, wherein the drying temperature in the second step of the method for producing the carbon composite lithium manganese iron phosphate particle powder is 40 ° C. to 250 ° C. ( Invention 4).
  • the present invention is a carbon composite lithium manganese iron phosphate particle powder obtained by the production method described in any of the present inventions 1 to 4 (Invention 5).
  • the present invention is a non-aqueous electrolyte secondary battery produced using the carbon composite lithium manganese iron phosphate particle powder described in the present invention 5 (Invention 6).
  • the method for producing carbon composite lithium manganese phosphate particles according to the present invention is low in cost and can be produced with a small environmental load, and the powder obtained by the method has low electrical resistance and high filling properties.
  • a secondary battery using it as a positive electrode active material has a high capacity in current load characteristics at low temperatures, and sufficiently withstands repeated charge and discharge even at high temperatures. Therefore, the carbon composite lithium manganese iron phosphate particles according to the present invention are suitable as a positive electrode active material for a non-aqueous electrolyte secondary battery.
  • Example 2 is a high-magnification secondary electron image of the carbon composite lithium iron manganese phosphate particles obtained in Example 1 with a scanning electron microscope.
  • 2 is a low-magnification secondary electron image of the carbon composite lithium iron manganese phosphate particles obtained in Example 1 with a scanning electron microscope.
  • the carbon composite lithium manganese iron phosphate particle powder obtained in Example 1 is made positive, and the discharge capacity evaluated at 25 ° C. and 0 ° C. using a coin cell is dependent on the current load. It is the electric current load dependence of the discharge curve which made the carbon composite lithium manganese iron phosphate particle powder obtained in Example 1 positive electrode and evaluated at 0 ° C. using a coin cell.
  • the carbon composite lithium iron manganese phosphate particles according to the present invention are produced based on lithium iron manganese phosphate obtained by hydrothermal treatment.
  • Hydrothermal treatment is a method of synthesizing a compound under high temperature and high pressure by mixing aqueous solutions of raw material compounds.
  • the method for obtaining lithium iron manganese phosphate by hydrothermal treatment is not limited, but the following method is preferably used in order to obtain fine lithium iron manganese phosphate with a high production rate.
  • the product obtained by the hydrothermal treatment is a fine Li 1- ⁇ Mn 1-x Fe x P 1- ⁇ O 4- ⁇ (0.02 ⁇ x ⁇ 0.5, 0 ⁇ ⁇ ) with a crystallite size of 200 nm or less. , ⁇ ⁇ 0.2).
  • ⁇ , ⁇ , and ⁇ are crystallographic parameters, and ⁇ and ⁇ did not exceed 0.2.
  • is a parameter added to satisfy the electrical neutral condition.
  • Li source LiOH.H 2 O, Li 2 CO 3 , Mn raw material, MnSO 4 .H 2 O, MnCO 3 , Fe raw material, FeSO 4 .nH 2 O, FeCO 3 , P raw materials include H 3 PO 4 , (NH 4 ) H 2 PO 4 , (NH 4 ) 2 HPO 4 , (NH 4 ) 3 PO 4 and the like.
  • the raw material fine particles it is preferable to make the raw material fine particles so that the raw material mixing and dissolution / precipitation reaction can be performed quickly under the condition that many crystal nuclei of lithium iron manganese phosphate are generated.
  • a medium such as a ZrO 2 ball
  • the apparatus used for pulverization include a ball mill and a medium stirring mill
  • the high concentration raw material mixing apparatus include a roller and a kneader.
  • an organic acid such as ascorbic acid or citric acid or a reducing sugar such as glucose may be used.
  • the amount is preferably 1 to 20 mol% with respect to (Mn + Fe), and Li 1 ⁇ Mn 1 ⁇ x Fe x P 1 ⁇ O 4 ⁇ (0.02 ⁇ x ⁇ 0.5) after hydrothermal treatment. , 0 ⁇ ⁇ , ⁇ ⁇ 0.2), and the primary particle size of the product tends to be refined.
  • LiOH, NH 3 , NaOH, Na 2 CO 3 , NH 3 , urea, ethanolamine, or the like can be used as an alkali source during hydrothermal treatment.
  • the pH needs to be 5.5 to 12.5.
  • reaction rate and particle size of lithium iron manganese phosphate tend to increase, but it is preferable to react at 90 to 300 ° C. for 2 to 3 hours.
  • the reaction rate of lithium iron manganese phosphate after the hydrothermal treatment obtained by this method exceeds 80 wt%.
  • the product may be subjected to filtration washing or decantation washing for removal of impurity sulfate ions or ammonium ions and adjustment of the Li, Mn, Fe, and P composition ratios.
  • the apparatus include a press filter and a filter thickener.
  • the first step of the present invention is to obtain an aqueous suspension or hydrate containing an olivine-type lithium iron manganese phosphate, a lithium compound and / or a phosphorus compound, and an organic substance produced by hydrothermal treatment.
  • An aqueous slurry of lithium manganese iron phosphate obtained by hydrothermal treatment as a method of obtaining an aqueous suspension or hydrate containing lithium manganese iron phosphate and lithium compound and / or phosphorus compound and organic matter produced by hydrothermal treatment
  • Lithium manganese iron phosphate produced by hydrothermal treatment has many defects in the crystal. Therefore, in order to form a desired lithium manganese iron phosphate solid solution with few defects, it is necessary to adjust the main component composition ratio before firing. That is, the main component composition ratio is 0.98 ⁇ Li / (Mn + Fe) ⁇ 1.15, 0.98 ⁇ P / (Mn + Fe) ⁇ 1 with respect to lithium iron manganese phosphate obtained by hydrothermal treatment. .15, P ⁇ Li needs to be adjusted by adding a lithium compound and / or a phosphorus compound. Except for a predetermined composition ratio, an impurity phase is excessively generated, which causes deterioration of battery characteristics.
  • LiOH Li 2 CO 3 or the like
  • LiOH LiOH, Li 2 CO 3 or the like
  • H 3 PO 4 As the phosphorus compound used for adjusting the main component composition ratio in the present invention, H 3 PO 4 , (NH 4 ) H 2 PO 4 , (NH 4 ) 2 HPO 4 , (NH 4 ) 3 PO 4, or the like is used. Can do.
  • a compound containing lithium and phosphorus it can be used LiH 2 PO 4, Li 3 PO 4, LiPO 3 , and the like.
  • a lithium compound, a phosphorus compound, a compound containing lithium and phosphorus may be used in combination.
  • 60 wt% or more of the lithium compound and / or phosphorus compound added to adjust the composition ratio is Li 1-y H 2 + y PO 4 (0 ⁇ y ⁇ 1).
  • the carbon composite lithium manganese phosphate obtained after firing has a lattice of sites unique to each element. Defects are almost reduced, and a high-performance positive electrode active material can be obtained by increasing crystallinity.
  • 75 wt% or more is used with respect to the lithium compound and / or the phosphorus compound to which Li 1-y H 2 + y PO 4 is added.
  • LiH 2 PO 4 is preferably used at 60 wt% or more, more preferably 75 wt% or more.
  • the amount of LiH 2 PO 4 used is less than 60 wt%, the adjustment of the main component composition ratio is not uniform at the individual particle level, and coarse Li 3 PO 4 and Li 4 P 2 O 4 are produced excessively, It becomes a factor which deteriorates battery characteristics.
  • Li 3 PO 4 is preferably used because it easily forms water-insoluble fine particles of 50 nm or less and can be easily and uniformly mixed with lithium iron manganese phosphate before firing.
  • the aqueous suspension or hydrated product obtained in the first step needs to contain 1 to 20 wt% of organic matter relative to lithium iron manganese phosphate obtained by hydrothermal treatment.
  • the amount of the organic substance is preferably 5 to 15 wt%.
  • the amount of the organic substance added is too small, the amount of residual carbon after firing is small, and the composite of lithium iron manganese phosphate and carbon by firing is insufficient.
  • alpha-Fe impurity phase when the addition amount of the organic material is too large, (Mn + Fe) 2 P , (Mn + Fe) 3 P product is promoted, and is a cause of deteriorating the battery characteristics.
  • a water-soluble or water-dispersible organic substance can be used, and it is particularly preferable to use a water-soluble organic substance for uniform improvement of the lithium manganese iron phosphate particle surface. Both water-soluble organic substances and water-dispersible organic substances may be used.
  • the water-soluble organic substance is preferably a water-soluble organic substance belonging to a polyhydric alcohol, sugar, or organic acid containing a hydroxy group (—OH) or a carboxyl group (—COOH), specifically, polyvinyl alcohol (PVA). Sucrose, citric acid, ethylene glycol and the like.
  • water-dispersible organic substances include hydrophilized synthetic fibers and carbon black, such as polyethylene particles, acetylene black (manufactured by Denki Kagaku Kogyo Co., Ltd.) and ketjen black (manufactured by Lion Co., Ltd.).
  • hydrophilized synthetic fibers and carbon black such as polyethylene particles, acetylene black (manufactured by Denki Kagaku Kogyo Co., Ltd.) and ketjen black (manufactured by Lion Co., Ltd.).
  • an alkaline solution such as PVA having a hydrophilic group and a hydrophobic group, a nonionic surfactant (for example, polyoxyethylene ether), or LiOH.
  • lithium iron phosphate with an olivine structure produced by hydrothermal treatment and a lithium compound for adjusting the main component composition ratio and / or a phosphorus compound and an organic substance are mixed in the presence of water. Uniform mixing is achieved. As a result, the particle surface of lithium iron manganese phosphate is improved, and an olivine-type lithium iron manganese phosphate particle powder having high battery characteristics can be obtained by an industrial manufacturing method with a low environmental load. is there.
  • the lithium compound and / or phosphorus compound for adjusting the main component composition ratio is Li 1-y H 2 + y PO 4 (0 ⁇ y ⁇ 1), and water is added as an organic substance to be added.
  • soluble organic matter in order to cause a phosphate ester reaction and a polymerization reaction by dehydration by heating when drying and obtaining a precursor powder for firing in the second step, together with carbon obtained by firing, It is believed that the Li-P amorphous phase improves the surface of lithium manganese iron phosphate particles.
  • the present invention dries the aqueous suspension or hydrate of lithium manganese iron phosphate obtained in the first step to obtain a precursor mixed powder for firing.
  • the drying temperature is preferably 40 to 250 ° C.
  • a method for drying an aqueous suspension or a hydrated product an aqueous slurry is mixed with a disper or the like and dried with a normal dryer, a method with a spray dryer or a slurry dryer, an aqueous cake or a dry powder with water. Examples include a method of kneading the hydrated product added with a roller and a kneader and drying with a normal dryer.
  • Li 1-y H 2 + y PO 4 used for adjusting the main component composition ratio is acidic, so that drying in a short time is desirable so as not to damage lithium iron manganese phosphate particles after hydrothermal treatment. (E.g., within 1 hour for a 500 g slurry).
  • the aggregate particle size of the carbon composite lithium manganese iron phosphate particles according to the present invention there is almost no change in the aggregate particle size before and after firing. Therefore, it is necessary to adjust the aggregate particle diameter between the first step and the second step or after the third step.
  • the adjustment of the aggregate particle diameter can be controlled by the mixing / drying method, classification / pulverization in each step. Examples of the pulverizing apparatus include a high-speed impact pulverizer and an agate mortar.
  • the precursor powder mixture for firing obtained in the second step is fired at a temperature of 250 to 850 ° C. in an inert gas or reducing gas atmosphere having an oxygen concentration of 0.1% or less.
  • an apparatus for performing firing there are a gas flow type box muffle furnace, a gas flow type rotary furnace, a fluidized heat treatment furnace, and the like.
  • the inert gas N 2 , Ar, H 2 O, CO 2 or a mixed gas thereof is used.
  • As the reducing gas, H 2 , CO, or a mixed gas of these gases and the inert gas is used.
  • a trace amount of Fe 3+ contained in the Fe raw material is changed to Fe 2+ by an organic substance or a reducing gas to generate lithium iron manganese phosphate, and therefore a precursor for firing in an atmosphere having an oxygen concentration of 0.1% or less. It is necessary to fire the mixed powder.
  • the carbon composite lithium manganese iron phosphate particles according to the present invention each have a lithium and phosphorus content of 0.98 to 1.15 in terms of a molar ratio to the transition metal, and the lithium content is not less than phosphorus. .
  • the lithium and phosphorus contents are 1.01 to 1.10, respectively, in molar ratio to the transition metal, and the lithium content is not less than phosphorus.
  • the BET specific surface area of the carbon composite lithium iron manganese phosphate particles according to the present invention is preferably 6 to 70 m 2 / g.
  • the BET specific surface area value is less than 6 m 2 / g, the lithium iron manganese phosphate particles are large particles, and the movement of Li ions in the crystal is slow, so that it is difficult to extract current.
  • the BET specific surface area value is less than 6 m 2 / g, the lithium iron manganese phosphate particles are large particles, and the movement of Li ions in the crystal is slow, so that it is difficult to extract current.
  • 70 m ⁇ 2 > / g since the fall with the packing density of a positive electrode and the reactivity with electrolyte solution increase, it is unpreferable. More preferably, it is 8 to 28 m 2 / g, and even more preferably 9 to 20 m 2 / g.
  • the carbon content of the carbon composite lithium manganese phosphate particles according to the present invention is preferably 0.7 to 8.0 wt%.
  • the carbon content is less than 0.7 wt%, the electric resistance of the obtained powder becomes high, and the charge / discharge characteristics of the secondary battery are deteriorated.
  • the content exceeds 8.0 wt%, the positive electrode filling density decreases, and the energy density per volume of the secondary battery decreases. More preferably, it is 1.0 to 4.0 wt%.
  • the carbon composite lithium manganese iron phosphate particle powder according to the present invention has an impurity sulfur content of 0.08 wt% or less, and good storage characteristics can be obtained in a non-aqueous electrolyte secondary battery.
  • impurities such as lithium sulfate are formed, and these impurities cause a decomposition reaction during charge and discharge, and the resistance increase during high temperature cycle characteristics becomes severe. More preferably, it is 0.05 wt% or less.
  • the crystallite size of the carbon composite lithium manganese phosphate particles according to the present invention is preferably 25 to 300 nm. It is extremely difficult to mass-produce a powder having a crystallite size of less than 25 nm while satisfying other powder characteristics by the production method of the present invention, and Li moves inside the particle at a crystallite size exceeding 300 nm. Time is required, and as a result, the current load characteristic of the secondary battery is deteriorated. More preferably, it is 30 to 200 nm, and still more preferably 40 to 150 nm.
  • the agglomerated particle size of the carbon composite lithium manganese phosphate particles according to the present invention is preferably 0.3 to 30 ⁇ m.
  • the aggregated particle diameter is less than 0.3 ⁇ m, it is not preferable because the positive electrode packing density decreases and the reactivity with the electrolyte increases.
  • the aggregated particle diameter exceeds 30 ⁇ m, the electrode film thickness becomes closer, and there are cases where only a few particles are placed in the film thickness direction of the electrode, making sheeting extremely difficult. More preferably, it is 0.5 to 25 ⁇ m, and even more preferably 1.0 to 20 ⁇ m.
  • the compression-molded body density of the carbon composite lithium manganese phosphate particles according to the present invention is preferably 1.8 g / cc or more.
  • the closer to the true density, the better the packing property, and the true density of the layered compound LiCoO 2 often used as the positive electrode active material of the secondary battery is 5.1 g / cc, whereas the true density of lithium iron manganese phosphate is The density is as low as 3.5 g / cc. Therefore, a preferable compression molding density is 2.0 g / cc or more exceeding 50% of the true density.
  • the electric resistivity of the compression-molded body of carbon composite lithium iron manganese phosphate particles according to the present invention is preferably 1.0 ⁇ 10 3 ⁇ ⁇ cm or less. If the electrical resistivity is low, the amount of the conductive material added when producing the positive electrode sheet can be reduced, and a positive electrode sheet having a high density can be obtained.
  • a conductive agent and a binder are added and mixed according to a conventional method.
  • the conductive agent carbon black, graphite and the like are preferable, and as the binder, polytetrafluoroethylene, polyvinylidene fluoride and the like are preferable.
  • the solvent for example, N-methyl-pyrrolidone is used, and the positive electrode active material sieved to 75 ⁇ m or less and the slurry containing the additive are kneaded until they become honey. The obtained slurry is applied onto the current collector with a doctor blade having a groove of 25 to 500 ⁇ m.
  • the coating speed is about 60 cm / sec, and an Al foil of about 20 ⁇ m is usually used as a current collector. Drying is performed at 80 to 180 ° C. to remove the solvent and soften the binder.
  • the sheet is subjected to a calender roll treatment so as to have a pressure of 1 to 3 t / cm 2 . In the step of forming the sheet, an oxidation reaction of Fe 2+ to Fe 3+ occurs even at room temperature. Therefore, it is desirable to carry out in a non-oxidizing atmosphere as much as possible.
  • the density of the compression molded body of the positive electrode active material is as high as 1.8 g / cc or more, and the electrical resistivity of the compression molded body of the positive electrode active material is 0.1 to 10 4 ⁇ ⁇ cm. Therefore, the amount of carbon added during sheet preparation can be reduced, and since the BET specific surface area of the positive electrode active material is as low as 6 to 70 m 2 / g, the amount of binder added can be reduced, resulting in a high-density positive electrode. A sheet is obtained.
  • lithium metal lithium metal, lithium / aluminum alloy, lithium / tin alloy, graphite or the like can be used, and the negative electrode sheet is produced by the same doctor blade method or metal rolling as the positive electrode.
  • an organic solvent containing at least one of carbonates such as propylene carbonate and dimethyl carbonate and ethers such as dimethoxyethane can be used as the solvent for the electrolytic solution.
  • At least one lithium salt such as lithium perchlorate and lithium tetrafluoroborate can be dissolved in the above solvent and used.
  • the secondary battery manufactured using the positive electrode sheet of the present invention has a discharge capacity of 150 mAh / g or more at 0.1 C at 25 ° C., a discharge capacity at 1 C of room temperature of 140 mAh / g or more, and a discharge capacity of 5 C at room temperature. It is a characteristic of 120 mAh / g or more.
  • 0.1 C is a current value fixed so that a current of 170 mAh / g in theoretical capacity of LiMn 1-x Fe x PO 4 (0.02 ⁇ x ⁇ 0.5) flows in 20 hours.
  • I is a current value fixed so that a current having a theoretical capacity of 170 mAh / g flows in 1 hour
  • 5C is a current value fixed so that a current having a theoretical capacity of 170 mAh / g flows in 1/5 hour.
  • a higher C coefficient means higher current load characteristics.
  • the secondary battery manufactured using the positive electrode sheet according to the present invention showed excellent characteristics in terms of current load characteristics at low temperatures and cycle characteristics at high temperatures, as shown in FIGS.
  • the carbon composite lithium manganese iron phosphate particles according to the present invention are produced by hydrothermal treatment and heat treatment, and can be produced at low cost and with low environmental load. According to the production method of the present invention, the obtained carbon composite lithium iron manganese phosphate particle powder is controlled in crystallinity, particle surface, and aggregated particle size, and therefore when used as a positive electrode active material for a secondary battery.
  • the present inventor presumes that a high capacity can be obtained even in current load characteristics at room temperature and low temperature, and that charging and discharging can be sufficiently repeated at high temperature.
  • a typical embodiment of the present invention is as follows.
  • the Li and P concentrations of the lithium and phosphorus-containing main raw materials were measured by neutralization titration using a pH meter and hydrochloric acid or NaOH reagent.
  • the Fe concentration of the iron raw material was quantified by titration (JIS K5109), and the Mn concentration of the manganese raw material was also quantified by titration (Analytical Chemistry Handbook, edited by the Japan Analytical Chemical Society). Based on these analysis results, the reaction concentration and the raw material charge ratio were determined. The weight ratio of the additive was calculated by the amount charged.
  • the reaction rate of the hydrothermal treatment was evaluated by thermal analysis using an atmospheric tubular furnace (HS10S-2050TF, manufactured by Heat System Co., Ltd.).
  • the dry powder of lithium iron manganese phosphate obtained by hydrothermal treatment was calculated from the ratio of weight loss before and after heat treatment at 700 ° C. for 2 hours in an inert gas atmosphere.
  • the X-ray diffractometer SmartLab [manufactured by Rigaku Corporation] was used to measure under the conditions of Cu-K ⁇ , 45 kV, 200 mA, and the Rietveld method was used. .
  • the X-ray diffraction pattern was measured in steps of 0.02 ° with a counting time of 3.0 seconds and 2 ⁇ in the range of 15-90 ° so that the count number of the maximum peak intensity was 8000-15000.
  • SRM674b of NIST National Institute of Standards and Technology
  • RIETA 2000 was used as a Rietveld analysis program.
  • the TCH pseudo-void function is used as the profile function
  • the method such as Finger is used for asymmetry of the function
  • the reliability factor S value is 2.0. Analyzed to cut. The same method was used to evaluate the lattice constant (unit cell volume) and crystallite size of the electrode active material.
  • the Li, Mn, Fe, and P main elements of lithium manganese iron phosphate in each step were measured by ICP measurement using an emission plasma analyzer ICAP-6500 [manufactured by Thermo Fisher Scientific Co., Ltd.].
  • the sample was dissolved in an acid solution at 200 ° C. using an autoclave.
  • the powder evaluation of the carbon composite lithium manganese iron phosphate particles obtained by the present invention was performed as follows.
  • MONOSORB [manufactured by Yuasa Ionics Co., Ltd.] was used for the BET specific surface area after the sample was dried and deaerated under nitrogen gas at 120 ° C. for 45 minutes.
  • Residual carbon and residual sulfur were quantified by burning them in an oxygen stream in a combustion furnace using EMIA-820 [manufactured by Horiba Ltd.].
  • the density of the compression-molded body was compacted to 1.5 t / cm 2 with a 13 mm ⁇ jig and calculated from the weight and volume.
  • the electrical resistivity of the compression molded body was measured by the two-terminal method.
  • Hitachi S-4300 scanning electron microscope (SEM) was used for shape observation of the carbon composite lithium manganese phosphate obtained by the present invention.
  • the carbon of the conductive auxiliary agent used is acetylene black.
  • the binder used was polyvinylidene fluoride (KF polymer manufactured by Kureha Co., Ltd.) having a polymerization degree of 630,000, and was dissolved in N-methylpyrrolidone (manufactured by Kanto Chemical Co., Inc.).
  • the dried sheet was pressurized to 3 t / cm 2 to prepare a positive electrode sheet having a thickness of about 30 to 40 ⁇ m.
  • a positive electrode sheet punched to 2 cm 2 , a 0.15 mm Li negative electrode punched to 17 mm ⁇ , a separator (Celguard # 2400) in 19 mm ⁇ , EC and DMC (ethylene carbonate: dimethyl carbonate 3: 7) in which 1 mol / l LiPF 6 was dissolved
  • a CR2032-type coin cell manufactured by Hosen Co., Ltd. was prepared using an electrolytic solution (manufactured by Kishida Chemical Co., Ltd.) mixed in a volume ratio.
  • the discharge capacity at constant current values of 0.1 C, 1 C, and 5 C at 25 ° C. was evaluated in a coin cell using a positive electrode sheet having an electrode composition ratio A.
  • the current load characteristics at 0 ° C. and 25 ° C. were evaluated in a coin cell using a positive electrode sheet having an electrode composition ratio B.
  • the current value during charging was a constant current value of 0.1 C, and discharging was performed at a constant current value corresponding to 0.1 to 5 C.
  • the charge / discharge curve / discharge capacity at 60 ° C. was evaluated in a coin cell using a positive electrode sheet having an electrode composition ratio B.
  • Charge with a constant current value corresponding to 0.2 C, 1, 2, 12,..., 10 ⁇ i + 2 (i 1 to 6) discharge at a constant current value corresponding to 0.2 C, others 1 C
  • the discharge capacity of each cycle when discharged at a constant current value corresponding to is measured.
  • the voltage range during charging and discharging was performed with a lower limit of 2.0 V, an upper limit of 4.5 V, a lower limit of 2.0 V, and an upper limit of 4.3 V.
  • An aqueous slurry adjusted to a raw material charge ratio of 8: 0.2: 1.05 was obtained.
  • the main crystal phase in the slurry was NH 4 MnPO 4 .
  • the slurry was mixed with a ball mill, and the aggregated particles were pulverized to adjust the particle size.
  • the cake obtained is peptized and a slurry is prepared. From the results of the reaction rate and the main component composition ratio, the lithium compound and / or phosphorus compound and organic matter are added and mixed so that the main component composition ratio shown in Table 1 is obtained. did. The main component composition ratio was confirmed by ICP measurement.
  • the addition amount of the organic substance in% by weight shown in Table 1 is a value with respect to the solid content obtained when the cake of lithium manganese iron phosphate obtained after the hydrothermal treatment is dried. (First step).
  • the obtained precursor mixed powder for firing was placed in an alumina crucible and subjected to heat treatment at 700 ° C. for 5 hours in a nitrogen atmosphere.
  • the temperature rising rate was 200 ° C./hr, and the N 2 gas flow rate was 1 L / min.
  • the obtained powder was fine, and was carbon composite lithium manganese iron phosphate particle powder. Further, as a result of ICP measurement, the composition ratio of Li, Mn, Fe, and P adjusted in the first step was not different. 1 and 2 show high and low magnification SEM photographs (secondary electron images) of the carbon composite lithium manganese iron phosphate particles obtained. It was found that the obtained powder was composed of primary particles of 100 nm or less and agglomerated particles of several tens ⁇ m in which the primary particles were aggregated.
  • Table 2 shows the powder characteristics obtained by making a positive electrode at the electrode composition ratio A and evaluated by the coin cell
  • FIGS. 3 to 6 show the battery characteristics at the electrode composition ratio B.
  • good results were obtained not only in the battery characteristics at 25 ° C. but also in the current load characteristics at 0 ° C. and the cycle characteristics at 60 ° C.
  • Table 1 shows the experimental conditions of the following examples and comparative examples
  • Table 2 shows the powder characteristics
  • Table 3 shows the battery characteristics.
  • Examples 2 and 3 The lithium compound and / or phosphorus compound described in Table 1 and the carbon source were changed in the subsequent steps for the hydrothermal treatment and the lithium iron manganese phosphate particle-containing cake obtained after washing with the same specifications as in Example 1. In the same manner as in Example 1, drying, pulverization / classification, baking, and pulverization / classification were performed to obtain lithium iron manganese phosphate particles. Tables 2 and 3 show the evaluation results.
  • Example 4 After drying the cake containing lithium manganese iron phosphate particles after hydrothermal treatment and washing with the same specifications as in Example 1, using the lithium compound and / or phosphorus compound and carbon source listed in Table 1, 7 .5 wt% water was added and mixed in a coffee mill. Subsequent treatment was performed by the method described in Example 1 to obtain lithium iron manganese phosphate particles. Tables 2 and 3 show the evaluation results.
  • a part of the sample after washing with water was taken out and dried at 105 ° C. overnight, and Li 1 - ⁇ Mn 0.85 Fe 0.15 P 1- ⁇ O 4- ⁇ was obtained by Rietveld analysis of the XRD diffraction pattern. It was found to contain (0 ⁇ ⁇ , ⁇ ⁇ 0.2) and 4.3 wt% of the impurity phase Li 3 PO 4 .
  • the lithium manganese phosphate particle-containing slurry obtained by peptizing the obtained cake was dried, pulverized and classified in the same manner as in Example 1 except that the lithium compound and / or phosphorus compound described in Table 1 and the carbon source were changed. Firing, pulverization and classification were performed to obtain lithium iron manganese phosphate particles. Tables 2 and 3 show the evaluation results.
  • the result was 3.0 wt% impurity phase Li 3 PO 4 and Li 1- ⁇ MnP 1- ⁇ in the Rietveld analysis of the XRD diffraction pattern. It was found that O 4- ⁇ (0 ⁇ ⁇ , ⁇ ⁇ 0.2).
  • the lithium manganese phosphate particle-containing slurry obtained by peptizing the obtained cake was dried, pulverized and classified in the same manner as in Example 1 except that the lithium compound and / or phosphorus compound described in Table 1 and the carbon source were changed. Firing, pulverization and classification were performed to obtain lithium iron manganese phosphate particles. Tables 2 and 3 show the evaluation results. In the coin cell using the electrode composition ratio B, a discharge capacity of 128 mAh / g (1C) was obtained at 0 ° C., and the capacity retention rate after 62 cycles at 60 ° C. was 98%.
  • the obtained powder was fine, the unit cell volume close to the formula (1) was obtained because LiMnPO 4 itself hardly forms a defect structure. On the other hand, the battery characteristics are very poor and the carbon coating seems to be insufficient. At the same time, since the amount of carbon was large and the aggregated particle size was small, the density of the compression molded product was lowered.
  • Example 4 except that the lithium compound and / or phosphorus compound and carbon source described in Table 1 were changed with respect to the cake containing lithium manganese iron phosphate particles after hydrothermal reaction and water washing obtained in the same specifications as in Example 1. Similarly, after drying the cake, the lithium compound and / or phosphorus compound, carbon source and water were mixed, re-dried, pulverized / classified, fired, and pulverized / classified to obtain lithium iron manganese phosphate particles. . Tables 2 and 3 show the evaluation results.
  • Example 1 except that the lithium compound and / or phosphorus compound and carbon source described in Table 1 were changed with respect to the cake containing lithium manganese iron phosphate particles after the hydrothermal reaction and water washing obtained in the same specifications as Example 1.
  • mixing, drying, pulverization / classification, firing, and pulverization / classification were performed to obtain lithium iron manganese phosphate particles.
  • Tables 2 and 3 show the evaluation results.
  • Comparative Examples 3 and 4 did not use Li 1-y H 2 + y PO 4 for adjusting the composition ratio, an undesirable impurity crystal phase was generated. As a result, it is surmised that the surface modification of the particles became insufficient and sufficient battery characteristics could not be obtained.
  • Example 5 The firing precursor mixed powder obtained in the second step in the same manner as in Example 1 is fired at 800 ° C., which is 100 ° C. higher than the other examples, pulverized and classified, and lithium manganese iron phosphate particles A powder was obtained. Tables 2 and 3 show the evaluation results.
  • the impurity phase Fe 2 P was detected from the lithium iron manganese phosphate obtained in Comparative Example 5, and the unit cell volume was large, probably because Fe was reduced from the olivine structure. In addition, it was difficult to say that the battery characteristics shown in Table 3 were good because the impurity phase suppressed the modification of the particle surface.
  • the method for producing carbon composite lithium iron manganate particles according to the present invention is a low cost and low environmental load production method.
  • the carbon composite lithium iron manganese phosphate particles according to the present invention can produce a highly filled positive electrode sheet, and a secondary battery using the positive electrode sheet has a current load at 25 ° C. and 0 ° C. It was confirmed that a high capacity was obtained in terms of characteristics. At the same time, as a result of the high-temperature charge / discharge cycle test at 60 ° C., a capacity retention rate of 98% or more was confirmed.
  • the present invention uses an olivine-type carbon composite lithium iron manganate particle powder produced by a low-cost, low environmental load manufacturing method as a secondary battery positive electrode active material, thereby increasing the energy density per volume.
  • a high capacity can be obtained even in a low temperature, high current load characteristic, and a nonaqueous solvent secondary battery having a high capacity retention rate in a high temperature cycle characteristic can be obtained.

Abstract

The present invention provides a method for producing a carbon composite lithium manganese iron phosphate particle powder having an olivine structure (wherein the molar ratio Mn:Fe is from 0.98:0.02 to 0.50:0.50). This method for producing a carbon composite lithium manganese iron phosphate particle powder comprises: a first step wherein an aqueous suspension or water-containing material, which contains lithium manganese iron phosphate that has an olivine structure and is produced by a hydrothermal treatment, a lithium compound and/or a phosphorus compound, and an organic material, is obtained; a second step wherein a precursor mixture powder for firing is obtained by drying the aqueous suspension or water-containing material obtained in the first step; and a third step wherein the precursor mixture powder for firing obtained in the second step is fired. The present invention also provides: the carbon composite lithium manganese iron phosphate particle powder; and a secondary battery which uses the carbon composite lithium manganese iron phosphate particle powder. A carbon composite lithium manganese iron phosphate positive electrode active material having an olivine structure, which can be easily produced at low cost and exhibits excellent fillability, can be provided by this production method.

Description

炭素複合化リン酸マンガン鉄リチウム粒子粉末の製造方法、炭素複合化リン酸マンガン鉄リチウム粒子粉末、及び該粒子粉末を用いた非水電解質二次電池Method for producing carbon composite lithium manganese iron phosphate particle powder, carbon composite lithium manganese iron phosphate particle powder, and nonaqueous electrolyte secondary battery using the particle powder
 本発明は、低コストで環境負荷が少なく製造でき、高出力且つ高エネルギー密度を示す二次電池用の正極活物質として、低温の電流負荷特性に優れ、且つ高温の繰返し特性に優れた炭素複合化リン酸マンガン鉄リチウム粒子粉末、及びそれを用いた二次電池を提供する。 As a positive electrode active material for a secondary battery that can be manufactured at low cost with low environmental impact, and has high output and high energy density, the present invention is a carbon composite that is excellent in low-temperature current load characteristics and excellent in high-temperature repeatability. Provided are lithium iron manganese phosphate particles and a secondary battery using the same.
 近年、AV機器やパソコン等の電子機器、電動工具等のパワーツールのポータブル化、コードレス化が急速に進んでおり、これらの駆動用電源として小型、軽量で高エネルギー密度を有する二次電池への要求が高くなっている。また、地球環境への配慮から、ハイブリッド自動車、電気自動車の開発及び実用化がなされ、出力特性にも優れた二次電池への要求が高くなっている。このような状況下において、充放電容量が大きく、且つ安全性が高いという長所を有するリチウムイオン二次電池が注目されている。 In recent years, electronic devices such as AV equipment and personal computers, and power tools such as electric tools have been rapidly becoming portable and cordless. As a power source for driving these, secondary batteries having a small size, light weight and high energy density have been developed. The demand is high. In consideration of the global environment, hybrid vehicles and electric vehicles have been developed and put into practical use, and the demand for secondary batteries with excellent output characteristics is increasing. Under such circumstances, a lithium ion secondary battery having advantages such as a large charge / discharge capacity and high safety has been attracting attention.
 最近、高エネルギー密度型のリチウムイオン二次電池に有用な正極活物質として、3.5V級オリビン型構造LiFePOの他に4.1V級の同構造LiMnPOも注目されている。しかしながら、LiMnPOは、LiFePOよりもLiの出入りがしにくい為、充放電特性とその繰返し特性の改善が求められている。 Recently, in addition to the 3.5 V class olivine type structure LiFePO 4 , the same structure LiMnPO 4 of 4.1 V class has attracted attention as a positive electrode active material useful for a high energy density type lithium ion secondary battery. However, since LiMnPO 4 is less liable to enter and exit Li than LiFePO 4 , it is required to improve the charge / discharge characteristics and the repetition characteristics thereof.
 オリビン型構造のLiMnPOは強固なリン酸4面体骨格と酸化還元に寄与するマンガンイオンを中心にもつ酸素8面体と電流の担い手であるリチウムイオンから構成される。また、電子伝導性と電極反応を向上させるため、正極活物質の粒子表面に炭素被覆を施すことが好ましい。これらにより二次電池の電極として機能し、Liを負極とする充放電時には、容量と電圧で示される充放電特性におけるプラトー領域の存在から、下式の二相反応に従うことが言われている。 LiMnPO 4 having an olivine structure is composed of a strong phosphoric acid tetrahedral skeleton, an oxygen octahedron centered on manganese ions that contribute to redox, and lithium ions that are current carriers. In order to improve the electron conductivity and the electrode reaction, it is preferable to coat the particle surface of the positive electrode active material with carbon. Thus, it functions as an electrode of a secondary battery, and at the time of charge / discharge using Li as a negative electrode, it is said that the following two-phase reaction is followed due to the presence of a plateau region in charge / discharge characteristics indicated by capacity and voltage.
 充電 LiMnPO→MnPO+Li+e
 放電 MnPO+Li+e→LiMnPO
Charging LiMnPO 4 → MnPO 4 + Li + + e
Discharge MnPO 4 + Li + + e → LiMnPO 4
 最近の報告によると、Liの出入りに関する性能面において正極活物質粒子と炭素との十分な複合化により高容量のLiMnPO正極が得られているものの、Liが脱離したMnPOの長期安定性については種々の説がある。そのため、充電反応によるLi脱離時の粒子割れによる微細化を防ぎ、且つ、Liを脱離させた物質の結晶構造を安定にする必要があると考えられている。その例として、MnサイトへのFeの固溶や活物質の微粒子化という手法がある(非特許文献1~7)。 According to a recent report, although a high capacity LiMnPO 4 positive electrode was obtained by sufficiently combining positive electrode active material particles and carbon in terms of performance related to the entry and exit of Li, long-term stability of MnPO 4 from which Li was desorbed There are various theories about. For this reason, it is considered necessary to prevent refinement due to particle cracking when Li is desorbed by a charging reaction, and to stabilize the crystal structure of the substance from which Li is desorbed. For example, there are techniques such as solid solution of Fe in Mn sites and fine particles of active material (Non-Patent Documents 1 to 7).
 オリビン型構造のLiMn1-xFePOにおいて、粒子表面に炭素が被覆されているほど低電流時の充放電特性が良好である。また、前記被覆条件を満たし、且つ、結晶子サイズが100nm未満の微粒子であるほど、高い電流負荷での充放電特性が良い傾向があった。また、電極として高い成型体密度を得るには、それらが適度に凝集した二次粒子で、且つ、グラファイト化率の高い炭素のような導電性補助剤でネットワークを形成するように、各々の集合状態を制御する必要がある。しかし、多量の炭素と複合化された正極は嵩高く、単位体積当たりに充填できる実質的なリチウムイオン密度が低くなるといった欠点が生じる。そこで、単位体積当たりの充放電容量を確保するためには、微細で適度に炭素が被覆されたLiMn1-xFePOを得ると共に、少量の導電性補助剤を介して高い密度を持った凝集体を形成することが必要とされている。 In LiMn 1-x Fe x PO 4 having an olivine structure, the charge / discharge characteristics at low current are better as the particle surface is covered with carbon. Moreover, the charge / discharge characteristics under a high current load tended to be better as the fine particles having a crystallite size of less than 100 nm were satisfied. Moreover, in order to obtain a high molded body density as an electrode, each aggregate is formed so that they form a network with appropriately aggregated secondary particles and a conductive auxiliary agent such as carbon having a high graphitization rate. The state needs to be controlled. However, the positive electrode combined with a large amount of carbon is bulky, and there is a disadvantage that the substantial lithium ion density that can be filled per unit volume is lowered. Therefore, in order to ensure the charge / discharge capacity per unit volume, LiMn 1-x Fe x PO 4 that is fine and moderately coated with carbon is obtained, and a high density is obtained through a small amount of conductive auxiliary agent. There is a need to form aggregates.
 高容量化のためのLiMnPO粒子と炭素との複合化の手段として、LiMnPO粒子と炭素とを機械的に混合するメカノケミカル法が一般的に知られているが、粒子粉末の装置チャンバー内への付着や不純物混入の問題があり、効果的に量産できる装置や条件は極めて少ない。また、LiMn1-xFePOはFeの触媒効果で、有機物の不活性ガス中の反応で、該粒子表面に炭素が析出し、その電気抵抗を改善することが示唆されているが、炭素被覆の程度はLiFePOに比べ不十分であり、該粒子の更なる表面改質が要求されている(非特許文献1~7)。 A mechanochemical method in which LiMnPO 4 particles and carbon are mechanically mixed is generally known as a means for compounding LiMnPO 4 particles and carbon to increase the capacity. There are very few devices and conditions for mass production effectively. In addition, it is suggested that LiMn 1-x Fe x PO 4 has a catalytic effect of Fe, and carbon is deposited on the particle surface by a reaction in an inert gas of an organic substance, thereby improving its electric resistance. The degree of carbon coating is insufficient compared to LiFePO 4 , and further surface modification of the particles is required (Non-Patent Documents 1 to 7).
 LiMn1-xFePOの粒子表面の改質方法の一つとして、Liと電子を移動させやすいLiとPからなるアモルファス相、或いは異種元素を含むLiとPからなる酸化物を表面に形成させることが提案されている。しかしながら、工業的な手法については言及がなされているとは言い難い。 As one method for modifying the particle surface of LiMn 1-x Fe x PO 4 , an amorphous phase composed of Li and P that easily moves Li and electrons, or an oxide composed of Li and P containing different elements is used on the surface. It has been proposed to form. However, it is difficult to say that industrial methods are mentioned.
 従来、LiMn1-xFePO粒子の諸特性改善のために、種々の改良が固相反応法、水熱反応法、ゾル-ゲル法で行われている。例えば、高比表面積の炭素と複合化させて高容量を得る技術(特許文献1)、異種金属元素を添加し、電気抵抗を低減する技術(特許文献2)、異種金属元素添加と炭素被覆で電気抵抗を低減する技術(特許文献3)、水熱法、及びゾル-ゲル法で合成する技術(特許文献4~6)等が知られている。 Conventionally, in order to improve various characteristics of LiMn 1-x Fe x PO 4 particles, various improvements have been made by a solid phase reaction method, a hydrothermal reaction method, and a sol-gel method. For example, a technique for obtaining a high capacity by compounding with carbon having a high specific surface area (Patent Document 1), a technique for adding different metal elements to reduce electric resistance (Patent Document 2), adding a different metal element and carbon coating A technique for reducing electric resistance (Patent Document 3), a technique for synthesizing by a hydrothermal method, a sol-gel method (Patent Documents 4 to 6), and the like are known.
特表2011-517053号公報Special table 2011-517053 gazette 特開2004-063270号公報JP 2004-063270 A 特表2008-130525号公報Special table 2008-130525 gazette 特開2010-251302号公報JP 2010-251302 A 特開2010-267501号公報JP 2010-267501 A 特開2011-213587号公報JP 2011-213587 A
 非水電解質二次電池用の正極活物質として電気抵抗が小さく、充填性が高く、充放電の繰返し特性に優れた炭素複合化LiMn1-xFePO(0.02≦x≦0.5)粒子粉末の安価で環境負荷の少ない製造方法について、現在最も要求されているところであるが、未だ確立されていない。 A carbon composite LiMn 1-x Fe x PO 4 (0.02 ≦ x ≦ 0. 0) having a low electrical resistance, a high filling property, and an excellent charge / discharge repetition characteristic as a positive electrode active material for a non-aqueous electrolyte secondary battery. 5) The most demanding method for producing particle powder at low cost and low environmental load is currently in demand, but has not yet been established.
 即ち、前記非特許文献1~7に記載された技術では、電気抵抗が小さく、充填性が高く、充放電の繰返し特性に優れたLiMn1-xFePO(0.02≦x≦0.5)粒子粉末を工業的に得られるものではない。 That is, in the techniques described in Non-Patent Documents 1 to 7, LiMn 1-x Fe x PO 4 (0.02 ≦ x ≦ 0) having low electric resistance, high filling property, and excellent charge / discharge repetition characteristics. .5) Particle powder cannot be obtained industrially.
 特許文献1記載の技術は、LiMn1-xFePO粒子粉末を正極として用いた時の容量を向上させる技術であり、電極への充填性や二次集合状態のコントロールについては触れられていない。 The technique described in Patent Document 1 is a technique for improving the capacity when LiMn 1-x Fe x PO 4 particle powder is used as a positive electrode, and it touches on the filling property to the electrode and the control of the secondary aggregate state. Absent.
 特許文献2記載の技術は、LiMnPO粒子粉末と炭素との複合化によって高い電子伝導性を得る技術ではなく、高容量の正極活物質が得られるとは言い難い。 The technique described in Patent Document 2 is not a technique for obtaining high electronic conductivity by combining LiMnPO 4 particle powder and carbon, and it is difficult to say that a high-capacity positive electrode active material can be obtained.
 特許文献3記載の技術は、固相反応法での製法であり、2回の熱処理を有するため、低コストとは言い難い。 The technique described in Patent Document 3 is a production method using a solid-phase reaction method, and since it has two heat treatments, it is difficult to say that the cost is low.
 特許文献4記載の水熱法での高沸点の水溶性有機溶媒や、特許文献5記載のゾル-ゲル法での酢酸塩を用いる方法は低コストとは言い難い。 The method using a water-soluble organic solvent having a high boiling point according to the hydrothermal method described in Patent Document 4 and an acetate salt according to the sol-gel method described in Patent Document 5 is hardly low-cost.
 また、特許文献6記載のLi、Mn、Fe、Pの主成分調整法では、調整添加剤の混合を乾式で行うためにボールミルのような装置でナノサイズまでの微粉砕と高分散が要求され、量産性の観点から、工業的であるとは言い難かった。 In addition, the main component adjustment method of Li, Mn, Fe, and P described in Patent Document 6 requires fine pulverization and high dispersion to nano-size with an apparatus such as a ball mill in order to mix adjustment additives in a dry manner. From the viewpoint of mass productivity, it was difficult to say that it was industrial.
 そこで、本発明は、焼成前の主成分組成比の調整方法を最適化することで、焼成後に得られる正極活物質の結晶性と表面性を改善し、電気抵抗が小さく、且つ充填性が高いLiMn1-xFePO(0.02≦x≦0.5)の、環境負荷が小さい工業的な製造手法を確立すること、及び高出力且つ高エネルギー密度を示し、低温の電流負荷特性に優れ、且つ、高温下での充放電の繰返し特性に優れた炭素複合化リン酸マンガン鉄リチウム粒子粉末、及びそれを用いた二次電池を提供することを技術的課題とする。 Therefore, the present invention improves the crystallinity and surface properties of the positive electrode active material obtained after firing by optimizing the adjustment method of the main component composition ratio before firing, and has low electrical resistance and high fillability. Establishing an industrial manufacturing method of LiMn 1-x Fe x PO 4 (0.02 ≦ x ≦ 0.5) with a low environmental load, high output and high energy density, low temperature current load characteristics Another object of the present invention is to provide a carbon composite lithium manganese iron phosphate particle powder that is excellent in repetitive characteristics of charge and discharge at a high temperature and a secondary battery using the same.
 前記技術的課題は、次の通りの本発明によって達成できる。 The technical problem can be achieved by the present invention as follows.
 即ち、本発明は、オリビン型構造の炭素複合化リン酸マンガン鉄リチウム(Mn:Fe=0.98:0.02~0.50:0.50mol比)粒子粉末の製造方法において、水熱処理によって生成されたオリビン型構造のリン酸マンガン鉄リチウムとリチウム化合物及び/又はリン化合物と、有機物とを含む水系懸濁液又は含水物を得る第一工程、第一工程で得られた水系懸濁液又は含水物を乾燥して焼成用前駆体混合粉末を得る第二工程、第二工程で得られた焼成用前駆体混合粉末を焼成する第三工程からなる炭素複合化リン酸マンガン鉄リチウム粒子粉末の製造方法であって、第一工程における水系懸濁液又は含水物がmol比で0.98≦Li/(Mn+Fe)≦1.20、0.98≦P/(Mn+Fe)≦1.20、P≦Liを満たし、且つ、リチウム化合物及び/又はリン化合物の60wt%以上がLi1-y2+yPO(0≦y≦1)であり、前記有機物が水熱処理後のリン酸マンガン鉄リチウムに対して1~20wt%である炭素複合化リン酸マンガン鉄リチウム粒子粉末の製造方法である(本発明1)。 That is, the present invention provides a method for producing olivine type carbon composite lithium manganese iron phosphate (Mn: Fe = 0.98: 0.02 to 0.50: 0.50 mol ratio) particle powder by hydrothermal treatment. The first step of obtaining an aqueous suspension or a hydrate containing the produced olivine-type lithium manganese iron phosphate and lithium compound and / or phosphorus compound and an organic substance, the aqueous suspension obtained in the first step Or the 2nd process which obtains the precursor mixed powder for baking by drying a hydrate, The carbon composite lithium manganese phosphate particle powder which consists of the 3rd process of baking the precursor mixed powder obtained by the 2nd process The aqueous suspension or water-containing product in the first step is 0.98 ≦ Li / (Mn + Fe) ≦ 1.20, 0.98 ≦ P / (Mn + Fe) ≦ 1.20 in terms of mol ratio. P ≦ Li is satisfied And a 60 wt% or Li 1-y H 2 + y PO 4 of the lithium compound and / or phosphorus compounds (0 ≦ y ≦ 1), 1 ~ the organic substance in a phosphoric acid lithium manganese iron after the hydrothermal treatment It is a manufacturing method of the carbon composite lithium manganese iron phosphate particle powder which is 20 wt% (Invention 1).
 また、本発明は、本発明1に記載の炭素複合化リン酸マンガン鉄リチウム粒子粉末の製造方法の第一工程において、有機物が水可溶性の有機物である炭素複合化リン酸マンガン鉄リチウム粒子粉末の製造方法である(本発明2)。 In addition, the present invention provides a carbon composite lithium manganese iron phosphate particle powder in which the organic substance is a water-soluble organic substance in the first step of the method for producing the carbon composite lithium iron manganese phosphate particle powder described in the present invention 1. This is a manufacturing method (Invention 2).
 また、本発明は、炭素複合化リン酸マンガン鉄リチウム粒子粉末の製造方法の第一工程において、有機物がヒドロキシ基(-OH)又はカルボキシル基(-COOH)を含む多価アルコール、糖、又は有機酸に属する有機物である本発明1又は2に記載の製造方法である(本発明3)。 In the first step of the method for producing carbon composite lithium iron manganese phosphate particles, the present invention provides a polyhydric alcohol, a sugar, or an organic substance in which the organic substance contains a hydroxy group (—OH) or a carboxyl group (—COOH). It is a manufacturing method of this invention 1 or 2 which is the organic substance which belongs to an acid (this invention 3).
 また、本発明は、炭素複合化リン酸マンガン鉄リチウム粒子粉末の製造方法の第二工程における乾燥温度が40℃~250℃である本発明1~3のいずれかに記載の製造方法である(本発明4)。 Further, the present invention is the production method according to any one of the present inventions 1 to 3, wherein the drying temperature in the second step of the method for producing the carbon composite lithium manganese iron phosphate particle powder is 40 ° C. to 250 ° C. ( Invention 4).
 また、本発明は、本発明1~4のいずれかに記載された製造方法によって得られる炭素複合化リン酸マンガン鉄リチウム粒子粉末である(本発明5)。 Further, the present invention is a carbon composite lithium manganese iron phosphate particle powder obtained by the production method described in any of the present inventions 1 to 4 (Invention 5).
 また、本発明は、本発明5に記載の炭素複合化リン酸マンガン鉄リチウム粒子粉末を用いて作製した非水電解質二次電池である(本発明6)。 Further, the present invention is a non-aqueous electrolyte secondary battery produced using the carbon composite lithium manganese iron phosphate particle powder described in the present invention 5 (Invention 6).
 本発明に係る炭素複合化リン酸マンガン鉄リチウム粒子粉末の製造方法は低コストで、環境負荷が小さく製造でき、その方法で得られる粉末は、電気抵抗が小さく、充填性が高いものである。また、それを正極活物質として用いた二次電池は低温における電流負荷特性においても高容量が得られ、且つ、高温においても繰返しの充放電に十分に耐える。従って、本発明に係る炭素複合化リン酸マンガン鉄リチウム粒子粉末は、非水電解質二次電池用の正極活物質として好適である。 The method for producing carbon composite lithium manganese phosphate particles according to the present invention is low in cost and can be produced with a small environmental load, and the powder obtained by the method has low electrical resistance and high filling properties. In addition, a secondary battery using it as a positive electrode active material has a high capacity in current load characteristics at low temperatures, and sufficiently withstands repeated charge and discharge even at high temperatures. Therefore, the carbon composite lithium manganese iron phosphate particles according to the present invention are suitable as a positive electrode active material for a non-aqueous electrolyte secondary battery.
実施例1で得られた炭素複合化リン酸マンガン鉄リチウム粒子粉末の走査型電子顕微鏡による高倍の二次電子像である。2 is a high-magnification secondary electron image of the carbon composite lithium iron manganese phosphate particles obtained in Example 1 with a scanning electron microscope. 実施例1で得られた炭素複合化リン酸マンガン鉄リチウム粒子粉末の走査型電子顕微鏡による低倍の二次電子像である。2 is a low-magnification secondary electron image of the carbon composite lithium iron manganese phosphate particles obtained in Example 1 with a scanning electron microscope. 実施例1で得られた炭素複合化リン酸マンガン鉄リチウム粒子粉末を正極化し、コインセルを用いて25℃と0℃で評価した放電容量の電流負荷依存である。The carbon composite lithium manganese iron phosphate particle powder obtained in Example 1 is made positive, and the discharge capacity evaluated at 25 ° C. and 0 ° C. using a coin cell is dependent on the current load. 実施例1で得られた炭素複合化リン酸マンガン鉄リチウム粒子粉末を正極化し、コインセルを用いて0℃で評価した放電曲線の電流負荷依存である。It is the electric current load dependence of the discharge curve which made the carbon composite lithium manganese iron phosphate particle powder obtained in Example 1 positive electrode and evaluated at 0 ° C. using a coin cell. 実施例1で得られた炭素複合化リン酸マンガン鉄リチウム粒子粉末を正極化し、コインセルを用いて60℃、2.0~4.5V間でサイクル特性を評価したときの充放電曲線(n=1、2、12、・・・10×i、i=1~6)と各サイクルにおける放電容量である。Charging / discharging curve (n = n) when the carbon composite lithium manganese iron phosphate particle powder obtained in Example 1 was made positive and cycle characteristics were evaluated using a coin cell between 60 ° C. and 2.0-4.5V. 1, 2, 12,... 10 × i, i = 1 to 6) and the discharge capacity in each cycle. 実施例1で得られた炭素複合化リン酸マンガン鉄リチウム粒子粉末を正極化し、コインセルを用いて60℃、2.0~4.3V間でサイクル特性を評価したときの充放電曲線(n=1、2、12、・・・10×i、i=1~6)と各サイクルにおける放電容量である。Charging / discharging curve (n = n) when the carbon composite lithium manganese iron phosphate particle powder obtained in Example 1 was made positive and cycle characteristics were evaluated using a coin cell at 60 ° C. and between 2.0 and 4.3 V. 1, 2, 12,... 10 × i, i = 1 to 6) and the discharge capacity in each cycle.
 本発明の構成をより詳しく説明すれば次の通りである。 The configuration of the present invention will be described in more detail as follows.
 まず、本発明に係る炭素複合化リン酸マンガン鉄リチウム粒子粉末の製造法について述べる。 First, a method for producing a carbon composite lithium manganese phosphate particle powder according to the present invention will be described.
 本発明に係る炭素複合化リン酸マンガン鉄リチウム粒子粉末は、水熱処理で得られたリン酸マンガン鉄リチウムを元に作製される。 The carbon composite lithium iron manganese phosphate particles according to the present invention are produced based on lithium iron manganese phosphate obtained by hydrothermal treatment.
 水熱処理とは、原料化合物の水溶液を混合し、高温高圧下で化合物を合成する方法である。本発明においては水熱処理によってリン酸マンガン鉄リチウムを得る方法は問わないが、微細なリン酸マンガン鉄リチウムを高い生成率で得るためには、以下の方法を用いることが好ましい。 Hydrothermal treatment is a method of synthesizing a compound under high temperature and high pressure by mixing aqueous solutions of raw material compounds. In the present invention, the method for obtaining lithium iron manganese phosphate by hydrothermal treatment is not limited, but the following method is preferably used in order to obtain fine lithium iron manganese phosphate with a high production rate.
 水熱処理によって得られる生成物は、結晶子サイズが200nm以下の微細なLi1-αMn1-xFe1-β4-δ(0.02≦x≦0.5、0≦α、β≦0.2)であることが好ましい。ここで、α、β、及びγは結晶学的パラメータであり、αとβが0.2を超えるようなことはなかった。また、δは電気的中性条件を満たすために付け加えられたパラメータである。 The product obtained by the hydrothermal treatment is a fine Li 1-α Mn 1-x Fe x P 1-β O 4-δ (0.02 ≦ x ≦ 0.5, 0 ≦ α) with a crystallite size of 200 nm or less. , Β ≦ 0.2). Here, α, β, and γ are crystallographic parameters, and α and β did not exceed 0.2. Further, δ is a parameter added to satisfy the electrical neutral condition.
 本発明に係る炭素複合化リン酸マンガン鉄リチウムの原料には、Li源として、LiOH・HO、LiCO、Mn原料として、MnSO・HO、MnCO、Fe原料として、FeSO・nHO、FeCO、P原料としてHPO、(NH)HPO、(NHHPO、(NHPO等がある。また、主原料を複合化した原料として、LiPO、M(PO・nHO、(NH)MPO・nHO(以上、M=Mn、Fe)等がある。 As a raw material of carbon composite lithium manganese iron phosphate according to the present invention, Li source, LiOH.H 2 O, Li 2 CO 3 , Mn raw material, MnSO 4 .H 2 O, MnCO 3 , Fe raw material, FeSO 4 .nH 2 O, FeCO 3 , P raw materials include H 3 PO 4 , (NH 4 ) H 2 PO 4 , (NH 4 ) 2 HPO 4 , (NH 4 ) 3 PO 4 and the like. In addition, as raw materials obtained by combining main raw materials, there are Li 3 PO 4 , M 3 (PO 4 ) 2 .nH 2 O, (NH 4 ) MPO 4 .nH 2 O (above, M = Mn, Fe) and the like. .
 水熱処理において、リン酸マンガン鉄リチウムの結晶核が多数生成する条件下での原料混合や溶解・析出反応を素早く行わせるためには、原料を微粒子化することが好ましい。スラリー中の原料粒子の微粒子化のために、ZrOボールといったメディアを用いた粉砕を施すことや高濃度での原料混合を行うことができる。粉砕に使用する装置として、ボールミル、媒体攪拌型ミル等が挙げられ、また、高濃度原料混合装置として、ローラーやニーダー等が挙げられる。 In the hydrothermal treatment, it is preferable to make the raw material fine particles so that the raw material mixing and dissolution / precipitation reaction can be performed quickly under the condition that many crystal nuclei of lithium iron manganese phosphate are generated. In order to make the raw material particles fine in the slurry, it is possible to perform pulverization using a medium such as a ZrO 2 ball or to mix the raw materials at a high concentration. Examples of the apparatus used for pulverization include a ball mill and a medium stirring mill, and examples of the high concentration raw material mixing apparatus include a roller and a kneader.
 また、水熱処理時のFeの酸化防止剤として、アスコルビン酸やクエン酸等の有機酸や、グルコース等の還元糖を用いてもよい。その量は(Mn+Fe)に対し1~20mol%であることが好ましく、水熱処理後のLi1-αMn1-xFe1-β4-δ(0.02≦x≦0.5、0≦α、β≦0.2)の反応率を上げ、且つ、該生成物の一次粒子径を微細化させる傾向がある。 Further, as an antioxidant for Fe during hydrothermal treatment, an organic acid such as ascorbic acid or citric acid or a reducing sugar such as glucose may be used. The amount is preferably 1 to 20 mol% with respect to (Mn + Fe), and Li 1−α Mn 1−x Fe x P 1−β O 4−δ (0.02 ≦ x ≦ 0.5) after hydrothermal treatment. , 0 ≦ α, β ≦ 0.2), and the primary particle size of the product tends to be refined.
 一方、水熱処理時のアルカリ源として、LiOH、NH、NaOH、NaCO、NH、尿素、エタノールアミン等を用いることができる。水熱処理後のリン酸マンガン鉄リチウムの反応率を上げるためにはpHが5.5~12.5である必要がある。 On the other hand, LiOH, NH 3 , NaOH, Na 2 CO 3 , NH 3 , urea, ethanolamine, or the like can be used as an alkali source during hydrothermal treatment. In order to increase the reaction rate of lithium manganese iron phosphate after hydrothermal treatment, the pH needs to be 5.5 to 12.5.
 水熱処理の温度と時間を要するほど、リン酸マンガン鉄リチウムの反応率と粒子径は増大する傾向があるが、90~300℃で2~3時間反応させることが好ましい。 As the temperature and time of hydrothermal treatment are required, the reaction rate and particle size of lithium iron manganese phosphate tend to increase, but it is preferable to react at 90 to 300 ° C. for 2 to 3 hours.
 本方法によって得られた水熱処理後の生成物のX線回折測定ではオリビン型構造の結晶相が75wt%以上観察される。本方法によって得られた水熱処理後の生成物は異相をほとんど含まないリン酸マンガン鉄リチウムである。 In the X-ray diffraction measurement of the product after hydrothermal treatment obtained by this method, a crystal phase having an olivine structure is observed at 75 wt% or more. The product after hydrothermal treatment obtained by this method is lithium manganese iron phosphate containing almost no heterogeneous phase.
 本方法によって得られた水熱処理後のリン酸マンガン鉄リチウムの反応率は80wt%を超える。水熱処理後のリン酸マンガン鉄リチウムの反応率は得られた粒子粉末を不活性ガス雰囲気で700℃、2時間で熱処理した後、該熱処理前後での重量減少量の割合から算出した。例えば、3wt%の重量減少が生じたとき、反応率は100-3=97wt%とした。本方法によって得られた水熱処理後の生成物はほぼ単相であるため、その重量減少は水や二酸化炭素等に起因すると考えている。 The reaction rate of lithium iron manganese phosphate after the hydrothermal treatment obtained by this method exceeds 80 wt%. The reaction rate of lithium manganese iron phosphate after the hydrothermal treatment was calculated from the ratio of weight loss before and after the heat treatment of the obtained particle powder at 700 ° C. for 2 hours in an inert gas atmosphere. For example, when a weight loss of 3 wt% occurs, the reaction rate is set to 100-3 = 97 wt%. Since the product after hydrothermal treatment obtained by this method is almost single-phase, it is thought that the weight loss is caused by water, carbon dioxide and the like.
 水熱処理後、場合によっては、不純物の硫酸イオン或いはアンモニウムイオンの除去とLi、Mn、Fe、P組成比調整のため、生成物の濾過洗浄、或いはデカンテーション洗浄を行っても構わない。装置として、プレスフィルター、フィルターシックナー等がある。 After the hydrothermal treatment, in some cases, the product may be subjected to filtration washing or decantation washing for removal of impurity sulfate ions or ammonium ions and adjustment of the Li, Mn, Fe, and P composition ratios. Examples of the apparatus include a press filter and a filter thickener.
 本発明は、水熱処理によって生成されたオリビン型構造のリン酸マンガン鉄リチウムとリチウム化合物及び/又はリン化合物と、有機物とを含む水系懸濁液又は含水物を得ることを第一工程とする。水熱処理によって生成されたリン酸マンガン鉄リチウムとリチウム化合物及び/又はリン化合物と、有機物とを含む水系懸濁液又は含水物を得る方法として、水熱処理によって得られるリン酸マンガン鉄リチウムの水系スラリーにリチウム化合物及び/又はリン化合物と有機物とを添加する方法や、水熱処理によって得られるリン酸マンガン鉄リチウムの水系スラリーを脱水したケーキにリチウム化合物及び/又はリン化合物と有機物とを添加混合し、含水物とする方法、水熱処理によって得られるリン酸マンガン鉄リチウムの水系スラリーを乾燥、微粉砕した粉末に、リチウム化合物及び/又はリン化合物と有機物と水とを添加混合し、含水物とする方法等がある。 The first step of the present invention is to obtain an aqueous suspension or hydrate containing an olivine-type lithium iron manganese phosphate, a lithium compound and / or a phosphorus compound, and an organic substance produced by hydrothermal treatment. An aqueous slurry of lithium manganese iron phosphate obtained by hydrothermal treatment as a method of obtaining an aqueous suspension or hydrate containing lithium manganese iron phosphate and lithium compound and / or phosphorus compound and organic matter produced by hydrothermal treatment A method of adding a lithium compound and / or a phosphorus compound and an organic substance, and adding and mixing a lithium compound and / or a phosphorus compound and an organic substance to a cake obtained by dehydrating an aqueous slurry of lithium manganese iron phosphate obtained by hydrothermal treatment, Method of making water content, Method of adding lithium compound and / or phosphorus compound, organic substance and water to powder obtained by drying and finely pulverizing aqueous slurry of lithium iron manganese phosphate obtained by hydrothermal treatment to make water content Etc.
 水熱処理によって生成されたリン酸マンガン鉄リチウムは、結晶中に多くの欠陥を持つものである。よって、欠陥の少ない所望のリン酸マンガン鉄リチウム固溶体を形成させるためには、焼成前に主成分組成比を調整する必要がある。即ち、水熱処理によって得られたリン酸マンガン鉄リチウムに対して、主成分組成比がmol比で0.98≦Li/(Mn+Fe)≦1.15、0.98≦P/(Mn+Fe)≦1.15、P≦Liとなるよう、リチウム化合物及び/又はリン化合物の添加によって調整する必要がある。所定の組成比以外では不純物相が過剰に生成し、電池特性を悪化させる要因となる。即ち、Li/(Mn+Fe)が小さ過ぎるとα―Fe、(Mn+Fe)P、(Mn+Fe)P、(Mn+Fe)などが過剰に生成し、大き過ぎると過剰のLiCOが残存する。また、P/(Mn+Fe)が小さ過ぎると過剰のα―Fe、(Mn+Fe)などが生成し、大き過ぎるとLiPO、Liなどが過剰に生成する。 Lithium manganese iron phosphate produced by hydrothermal treatment has many defects in the crystal. Therefore, in order to form a desired lithium manganese iron phosphate solid solution with few defects, it is necessary to adjust the main component composition ratio before firing. That is, the main component composition ratio is 0.98 ≦ Li / (Mn + Fe) ≦ 1.15, 0.98 ≦ P / (Mn + Fe) ≦ 1 with respect to lithium iron manganese phosphate obtained by hydrothermal treatment. .15, P ≦ Li needs to be adjusted by adding a lithium compound and / or a phosphorus compound. Except for a predetermined composition ratio, an impurity phase is excessively generated, which causes deterioration of battery characteristics. That is, if Li / (Mn + Fe) is too small, α-Fe, (Mn + Fe) 2 P, (Mn + Fe) 3 P, (Mn + Fe) 2 P 2 O 7, etc. are excessively generated, and if too large, excessive Li 2 CO 3 remains. On the other hand, if P / (Mn + Fe) is too small, excess α-Fe, (Mn + Fe) 2 O 3 and the like are generated, and if P / (Mn + Fe) is too large, Li 3 PO 4 and Li 4 P 2 O 7 and the like are excessively generated.
 本発明における主成分組成比調整に用いられる、リチウム化合物としては、LiOH、LiCO等を用いることができる。 As the lithium compound used for adjusting the main component composition ratio in the present invention, LiOH, Li 2 CO 3 or the like can be used.
 本発明における主成分組成比調整に用いられる、リン化合物としては、HPO、(NH)HPO、(NHHPO、(NHPO等を用いることができる。 As the phosphorus compound used for adjusting the main component composition ratio in the present invention, H 3 PO 4 , (NH 4 ) H 2 PO 4 , (NH 4 ) 2 HPO 4 , (NH 4 ) 3 PO 4, or the like is used. Can do.
 また、主成分組成比調整に用いられる、リチウム及びリンを含む化合物として、LiHPO、LiPO、LiPO等を用いることができる。 Also used for adjusting the main component composition ratio, as a compound containing lithium and phosphorus, it can be used LiH 2 PO 4, Li 3 PO 4, LiPO 3 , and the like.
 そして、本発明における主成分組成比調整には、リチウム化合物、リン化合物、リチウム及びリンを含む化合物を併用してもよい。 And in the main component composition ratio adjustment in the present invention, a lithium compound, a phosphorus compound, a compound containing lithium and phosphorus may be used in combination.
 本発明においては、組成比を調整するために添加するリチウム化合物及び/又はリン化合物の60wt%以上をLi1-y2+yPO(0≦y≦1)とする。主成分組成比調整のためのリチウム化合物及び/又はリン化合物としてLi1-y2+yPOを多く用いることにより、焼成後に得られる炭素複合化リン酸マンガン鉄リチウムは各元素固有のサイトの格子欠陥がほとんど低減され、結晶性を高めることで高性能の正極活物質を得ることができる。好ましくはLi1-y2+yPOを添加するリチウム化合物及び/又はリン化合物に対し75wt%以上使用する。組成比を調整するために添加するLi1-y2+yPOには、好ましくはLiHPOを60wt%以上、より好ましくは75wt%以上用いる。LiHPOの使用量が60wt%未満の場合、主成分組成比の調整が個々の粒子レベルで均一とならず、粗大なLiPOやLiが過剰に生成し、電池特性を悪化させる要因となる。 In the present invention, 60 wt% or more of the lithium compound and / or phosphorus compound added to adjust the composition ratio is Li 1-y H 2 + y PO 4 (0 ≦ y ≦ 1). By using a large amount of Li 1-y H 2 + y PO 4 as a lithium compound and / or phosphorus compound for adjusting the main component composition ratio, the carbon composite lithium manganese phosphate obtained after firing has a lattice of sites unique to each element. Defects are almost reduced, and a high-performance positive electrode active material can be obtained by increasing crystallinity. Preferably, 75 wt% or more is used with respect to the lithium compound and / or the phosphorus compound to which Li 1-y H 2 + y PO 4 is added. As Li 1-y H 2 + y PO 4 added to adjust the composition ratio, LiH 2 PO 4 is preferably used at 60 wt% or more, more preferably 75 wt% or more. When the amount of LiH 2 PO 4 used is less than 60 wt%, the adjustment of the main component composition ratio is not uniform at the individual particle level, and coarse Li 3 PO 4 and Li 4 P 2 O 4 are produced excessively, It becomes a factor which deteriorates battery characteristics.
 また、LiPOは50nm以下の水不溶性微粒子を容易に形成するため、焼成前のリン酸マンガン鉄リチウムと容易に均一に混合できるので、好ましく使用される。 Li 3 PO 4 is preferably used because it easily forms water-insoluble fine particles of 50 nm or less and can be easily and uniformly mixed with lithium iron manganese phosphate before firing.
 本発明においては、第一工程で得られる水系懸濁液又は含水物中に、水熱処理で得られたリン酸マンガン鉄リチウムに対して、1~20wt%の有機物を含む必要がある。有機物の量は、好ましくは5~15wt%である。有機物の添加量が少な過ぎる場合には、焼成後の残存炭素量が少なく、焼成によるリン酸マンガン鉄リチウムと炭素との複合化が不十分となる。また、有機物の添加量が多すぎる場合は不純物相のα―Fe、(Mn+Fe)P、(Mn+Fe)Pの生成が促進され、電池特性を悪化させる要因となる。添加する有機物としては、水可溶性又は水分散性の有機物を用いることができ、特に水可溶性の有機物を用いることがリン酸マンガン鉄リチウム粒子表面の均一な改善のために好ましい。水可溶性の有機物と水分散性の有機物は両方を用いてもよい。 In the present invention, the aqueous suspension or hydrated product obtained in the first step needs to contain 1 to 20 wt% of organic matter relative to lithium iron manganese phosphate obtained by hydrothermal treatment. The amount of the organic substance is preferably 5 to 15 wt%. When the amount of the organic substance added is too small, the amount of residual carbon after firing is small, and the composite of lithium iron manganese phosphate and carbon by firing is insufficient. Also, alpha-Fe impurity phase when the addition amount of the organic material is too large, (Mn + Fe) 2 P , (Mn + Fe) 3 P product is promoted, and is a cause of deteriorating the battery characteristics. As the organic substance to be added, a water-soluble or water-dispersible organic substance can be used, and it is particularly preferable to use a water-soluble organic substance for uniform improvement of the lithium manganese iron phosphate particle surface. Both water-soluble organic substances and water-dispersible organic substances may be used.
 水可溶性の有機物としては、ヒドロキシ基(-OH)、又はカルボキシル基(-COOH)を含む多価アルコール、糖、又は有機酸に属する水可溶性有機物が望ましく、具体的には、ポリビニルアルコール(PVA)、ショ糖、クエン酸、エチレングリコール等がある。 The water-soluble organic substance is preferably a water-soluble organic substance belonging to a polyhydric alcohol, sugar, or organic acid containing a hydroxy group (—OH) or a carboxyl group (—COOH), specifically, polyvinyl alcohol (PVA). Sucrose, citric acid, ethylene glycol and the like.
 また、水分散性の有機物としては、親水化処理を施した合成繊維やカーボンブラックがあり、例えば、ポリエチレン粒子、アセチレンブラック(電気化学工業(株)製)やケッチェンブラック(ライオン(株)製)に対し、親水基と疎水基を有するPVA、或いは非イオン性界面活性剤(例えば、ポリオキシエチレンエーテル)、或いはLiOH等のアルカリ溶液で表面改質する必要がある。 Examples of water-dispersible organic substances include hydrophilized synthetic fibers and carbon black, such as polyethylene particles, acetylene black (manufactured by Denki Kagaku Kogyo Co., Ltd.) and ketjen black (manufactured by Lion Co., Ltd.). On the other hand, it is necessary to modify the surface with an alkaline solution such as PVA having a hydrophilic group and a hydrophobic group, a nonionic surfactant (for example, polyoxyethylene ether), or LiOH.
 本発明においては、水熱処理によって生成されたオリビン型構造のリン酸マンガン鉄リチウムと主成分組成比を調整するためのリチウム化合物及び/又はリン化合物と有機物とを水の存在下で混合することで均一な混合がなされる。それにより、リン酸マンガン鉄リチウムの粒子表面が改善され、高い電池特性を備えたオリビン型構造のリン酸マンガン鉄リチウム粒子粉末を、環境負荷が小さく工業的な製造方法によって得ることができるものである。 In the present invention, lithium iron phosphate with an olivine structure produced by hydrothermal treatment and a lithium compound for adjusting the main component composition ratio and / or a phosphorus compound and an organic substance are mixed in the presence of water. Uniform mixing is achieved. As a result, the particle surface of lithium iron manganese phosphate is improved, and an olivine-type lithium iron manganese phosphate particle powder having high battery characteristics can be obtained by an industrial manufacturing method with a low environmental load. is there.
 特に、本発明の第一工程において、主成分組成比を調整するためのリチウム化合物及び/又はリン化合物がLi1-y2+yPO(0≦y≦1)であり、添加する有機物として水可溶性の有機物を用いた場合には、第二工程において乾燥して焼成用前駆体混合粉末を得る際に加熱による脱水でリン酸エステル反応と重合反応を起こすため、焼成で得られた炭素と共に、Li-Pアモルファス相がリン酸マンガン鉄リチウム粒子表面を改善すると考えている。 In particular, in the first step of the present invention, the lithium compound and / or phosphorus compound for adjusting the main component composition ratio is Li 1-y H 2 + y PO 4 (0 ≦ y ≦ 1), and water is added as an organic substance to be added. When soluble organic matter is used, in order to cause a phosphate ester reaction and a polymerization reaction by dehydration by heating when drying and obtaining a precursor powder for firing in the second step, together with carbon obtained by firing, It is believed that the Li-P amorphous phase improves the surface of lithium manganese iron phosphate particles.
 本発明は第二工程において、第一工程で得られたリン酸マンガン鉄リチウムの水系懸濁液又は含水物を乾燥して焼成用前駆体混合粉末を得る。乾燥温度は40~250℃であることが好ましい。水系懸濁液又は含水物の乾燥の方法としては、水系スラリーをディスパー等で混合し、通常の乾燥機で乾燥する方法や、スプレードライヤーやスラリードライヤーで乾燥する方法、水系ケーキや乾燥粉末に水を加えた含水物をローラーやニーダーで混練し、通常の乾燥機で乾燥する方法などが挙げられる。本発明において、主成分組成比調整用に用いるLi1-y2+yPOは酸性であるため、水熱処理後のリン酸マンガン鉄リチウム粒子にダメージを与えないよう、短時間での乾燥が望まれる(例えば、500gのスラリーについて1時間以内)。 In the second step, the present invention dries the aqueous suspension or hydrate of lithium manganese iron phosphate obtained in the first step to obtain a precursor mixed powder for firing. The drying temperature is preferably 40 to 250 ° C. As a method for drying an aqueous suspension or a hydrated product, an aqueous slurry is mixed with a disper or the like and dried with a normal dryer, a method with a spray dryer or a slurry dryer, an aqueous cake or a dry powder with water. Examples include a method of kneading the hydrated product added with a roller and a kneader and drying with a normal dryer. In the present invention, Li 1-y H 2 + y PO 4 used for adjusting the main component composition ratio is acidic, so that drying in a short time is desirable so as not to damage lithium iron manganese phosphate particles after hydrothermal treatment. (E.g., within 1 hour for a 500 g slurry).
 本発明に係る炭素複合化リン酸マンガン鉄リチウム粒子粉末の凝集粒子径においては、焼成前後の凝集粒子径の変化がほとんどない。そのため、凝集粒子径は第一工程から第二工程の間、或いは第三工程の後で調整する必要がある。凝集粒子径の調整は各々の工程における混合・乾燥方法や分級・粉砕によって制御することができる。粉砕の装置として、高速衝撃式粉砕機、メノウ乳鉢等がある。 In the aggregate particle size of the carbon composite lithium manganese iron phosphate particles according to the present invention, there is almost no change in the aggregate particle size before and after firing. Therefore, it is necessary to adjust the aggregate particle diameter between the first step and the second step or after the third step. The adjustment of the aggregate particle diameter can be controlled by the mixing / drying method, classification / pulverization in each step. Examples of the pulverizing apparatus include a high-speed impact pulverizer and an agate mortar.
 本発明は第三工程において、第二工程で得られた焼成用前駆体混合粉末を、酸素濃度0.1%以下の不活性ガス、又は還元性ガス雰囲気下で、温度250~850℃で焼成する。焼成を行う装置としては、ガス流通式箱型マッフル炉、ガス流通式回転炉、流動熱処理炉等がある。不活性ガスとしては、N、Ar、HO、CO或いはその混合ガスが用いられる。還元性ガスとしては、H、又はCO、或いはこれらのガスと前記不活性ガスの混合ガスが用いられる。 In the third step of the present invention, the precursor powder mixture for firing obtained in the second step is fired at a temperature of 250 to 850 ° C. in an inert gas or reducing gas atmosphere having an oxygen concentration of 0.1% or less. To do. As an apparatus for performing firing, there are a gas flow type box muffle furnace, a gas flow type rotary furnace, a fluidized heat treatment furnace, and the like. As the inert gas, N 2 , Ar, H 2 O, CO 2 or a mixed gas thereof is used. As the reducing gas, H 2 , CO, or a mixed gas of these gases and the inert gas is used.
 Fe原料中に含まれる微量なFe3+は、有機物、或いは還元性ガスによりFe2+へと変化し、リン酸マンガン鉄リチウムを生成させるため、酸素濃度0.1%以下の雰囲気で焼成用前駆体混合粉末の焼成を行う必要がある。未反応物の反応を完結させ、且つ、添加有機物から電子伝導性の高いグラファイト相を形成させるためには、400~800℃で数時間熱処理を行うことが好ましい。 A trace amount of Fe 3+ contained in the Fe raw material is changed to Fe 2+ by an organic substance or a reducing gas to generate lithium iron manganese phosphate, and therefore a precursor for firing in an atmosphere having an oxygen concentration of 0.1% or less. It is necessary to fire the mixed powder. In order to complete the reaction of the unreacted substance and form a graphite phase having high electron conductivity from the added organic substance, it is preferable to perform heat treatment at 400 to 800 ° C. for several hours.
 次に、本発明に係る炭素複合化リン酸マンガン鉄リチウム粒子粉末について述べる。 Next, the carbon composite lithium iron manganese phosphate particles according to the present invention will be described.
 本発明に係る炭素複合化リン酸マンガン鉄リチウム粒子粉末は、リチウムとリンの含有量が遷移金属に対するmol比で各々0.98~1.15で、且つ、リチウムの含有量はリン以上である。リチウムとリンの含有量がこの範囲から外れる場合には、リン酸マンガン鉄リチウムが異相を多く含んでいるために高い電池特性が得られない。好ましくはリチウムとリンの含有量が遷移金属に対するmol比で各々1.01から1.10で、リチウムの含有量はリン以上である。 The carbon composite lithium manganese iron phosphate particles according to the present invention each have a lithium and phosphorus content of 0.98 to 1.15 in terms of a molar ratio to the transition metal, and the lithium content is not less than phosphorus. . When the contents of lithium and phosphorus are out of this range, high battery characteristics cannot be obtained because lithium manganese iron phosphate contains many different phases. Preferably, the lithium and phosphorus contents are 1.01 to 1.10, respectively, in molar ratio to the transition metal, and the lithium content is not less than phosphorus.
 本発明に係る炭素複合化リン酸マンガン鉄リチウム粒子粉末の単位胞体積は、下式1に示すべガード則から推測されるオリビン型構造のLiMn1-xFePOの単位胞体積VUC(Å)より小さいため、結晶内の格子欠陥が殆どないと考えている。
UC(Å)=11.4×(1-x)+291.21・・・(1)
 従って、本発明に係る炭素複合化リン酸マンガン鉄リチウム粒子粉末の単位胞体積の式(1)の単位胞体積VUCに対する割合は、好ましくは99.950%以下である。
The unit cell volume of the carbon composite lithium iron manganese phosphate particles according to the present invention is determined by the unit cell volume V UC of LiMn 1-x Fe x PO 4 having an olivine structure inferred from the Vegard law shown in the following formula 1. Since it is smaller than (Å 3 ), it is considered that there are almost no lattice defects in the crystal.
V UC3 ) = 11.4 × (1-x) +291.21 (1)
Therefore, the ratio of the unit cell volume of the carbon composite lithium manganese iron phosphate particle powder according to the present invention to the unit cell volume V UC in the formula (1) is preferably 99.950% or less.
 本発明に係る炭素複合化リン酸マンガン鉄リチウム粒子粉末のBET比表面積は6~70m/gが好ましい。BET比表面積値が6m/g未満の場合には、リン酸マンガン鉄リチウム粒子が大粒子の場合であり、結晶中のLiイオンの移動が遅いため、電流を取出すことが困難である。70m/gを超える場合には、正極の充填密度の低下や電解液との反応性が増加するため好ましくない。より好ましくは8~28m/gであり、さらにより好ましくは9~20m/gである。 The BET specific surface area of the carbon composite lithium iron manganese phosphate particles according to the present invention is preferably 6 to 70 m 2 / g. When the BET specific surface area value is less than 6 m 2 / g, the lithium iron manganese phosphate particles are large particles, and the movement of Li ions in the crystal is slow, so that it is difficult to extract current. When exceeding 70 m < 2 > / g, since the fall with the packing density of a positive electrode and the reactivity with electrolyte solution increase, it is unpreferable. More preferably, it is 8 to 28 m 2 / g, and even more preferably 9 to 20 m 2 / g.
 本発明に係る炭素複合化リン酸マンガン鉄リチウム粒子粉末の残存炭素量は0.7~8.0wt%が好ましい。炭素含有率が0.7wt%未満の場合、得られる粉体の電気抵抗が高くなり、二次電池の充放電特性を悪化させる。また8.0wt%を超える場合、正極充填密度の低下し、二次電池の体積当たりのエネルギー密度が小さくなる。より好ましくは1.0~4.0wt%である。 The carbon content of the carbon composite lithium manganese phosphate particles according to the present invention is preferably 0.7 to 8.0 wt%. When the carbon content is less than 0.7 wt%, the electric resistance of the obtained powder becomes high, and the charge / discharge characteristics of the secondary battery are deteriorated. On the other hand, when the content exceeds 8.0 wt%, the positive electrode filling density decreases, and the energy density per volume of the secondary battery decreases. More preferably, it is 1.0 to 4.0 wt%.
 本発明に係る炭素複合化リン酸マンガン鉄リチウム粒子粉末は、不純物の硫黄量が0.08wt%以下で、非水電解質二次電池において良好な保存特性が得られる。前記残存量が0.08wt%を超える場合、硫酸リチウムなどの不純物が形成され、充放電中にそれらの不純物が分解反応を起こして、高温サイクル特性時の抵抗上昇が激しくなる。より好ましくは0.05wt%以下である。 The carbon composite lithium manganese iron phosphate particle powder according to the present invention has an impurity sulfur content of 0.08 wt% or less, and good storage characteristics can be obtained in a non-aqueous electrolyte secondary battery. When the residual amount exceeds 0.08 wt%, impurities such as lithium sulfate are formed, and these impurities cause a decomposition reaction during charge and discharge, and the resistance increase during high temperature cycle characteristics becomes severe. More preferably, it is 0.05 wt% or less.
 本発明に係る炭素複合化リン酸マンガン鉄リチウム粒子粉末は、オリビン構造以外、LiPOの結晶相が5.0wt%以下で検出されてもよい。LiPO自身は、積極的に充放電に寄与しないため5.0wt%以下が好ましいが、一方でLiPOが検出される場合、放電容量も高くなる場合があり、より好ましくは0.1~3.0wt%である。不純物結晶相のM(M=Mn、Fe)やFePといった金属相は、電流負荷特性や高温サイクル特性の結果から、極力無い方が望ましい。 In the carbon composite lithium iron manganese phosphate particles according to the present invention, the crystal phase of Li 3 PO 4 may be detected at 5.0 wt% or less other than the olivine structure. Li 3 PO 4 itself does not actively contribute to charging and discharging, so 5.0 wt% or less is preferable. On the other hand, when Li 3 PO 4 is detected, the discharge capacity may be increased, more preferably 0. .1 to 3.0 wt%. It is desirable that the metal phase such as M 2 P 2 O 7 (M = Mn, Fe) or Fe 2 P as an impurity crystal phase should be minimized as a result of current load characteristics and high-temperature cycle characteristics.
 本発明に係る炭素複合化リン酸マンガン鉄リチウム粒子粉末の結晶子サイズは25~300nmが好ましい。他の粉体特性を満たしながら結晶子サイズが25nm未満の粉末を本発明の製造方法で量産することは極めて困難であり、また、300nmを超える結晶子サイズではLiが粒子内を移動するのに時間を要し、結果として、二次電池の電流負荷特性が悪化させる。より好ましくは30~200nm、さらにより好ましくは40~150nmである。 The crystallite size of the carbon composite lithium manganese phosphate particles according to the present invention is preferably 25 to 300 nm. It is extremely difficult to mass-produce a powder having a crystallite size of less than 25 nm while satisfying other powder characteristics by the production method of the present invention, and Li moves inside the particle at a crystallite size exceeding 300 nm. Time is required, and as a result, the current load characteristic of the secondary battery is deteriorated. More preferably, it is 30 to 200 nm, and still more preferably 40 to 150 nm.
 本発明に係る炭素複合化リン酸マンガン鉄リチウム粒子粉末の凝集粒子径は0.3~30μmが好ましい。凝集粒子径が0.3μm未満の場合には、正極充填密度の低下や電解液との反応性が増加するため好ましくない。一方、凝集粒子径が30μmを超えると、より電極膜厚に近づき、電極の膜厚方向に対し、二、三個の粒子しか乗らない場合が生じ、シート化が極めて困難である。より好ましくは0.5~25μmであり、さらにより好ましくは1.0~20μmである。 The agglomerated particle size of the carbon composite lithium manganese phosphate particles according to the present invention is preferably 0.3 to 30 μm. When the aggregated particle diameter is less than 0.3 μm, it is not preferable because the positive electrode packing density decreases and the reactivity with the electrolyte increases. On the other hand, when the aggregated particle diameter exceeds 30 μm, the electrode film thickness becomes closer, and there are cases where only a few particles are placed in the film thickness direction of the electrode, making sheeting extremely difficult. More preferably, it is 0.5 to 25 μm, and even more preferably 1.0 to 20 μm.
 本発明に係る炭素複合化リン酸マンガン鉄リチウム粒子粉末の圧縮成型体密度は、1.8g/cc以上が好ましい。真密度に近づけば近づくほど充填性は良く、二次電池の正極活物質としてよく用いられる層状化合物LiCoOの真密度は5.1g/ccであるのに対して、リン酸マンガン鉄リチウムの真密度は3.5g/ccと低い。そのため、好ましい圧縮成型体密度は真密度の50%を超える2.0g/cc以上である。一方、他の粉体特性を満たしながら圧縮成型体密度が2.8g/ccを超える粉末を本発明の製造方法で量産することは極めて困難である。本発明に係る炭素複合化リン酸マンガン鉄リチウム粒子粉末は残存炭素量が少なく、一次粒子同士が適度に凝集しており、圧縮成型体密度が高いと考えられる。 The compression-molded body density of the carbon composite lithium manganese phosphate particles according to the present invention is preferably 1.8 g / cc or more. The closer to the true density, the better the packing property, and the true density of the layered compound LiCoO 2 often used as the positive electrode active material of the secondary battery is 5.1 g / cc, whereas the true density of lithium iron manganese phosphate is The density is as low as 3.5 g / cc. Therefore, a preferable compression molding density is 2.0 g / cc or more exceeding 50% of the true density. On the other hand, it is extremely difficult to mass-produce a powder having a compression molding density exceeding 2.8 g / cc while satisfying other powder characteristics by the production method of the present invention. It is considered that the carbon composite lithium manganese iron phosphate particles according to the present invention have a small amount of residual carbon, the primary particles are appropriately aggregated, and the density of the compression molded body is high.
 本発明に係る炭素複合化リン酸マンガン鉄リチウム粒子粉末の圧縮成型体の電気抵抗率は、1.0×10Ω・cm以下が好ましい。電気抵抗率が低ければ、正極のシートを作製する際の導電材の添加量を低減することができ、密度の高い正極シートを得ることができる。 The electric resistivity of the compression-molded body of carbon composite lithium iron manganese phosphate particles according to the present invention is preferably 1.0 × 10 3 Ω · cm or less. If the electrical resistivity is low, the amount of the conductive material added when producing the positive electrode sheet can be reduced, and a positive electrode sheet having a high density can be obtained.
 次に、本発明に炭素複合化リン酸マンガン鉄リチウムを正極活物質として用いた非水電解質二次電池について述べる。 Next, a non-aqueous electrolyte secondary battery using carbon composite lithium iron manganese phosphate as a positive electrode active material in the present invention will be described.
 本発明に係る正極活物質を用いて正極シートを製造する場合には、常法に従って、導電剤と結着剤とを添加混合する。導電剤としてはカーボンブラック、グラファイト等が好ましく、結着剤としてはポリテトラフルオロエチレン、ポリフッ化ビニリデン等が好ましい。溶媒として、例えば、N-メチル-ピロリドンを用い、75μm以下に篩い分けられた該正極活物質と該添加物を含むスラリーを蜂蜜状になるまで混練する。得られたスラリーを溝が25~500μmのドクターブレードで集電体上に塗布する。該塗布速度は約60cm/secで、集電体として、通常約20μmのAl箔を用いる。溶媒除去と結着剤軟化のため、乾燥は80~180℃で行う。該シートを1~3t/cmの圧力になるようカレンダーロール処理を行う。前記シート化の工程で、室温においてもFe2+のFe3+への酸化反応が生じるため、極力、非酸化性雰囲気で行うことが望ましい。 When a positive electrode sheet is produced using the positive electrode active material according to the present invention, a conductive agent and a binder are added and mixed according to a conventional method. As the conductive agent, carbon black, graphite and the like are preferable, and as the binder, polytetrafluoroethylene, polyvinylidene fluoride and the like are preferable. As the solvent, for example, N-methyl-pyrrolidone is used, and the positive electrode active material sieved to 75 μm or less and the slurry containing the additive are kneaded until they become honey. The obtained slurry is applied onto the current collector with a doctor blade having a groove of 25 to 500 μm. The coating speed is about 60 cm / sec, and an Al foil of about 20 μm is usually used as a current collector. Drying is performed at 80 to 180 ° C. to remove the solvent and soften the binder. The sheet is subjected to a calender roll treatment so as to have a pressure of 1 to 3 t / cm 2 . In the step of forming the sheet, an oxidation reaction of Fe 2+ to Fe 3+ occurs even at room temperature. Therefore, it is desirable to carry out in a non-oxidizing atmosphere as much as possible.
 本発明における正極シートは、該正極活物質の圧縮成型体密度が1.8g/cc以上と高く、また、該正極活物質の圧縮成型体の電気抵抗率が0.1~10Ω・cmと低いためシート作製時の炭素添加量を低減でき、また、該正極活物質のBET比表面積が6~70m/gと低いため、結着剤添加量を低減でき、結果として密度の高い正極シートが得られる。 In the positive electrode sheet of the present invention, the density of the compression molded body of the positive electrode active material is as high as 1.8 g / cc or more, and the electrical resistivity of the compression molded body of the positive electrode active material is 0.1 to 10 4 Ω · cm. Therefore, the amount of carbon added during sheet preparation can be reduced, and since the BET specific surface area of the positive electrode active material is as low as 6 to 70 m 2 / g, the amount of binder added can be reduced, resulting in a high-density positive electrode. A sheet is obtained.
 負極活物質としては、リチウム金属、リチウム/アルミニウム合金、リチウム/スズ合金、黒鉛等を用いることができ、正極と同様のドクターブレード法や金属圧延により負極シートは作製される。 As the negative electrode active material, lithium metal, lithium / aluminum alloy, lithium / tin alloy, graphite or the like can be used, and the negative electrode sheet is produced by the same doctor blade method or metal rolling as the positive electrode.
 また、電解液の溶媒としては、炭酸エチレンと炭酸ジエチルの組み合わせ以外に、炭酸プロピレン、炭酸ジメチル等のカーボネート類や、ジメトキシエタン等のエーテル類の少なくとも1種類を含む有機溶媒を用いることができる。 In addition to the combination of ethylene carbonate and diethyl carbonate, an organic solvent containing at least one of carbonates such as propylene carbonate and dimethyl carbonate and ethers such as dimethoxyethane can be used as the solvent for the electrolytic solution.
 さらに、電解質としては、六フッ化リン酸リチウム以外に、過塩素酸リチウム、四フッ化ホウ酸リチウム等のリチウム塩の少なくとも1種類を上記溶媒に溶解して用いることができる。 Further, as the electrolyte, in addition to lithium hexafluorophosphate, at least one lithium salt such as lithium perchlorate and lithium tetrafluoroborate can be dissolved in the above solvent and used.
 本発明における正極シートを用いて製造した二次電池は、25℃の0.1Cにおける放電容量150mAh/g以上で、室温の1Cにおける放電容量が140mAh/g以上で、室温の5Cにおける放電容量が120mAh/g以上の特性である。ここで、0.1Cとは20時間でLiMn1-xFePO(0.02≦x≦0.5)の理論容量170mAh/gの電流が流れるよう固定した電流値であり、1Cとは1時間で理論容量170mAh/gの電流が流れるよう固定した電流値であり、また、5Cとは1/5時間で理論容量170mAh/gの電流が流れるよう固定した電流値である。Cの係数が高くなるほど、高い電流負荷特性を意味する。 The secondary battery manufactured using the positive electrode sheet of the present invention has a discharge capacity of 150 mAh / g or more at 0.1 C at 25 ° C., a discharge capacity at 1 C of room temperature of 140 mAh / g or more, and a discharge capacity of 5 C at room temperature. It is a characteristic of 120 mAh / g or more. Here, 0.1 C is a current value fixed so that a current of 170 mAh / g in theoretical capacity of LiMn 1-x Fe x PO 4 (0.02 ≦ x ≦ 0.5) flows in 20 hours. Is a current value fixed so that a current having a theoretical capacity of 170 mAh / g flows in 1 hour, and 5C is a current value fixed so that a current having a theoretical capacity of 170 mAh / g flows in 1/5 hour. A higher C coefficient means higher current load characteristics.
 また、本発明における正極シートを用いて製造した二次電池は、図3~6に示すとおり、低温での電流負荷特性、高温でのサイクル特性についても優れた特性を示した。 In addition, the secondary battery manufactured using the positive electrode sheet according to the present invention showed excellent characteristics in terms of current load characteristics at low temperatures and cycle characteristics at high temperatures, as shown in FIGS.
<作用>
 本発明に係る炭素複合化リン酸マンガン鉄リチウム粒子粉末は水熱処理と熱処理により製造され、低コストで、環境負荷が小さく製造できる。本発明の製造方法によれば、得られる炭素複合化リン酸マンガン鉄リチウム粒子粉末は結晶性と粒子表面と凝集粒子径が制御されているため、二次電池の正極活物質として用いた場合には、室温、及び低温における電流負荷特性においても高容量が得られ、且つ高温で十分に充放電を繰返し使えると本発明者は推定している。
<Action>
The carbon composite lithium manganese iron phosphate particles according to the present invention are produced by hydrothermal treatment and heat treatment, and can be produced at low cost and with low environmental load. According to the production method of the present invention, the obtained carbon composite lithium iron manganese phosphate particle powder is controlled in crystallinity, particle surface, and aggregated particle size, and therefore when used as a positive electrode active material for a secondary battery. The present inventor presumes that a high capacity can be obtained even in current load characteristics at room temperature and low temperature, and that charging and discharging can be sufficiently repeated at high temperature.
 本発明の代表的な実施の形態は次の通りである。 A typical embodiment of the present invention is as follows.
 リチウム、及びリン含有主原料のLi、P濃度はpH計と塩酸、又はNaOH試薬を用いた中和滴定により測定した。鉄原料のFe濃度は滴定(JIS K5109)により、マンガン原料のMn濃度も滴定(分析化学便覧 日本分析化学会編)により定量化した。これらの分析結果を元に、反応濃度と原料仕込み比を決定した。添加剤の重量比は仕込み量で計算した。 The Li and P concentrations of the lithium and phosphorus-containing main raw materials were measured by neutralization titration using a pH meter and hydrochloric acid or NaOH reagent. The Fe concentration of the iron raw material was quantified by titration (JIS K5109), and the Mn concentration of the manganese raw material was also quantified by titration (Analytical Chemistry Handbook, edited by the Japan Analytical Chemical Society). Based on these analysis results, the reaction concentration and the raw material charge ratio were determined. The weight ratio of the additive was calculated by the amount charged.
 水熱処理の反応率の評価は雰囲気管状炉(HS10S-2050TF、ヒートシステム(株)製)を用いた熱分析によって行った。水熱処理によって得られたリン酸マンガン鉄リチウムの乾燥粉末を不活性ガス雰囲気で700℃、2時間で熱処理した前後での重量減少量の割合から算出した。 The reaction rate of the hydrothermal treatment was evaluated by thermal analysis using an atmospheric tubular furnace (HS10S-2050TF, manufactured by Heat System Co., Ltd.). The dry powder of lithium iron manganese phosphate obtained by hydrothermal treatment was calculated from the ratio of weight loss before and after heat treatment at 700 ° C. for 2 hours in an inert gas atmosphere.
 各工程でのリン酸マンガン鉄リチウムの結晶相の評価に、X線回折装置SmartLab[(株)リガク製]を用いて、Cu-Kα、45kV,200mAの条件下測定し、Rietveld法を用いた。X線回折パターンは最高ピーク強度のcount数が8000~15000になるよう、0.02°のステップで、計数時間3.0秒で2θが15~90°の範囲で測定した。外部標準試料としてNIST(National Institute of Standards and Technology)のSRM674bを用い、Rietveld解析プログラムにRIETAN2000を用いた。その際、結晶子の異方的な広がりが無いと仮定し、プロファイル関数としてTCH擬ヴォイド関数を用い、その関数の非対称化にFinger等の手法を用い、信頼度因子S値が2.0を切るように解析した。電極活物質の格子定数(単位胞体積)と結晶子サイズの評価に同方法を用いた。 For the evaluation of the crystalline phase of lithium iron manganese phosphate in each step, the X-ray diffractometer SmartLab [manufactured by Rigaku Corporation] was used to measure under the conditions of Cu-Kα, 45 kV, 200 mA, and the Rietveld method was used. . The X-ray diffraction pattern was measured in steps of 0.02 ° with a counting time of 3.0 seconds and 2θ in the range of 15-90 ° so that the count number of the maximum peak intensity was 8000-15000. SRM674b of NIST (National Institute of Standards and Technology) was used as an external standard sample, and RIETA 2000 was used as a Rietveld analysis program. At that time, assuming that there is no anisotropic broadening of the crystallite, the TCH pseudo-void function is used as the profile function, the method such as Finger is used for asymmetry of the function, and the reliability factor S value is 2.0. Analyzed to cut. The same method was used to evaluate the lattice constant (unit cell volume) and crystallite size of the electrode active material.
<参考文献>
 F. Izumi and T. Ikeda, Mater. Sci. Forum, 2000, Vol.321-324, p.198.
<References>
F. Izumi and T. Ikeda, Mater. Sci. Forum, 2000, Vol. 321-324, p. 198.
 各工程でのリン酸マンガン鉄リチウムのLi、Mn、Fe、P主元素は発光プラズマ分析装置ICAP-6500[サーモフィッシャーサイエンティフィク社製]を用いたICP測定によって測定した。試料溶解にオートクレーブを用い、200℃の酸溶液中で溶解させた。 The Li, Mn, Fe, and P main elements of lithium manganese iron phosphate in each step were measured by ICP measurement using an emission plasma analyzer ICAP-6500 [manufactured by Thermo Fisher Scientific Co., Ltd.]. The sample was dissolved in an acid solution at 200 ° C. using an autoclave.
 以下のように、本発明によって得られた炭素複合化リン酸マンガン鉄リチウム粒子粉末の粉体評価を行った。 The powder evaluation of the carbon composite lithium manganese iron phosphate particles obtained by the present invention was performed as follows.
 BET比表面積は試料を窒素ガス下で120℃、45分間乾燥脱気した後、MONOSORB[ユアサアイオニックス(株)製]を用いた。 MONOSORB [manufactured by Yuasa Ionics Co., Ltd.] was used for the BET specific surface area after the sample was dried and deaerated under nitrogen gas at 120 ° C. for 45 minutes.
 残存カーボンと残存硫黄量はEMIA-820[(株)ホリバ製作所製]を用いて燃焼炉で酸素気流中にて燃焼させ、定量化した。 Residual carbon and residual sulfur were quantified by burning them in an oxygen stream in a combustion furnace using EMIA-820 [manufactured by Horiba Ltd.].
 凝集粒子径は湿式法のレーザー回折・散乱型粒度分布計のマイクロトラック[日機装(株)製]を用い、メジアン径D50で定量化した。 Agglomerated particle size using a Microtrac [Nikkiso Co., Ltd.] in the laser diffraction scattering type particle size distribution meter wet method and quantified in terms of median diameter D 50.
 圧縮成型体密度は13mmφの治具で1.5t/cmに圧粉し、重量と体積から算出した。また、同時に2端子法により圧縮成形体の電気抵抗率を測定した。 The density of the compression-molded body was compacted to 1.5 t / cm 2 with a 13 mmφ jig and calculated from the weight and volume. At the same time, the electrical resistivity of the compression molded body was measured by the two-terminal method.
 本発明によって得られた炭素複合化リン酸マンガン鉄リチウムの形状観察に日立製S-4300型の走査型電子顕微鏡(SEM)を用いた。 Hitachi S-4300 scanning electron microscope (SEM) was used for shape observation of the carbon composite lithium manganese phosphate obtained by the present invention.
 炭素複合化リン酸マンガン鉄リチウム粒子粉末を用いてCR2032型コインセルによる二次電池特性を評価した。 Secondary battery characteristics by CR2032 type coin cell were evaluated using carbon composite lithium manganese iron phosphate particle powder.
 用いた導電補助剤の炭素は、アセチレンブラックである。用いた結着剤は重合度63万のポリフッ化ビニリデン((株)クレハ製KFポリマー)で、N-メチルピロリドン(関東化学(株)製)に溶解した。電極組成比Aとして、重量比で、電極活物質:アセチレンブラック:PVDF=88:4:8になるよう正極材スラリーを調整し、250μmのギャップのドクターブレードでAl集電体上に塗布し、120℃、10分間空気中で乾燥し、乾燥したシートを3t/cmに加圧して、30~40μm程度の膜厚の正極シートを作製した。また、電極組成比Bとして、重量比で、電極活物質:アセチレンブラック:PVDF=86:7:7になるよう正極材スラリーを調整し、同様の処理を行った。 The carbon of the conductive auxiliary agent used is acetylene black. The binder used was polyvinylidene fluoride (KF polymer manufactured by Kureha Co., Ltd.) having a polymerization degree of 630,000, and was dissolved in N-methylpyrrolidone (manufactured by Kanto Chemical Co., Inc.). As the electrode composition ratio A, the positive electrode material slurry was adjusted so that the electrode active material: acetylene black: PVDF = 88: 4: 8 by weight ratio, and applied onto the Al current collector with a doctor blade having a gap of 250 μm, After drying in air at 120 ° C. for 10 minutes, the dried sheet was pressurized to 3 t / cm 2 to prepare a positive electrode sheet having a thickness of about 30 to 40 μm. Moreover, the positive electrode material slurry was adjusted so that the electrode composition ratio B was electrode active material: acetylene black: PVDF = 86: 7: 7 by weight ratio, and the same treatment was performed.
 2cmに打ち抜いた正極シート、17mmφに打ち抜いた厚さ0.15mmLi負極、19mmφにセパレーター(セルガード#2400)、1mol/lのLiPFを溶解したECとDMC(エチレンカーボネート:ジメチルカーボネート=3:7体積比)で混合した電解液(キシダ化学製)用いて、CR2032型コインセル((株)宝泉製)を作製した。 A positive electrode sheet punched to 2 cm 2 , a 0.15 mm Li negative electrode punched to 17 mmφ, a separator (Celguard # 2400) in 19 mmφ, EC and DMC (ethylene carbonate: dimethyl carbonate = 3: 7) in which 1 mol / l LiPF 6 was dissolved A CR2032-type coin cell (manufactured by Hosen Co., Ltd.) was prepared using an electrolytic solution (manufactured by Kishida Chemical Co., Ltd.) mixed in a volume ratio.
 電極組成比Aの正極シートを用いたコインセルで25℃における0.1C、1C、5Cの定電流値での放電容量を評価した。 The discharge capacity at constant current values of 0.1 C, 1 C, and 5 C at 25 ° C. was evaluated in a coin cell using a positive electrode sheet having an electrode composition ratio A.
 電極組成比Bの正極シートを用いたコインセルで0℃、25℃における電流負荷特性を評価した。充電時の電流値は0.1Cの定電流値を用い、0.1~5Cに相当する定電流値で放電を行った。 The current load characteristics at 0 ° C. and 25 ° C. were evaluated in a coin cell using a positive electrode sheet having an electrode composition ratio B. The current value during charging was a constant current value of 0.1 C, and discharging was performed at a constant current value corresponding to 0.1 to 5 C.
 また、電極組成比Bの正極シートを用いたコインセルで60℃における充放電曲線・放電容量を評価した。0.2Cに相当する定電流値で充電し、1、2、12、・・・、10×i+2(i=1~6)回目の放電を0.2Cに相当する定電流値、その他を1Cに相当する定電流値で放電したときの各サイクルの放電容量を測定した。充電と放電時の電圧範囲は、下限が2.0V、上限が4.5Vおよび下限が2.0V、上限4.3Vで行った。 In addition, the charge / discharge curve / discharge capacity at 60 ° C. was evaluated in a coin cell using a positive electrode sheet having an electrode composition ratio B. Charge with a constant current value corresponding to 0.2 C, 1, 2, 12,..., 10 × i + 2 (i = 1 to 6) discharge at a constant current value corresponding to 0.2 C, others 1 C The discharge capacity of each cycle when discharged at a constant current value corresponding to is measured. The voltage range during charging and discharging was performed with a lower limit of 2.0 V, an upper limit of 4.5 V, a lower limit of 2.0 V, and an upper limit of 4.3 V.
[実施例1]
 遷移金属の物質収支が各工程で100%とした場合、約88g(約0.56mol)のLiMn0.8Fe0.2POができるように原料を計量した。遷移金属が5.6mol/Lとなるよう、MnSO4、FeSO、HPO、NHOH、及び純水を混合し、室温での中和反応によりNHMnPOとNHFePOを得た。沈殿物を濾別し、純水で洗浄した後、LiOH・HO、HPO、及びアスコルビン酸の溶液を加え、mol比がLi:Mn:Fe:P=1.05:0.8:0.2:1.05となる原料仕込み比に調整された水系スラリーを得た。スラリー中の主結晶相はNHMnPOであった。該スラリーをボールミルで混合し、凝集粒子を粉砕して粒度を調整した。
[Example 1]
When the material balance of the transition metal was 100% in each step, the raw materials were weighed so that about 88 g (about 0.56 mol) of LiMn 0.8 Fe 0.2 PO 4 was formed. MnSO 4, FeSO 4 , H 3 PO 4 , NH 4 OH, and pure water are mixed so that the transition metal becomes 5.6 mol / L, and NH 4 MnPO 4 and NH 4 FePO 4 are mixed by a neutralization reaction at room temperature. Got. After the precipitate was filtered off and washed with pure water, a solution of LiOH.H 2 O, H 3 PO 4 , and ascorbic acid was added, and the molar ratio was Li: Mn: Fe: P = 1.05: 0. An aqueous slurry adjusted to a raw material charge ratio of 8: 0.2: 1.05 was obtained. The main crystal phase in the slurry was NH 4 MnPO 4 . The slurry was mixed with a ball mill, and the aggregated particles were pulverized to adjust the particle size.
 該スラリーを180℃で3時間水熱処理し、得られたリン酸マンガン鉄リチウムを純水でヌッチェを用いて洗浄し、ケーキを得た。評価用に一部抜取り、105℃で一晩乾燥した。評価用の乾燥粉末は、XRD回折パターンのRietveld解析から、Li1-αMn0.8Fe0.21-β4-δ(0≦α、β≦0.2)と3.4wt%の不純物相LiPOとを含むものであった。その組成比はICP測定でLi:Mn:Fe:P=1.00:0.8:0.2:0.98であり、5.0wt%重量減少が熱分析で確認できたため、該反応率は95.0wt%であった。 The slurry was hydrothermally treated at 180 ° C. for 3 hours, and the obtained lithium iron manganese phosphate was washed with pure water using a Nutsche to obtain a cake. A part was extracted for evaluation and dried at 105 ° C. overnight. From the Rietveld analysis of the XRD diffraction pattern, the dry powder for evaluation was Li 1-α Mn 0.8 Fe 0.2 P 1-β O 4-δ (0 ≦ α, β ≦ 0.2) and 3.4 wt. % Impurity phase Li 3 PO 4 . Its composition ratio was Li: Mn: Fe: P = 1.00: 0.8: 0.2: 0.98 as measured by ICP, and 5.0 wt% weight loss was confirmed by thermal analysis. Was 95.0 wt%.
 得られたケーキを解膠し、スラリーを作製後、反応率と主成分組成比の結果から、表1記載の主成分組成比になるよう、リチウム化合物及び/又はリン化合物と有機物を添加し混合した。主成分組成比はICP測定によって確認した。ここで表1記載の有機物の重量%の添加量は水熱処理後に得られたリン酸マンガン鉄リチウムのケーキを乾燥した場合に得られる固形分の量に対する値である。(第一工程)。 The cake obtained is peptized and a slurry is prepared. From the results of the reaction rate and the main component composition ratio, the lithium compound and / or phosphorus compound and organic matter are added and mixed so that the main component composition ratio shown in Table 1 is obtained. did. The main component composition ratio was confirmed by ICP measurement. Here, the addition amount of the organic substance in% by weight shown in Table 1 is a value with respect to the solid content obtained when the cake of lithium manganese iron phosphate obtained after the hydrothermal treatment is dried. (First step).
 主成分組成比を調整後、大気中105℃で乾燥した。乾燥物はコーヒーミルで粉砕され、75μmで篩分けされ、凝集粒子径を制御した前駆体混合粉末を得た(第二工程)。 After adjusting the main component composition ratio, it was dried at 105 ° C. in the air. The dried product was pulverized with a coffee mill and sieved at 75 μm to obtain a precursor mixed powder with controlled aggregate particle size (second step).
 得られた焼成用前駆体混合粉末をアルミナ製坩堝に入れ、700℃、5時間、窒素雰囲気下で熱処理を施した。昇温速度を200℃/hr、Nガス流量を1L/minとした。その後、メノウ乳鉢で粉砕し、45μm以下になるよう篩分けを行った(第三工程)。 The obtained precursor mixed powder for firing was placed in an alumina crucible and subjected to heat treatment at 700 ° C. for 5 hours in a nitrogen atmosphere. The temperature rising rate was 200 ° C./hr, and the N 2 gas flow rate was 1 L / min. Then, it grind | pulverized with the agate mortar and sieved so that it might become 45 micrometers or less (3rd process).
 得られた粉末は微細で、炭素複合化リン酸マンガン鉄リチウム粒子粉末であった。また、ICP測定の結果、第一工程で調整したLi、Mn、Fe、Pの組成比と相違なかった。図1と2に得られた炭素複合化リン酸マンガン鉄リチウム粒子粉末の高倍と低倍のSEM写真(二次電子像)を示す。得られた粉末は100nm以下の一次粒子と一次粒子が凝集した十数μmの凝集粒子とで構成されていることが分かった。 The obtained powder was fine, and was carbon composite lithium manganese iron phosphate particle powder. Further, as a result of ICP measurement, the composition ratio of Li, Mn, Fe, and P adjusted in the first step was not different. 1 and 2 show high and low magnification SEM photographs (secondary electron images) of the carbon composite lithium manganese iron phosphate particles obtained. It was found that the obtained powder was composed of primary particles of 100 nm or less and agglomerated particles of several tens μm in which the primary particles were aggregated.
 得られた粉末の粉体特性を表2に示した。電極組成比Aで正極化し、コインセルで評価した電池特性を表3に、また、電極組成比Bでの電池特性を図3から6に示す。表3、及び図3から6に示すように、25℃の電池特性以外にも、0℃での電流負荷特性、及び、60℃におけるサイクル特性においても良好な結果が得られた。 The powder characteristics of the obtained powder are shown in Table 2. Table 3 shows the battery characteristics obtained by making a positive electrode at the electrode composition ratio A and evaluated by the coin cell, and FIGS. 3 to 6 show the battery characteristics at the electrode composition ratio B. As shown in Table 3 and FIGS. 3 to 6, good results were obtained not only in the battery characteristics at 25 ° C. but also in the current load characteristics at 0 ° C. and the cycle characteristics at 60 ° C.
 以下の実施例、及び比較例の実験条件を表1に、粉体特性を表2に、電池特性を表3に記す。 Table 1 shows the experimental conditions of the following examples and comparative examples, Table 2 shows the powder characteristics, and Table 3 shows the battery characteristics.
[実施例2、3]
 実施例1と同仕様で得られた水熱処理、水洗後のリン酸マンガン鉄リチウム粒子含有ケーキに対し、その後の工程において、表1記載のリチウム化合物及び/又はリン化合物と炭素源を変えた他は実施例1と同様に、乾燥、粉砕・分級、焼成、及び粉砕・分級を行い、リン酸マンガン鉄リチウム粒子粉末を得た。表2、3に評価結果を示す。
[Examples 2 and 3]
The lithium compound and / or phosphorus compound described in Table 1 and the carbon source were changed in the subsequent steps for the hydrothermal treatment and the lithium iron manganese phosphate particle-containing cake obtained after washing with the same specifications as in Example 1. In the same manner as in Example 1, drying, pulverization / classification, baking, and pulverization / classification were performed to obtain lithium iron manganese phosphate particles. Tables 2 and 3 show the evaluation results.
[実施例4]
 実施例1と同仕様での水熱処理、水洗後のリン酸マンガン鉄リチウム粒子含有ケーキを乾燥後、表1記載のリチウム化合物及び/又はリン化合物と炭素源を用いて、乾燥物に対し、7.5wt%の水を加えて、コーヒーミルで混合を行った。それ以降の処理は、実施例1記載の方法で行いリン酸マンガン鉄リチウム粒子粉末を得た。表2、3に評価結果を示す。
[Example 4]
After drying the cake containing lithium manganese iron phosphate particles after hydrothermal treatment and washing with the same specifications as in Example 1, using the lithium compound and / or phosphorus compound and carbon source listed in Table 1, 7 .5 wt% water was added and mixed in a coffee mill. Subsequent treatment was performed by the method described in Example 1 to obtain lithium iron manganese phosphate particles. Tables 2 and 3 show the evaluation results.
 [実施例5、6]
 実施例1に記載の原料仕込み比に対し、Mn:Fe=85:15と変えた他は実施例1と同様の水熱反応用前駆体処理、水熱処理、及び水洗を行ってケーキを得た。評価用に水洗後のサンプルの一部を抜取り、105℃で一晩乾燥したものは、XRD回折パターンのRietveld解析でLi1-αMn0.85Fe0.151-β4-δ(0≦α、β≦0.2)と4.3wt%の不純物相LiPOとを含むものであることが判明した。その組成比はICP測定でLi:Mn:Fe:P=0.98:0.85:0.15:0.96であり、5.4wt%重量減少が熱分析で確認できたため、該反応率を94.6wt%とした。
[Examples 5 and 6]
A cake was obtained by performing the same hydrothermal reaction precursor treatment, hydrothermal treatment, and water washing as in Example 1 except that the raw material charge ratio described in Example 1 was changed to Mn: Fe = 85: 15. . For evaluation, a part of the sample after washing with water was taken out and dried at 105 ° C. overnight, and Li 1 -α Mn 0.85 Fe 0.15 P 1-β O 4-δ was obtained by Rietveld analysis of the XRD diffraction pattern. It was found to contain (0 ≦ α, β ≦ 0.2) and 4.3 wt% of the impurity phase Li 3 PO 4 . The composition ratio was Li: Mn: Fe: P = 0.98: 0.85: 0.15: 0.96 by ICP measurement, and a 5.4 wt% weight reduction could be confirmed by thermal analysis. Was 94.6 wt%.
 得られたケーキを解膠したリン酸マンガンリチウム粒子含有スラリーに対し、表1記載のリチウム化合物及び/又はリン化合物と炭素源を変えた他は実施例1と同様に、乾燥、粉砕・分級、焼成、及び粉砕・分級を行い、リン酸マンガン鉄リチウム粒子粉末を得た。表2、3に評価結果を示す。 The lithium manganese phosphate particle-containing slurry obtained by peptizing the obtained cake was dried, pulverized and classified in the same manner as in Example 1 except that the lithium compound and / or phosphorus compound described in Table 1 and the carbon source were changed. Firing, pulverization and classification were performed to obtain lithium iron manganese phosphate particles. Tables 2 and 3 show the evaluation results.
[比較例1]
 実施例1に記載の原料仕込み比に対し、Mn:Fe=100:0と変えた他は実施例1と同様の水熱反応用前駆体処理、水熱処理、及び水洗を行ってケーキを得た。評価用に水洗後のサンプルの一部を抜取り、105℃で一晩乾燥したものは、XRD回折パターンのRietveld解析で3.0wt%の不純物相LiPOとLi1-αMnP1-β4-δ(0≦α、β≦0.2)と判明した。その組成比はICP測定でLi:Mn:Fe:P=0.98:1.00:0.0:0.96であり、4.8wt%重量減少が熱分析で確認できたため、該反応率を95.2wt%とした。
[Comparative Example 1]
A cake was obtained by performing the same hydrothermal reaction precursor treatment, hydrothermal treatment, and water washing as in Example 1 except that the raw material charge ratio described in Example 1 was changed to Mn: Fe = 100: 0. . For evaluation, a part of the sample after washing with water was taken out and dried at 105 ° C. overnight. The result was 3.0 wt% impurity phase Li 3 PO 4 and Li 1-α MnP 1-β in the Rietveld analysis of the XRD diffraction pattern. It was found that O 4-δ (0 ≦ α, β ≦ 0.2). The composition ratio was Li: Mn: Fe: P = 0.98: 1.00: 0.0: 0.96 as measured by ICP, and a 4.8 wt% weight reduction could be confirmed by thermal analysis. Was 95.2 wt%.
 得られたケーキを解膠したリン酸マンガンリチウム粒子含有スラリーに対し、表1記載のリチウム化合物及び/又はリン化合物と炭素源を変えた他は実施例1と同様に、乾燥、粉砕・分級、焼成及び粉砕・分級を行い、リン酸マンガン鉄リチウム粒子粉末を得た。表2、3に評価結果を示す。電極組成比Bを用いたコインセルでは、0℃で128mAh/g(1C)の放電容量が得られ、また、60℃で62サイクル後の容量維持率は98%であった。 The lithium manganese phosphate particle-containing slurry obtained by peptizing the obtained cake was dried, pulverized and classified in the same manner as in Example 1 except that the lithium compound and / or phosphorus compound described in Table 1 and the carbon source were changed. Firing, pulverization and classification were performed to obtain lithium iron manganese phosphate particles. Tables 2 and 3 show the evaluation results. In the coin cell using the electrode composition ratio B, a discharge capacity of 128 mAh / g (1C) was obtained at 0 ° C., and the capacity retention rate after 62 cycles at 60 ° C. was 98%.
 得られた粉末は微細であるが、LiMnPOそのものが欠陥構造を作りにくいためか、式(1)に近い単位胞体積が得られた。一方、電池特性は非常に悪く、炭素被覆が不十分であると思われる。同時に、カーボン量が多く、凝集粒子径が小さいため、圧縮成形体密度が低下した。 Although the obtained powder was fine, the unit cell volume close to the formula (1) was obtained because LiMnPO 4 itself hardly forms a defect structure. On the other hand, the battery characteristics are very poor and the carbon coating seems to be insufficient. At the same time, since the amount of carbon was large and the aggregated particle size was small, the density of the compression molded product was lowered.
[比較例2]
 実施例1と同仕様で得られた水熱反応、水洗後のリン酸マンガン鉄リチウム粒子含有ケーキに対し、表1記載のリチウム化合物及び/又はリン化合物と炭素源を変えた他は実施例4と同様に、該ケーキを乾燥後、リチウム化合物及び/又はリン化合物と炭素源と水を混合、再乾燥、粉砕・分級、焼成、及び粉砕・分級を行いリン酸マンガン鉄リチウム粒子粉末を得た。表2、3に評価結果を示す。
[Comparative Example 2]
Example 4 except that the lithium compound and / or phosphorus compound and carbon source described in Table 1 were changed with respect to the cake containing lithium manganese iron phosphate particles after hydrothermal reaction and water washing obtained in the same specifications as in Example 1. Similarly, after drying the cake, the lithium compound and / or phosphorus compound, carbon source and water were mixed, re-dried, pulverized / classified, fired, and pulverized / classified to obtain lithium iron manganese phosphate particles. . Tables 2 and 3 show the evaluation results.
 比較例2は添加する炭素源の量が不十分であり、表2においても残存炭素量が不十分であり、電気抵抗が高かった。そのため、電池特性も不良であった。 In Comparative Example 2, the amount of carbon source to be added was insufficient, and in Table 2, the amount of residual carbon was insufficient and the electric resistance was high. Therefore, the battery characteristics were also poor.
[比較例3と4]
 実施例1と同仕様で得られた水熱反応、水洗後のリン酸マンガン鉄リチウム粒子含有ケーキに対し、表1記載のリチウム化合物及び/又はリン化合物と炭素源を変えた他は実施例1と同様に、ケーキ解膠後、混合、乾燥、粉砕・分級、焼成、及び粉砕・分級を行い、リン酸マンガン鉄リチウム粒子粉末を得た。表2、3に評価結果を示す。
[Comparative Examples 3 and 4]
Example 1 except that the lithium compound and / or phosphorus compound and carbon source described in Table 1 were changed with respect to the cake containing lithium manganese iron phosphate particles after the hydrothermal reaction and water washing obtained in the same specifications as Example 1. In the same manner as above, after peptization of the cake, mixing, drying, pulverization / classification, firing, and pulverization / classification were performed to obtain lithium iron manganese phosphate particles. Tables 2 and 3 show the evaluation results.
 比較例3と4は組成比調整にLi1-y2+yPOを用いなかったため、好ましくない不純物結晶相が生成された。その結果、該粒子の表面改質が不十分となり、十分な電池特性は得られなかったと推察している。 Since Comparative Examples 3 and 4 did not use Li 1-y H 2 + y PO 4 for adjusting the composition ratio, an undesirable impurity crystal phase was generated. As a result, it is surmised that the surface modification of the particles became insufficient and sufficient battery characteristics could not be obtained.
[比較例5]
 実施例1と同様にして第二工程で得られた焼成用前駆体混合粉末に対し、焼成を他の例よりも100℃高い800℃で行い、粉砕・分級を行い、リン酸マンガン鉄リチウム粒子粉末を得た。表2、3に評価結果を示す。
[Comparative Example 5]
The firing precursor mixed powder obtained in the second step in the same manner as in Example 1 is fired at 800 ° C., which is 100 ° C. higher than the other examples, pulverized and classified, and lithium manganese iron phosphate particles A powder was obtained. Tables 2 and 3 show the evaluation results.
 比較例5で得られたリン酸マンガン鉄リチウムからは不純物相のFePが検出され、オリビン構造中からFeが低減したためか、単位胞体積は大きかった。また、該不純物相が粒子表面の改質を抑制したためか、表3記載の電池特性は良好とは言い難いものであった。 The impurity phase Fe 2 P was detected from the lithium iron manganese phosphate obtained in Comparative Example 5, and the unit cell volume was large, probably because Fe was reduced from the olivine structure. In addition, it was difficult to say that the battery characteristics shown in Table 3 were good because the impurity phase suppressed the modification of the particle surface.
 比較例5で得られたリン酸マンガン鉄リチウムを用いて電極組成Bで0℃の電流負荷特性を測定したところ、図3と4に記載の実施例1の特性より遥かに下回った。また、2.0~4.5V間で、60℃の充放電サイクル試験を行ったところ、40から50サイクルの間で急激に容量が低下し、60サイクル後にはほぼ0となった。これは不純物相のFePが分解し、負極側で析出し、内部短絡やLi負極表面の汚染が生じたと考えている。 When the current load characteristics at 0 ° C. were measured with the electrode composition B using the lithium iron manganese phosphate obtained in Comparative Example 5, it was far lower than the characteristics of Example 1 described in FIGS. Further, when a charge / discharge cycle test at 60 ° C. was performed between 2.0 and 4.5 V, the capacity suddenly decreased between 40 and 50 cycles and became almost 0 after 60 cycles. This is thought to be because the impurity phase Fe 2 P was decomposed and deposited on the negative electrode side, causing internal short circuit and contamination of the Li negative electrode surface.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 以上の結果から本発明に係る炭素複合化リン酸マンガン酸鉄リチウム粒子粉末の製造方法は、低コストで、環境負荷の少ない製法である。また、本発明に係る炭素複合化リン酸マンガン鉄リチウム粒子粉末は、高充填性の正極シートを作製することが可能であり、それを用いた二次電池は25℃、及び0℃における電流負荷特性においても高容量が得られることが確認された。同時に60℃の高温充放電サイクル試験の結果、98%以上の容量維持率も確認できた。 From the above results, the method for producing carbon composite lithium iron manganate particles according to the present invention is a low cost and low environmental load production method. In addition, the carbon composite lithium iron manganese phosphate particles according to the present invention can produce a highly filled positive electrode sheet, and a secondary battery using the positive electrode sheet has a current load at 25 ° C. and 0 ° C. It was confirmed that a high capacity was obtained in terms of characteristics. At the same time, as a result of the high-temperature charge / discharge cycle test at 60 ° C., a capacity retention rate of 98% or more was confirmed.
 本発明は低コストで、環境負荷の少ない製法で作製されたオリビン型構造の炭素複合化リン酸マンガン酸鉄リチウム粒子粉末を二次電池正極活物質として用いることで、体積当りのエネルギー密度が高く、低温の高電流負荷特性においても高容量が得られ、高温のサイクル特性においても容量維持率が高い非水溶媒系二次電池を得ることができる。 The present invention uses an olivine-type carbon composite lithium iron manganate particle powder produced by a low-cost, low environmental load manufacturing method as a secondary battery positive electrode active material, thereby increasing the energy density per volume. In addition, a high capacity can be obtained even in a low temperature, high current load characteristic, and a nonaqueous solvent secondary battery having a high capacity retention rate in a high temperature cycle characteristic can be obtained.

Claims (6)

  1.  オリビン型構造の炭素複合化リン酸マンガン鉄リチウム(Mn:Fe=0.98:0.02~0.50:0.50mol比)粒子粉末の製造方法において、水熱処理によって生成されたオリビン型構造のリン酸マンガン鉄リチウムとリチウム化合物及び/又はリン化合物と、有機物とを含む水系懸濁液又は含水物を得る第一工程、第一工程で得られた水系懸濁液又は含水物を乾燥して焼成用前駆体混合粉末を得る第二工程、第二工程で得られた焼成用前駆体混合粉末を焼成する第三工程からなる炭素複合化リン酸マンガン鉄リチウム粒子粉末の製造方法であって、第一工程における水系懸濁液又は含水物がmol比で0.98≦Li/(Mn+Fe)≦1.20、0.98≦P/(Mn+Fe)≦1.20、P≦Liを満たし、且つ、リチウム化合物及び/又はリン化合物の60wt%以上がLi1-y2+yPO(0≦y≦1)であり、前記有機物が水熱処理後のリン酸マンガン鉄リチウムに対して1~20wt%であるオリビン型構造の炭素複合化リン酸マンガン鉄リチウム粒子粉末の製造方法。 Olivine-type structure produced by hydrothermal treatment in a method for producing olivine-type carbon composite lithium manganese iron phosphate (Mn: Fe = 0.98: 0.02-0.50: 0.50 mol ratio) particle powder First step of obtaining an aqueous suspension or hydrate containing lithium manganese iron phosphate, lithium compound and / or phosphorus compound and organic matter, drying the aqueous suspension or hydrate obtained in the first step A second step of obtaining a precursor mixed powder for firing, and a method of producing a carbon composite lithium manganese phosphate particle powder comprising a third step of firing the precursor mixed powder obtained in the second step. In the first step, the aqueous suspension or water-containing material satisfies 0.98 ≦ Li / (Mn + Fe) ≦ 1.20, 0.98 ≦ P / (Mn + Fe) ≦ 1.20, and P ≦ Li in molar ratios, And Richiu Above 60 wt% of the compound and / or phosphorus compound is Li 1-y H 2 + y PO 4 (0 ≦ y ≦ 1), wherein the organic substance is 1 ~ 20 wt% with respect to manganese phosphate lithium iron after the hydrothermal treatment A process for producing carbon composite lithium iron manganese phosphate particles having an olivine structure.
  2.  炭素複合化リン酸マンガン鉄リチウム粒子粉末の製造方法の第一工程において、有機物が水可溶性の有機物である請求項1に記載の製造方法。 The manufacturing method according to claim 1, wherein the organic substance is a water-soluble organic substance in the first step of the carbon composite lithium manganese iron phosphate particle powder manufacturing method.
  3.  炭素複合化リン酸マンガン鉄リチウム粒子粉末の製造方法の第一工程において、有機物がヒドロキシ基(-OH)又はカルボキシル基(-COOH)を含む多価アルコール、糖、又は有機酸に属する有機物である請求項1又は2に記載の製造方法。 In the first step of the method for producing carbon composite lithium manganese iron phosphate particles, the organic substance is a polyhydric alcohol containing a hydroxy group (—OH) or a carboxyl group (—COOH), a sugar, or an organic substance belonging to an organic acid. The manufacturing method of Claim 1 or 2.
  4.  炭素複合化リン酸マンガン鉄リチウム粒子粉末の製造方法の第二工程における乾燥温度が40℃~250℃である請求項1~3のいずれかに記載の製造方法。 The production method according to any one of claims 1 to 3, wherein the drying temperature in the second step of the production method of the carbon composite lithium iron phosphate particles is 40 ° C to 250 ° C.
  5.  請求項1~4のいずれかに記載された製造方法によって得られる炭素複合化リン酸マンガン鉄リチウム粒子粉末。 Carbon composite lithium iron manganese phosphate particles obtained by the production method according to any one of claims 1 to 4.
  6.  請求項5に記載の炭素複合化リン酸マンガン鉄リチウム粒子粉末を用いて作製した非水電解質二次電池。 A nonaqueous electrolyte secondary battery produced using the carbon composite lithium manganese phosphate particle powder according to claim 5.
PCT/JP2013/073132 2012-08-31 2013-08-29 Method for producing carbon composite lithium manganese iron phosphate particle powder, carbon composite lithium manganese iron phosphate particle powder, and nonaqueous electrolyte secondary battery using carbon composite lithium manganese iron phosphate particle powder WO2014034775A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014533075A JP6260535B2 (en) 2012-08-31 2013-08-29 Method for producing carbon composite lithium manganese iron phosphate particle powder, and method for producing a non-aqueous electrolyte secondary battery using the particle powder

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012190927 2012-08-31
JP2012-190927 2012-08-31

Publications (1)

Publication Number Publication Date
WO2014034775A1 true WO2014034775A1 (en) 2014-03-06

Family

ID=50183580

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/073132 WO2014034775A1 (en) 2012-08-31 2013-08-29 Method for producing carbon composite lithium manganese iron phosphate particle powder, carbon composite lithium manganese iron phosphate particle powder, and nonaqueous electrolyte secondary battery using carbon composite lithium manganese iron phosphate particle powder

Country Status (3)

Country Link
JP (1) JP6260535B2 (en)
TW (1) TWI636007B (en)
WO (1) WO2014034775A1 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104600294A (en) * 2014-12-30 2015-05-06 山东精工电子科技有限公司 High-capacity microrod lithium manganese iron phosphate material synthesized by hydrothermal process and preparation method thereof
JP5971378B1 (en) * 2015-04-30 2016-08-17 住友大阪セメント株式会社 Method for producing positive electrode material for lithium ion secondary battery
JP2019050104A (en) * 2017-09-08 2019-03-28 太平洋セメント株式会社 Method for manufacturing positive electrode active material composite for lithium ion secondary battery
CN109980181A (en) * 2017-12-27 2019-07-05 财团法人工业技术研究院 Lithium ion battery anode
CN111613786A (en) * 2020-05-29 2020-09-01 东莞东阳光科研发有限公司 Composite material and preparation method thereof
CN112811406A (en) * 2021-01-11 2021-05-18 天津市捷威动力工业有限公司 Biosynthesis method of high-performance olivine type manganese-based phosphate positive electrode material
CN113072049A (en) * 2021-03-26 2021-07-06 天津斯科兰德科技有限公司 Preparation method of high-compaction-density lithium manganese iron phosphate/carbon composite positive electrode material
CN113161523A (en) * 2021-03-31 2021-07-23 华南理工大学 Non-stoichiometric lithium manganese iron phosphate cathode material and preparation method and application thereof
US11228028B2 (en) 2017-12-27 2022-01-18 Industrial Technology Research Institute Cathode of lithium ion battery
CN114204016A (en) * 2020-09-18 2022-03-18 比亚迪股份有限公司 Positive electrode material, positive electrode slurry, positive electrode sheet and battery
CN114204015A (en) * 2020-09-18 2022-03-18 比亚迪股份有限公司 Positive electrode material, positive electrode slurry, positive electrode sheet and battery
CN114520312A (en) * 2020-11-19 2022-05-20 比亚迪股份有限公司 Positive electrode active material, positive electrode slurry, positive electrode sheet, and battery
CN114620703A (en) * 2022-03-31 2022-06-14 重庆长安新能源汽车科技有限公司 Carbon-coated lithium manganese iron phosphate composite material and preparation method thereof
CN114899394A (en) * 2022-06-29 2022-08-12 蜂巢能源科技股份有限公司 Modified lithium iron manganese phosphate cathode material and preparation method and application thereof
CN115259127A (en) * 2022-08-04 2022-11-01 四川朗晟新能源科技有限公司 Preparation method and application of lithium iron manganese phosphate material
WO2022239684A1 (en) * 2021-05-13 2022-11-17 日本化学工業株式会社 Method for producing transition-metal-containing lithium-phosphorus-based composite oxide, and method for producing transition-metal-containing lithium-phosphorus-based composite oxide carbon complex
CN115716642A (en) * 2022-11-16 2023-02-28 高点(深圳)科技有限公司 Phosphate precursor and preparation method thereof, positive electrode material and preparation method thereof, positive plate and secondary battery
US20230387408A1 (en) * 2022-05-25 2023-11-30 Rivian Ip Holdings, Llc High energy density olivine-based cathode materials

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116409771A (en) * 2023-03-17 2023-07-11 湖北兴发化工集团股份有限公司 Preparation method of lithium iron manganese phosphate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011100592A (en) * 2009-11-05 2011-05-19 Tayca Corp Method of manufacturing carbon-olivine type lithium ferromanganese phosphate complex, and positive electrode material for lithium ion battery
JP2011213587A (en) * 2010-03-19 2011-10-27 Toda Kogyo Corp Method of producing lithium ferromanganese phosphate particulate powder, lithium ferromanganese phosphate particulate powder and non-aqueous electrolyte secondary battery using the same
JP2012506362A (en) * 2008-10-22 2012-03-15 エルジー・ケム・リミテッド Lithium iron phosphate having olivine structure and method for producing the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6794084B2 (en) * 2002-07-26 2004-09-21 Valence Technology, Inc. Alkali metal hydrogen phosphates as precursors for phosphate-containing electrochemical active materials
JP5488598B2 (en) * 2009-06-24 2014-05-14 株式会社Gsユアサ Positive electrode active material for lithium secondary battery and lithium secondary battery
CN102530906A (en) * 2010-12-16 2012-07-04 中国科学院福建物质结构研究所 Microwave-hydrothermal method for preparing cathode materials of nano lithium iron phosphate batteries

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012506362A (en) * 2008-10-22 2012-03-15 エルジー・ケム・リミテッド Lithium iron phosphate having olivine structure and method for producing the same
JP2011100592A (en) * 2009-11-05 2011-05-19 Tayca Corp Method of manufacturing carbon-olivine type lithium ferromanganese phosphate complex, and positive electrode material for lithium ion battery
JP2011213587A (en) * 2010-03-19 2011-10-27 Toda Kogyo Corp Method of producing lithium ferromanganese phosphate particulate powder, lithium ferromanganese phosphate particulate powder and non-aqueous electrolyte secondary battery using the same

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104600294A (en) * 2014-12-30 2015-05-06 山东精工电子科技有限公司 High-capacity microrod lithium manganese iron phosphate material synthesized by hydrothermal process and preparation method thereof
JP5971378B1 (en) * 2015-04-30 2016-08-17 住友大阪セメント株式会社 Method for producing positive electrode material for lithium ion secondary battery
JP2016212996A (en) * 2015-04-30 2016-12-15 住友大阪セメント株式会社 Method for producing positive electrode material for lithium ion secondary battery
JP2019050104A (en) * 2017-09-08 2019-03-28 太平洋セメント株式会社 Method for manufacturing positive electrode active material composite for lithium ion secondary battery
CN109980181A (en) * 2017-12-27 2019-07-05 财团法人工业技术研究院 Lithium ion battery anode
JP2019149368A (en) * 2017-12-27 2019-09-05 財團法人工業技術研究院Industrial Technology Research Institute Positive electrode for lithium ion battery
US11228028B2 (en) 2017-12-27 2022-01-18 Industrial Technology Research Institute Cathode of lithium ion battery
CN111613786A (en) * 2020-05-29 2020-09-01 东莞东阳光科研发有限公司 Composite material and preparation method thereof
CN114204016B (en) * 2020-09-18 2023-01-06 比亚迪股份有限公司 Positive electrode material, positive electrode slurry, positive plate and battery
CN114204015B (en) * 2020-09-18 2023-01-06 比亚迪股份有限公司 Positive electrode material, positive electrode slurry, positive plate and battery
WO2022057920A1 (en) * 2020-09-18 2022-03-24 比亚迪股份有限公司 Positive electrode material, positive electrode sheet and battery
CN114204016A (en) * 2020-09-18 2022-03-18 比亚迪股份有限公司 Positive electrode material, positive electrode slurry, positive electrode sheet and battery
CN114204015A (en) * 2020-09-18 2022-03-18 比亚迪股份有限公司 Positive electrode material, positive electrode slurry, positive electrode sheet and battery
CN114520312B (en) * 2020-11-19 2023-01-06 比亚迪股份有限公司 Positive electrode active material, positive electrode slurry, positive electrode sheet, and battery
CN114520312A (en) * 2020-11-19 2022-05-20 比亚迪股份有限公司 Positive electrode active material, positive electrode slurry, positive electrode sheet, and battery
CN112811406A (en) * 2021-01-11 2021-05-18 天津市捷威动力工业有限公司 Biosynthesis method of high-performance olivine type manganese-based phosphate positive electrode material
CN112811406B (en) * 2021-01-11 2023-03-24 天津市捷威动力工业有限公司 Biosynthesis method of high-performance olivine type manganese-based phosphate positive electrode material
CN113072049A (en) * 2021-03-26 2021-07-06 天津斯科兰德科技有限公司 Preparation method of high-compaction-density lithium manganese iron phosphate/carbon composite positive electrode material
CN113072049B (en) * 2021-03-26 2023-01-31 天津斯科兰德科技有限公司 Preparation method of high-compaction-density lithium manganese iron phosphate/carbon composite positive electrode material
CN113161523A (en) * 2021-03-31 2021-07-23 华南理工大学 Non-stoichiometric lithium manganese iron phosphate cathode material and preparation method and application thereof
WO2022239684A1 (en) * 2021-05-13 2022-11-17 日本化学工業株式会社 Method for producing transition-metal-containing lithium-phosphorus-based composite oxide, and method for producing transition-metal-containing lithium-phosphorus-based composite oxide carbon complex
CN114620703A (en) * 2022-03-31 2022-06-14 重庆长安新能源汽车科技有限公司 Carbon-coated lithium manganese iron phosphate composite material and preparation method thereof
CN114620703B (en) * 2022-03-31 2023-04-07 重庆长安新能源汽车科技有限公司 Carbon-coated lithium manganese iron phosphate composite material and preparation method thereof
US20230387408A1 (en) * 2022-05-25 2023-11-30 Rivian Ip Holdings, Llc High energy density olivine-based cathode materials
CN114899394A (en) * 2022-06-29 2022-08-12 蜂巢能源科技股份有限公司 Modified lithium iron manganese phosphate cathode material and preparation method and application thereof
CN114899394B (en) * 2022-06-29 2023-12-19 蜂巢能源科技股份有限公司 Modified lithium iron manganese phosphate positive electrode material and preparation method and application thereof
CN115259127A (en) * 2022-08-04 2022-11-01 四川朗晟新能源科技有限公司 Preparation method and application of lithium iron manganese phosphate material
CN115716642A (en) * 2022-11-16 2023-02-28 高点(深圳)科技有限公司 Phosphate precursor and preparation method thereof, positive electrode material and preparation method thereof, positive plate and secondary battery

Also Published As

Publication number Publication date
TWI636007B (en) 2018-09-21
TW201414668A (en) 2014-04-16
JP6260535B2 (en) 2018-01-17
JPWO2014034775A1 (en) 2016-08-08

Similar Documents

Publication Publication Date Title
JP6260535B2 (en) Method for producing carbon composite lithium manganese iron phosphate particle powder, and method for producing a non-aqueous electrolyte secondary battery using the particle powder
EP3370285B1 (en) Positive electrode active material for nonaqueous electrolyte secondary batteries and nonaqueous electrolyte secondary battery using said positive electrode active material
JP5817963B2 (en) Method for producing lithium manganese iron phosphate particle powder, lithium manganese iron phosphate particle powder, and nonaqueous electrolyte secondary battery using the particle powder
JP5999208B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the positive electrode active material
JP4211865B2 (en) Li-Ni composite oxide particle powder for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
KR101118008B1 (en) Lithium Iron Phosphate Having Olivine Structure and Method for Preparing the Same
KR101587671B1 (en) Lithium iron phosphate powder manufacturing method, olivine structured lithium iron phosphate powder, cathode sheet using said lithium iron phosphate powder, and non-aqueous solvent secondary battery
JP6112118B2 (en) Li-Ni composite oxide particle powder and non-aqueous electrolyte secondary battery
JP5450284B2 (en) Lithium titanate particles and manufacturing method thereof, negative electrode for lithium ion battery, and lithium battery
JP6519202B2 (en) Lithium titanate powder, active material, and storage device using the same
JP5940529B2 (en) Lithium titanate aggregate, lithium ion secondary battery and lithium ion capacitor using the same
KR20090120469A (en) Li-ni complex oxide particle powder for nonaqueous electrolyte secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery
JP2010095432A (en) Multi-element phosphate type lithium compound particle having olivine structure, method for producing the same and lithium secondary battery using the same for positive electrode material
JP5637102B2 (en) Positive electrode material for lithium ion secondary battery, positive electrode member for lithium ion secondary battery, and lithium ion secondary battery
JP7412264B2 (en) Positive electrode active material for lithium ion secondary battery and method for manufacturing the same
US20220166019A1 (en) Positive electrode active material for lithium-ion secondary batteries, method for producing same, and lithium-ion secondary battery
JP2011132095A (en) Method for producing olivine-type compound particle powder, and nonaqueous electrolyte secondary battery
JP6026165B2 (en) Lithium titanate aggregate, lithium ion secondary battery and lithium ion capacitor using the same
JP5901492B2 (en) Method for producing lithium silicate compound, method for producing lithium silicate compound aggregate, and method for producing lithium ion battery
JP5968712B2 (en) Method for producing lithium titanate powder, lithium ion secondary battery and lithium ion capacitor using the lithium titanate powder
JP7061537B2 (en) Electrodes for secondary batteries, their manufacturing methods, and secondary batteries using them.
JP6205895B2 (en) Olivine-type transition metal lithium silicate compound and method for producing the same
JP5967101B2 (en) Positive electrode material for lithium ion secondary battery, positive electrode member for lithium ion secondary battery, and lithium ion secondary battery
JP6045194B2 (en) Method for producing lithium / manganese composite oxide, lithium / manganese composite oxide obtained by the production method, positive electrode active material for secondary battery containing the same, and lithium ion secondary battery using the same as positive electrode active material
JP2023167178A (en) Electrode material and all-solid-state battery using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13834109

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014533075

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13834109

Country of ref document: EP

Kind code of ref document: A1