JP2023167178A - Electrode material and all-solid-state battery using the same - Google Patents

Electrode material and all-solid-state battery using the same Download PDF

Info

Publication number
JP2023167178A
JP2023167178A JP2022078154A JP2022078154A JP2023167178A JP 2023167178 A JP2023167178 A JP 2023167178A JP 2022078154 A JP2022078154 A JP 2022078154A JP 2022078154 A JP2022078154 A JP 2022078154A JP 2023167178 A JP2023167178 A JP 2023167178A
Authority
JP
Japan
Prior art keywords
particles
titanium oxide
electrode
electrode material
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022078154A
Other languages
Japanese (ja)
Inventor
友博 小▲崎▼
Tomohiro Ozaki
彪亮 向原
Hyosuke Mukohara
直樹 森本
Naoki Morimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sakai Chemical Industry Co Ltd
Original Assignee
Sakai Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sakai Chemical Industry Co Ltd filed Critical Sakai Chemical Industry Co Ltd
Priority to JP2022078154A priority Critical patent/JP2023167178A/en
Publication of JP2023167178A publication Critical patent/JP2023167178A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide an electrode material using titanium oxide that does not require a step of coating titanium oxide with a solid electrolyte or its precursor and can suppress side reactions even when sintering is performed at a temperature higher than 600°C.SOLUTION: In an electrode material containing titanium oxide particles including titanium oxide particles having an anatase crystal structure, the average primary particle diameter is 300nm to 1500nm as determined by measuring the directional diameter with an electron microscope, and the abundance ratio of particles with a primary particle diameter of less than 300 nm is less than 12%.SELECTED DRAWING: None

Description

本発明は、電極材料及びそれを用いた全固体電池に関する。 The present invention relates to an electrode material and an all-solid-state battery using the same.

昨今、環境問題への関心の高まりを背景に、様々な産業分野で石油や石炭から電気へとエネルギー源の転換が進んでおり、携帯電話やノートパソコン等の電子機器だけでなく、自動車や航空機等の分野をはじめ、様々な分野で電池やキャパシタ等の蓄電装置の使用が広がりをみせている。蓄電装置としては現在、リチウムイオン二次電池に代表される非水電解質を用いた二次電池が広く利用されている。非水電解質を用いた二次電池としては電極に様々な材料を用いたものが提案されており、例えば負極としてチタン酸化物を用いたもの等が知られている(特許文献1参照)。なおチタン酸化物の一種である酸化チタンは電池の電極活物質以外の用途でも幅広く利用されており、例えば樹脂膜の屈折率調整等にも使用される(特許文献2参照)。このような非水電解質を用いた電池では、電解質に可燃性の有機溶媒を使用することから発火や爆発の危険性があり、また極低温環境下では電解質が凍結して電池として機能しなくなるという欠点がある。このため近年、固体電解質を用いる全固体電池が注目されており、研究開発が活発に行われている。 In recent years, against the backdrop of growing interest in environmental issues, energy sources have been switching from oil and coal to electricity in various industrial fields. The use of power storage devices such as batteries and capacitors is expanding in a variety of fields, including the following. Currently, secondary batteries using nonaqueous electrolytes, such as lithium ion secondary batteries, are widely used as power storage devices. As secondary batteries using non-aqueous electrolytes, batteries using various materials for electrodes have been proposed, and for example, batteries using titanium oxide as a negative electrode are known (see Patent Document 1). Note that titanium oxide, which is a type of titanium oxide, is widely used for purposes other than electrode active materials of batteries, and is also used, for example, to adjust the refractive index of resin films (see Patent Document 2). Batteries using such non-aqueous electrolytes run the risk of ignition or explosion due to the use of flammable organic solvents in the electrolyte, and the electrolyte freezes in extremely low temperatures, causing the battery to no longer function. There are drawbacks. For this reason, all-solid-state batteries using solid electrolytes have attracted attention in recent years, and research and development are being actively conducted.

全固体電池に用いられる固体電解質のうち無機材料からなる固体電解質は酸化物系のものと硫化物系のものに大別される。このうち酸化物系の固体電解質は一般的に固い材料であり粒界抵抗が大きいため、電極活物質の粉末と混合するだけでは十分な性能が得られない。このため電極活物質と固体電解質とを接合させるための焼結が行われるが、焼結時には界面で電池の性能低下の原因となる望ましくない反応が進行する場合がある。例えば、負極活物質として酸化チタンを用い、リン酸化物系の固体電解質を用いる全固体電池では焼結により副反応相が形成され、負極作動電位が高電位化してしまう不具合がある。この不具合に対し、酸化チタンの表面に固体電解質をコーティングすることで低温での焼結を可能とし、副反応相の形成を抑制する方法が提案されている(特許文献3、4参照)。また正極活物質であるLiCoPと固体電解質の界面反応を抑制することを目的として、LiCoPにLiを被覆する方法(特許文献5参照)や、負極活物質であるLiTi12と固体電解質との界面反応を抑制するためにリチウムリン酸塩、リチウムニオブ酸塩、及びリチウムケイ酸塩からなる群より選ばれる少なくとも一種を固体電解質として用いる方法(特許文献6参照)が提案されている。また電極活物質を固体電解質の被膜で覆うことで焼結時の正極活物質の酸化を抑制したり、電池の安定性を改善する方法(特許文献7、8参照)が提案されている。 Among the solid electrolytes used in all-solid-state batteries, solid electrolytes made of inorganic materials are broadly classified into oxide-based ones and sulfide-based ones. Among these, oxide-based solid electrolytes are generally hard materials and have high grain boundary resistance, so sufficient performance cannot be obtained simply by mixing them with electrode active material powder. For this reason, sintering is performed to bond the electrode active material and the solid electrolyte, but during sintering, undesirable reactions that cause a decrease in battery performance may occur at the interface. For example, in an all-solid-state battery that uses titanium oxide as a negative electrode active material and a phosphoric oxide solid electrolyte, a side reaction phase is formed due to sintering, and the negative electrode operating potential becomes high. To address this problem, a method has been proposed in which the surface of titanium oxide is coated with a solid electrolyte to enable sintering at low temperatures and to suppress the formation of side reaction phases (see Patent Documents 3 and 4). In addition, for the purpose of suppressing the interfacial reaction between Li 2 CoP 2 O 7 , which is a positive electrode active material, and a solid electrolyte, there are methods of coating Li 2 CoP 2 O 7 with Li 4 P 2 O 7 (see Patent Document 5) and , at least one selected from the group consisting of lithium phosphate, lithium niobate, and lithium silicate is used as a solid electrolyte in order to suppress the interfacial reaction between Li 4 Ti 5 O 12 , which is a negative electrode active material, and the solid electrolyte. A method (see Patent Document 6) has been proposed. Furthermore, a method has been proposed in which the electrode active material is covered with a solid electrolyte film to suppress oxidation of the positive electrode active material during sintering and to improve battery stability (see Patent Documents 7 and 8).

特開2017-168265号公報JP2017-168265A 特開2011-136871号公報Japanese Patent Application Publication No. 2011-136871 特開2019-050083号公報JP 2019-050083 Publication 特開2019-179669号公報JP 2019-179669 Publication 特開2020-113376号公報Japanese Patent Application Publication No. 2020-113376 特開2018-125286号公報Japanese Patent Application Publication No. 2018-125286 特開2018-120724号公報Japanese Patent Application Publication No. 2018-120724 特開2013-125750号公報Japanese Patent Application Publication No. 2013-125750

上記電極活物質と固体電解質とを接合させるための焼結時の不具合を抑制する種々の技術のうち、電極活物質として酸化チタンを用いた特許文献3、4には酸化チタンを固体電解質で被覆し、焼結温度を600℃にすることで副反応が起こらないことが確認されたと記載されているが、全固体電池の緻密性を向上させる観点からはより高温で焼結することが望ましい。また特許文献3、4の技術では酸化チタンを固体電解質又はその前駆体で被覆する工程を要するため、工程数削減の観点から改良の余地がある。 Among various techniques for suppressing defects during sintering to bond the electrode active material and solid electrolyte, Patent Documents 3 and 4 using titanium oxide as the electrode active material include coating titanium oxide with a solid electrolyte. However, it is stated that it was confirmed that no side reactions occur by setting the sintering temperature to 600°C, but from the viewpoint of improving the density of the all-solid-state battery, it is desirable to sinter at a higher temperature. Furthermore, since the techniques of Patent Documents 3 and 4 require a step of coating titanium oxide with a solid electrolyte or its precursor, there is room for improvement from the viewpoint of reducing the number of steps.

本発明は、上記現状に鑑みてなされたものであり、酸化チタンを固体電解質又はその前駆体で被覆する工程を要さず、600℃よりも高温で焼結を行った場合でも副反応を抑制することができる酸化チタンを用いた電極材料を提供することを目的とする。 The present invention was made in view of the above-mentioned current situation, and does not require a step of coating titanium oxide with a solid electrolyte or its precursor, and suppresses side reactions even when sintering is performed at a temperature higher than 600°C. The purpose of the present invention is to provide an electrode material using titanium oxide that can

本発明者は、酸化チタンを固体電解質又はその前駆体で被覆する工程を要さず、600℃よりも高温で焼結を行った場合でも副反応を抑制することができる酸化チタンを用いた電極材料について種々検討したところ、アナタース型結晶構造を有する酸化チタン粒子を含み、所定の測定方法による平均一次粒子径が300nm~1500nmであり、一次粒子径が300nm未満の粒子の存在比が12%未満である酸化チタン粒子を電極材料として用いると、固体電解質又はその前駆体で被覆する工程を行うことなく600℃よりも高温で焼結を行った場合でも副反応を抑制することができることを見出し、本発明を完成するに至った。 The present inventor has developed an electrode using titanium oxide that does not require the step of coating titanium oxide with a solid electrolyte or its precursor and can suppress side reactions even when sintered at a temperature higher than 600°C. After various studies on the material, we found that it contains titanium oxide particles with an anatase crystal structure, has an average primary particle diameter of 300 nm to 1500 nm according to a prescribed measurement method, and the abundance ratio of particles with a primary particle diameter of less than 300 nm is less than 12%. We have discovered that when titanium oxide particles are used as an electrode material, side reactions can be suppressed even when sintering is performed at a temperature higher than 600 ° C. without a step of coating with a solid electrolyte or its precursor, The present invention has now been completed.

本発明は、以下の電極材料等を包含する。
〔1〕酸化チタン粒子を含む電極材料であって、該酸化チタン粒子は、アナタース型結晶構造を有する酸化チタン粒子を含み、電子顕微鏡にて定方向径を計測することによる平均一次粒子径が300nm~1500nmであり、一次粒子径が300nm未満の粒子の存在比が12%未満である、電極材料。
〔2〕前記電極材料は、XRD測定におけるルチル型酸化チタンの回折ピーク(面指数110)のピーク高さIと、アナタース型酸化チタンの回折ピーク(面指数101)のピーク高さIにおいて、(I×1.32/(I+I×1.32))×100の値が50.0未満である、〔1〕に記載の電極材料。
〔3〕前記電極材料は、全固体電池に用いられる、〔1〕又は〔2〕に記載の電極材料。
〔4〕上記〔1〕~〔3〕のいずれかに記載の電極材料を備える全固体電池。
The present invention includes the following electrode materials.
[1] An electrode material containing titanium oxide particles, the titanium oxide particles containing titanium oxide particles having an anatase crystal structure, and having an average primary particle diameter of 300 nm as determined by measuring the diameter in a direction with an electron microscope. ~1500 nm, and the abundance ratio of particles with a primary particle diameter of less than 300 nm is less than 12%.
[2] The electrode material has a peak height I R of a diffraction peak of rutile-type titanium oxide (plane index 110) and a peak height I A of a diffraction peak (plane index 101) of anatase-type titanium oxide in XRD measurement. , (I R ×1.32/(I A +I R ×1.32))×100 is less than 50.0, the electrode material according to [1].
[3] The electrode material according to [1] or [2], wherein the electrode material is used for an all-solid-state battery.
[4] An all-solid-state battery comprising the electrode material according to any one of [1] to [3] above.

本発明の電極材料は、酸化チタンを固体電解質又はその前駆体で被覆する工程を要さず、600℃よりも高温で焼結を行った場合でも副反応を抑制することができるため、全固体電池の電極材料として好適に使用することができる。 The electrode material of the present invention does not require the step of coating titanium oxide with a solid electrolyte or its precursor, and can suppress side reactions even when sintered at a temperature higher than 600°C, so it is completely solid. It can be suitably used as an electrode material for batteries.

実施例1、2のTiO粒子1、2、比較例1、2の比較TiO粒子1、2を用いて作製した電極を備える電池の充電開始からの電圧と容量との関係を示した図である。A diagram showing the relationship between voltage and capacity from the start of charging of a battery including an electrode prepared using TiO 2 particles 1 and 2 of Examples 1 and 2 and comparison TiO 2 particles 1 and 2 of Comparative Examples 1 and 2. It is.

以下に本発明の好ましい形態について具体的に説明するが、本発明は以下の記載のみに限定されるものではなく、本発明の要旨を変更しない範囲において適宜変更して適用することができる。なお、以下に記載される本発明の個々の好ましい形態を2又は3以上組み合わせた形態も、本発明の好ましい形態に該当する。 Preferred embodiments of the present invention will be specifically described below, but the present invention is not limited to the following description, and can be applied with appropriate modifications within the scope of the gist of the present invention. Note that combinations of two or more of the individual preferred embodiments of the present invention described below also correspond to preferred embodiments of the present invention.

1.電極材料
本発明の電極材料に含まれる酸化チタン粒子は、アナタース型結晶構造を有する酸化チタン粒子を含み、電子顕微鏡にて定方向径を計測することによる平均一次粒子径が300nm~1500nmであり、一次粒子径が300nm未満の粒子の存在比が12%未満である。
ここで「一次粒子」とは、粉末を構成する最も小さい粒子のことをいう。また2以上の一次粒子が凝集した状態の粒子を「凝集粒子」といい、一次粒子とは区別する。
酸化チタン粒子の上記平均一次粒子径が300nm以上であって、一次粒子径が300nm未満の粒子の存在比が12%未満であることにより、酸化チタン粒子の表面積が小さくなり、固体電解質との接触面積が小さくなることで固体電解質との副反応を充分に抑制することができる。
また、上記平均一次粒子径が1500nm以下であることにより、電極反応の際のLi等のイオンの挿入サイトを充分に確保することができ、Li等のイオンが酸化チタン粒子の内部まで充分に拡散し、酸化チタン粒子は内部まで充放電に寄与することができるため、十分な充放電容量を確保することができる。
上記平均一次粒子径として好ましくは、300~1300nmであり、より好ましくは、300~1100nmであり、更に好ましくは、600~1100nmであり、特に好ましくは、800~1100nmである。
1. Electrode material The titanium oxide particles contained in the electrode material of the present invention include titanium oxide particles having an anatase crystal structure, and have an average primary particle diameter of 300 nm to 1500 nm as determined by measuring the diameter in a direction using an electron microscope. The abundance ratio of particles having a primary particle diameter of less than 300 nm is less than 12%.
Here, the term "primary particles" refers to the smallest particles constituting the powder. Particles in which two or more primary particles are aggregated are called "agglomerated particles" and are distinguished from primary particles.
Since the titanium oxide particles have an average primary particle size of 300 nm or more and the abundance ratio of particles with a primary particle size of less than 300 nm is less than 12%, the surface area of the titanium oxide particles becomes small and contact with the solid electrolyte is reduced. By reducing the area, side reactions with the solid electrolyte can be sufficiently suppressed.
In addition, by having the average primary particle diameter of 1500 nm or less, sufficient insertion sites for ions such as Li + can be secured during the electrode reaction, and ions such as Li + can reach the inside of the titanium oxide particles sufficiently. Since the titanium oxide particles can diffuse into the interior and contribute to charging and discharging, sufficient charging and discharging capacity can be ensured.
The average primary particle diameter is preferably 300 to 1,300 nm, more preferably 300 to 1,100 nm, still more preferably 600 to 1,100 nm, and particularly preferably 800 to 1,100 nm.

一次粒子径は、走査型電子顕微鏡(SEM、特に限定されないが、例えばJSM-7000F、日本電子社製等)により、写真の1万倍視野での定方向径(粒子を挟む一定方向の二本の平行線の間隔)で定義される粒子径(nm)を計測する。定方向径は、SEM写真内の一次粒子150~1000個程度について計測を行い、その累積分布の平均値を平均一次粒子径とする。凝集粒子に関しては、その粒子を一次粒子に分割して定方向径を計測する。 The primary particle diameter is measured using a scanning electron microscope (SEM, for example, but not limited to, JSM-7000F, manufactured by JEOL Ltd.) at a 10,000x field of view. The particle diameter (nm) defined by the distance between parallel lines is measured. The directional diameter is measured for about 150 to 1000 primary particles in a SEM photograph, and the average value of the cumulative distribution is taken as the average primary particle diameter. For aggregated particles, the particles are divided into primary particles and the directional diameter is measured.

本発明の電極材料に含まれる酸化チタン粒子は、一次粒子径が300nm未満の粒子の存在比が12%未満である。これにより、600℃よりも高温で焼結を行った場合でも固体電解質との副反応を充分に抑制することができる。
一次粒子径が300nm未満の粒子の存在比は、後述する実施例に記載の方法により測定する。
一次粒子径が300nm未満の粒子の存在比として好ましくは11%未満であり、より好ましくは10%未満である。
In the titanium oxide particles contained in the electrode material of the present invention, the abundance ratio of particles having a primary particle diameter of less than 300 nm is less than 12%. Thereby, even when sintering is performed at a temperature higher than 600° C., side reactions with the solid electrolyte can be sufficiently suppressed.
The abundance ratio of particles having a primary particle diameter of less than 300 nm is measured by the method described in the Examples below.
The abundance ratio of particles having a primary particle diameter of less than 300 nm is preferably less than 11%, more preferably less than 10%.

上記電極材料は、XRD測定におけるルチル型酸化チタンの回折ピーク(面指数110)のピーク高さIと、アナタース型酸化チタンの回折ピーク(面指数101)のピーク高さIにおいて、I×1.32/(I+I×1.32)×100により表される値(ルチル化率)が50.0未満であることが好ましい。
アナタース型酸化チタン粉末の回折ピーク(面指数101)のピーク高さIは、ルチル型酸化チタン粉末の回折ピーク(面指数110)のピーク高さIよりも1.32倍大きい値として検出されるため、上記計算式では1.32の係数を乗じる。
×1.32/(I+I×1.32)×100により表される値(ルチル化率)が50.0未満のようにルチル型酸化チタンの含有率が少ないものであると、酸化チタンを含む電極材料を用いて作製した全固体電池が充放電特性により優れたものとなる。
上記ルチル化率は、より好ましくは40以下であり、更に好ましくは20以下であり、一層好ましくは10以下であり、特に好ましくは5.0以下である。
ルチル化率の値は、後述する実施例に記載の方法で測定することができる。
The above-mentioned electrode material has an I It is preferable that the value (rutilation rate) represented by ×1.32/(I A +I R ×1.32) ×100 is less than 50.0.
The peak height I A of the diffraction peak (plane index 101) of the anatase-type titanium oxide powder is detected as a value 1.32 times larger than the peak height I R of the diffraction peak (plane index 110) of the rutile-type titanium oxide powder. Therefore, in the above calculation formula, it is multiplied by a coefficient of 1.32.
If the content of rutile titanium oxide is low, such as the value (rutile rate) expressed by I R × 1.32 / (I A + I R × 1.32) × 100, is less than 50.0. , an all-solid-state battery made using an electrode material containing titanium oxide has better charge-discharge characteristics.
The rutilation rate is more preferably 40 or less, still more preferably 20 or less, even more preferably 10 or less, particularly preferably 5.0 or less.
The value of the rutilation rate can be measured by the method described in the Examples below.

上記酸化チタン粒子のBET比表面積は、特に制限されないが、0.8~7.0m/gであることが好ましい。より好ましくは、1.0~5.0m/gであり、更に好ましくは1.3~4.5m/gである。
上記BET比表面積は、後述する実施例に記載の方法により測定することができる。
The BET specific surface area of the titanium oxide particles is not particularly limited, but is preferably 0.8 to 7.0 m 2 /g. More preferably, it is 1.0 to 5.0 m 2 /g, and still more preferably 1.3 to 4.5 m 2 /g.
The above BET specific surface area can be measured by the method described in the Examples below.

上記酸化チタン粒子は、酸化チタン以外のその他の成分を含んでいてもよい。
上記その他の成分としては特に制限されないが、リン酸、リン酸二水素塩、リン酸水素塩、リン酸塩、無水リン酸、メタリン酸、ヘキサメタリン酸塩、トリポリリン酸塩、ピロリン酸塩リン酸、五酸化二リン等のリン化合物、アルカリ金属元素、アルカリ土類金属元素を含む化合物、Al、Si、Fe、Zr、Nbを含む金属酸化物及びこれらの硫酸塩、S、Clを含む化合物が挙げられる。
The titanium oxide particles may contain components other than titanium oxide.
The other components mentioned above are not particularly limited, but include phosphoric acid, dihydrogen phosphate, hydrogen phosphate, phosphate, phosphoric anhydride, metaphosphoric acid, hexametaphosphate, tripolyphosphate, pyrophosphate phosphoric acid, Examples include phosphorus compounds such as diphosphorus pentoxide, compounds containing alkali metal elements and alkaline earth metal elements, metal oxides containing Al, Si, Fe, Zr, and Nb, and compounds containing their sulfates, S, and Cl. It will be done.

上記酸化チタン粒子における上記その他の成分の含有量としては、特に制限されないが、酸化チタン粒子100質量部に対して、0~10質量部であることが好ましい。より好ましくは、0~5.0質量部である。 The content of the other components in the titanium oxide particles is not particularly limited, but is preferably from 0 to 10 parts by weight based on 100 parts by weight of the titanium oxide particles. More preferably, it is 0 to 5.0 parts by mass.

上記酸化チタン粒子において、リンの含有量としては特に制限されないが、酸化チタン粒子100質量部に対して、P換算で0~8.0質量部であることが好ましい。より好ましくは、0~5.0質量部である。 The content of phosphorus in the titanium oxide particles is not particularly limited, but is preferably 0 to 8.0 parts by mass in terms of P 2 O 5 based on 100 parts by mass of the titanium oxide particles. More preferably, it is 0 to 5.0 parts by mass.

上記酸化チタン粒子において、アルカリ金属塩の含有量としては特に制限されないが、酸化チタン粒子100質量部に対して、アルカリ金属酸化物換算で0~8.0質量部であることが好ましい。より好ましくは、0~5.0質量部である。 The content of the alkali metal salt in the titanium oxide particles is not particularly limited, but it is preferably 0 to 8.0 parts by mass in terms of alkali metal oxide based on 100 parts by mass of the titanium oxide particles. More preferably, it is 0 to 5.0 parts by mass.

2.電極材料に含まれる酸化チタン粒子の製造方法
本発明の電極材料に含まれる酸化チタン粒子の製造方法は、特に制限されないが、水酸化チタンと、アルカリ金属塩及び/又はリン化合物とを混合する工程(a)と、該混合工程(a)で得られた混合物を焼成する工程(b)とを行って製造することが好ましい。
2. Method for producing titanium oxide particles included in electrode material The method for producing titanium oxide particles included in the electrode material of the present invention is not particularly limited, but includes a step of mixing titanium hydroxide with an alkali metal salt and/or a phosphorus compound. It is preferable to manufacture by performing (a) and a step (b) of firing the mixture obtained in the mixing step (a).

上記工程(a)で用いられる水酸化チタンは、一般的に、組成式:HTiOやHTiOで表される化合物である。「メタチタン酸」、または単に「チタン酸」と呼ばれることもあり、化学式では、TiO(OH)、Ti(OH)等のようにも表される公知の化合物である。 The titanium hydroxide used in the above step (a) is generally a compound represented by the composition formula: H 2 TiO 3 or H 4 TiO 4 . It is sometimes called "metatanic acid" or simply "titanic acid" and is a well-known compound represented by chemical formulas such as TiO(OH) 2 and Ti(OH) 4 .

上記工程(a)において、アルカリ金属塩を用いる場合、アルカリ金属塩は、酸化チタンを焼成するときに、融剤として作用し、一次粒子の成長を促進させると考えられる。
上記アルカリ金属塩として具体的には、水酸化リチウム、塩化リチウム、硫酸リチウム、硫酸水素リチウム、硝酸リチウム、炭酸リチウム、炭酸水素リチウム、ギ酸リチウム、酢酸リチウム、チオ硫酸リチウム、クエン酸リチウム、シュウ酸リチウム、グルタミン酸リチウム、アスコルビン酸リチウム、リン酸リチウム、酸化リチウム等のリチウム塩;水酸化ナトリウム、塩化ナトリウム、硫酸ナトリウム、硫酸水素ナトリウム、硝酸ナトリウム、炭酸ナトリウム、炭酸水素ナトリウム、ギ酸ナトリウム、酢酸ナトリウム、チオ硫酸ナトリウム、クエン酸ナトリウム、シュウ酸ナトリウム、グルタミン酸ナトリウム、アスコルビン酸ナトリウム、リン酸ナトリウム等のナトリウム塩;水酸化カリウム、塩化カリウム、硫酸カリウム、硫酸水素カリウム、硝酸カリウム、炭酸カリウム、炭酸水素カリウム、酢酸カリウム、クエン酸カリウム、シュウ酸カリウム、リン酸カリウム等のカリウム塩;水酸化セシウム、塩化セシウム、硫酸セシウム、硝酸セシウム、炭酸セシウム、リン酸セシウム等のセシウム塩が挙げられる。
これらの中でも、硫酸リチウム、硫酸ナトリウム、硫酸カリウム、硫酸セシウム等の硫酸塩、塩化リチウム、塩化ナトリウム、塩化カリウム、塩化セシウム等の塩化物、リン酸リチウム、リン酸ナトリウム、リン酸カリウム、リン酸セシウム等のリン酸塩等が好ましい。
When an alkali metal salt is used in step (a) above, the alkali metal salt is considered to act as a flux when firing titanium oxide and promote the growth of primary particles.
Specifically, the above alkali metal salts include lithium hydroxide, lithium chloride, lithium sulfate, lithium hydrogen sulfate, lithium nitrate, lithium carbonate, lithium hydrogen carbonate, lithium formate, lithium acetate, lithium thiosulfate, lithium citrate, and oxalic acid. Lithium salts such as lithium, lithium glutamate, lithium ascorbate, lithium phosphate, lithium oxide; sodium hydroxide, sodium chloride, sodium sulfate, sodium hydrogen sulfate, sodium nitrate, sodium carbonate, sodium hydrogen carbonate, sodium formate, sodium acetate, Sodium salts such as sodium thiosulfate, sodium citrate, sodium oxalate, sodium glutamate, sodium ascorbate, sodium phosphate; potassium hydroxide, potassium chloride, potassium sulfate, potassium hydrogen sulfate, potassium nitrate, potassium carbonate, potassium hydrogen carbonate, Examples include potassium salts such as potassium acetate, potassium citrate, potassium oxalate, and potassium phosphate; and cesium salts such as cesium hydroxide, cesium chloride, cesium sulfate, cesium nitrate, cesium carbonate, and cesium phosphate.
Among these, sulfates such as lithium sulfate, sodium sulfate, potassium sulfate, cesium sulfate, chlorides such as lithium chloride, sodium chloride, potassium chloride, cesium chloride, lithium phosphate, sodium phosphate, potassium phosphate, phosphoric acid Phosphates such as cesium are preferred.

上記工程(a)において、アルカリ金属塩を用いる場合、アルカリ金属塩の添加量は、アルカリ金属酸化物として、即ちアルカリ金属の酸化物に換算した質量として、TiOとして100質量部の水酸化チタンに対して総量で1.0~11.0質量部であることが好ましい。上記添加量は、より好ましくは、1.0~5.0質量部であり、更に好ましくは、1.0~3.0質量部である。 In the above step (a), when an alkali metal salt is used, the amount of the alkali metal salt added is 100 parts by mass of titanium hydroxide as TiO 2 as an alkali metal oxide, that is, as a mass converted to an alkali metal oxide. The total amount is preferably 1.0 to 11.0 parts by mass. The amount added is preferably 1.0 to 5.0 parts by weight, and even more preferably 1.0 to 3.0 parts by weight.

上記工程(a)において、用いることができるリン化合物としては上述のリン化合物が挙げられる。 In the above step (a), the phosphorus compounds that can be used include the above-mentioned phosphorus compounds.

上記工程(a)におけるリン化合物の添加量は、TiOとして100質量部の水酸化チタンに対してPとして0~10.0質量部であることが好ましい。より好ましくは、0~5.0質量部であり、更に好ましくは、0~3.0質量部である。
上記アルカリ金属塩がリン酸塩である場合、アルカリ金属のリン酸塩は、リン化合物でもある。
The amount of the phosphorus compound added in step (a) is preferably 0 to 10.0 parts by mass as P 2 O 5 per 100 parts by mass of titanium hydroxide as TiO 2 . More preferably, it is 0 to 5.0 parts by mass, and even more preferably 0 to 3.0 parts by mass.
When the alkali metal salt is a phosphate, the alkali metal phosphate is also a phosphorus compound.

工程(a)は、無溶媒で行ってもよく、溶媒存在下で行ってもよい。使用できる溶媒としては、特に限定されないが、純水、イオン交換水等の水、及び水溶性有機溶媒、例えばメタノール、エタノール、n-プロパノール、i-プロパノール等のアルコール類、エチレングリコール、ジエチレングリコール、グリセリン等の多価アルコール類、N-メチルピロリドン等のピロリドン系溶媒、アセトン等のケトン系溶媒等が挙げられる。中でも、塩の溶解性が高いことや、水酸化チタンの水スラリーは市場に流通しており、安価であることから水が好ましい。 Step (a) may be performed without a solvent or in the presence of a solvent. Usable solvents include, but are not particularly limited to, water such as pure water and ion-exchanged water, and water-soluble organic solvents such as alcohols such as methanol, ethanol, n-propanol, and i-propanol, ethylene glycol, diethylene glycol, and glycerin. Examples include polyhydric alcohols such as N-methylpyrrolidone, pyrrolidone solvents such as N-methylpyrrolidone, and ketone solvents such as acetone. Among these, water is preferred because the salt has high solubility, and water slurries of titanium hydroxide are available on the market and are inexpensive.

工程(a)における混合方法は特に限定されず、例えば回転翼や回転槽、ミキサー、ボールミル等の公知の混合機を用いて、乾式又は湿式で混合すればよい。 The mixing method in step (a) is not particularly limited, and for example, dry or wet mixing may be performed using a known mixer such as a rotary blade, a rotary tank, a mixer, or a ball mill.

上記工程(a)においては、必要に応じて各種添加剤を更に添加してもよい。添加剤としては、特に限定されないが、硫酸アンモニウム((NHSO)、酸性硫酸アンモニウム((NH)HSO)等が挙げられる。これらの成分を添加することにより、均等に粒成長が進行し、得られる酸化チタンの粒度分布がより整うことが期待できる。 In the above step (a), various additives may be further added as necessary. Examples of the additive include, but are not limited to, ammonium sulfate ((NH 4 ) 2 SO 4 ), acidic ammonium sulfate ((NH 4 )HSO 4 ), and the like. By adding these components, it is expected that grain growth will proceed evenly and that the particle size distribution of the obtained titanium oxide will be more uniform.

上記工程(a)の後に、工程(a)で得られた混合物を乾燥する乾燥工程を行ってもよい。乾燥工程を行う場合、乾燥温度は、酸化チタンが十分に乾燥される限り特に制限されないが、80~200℃であることが好ましい。より好ましくは、90~150℃であり、更に好ましくは、100~120℃である。 After the above step (a), a drying step of drying the mixture obtained in step (a) may be performed. When performing the drying step, the drying temperature is not particularly limited as long as the titanium oxide is sufficiently dried, but it is preferably 80 to 200°C. The temperature is more preferably 90 to 150°C, and even more preferably 100 to 120°C.

上記工程(b)における焼成温度は、750~1200℃である。焼成温度の下限は、好ましくは800℃、より好ましくは850℃である。また上限は好ましくは1100℃、より好ましくは1000℃である。 The firing temperature in the above step (b) is 750 to 1200°C. The lower limit of the firing temperature is preferably 800°C, more preferably 850°C. Moreover, the upper limit is preferably 1100°C, more preferably 1000°C.

上記酸化チタン粒子の製造方法において、焼成した粉末を必要に応じて解砕を行ってもよい。解砕の方法は特に限定されず、自動乳鉢解砕、ハンマーミル解砕、流体エネルギーミル解砕、媒体にリパルプしてのビーズミル解砕等が挙げられる。 In the method for producing titanium oxide particles described above, the fired powder may be crushed if necessary. The method of crushing is not particularly limited, and includes automatic mortar crushing, hammer mill crushing, fluid energy mill crushing, bead mill crushing by repulping into a medium, and the like.

3.全固体電池用電極
本発明の電極材料は、固体電解質との副反応を充分に抑制できるものであり、かつ、充放電特性に優れるため、全固体電池に好適に用いられる。
本発明はまた、本発明の電極材料を用いて構成されてなる全固体電池用電極でもある。
本発明の全固体電池用電極は、本発明の電極材料を用いて構成されるものであるが、更に固体電解質を含むことが好ましい。固体電解質を含むものであると全固体電池における電極活物質に効率的にリチウムイオンが拡散し、その授受が円滑に行わるようになる。
本発明の全固体電池用電極が固体電解質を含む場合、固体電解質の含有割合は、電極に含まれる酸化チタンに対して1~70質量%であることが好ましい。より好ましくは、1~60質量%であり、更に好ましくは、1~50質量%である。
3. Electrode for all-solid-state batteries The electrode material of the present invention can sufficiently suppress side reactions with solid electrolytes and has excellent charge-discharge characteristics, so it is suitably used in all-solid-state batteries.
The present invention also provides an electrode for an all-solid-state battery constructed using the electrode material of the present invention.
The all-solid battery electrode of the present invention is constructed using the electrode material of the present invention, but preferably further contains a solid electrolyte. If it contains a solid electrolyte, lithium ions will efficiently diffuse into the electrode active material in an all-solid-state battery, and the transfer will be performed smoothly.
When the electrode for an all-solid-state battery of the present invention includes a solid electrolyte, the content of the solid electrolyte is preferably 1 to 70% by mass based on the titanium oxide contained in the electrode. More preferably, it is 1 to 60% by mass, and even more preferably 1 to 50% by mass.

本発明の全固体電池用電極は、更に固体電解質以外のその他の成分を含むものであってもよい。その他の成分としては、カーボンブラック、カーボンナノファイバー、アセチレンブラック等の導電助剤等が挙げられる。 The all-solid-state battery electrode of the present invention may further contain components other than the solid electrolyte. Other components include conductive aids such as carbon black, carbon nanofibers, and acetylene black.

本発明の全固体電池用電極が導電助剤を含む場合、導電助剤の含有割合は電極に含まれる酸化チタンに対して1~60質量%であることが好ましい。より好ましくは、1~40質量%であり、更に好ましくは、1~30質量%である。 When the electrode for an all-solid-state battery of the present invention contains a conductive additive, the content of the conductive additive is preferably 1 to 60% by mass based on the titanium oxide contained in the electrode. More preferably, it is 1 to 40% by mass, and even more preferably 1 to 30% by mass.

本発明の全固体電池用電極は、本発明の電極材料、固体電解質、導電助剤以外のその他の成分を含んでいてもよい。その他の成分としては、バインダー等が挙げられる。
バインダーとしては、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、アクリルポリマー等の1種又は2種以上を用いることができる。
The all-solid-state battery electrode of the present invention may contain components other than the electrode material of the present invention, solid electrolyte, and conductive aid. Other components include binders and the like.
As the binder, one or more of polytetrafluoroethylene, polyvinylidene fluoride, acrylic polymer, etc. can be used.

本発明の全固体電池用電極における、本発明の電極材料、固体電解質、導電助剤以外のその他の成分の割合は、全固体電池用電極100質量%に対して、50質量%以下であることが好ましい。より好ましくは、35質量%以下であり、更に好ましくは、30質量%以下である。全固体電池用電極の質量は、後述する電極材料組成物において、揮発成分を除いた成分の質量を意味する。 In the all-solid-state battery electrode of the present invention, the proportion of other components other than the electrode material of the present invention, solid electrolyte, and conductive aid should be 50% by mass or less with respect to 100% by mass of the all-solid-state battery electrode. is preferred. More preferably, it is 35% by mass or less, and still more preferably 30% by mass or less. The mass of the all-solid-state battery electrode means the mass of components excluding volatile components in the electrode material composition described below.

4.全固体電池用電極の作製方法
本発明の全固体電池用電極を作製する方法は特に制限されないが、本発明の電極材料とバインダーとを含む電極材料組成物を調製する工程、得られた電極材料組成物からなる膜を固体電解質上に形成する工程、該電極材料組成物からなる膜を有する固体電解質を焼成して電極と固体電解質とを焼結して複合化させる工程を含む方法等を用いることができる。
4. Method for producing an electrode for an all-solid-state battery The method for producing an electrode for an all-solid-state battery of the present invention is not particularly limited. A method including a step of forming a film made of the composition on a solid electrolyte, a step of firing a solid electrolyte having a film made of the electrode material composition, and sintering the electrode and the solid electrolyte to form a composite is used. be able to.

上記方法において、本発明の電極材料とバインダーとを含む電極材料組成物は、更に固体電解質を含むものであることが好ましい。固体電解質を含む場合、固体電解質の割合は、電極材料組成物に含まれる酸化チタンに対する固体電解質の割合が上記本発明の全固体電池用電極が固体電解質を含む場合と同様であることが好ましい。 In the above method, it is preferable that the electrode material composition containing the electrode material of the present invention and a binder further contains a solid electrolyte. When a solid electrolyte is included, the ratio of the solid electrolyte to titanium oxide contained in the electrode material composition is preferably the same as in the case where the all-solid battery electrode of the present invention contains a solid electrolyte.

上記方法において、本発明の電極材料とバインダーとを含む電極材料組成物は、更に導電助剤を含むものであることが好ましい。導電助剤を含む場合、導電助剤の割合は、電極材料組成物に含まれる酸化チタンに対する導電助剤の割合が上記本発明の全固体電池用電極が導電助剤を含む場合と同様であることが好ましい。 In the above method, it is preferable that the electrode material composition containing the electrode material of the present invention and a binder further contains a conductive additive. When a conductive additive is included, the ratio of the conductive additive to titanium oxide contained in the electrode material composition is the same as in the case where the all-solid-state battery electrode of the present invention contains a conductive additive. It is preferable.

上記方法において、本発明の電極材料とバインダーとを含む電極材料組成物が含むバインダーは、バインダーとして機能するものである限り特に制限されず、上述したものと同様のものを用いることができる。 In the above method, the binder contained in the electrode material composition containing the electrode material and binder of the present invention is not particularly limited as long as it functions as a binder, and the same binder as described above can be used.

上記方法において、本発明の電極材料とバインダーとを含む電極材料組成物が含むバインダーの割合は、電極材料組成物100質量%に対して、0~60質量%であることが好ましい。より好ましくは、0~40質量%であり、更に好ましくは、0~30質量%である。 In the above method, the ratio of the binder contained in the electrode material composition containing the electrode material of the present invention and a binder is preferably 0 to 60% by mass based on 100% by mass of the electrode material composition. More preferably, it is 0 to 40% by mass, and still more preferably 0 to 30% by mass.

上記方法において、本発明の電極材料とバインダーとを含む電極材料組成物は、本発明の電極材料、バインダー、固体電解質、導電助剤以外のその他の成分を含んでいてもよい。その他の成分としては、溶媒等が挙げられる。 In the above method, the electrode material composition containing the electrode material of the present invention and a binder may contain components other than the electrode material of the present invention, the binder, the solid electrolyte, and the conductive aid. Other components include solvents and the like.

上記溶媒としては、水、メタノール、エタノール、テ(タ)ーピネオール等のアルコール;ジメチルエーテル、ジエチルエーテル等のエーテル系溶媒;アセトン、ジエチルケトン等のケトン系溶媒、酢酸ブチル、酢酸エチル等のエステル系溶媒、ベンゼン、トルエン等の芳香族溶媒等の1種又は2種以上を用いることができる。 The above solvents include water, alcohols such as methanol, ethanol, and terpineol; ether solvents such as dimethyl ether and diethyl ether; ketone solvents such as acetone and diethyl ketone; and ester solvents such as butyl acetate and ethyl acetate. , benzene, toluene, and other aromatic solvents, one or more of them can be used.

上記溶媒等のその他の成分の含有量は、電極材料組成物100質量%に対して、50質量%以下であることが好ましい。より好ましくは、40質量%以下であり、更に好ましくは、30質量%以下である。 The content of other components such as the solvent is preferably 50% by mass or less based on 100% by mass of the electrode material composition. More preferably, it is 40% by mass or less, and still more preferably 30% by mass or less.

上記方法の、電極材料組成物からなる膜を固体電解質上に形成する工程において、電極材料組成物からなる膜を固体電解質上に形成する方法は特に制限されず、電極材料組成物を固体電解質上に塗布し、乾燥する方法等を用いることができる。 In the step of forming a film made of an electrode material composition on a solid electrolyte in the above method, the method of forming a film made of an electrode material composition on a solid electrolyte is not particularly limited. For example, a method of coating and drying can be used.

上記方法の、電極材料組成物からなる膜を有する固体電解質を焼結して電極と固体電解質を複合化させる工程における焼結温度は、電極と固体電解質とが十分に複合化される限り特に制限されないが、500~800℃であることが好ましい。より好ましくは、550~700℃であり、更に好ましくは、600~650℃である。
また焼成する時間も電極と固体電解質との複合化が十分に行われる限り特に制限されないが、1~24時間であることが好ましい。より好ましくは、2~12時間であり、更に好ましくは、4~8時間である。
また導電助剤であるカーボン類の燃焼を防止する点から、焼成は、ヘリウム、窒素、アルゴン等の不活性ガス雰囲気下、又は、真空下で行うことが好ましい。
In the above method, the sintering temperature in the step of sintering the solid electrolyte having a membrane made of the electrode material composition to composite the electrode and the solid electrolyte is particularly limited as long as the electrode and the solid electrolyte are sufficiently composited. However, it is preferably 500 to 800°C. The temperature is more preferably 550 to 700°C, even more preferably 600 to 650°C.
Further, the firing time is not particularly limited as long as the electrode and solid electrolyte are sufficiently composited, but it is preferably 1 to 24 hours. More preferably, the time is 2 to 12 hours, and even more preferably 4 to 8 hours.
Further, from the viewpoint of preventing combustion of carbon, which is a conductive additive, it is preferable that the firing is performed in an atmosphere of an inert gas such as helium, nitrogen, or argon, or under vacuum.

上記方法は、本発明の電極材料とバインダーとを含む電極材料組成物を調製する工程、得られた電極材料組成物からなる膜を固体電解質上に形成する工程、及び、該電極材料組成物からなる膜を有する固体電解質を焼成して電極と固体電解質とを焼結して複合化させる工程以外のその他の工程を含んでいてもよい。その他の工程としては、電極材料組成物からなる膜を有する固体電解質に対して、その焼成前に加圧プレスや冷間等方圧加圧処理を行う工程等が挙げられる。 The above method includes a step of preparing an electrode material composition containing the electrode material of the present invention and a binder, a step of forming a film made of the obtained electrode material composition on a solid electrolyte, and a step of forming the electrode material composition from the electrode material composition. The method may include steps other than the step of firing the solid electrolyte having the film to sinter the electrode and the solid electrolyte to form a composite. Other steps include a step of subjecting the solid electrolyte having a film made of the electrode material composition to pressure pressing or cold isostatic pressure treatment before firing.

本発明において用いる固体電解質は、酸化物系のものであれば特に制限されず、Li1+xAlGe2-x(PO、Li7+xLaZr2-y12(AはSc、Ti、V、Y、Nb、Hf、Ta、Al、Si、Ga及びGeからなる群より選ばれた1種類以上の元素を表す。)、LiLaNb12、LiLa(1-x)/3NbO、LiPOとLiSiO及びこれらの固溶体、LiSiO、LiSiO等の1種又は2種以上を用いることができる。これらの中でもLi1+xAlGe2-x(PO(以下、LAGPともいう)が好ましい。
固体電解質としてLAGPを用いた場合、酸化チタンとの焼結の際に下記式(1)
TiO+ Li1+xAlGe2-x(PO
→ Li1+xAlTi2-x(PO + GeO (1)
の副反応が進行し、Li1+xAlTi2-x(PO(以下、LATPともいう)とGeOからなる副反応相が形成され、このうち、LATPが電極の作動電位の高電位化の原因となる。これに対し、本発明の電極材料を用いることで、このような副反応相の形成を効果的に抑制し、酸化チタンを電極活物質とする充放電反応が十分に進行するようにして作動電位の高電位化の発生を抑制することができる。このように固体電解質としてLAGPを用いた場合に、本発明の電極材料を用いることの効果がより十分に発揮されると考えられる。
The solid electrolyte used in the present invention is not particularly limited as long as it is an oxide-based one, and includes Li 1+x Al x Ge 2-x (PO 4 ) 3 , Li 7+x La 3 Zr 2-y A y O 12 (A is represents one or more elements selected from the group consisting of Sc, Ti, V, Y, Nb, Hf, Ta, Al, Si, Ga, and Ge), Li 5 La 3 Nb 2 O 12 , Li x La (1-x)/3 One or more of NbO 3 , Li 3 PO 4 and Li 4 SiO 4 and solid solutions thereof, Li 2 SiO 3 , Li 6 SiO 5 and the like can be used. Among these, Li 1+x Al x Ge 2-x (PO 4 ) 3 (hereinafter also referred to as LAGP) is preferred.
When LAGP is used as a solid electrolyte, the following formula (1) is obtained when sintering with titanium oxide.
TiO 2 + Li 1+x Al x Ge 2-x (PO 4 ) 3
→ Li 1+x Al x Ti 2-x (PO 4 ) 3 + GeO 2 (1)
A side reaction of Li 1+x Al x Ti 2-x (PO 4 ) 3 (hereinafter also referred to as LATP) and GeO 2 is formed. Causes electrical potential. In contrast, by using the electrode material of the present invention, the formation of such side reaction phases can be effectively suppressed, and the charging and discharging reactions using titanium oxide as the electrode active material can proceed sufficiently, thereby increasing the operating potential. The occurrence of high potential can be suppressed. It is considered that when LAGP is used as the solid electrolyte in this way, the effect of using the electrode material of the present invention is more fully exhibited.

5.全固体電池
本発明はまた、本発明の電極材料(全固体電池用電極)を備えることを特徴とする全固体電池でもある。上述したとおり、本発明の電極材料を用いることで、固体電解質と焼結する際の副反応相の形成を抑制して電極の作動電位の高電位化を効果的に抑制し、充放電特性に優れた全固体電池(全固体二次電池)とすることができる。
5. All-solid-state battery The present invention is also an all-solid-state battery characterized by comprising the electrode material (electrode for an all-solid-state battery) of the present invention. As mentioned above, by using the electrode material of the present invention, the formation of a side reaction phase when sintering with a solid electrolyte is suppressed, effectively suppressing the increase in the operating potential of the electrode, and improving the charge/discharge characteristics. An excellent all-solid-state battery (all-solid-state secondary battery) can be obtained.

本発明の全固体電池において、本発明の電極材料を用いて構成された電極は正極として用いられても負極として用いられてもよいが、負極として用いられることが好ましい。負極として用いることで、種々のリチウム化合物や、その他のリチウムを吸蔵、放出することが可能な種々の金属化合物を正極活物質として用いることができる。
本発明の全固体電池用電極を負極として用いる場合、正極活物質としては、LiFePO、LiFe1-yMnPO、LiCoPO(0<x≦1であり、0≦y≦1である)で表されるオリビン構造を有するリチウムのリン酸塩;リチウムマンガン複合酸化物、リチウムコバルト複合酸化物、リチウムニッケルコバルト複合酸化物、リチウムマンガンコバルト複合酸化物、リチウムマンガンニッケル複合化合物、スピネル型リチウムマンガンニッケル複合酸化物、リチウムニッケルコバルトマンガン複合酸化物等のリチウムと他の金属との複合酸化物等を用いることができる。
In the all-solid-state battery of the present invention, the electrode constructed using the electrode material of the present invention may be used as a positive electrode or a negative electrode, but is preferably used as a negative electrode. When used as a negative electrode, various lithium compounds and other various metal compounds capable of intercalating and deintercalating lithium can be used as positive electrode active materials.
When the all-solid battery electrode of the present invention is used as a negative electrode, the positive electrode active materials include Li x FePO 4 , Li x Fe 1-y Mny PO 4 , Li x CoPO 4 (0<x≦1, and 0 ≦y≦1) Lithium phosphate having an olivine structure; lithium manganese composite oxide, lithium cobalt composite oxide, lithium nickel cobalt composite oxide, lithium manganese cobalt composite oxide, lithium manganese nickel Composite compounds, composite oxides of lithium and other metals such as spinel-type lithium manganese nickel composite oxides, lithium nickel cobalt manganese composite oxides, etc. can be used.

上記正極活物質を用いて構成される正極は、正極活物質以外のその他の成分を含んでいてもよい。その他の成分としては、カーボンブラック、カーボンナノファイバー、アセチレンブラック等の導電助剤;ポリテトラフルオロエチレン、ポリフッ化ビニリデン、アクリルポリマー等のバインダーが挙げられる。 A positive electrode constructed using the above positive electrode active material may contain other components other than the positive electrode active material. Other components include conductive aids such as carbon black, carbon nanofibers, and acetylene black; binders such as polytetrafluoroethylene, polyvinylidene fluoride, and acrylic polymers.

上記正極は、正極活物質を含む正極材料組成物からなる膜を集電体上に形成して作製されたものであってもよい。 The positive electrode may be produced by forming a film made of a positive electrode material composition containing a positive electrode active material on a current collector.

本発明において、電極の作製に用いる集電体としては、集電体として使用可能ないずれの材料であってもよいが、例えば、マグネシウム、チタン、亜鉛、ニッケル、マンガン、鉄、銅、アルミニウム、金等を用いることができる。 In the present invention, the current collector used for producing the electrode may be any material that can be used as a current collector, such as magnesium, titanium, zinc, nickel, manganese, iron, copper, aluminum, Gold etc. can be used.

本発明を詳細に説明するために以下に具体例を挙げるが、本発明はこれらの例のみに限定されるものではない。特に断りのない限り、「%」及び「wt%」とは「重量%(質量%)」を意味する。なお、各物性の測定方法は以下の通りである。 Specific examples are given below to explain the present invention in detail, but the present invention is not limited only to these examples. Unless otherwise specified, "%" and "wt%" mean "% by weight (% by mass)". The method for measuring each physical property is as follows.

<ルチル化率>
ルチル化率は、XRDスペクトルにおけるルチル型酸化チタンの回折ピーク(面指数110)のピーク強度Iと、アナタース型酸化チタンの回折ピーク(面指数101)のピーク強度Iにおいて、I×1.32/(I+I×1.32)×100により表される値である。なお、XRD測定にはリガク製RINT-TTRIIIを用い、平行ビーム法で行った。またX線出力は50kV、300mA、stepモード(step幅:0.01°)とした。解析においては、リガク社製 統合粉末X線解析ソフトウェアPDXL2を使用し、バックグラウンド処理を行い、ピーク強度I及びIを算出した。
<Rutilation rate>
The rutilation rate is calculated by dividing the peak intensity I R of the diffraction peak of rutile titanium oxide (plane index 110) and the peak intensity I A of the diffraction peak (plane index 101) of anatase titanium oxide in the XRD spectrum by I R ×1 It is a value expressed by .32/(I A + I R ×1.32) ×100. Note that the XRD measurement was carried out using a parallel beam method using RINT-TTRIII manufactured by Rigaku. Further, the X-ray output was set to 50 kV, 300 mA, and step mode (step width: 0.01°). In the analysis, background processing was performed using integrated powder X-ray analysis software PDXL2 manufactured by Rigaku Co., Ltd., and peak intensities I A and I R were calculated.

<一次粒子径>
(比較TiO粒子1以外の場合)
一次粒子径は、走査型電子顕微鏡(JSM-7000F、日本電子社製)写真の1万倍視野での定方向径(粒子を挟む一定方向の二本の平行線の間隔)で定義される粒子径(μm)であって、SEM写真内の一次粒子150個の定方向径を計測し、その累積分布の平均値を求めた。なお凝集粒子に関しては、その粒子を一次粒子に分割して定方向径を計測した。
(比較TiO粒子1の場合)
一次粒子径は、走査型電子顕微鏡(JSM-7000F、日本電子社製)写真の1000倍視野での定方向径(粒子を挟む一定方向の二本の平行線の間隔)で定義される粒子径(μm)であって、SEM写真内の一次粒子150個の定方向径を計測し、その累積分布の平均値を求めた。なお凝集粒子に関しては、その粒子を一次粒子に分割して定方向径を計測した。
<Primary particle diameter>
(For comparisons other than TiO 2 particles 1)
The primary particle diameter is defined as the diameter in a fixed direction (distance between two parallel lines in a fixed direction sandwiching the particle) in a 10,000x field of view in a photograph taken using a scanning electron microscope (JSM-7000F, manufactured by JEOL Ltd.). The diameter (μm) of 150 primary particles in the SEM photograph was measured, and the average value of the cumulative distribution was determined. Regarding aggregated particles, the particles were divided into primary particles and the directional diameter was measured.
(Comparative case of TiO 2 particles 1)
The primary particle diameter is the particle diameter defined by the diameter in a fixed direction (the distance between two parallel lines in a fixed direction that sandwich the particle) in a 1000x field of view in a photograph taken using a scanning electron microscope (JSM-7000F, manufactured by JEOL Ltd.). (μm), the directional diameter of 150 primary particles in the SEM photograph was measured, and the average value of the cumulative distribution was determined. Regarding aggregated particles, the particles were divided into primary particles and the directional diameter was measured.

<存在比の算出方法>
上記の方法により電子顕微鏡にて定方向径を計測した全粒子の一次粒子径の総和を求め、総和に対する一次粒子径が300nm未満の粒子の一次粒子径の累積値の比率を存在比A、300nm以上かつ3000nm未満の粒子の一次粒子径の累積値の比率を存在比B、3000nm以上の粒子の一次粒子径の累積値の比率を存在比Cとした。
<How to calculate abundance ratio>
The sum of the primary particle diameters of all the particles whose directional diameters were measured using an electron microscope using the method described above is determined, and the ratio of the cumulative value of the primary particle diameter of particles whose primary particle diameter is less than 300 nm to the total sum is determined as the abundance ratio A, 300 nm. The ratio of the cumulative value of the primary particle diameter of particles with a diameter of 3000 nm or more and less than 3000 nm was defined as the abundance ratio B, and the ratio of the cumulative value of the primary particle diameter of the particles with a diameter of 3000 nm or more was defined as the abundance ratio C.

<BET比表面積、BET換算径>
全自動比表面積測定装置(Macsorb,マイクロトラック社製)を用いて、200℃で30分脱気し、予備加熱を200℃で5分間行った後に、吸脱着測定により、BET比表面積を測定した。
<BET specific surface area, BET conversion diameter>
Using a fully automatic specific surface area measuring device (Macsorb, manufactured by Microtrac), the BET specific surface area was measured by adsorption/desorption measurement after degassing at 200°C for 30 minutes and preheating at 200°C for 5 minutes. .

<副反応率評価>
(1)酸化チタン粒子と、固体電解質(glass-LAGP)とをそれぞれ8gずつ測り取り、スターラー乳鉢を用いて3時間混合した。
(2)(1)で混合した粉体を650℃、700℃又は750℃で焼成した(昇温速度:300℃/h)。
(3)焼成した粉末に対してXRD測定を行った。
XRD測定で得られたスペクトルについて、BG処理を行い、BG処理後のXRDチャートから、酸化チタンとLAGPとの副反応率を以下の式(2)に基づき計算した。
副反応率=ILATP/ILAGP (2)
LATP:29.6±0.5°のLATPの最強ピーク強度
LAGP:30.5±0.5°のLAGPの最強ピーク強度
<Side reaction rate evaluation>
(1) 8 g each of titanium oxide particles and solid electrolyte (glass-LAGP) were weighed out and mixed for 3 hours using a stirrer mortar.
(2) The powder mixed in (1) was fired at 650°C, 700°C, or 750°C (temperature increase rate: 300°C/h).
(3) XRD measurement was performed on the fired powder.
The spectrum obtained by the XRD measurement was subjected to BG treatment, and the side reaction rate between titanium oxide and LAGP was calculated based on the following equation (2) from the XRD chart after the BG treatment.
Side reaction rate = I LATP / I LAGP (2)
I LATP : Strongest peak intensity of LATP at 29.6±0.5° I LAGP : Strongest peak intensity of LAGP at 30.5±0.5°

<調製例1:(glass-LAGPの調製)>
Li1.3Al0.3Ge1.7(POの結晶粒子25gを1200℃で1時間溶融させた後、急冷させた。200rpm×2時間の条件で遊星ボールミルにて粉砕した後、150μmの篩に通し、glass-LAGPを回収した。
<Preparation Example 1: (Preparation of glass-LAGP)>
25 g of crystal particles of Li 1.3 Al 0.3 Ge 1.7 (PO 4 ) 3 were melted at 1200° C. for 1 hour and then rapidly cooled. After pulverizing in a planetary ball mill at 200 rpm for 2 hours, it was passed through a 150 μm sieve to collect glass-LAGP.

<実施例1>
水酸化チタンスラリー(堺化学工業社製、ST-C)をTiOとして100g(TiOとして100質量部)量り取り、外径150mm、容量400mlの磁製蒸発皿に入れ、80g/lの硫酸カリウム水溶液を125ml(KSOとして10.0質量部)添加し、30分間撹拌し、100℃で蒸発乾固させた。得られた粉体を目開き300μmの篩通しを行い900℃で4時間静置焼成を行った。焼成した粉体をアルミナ乳鉢で15分間解砕した。解砕粉90gを0.1M塩酸880mLにリパルプし30分間攪拌し、目開き40μmの篩に通し、篩下のリパルプ液をブフナー漏斗に移してろ過し、純水2リットルで通水洗浄し、100℃で蒸発乾固させた。得られた粉末1を150μmの篩に通し、TiO粒子1を得た。
<Example 1>
Weigh out 100g of titanium hydroxide slurry (manufactured by Sakai Chemical Industry Co., Ltd., ST-C) as TiO2 (100 parts by mass as TiO2 ), place it in a porcelain evaporation dish with an outer diameter of 150mm and a capacity of 400ml, and add 80g/l of sulfuric acid. 125 ml of potassium aqueous solution (10.0 parts by mass as K 2 SO 4 ) was added, stirred for 30 minutes, and evaporated to dryness at 100°C. The obtained powder was passed through a sieve with an opening of 300 μm, and then left and fired at 900° C. for 4 hours. The fired powder was crushed in an alumina mortar for 15 minutes. 90 g of crushed powder was repulped in 880 mL of 0.1 M hydrochloric acid, stirred for 30 minutes, passed through a sieve with an opening of 40 μm, the repulp liquid under the sieve was transferred to a Buchner funnel and filtered, and washed with 2 liters of pure water. It was evaporated to dryness at 100°C. The obtained powder 1 was passed through a 150 μm sieve to obtain TiO 2 particles 1.

<実施例2>
水酸化チタンスラリー(堺化学工業社製、ST-C)をTiOとして100g(TiOとして100質量部)量り取り、外径150mm、容量400mlの磁製蒸発皿に入れ、95%リン酸三リチウム5.44g(LiOとして2.0質量部、Pとして3.17質量部)を純水10mLに懸濁させたものを添加し、30分間撹拌し、100℃で蒸発乾固させた。得られた粉体を目開き300μmの篩通しを行い870℃で4時間静置焼成を行った。焼成した粉体をアルミナ乳鉢で15分間解砕した。解砕粉90gを0.1M塩酸880mLにリパルプし30分間攪拌し、目開き40μmの篩に通し、篩下のリパルプ液をブフナー漏斗に移してろ過し、純水2リットルで通水洗浄し、100℃で蒸発乾固させた。得られた粉末を150μmの篩に通し、TiO粒子2を得た。
<Example 2>
Weigh out 100 g of titanium hydroxide slurry (ST-C, manufactured by Sakai Chemical Industries, Ltd.) as TiO 2 (100 parts by mass as TiO 2 ), place it in a porcelain evaporating dish with an outer diameter of 150 mm and a capacity of 400 ml, and add 95% triphosphate. A suspension of 5.44 g of lithium (2.0 parts by mass as Li 2 O, 3.17 parts by mass as P 2 O 5 ) in 10 mL of pure water was added, stirred for 30 minutes, and evaporated to dryness at 100 °C. hardened. The obtained powder was passed through a sieve with an opening of 300 μm, and then left and fired at 870° C. for 4 hours. The fired powder was crushed in an alumina mortar for 15 minutes. 90 g of crushed powder was repulped in 880 mL of 0.1 M hydrochloric acid, stirred for 30 minutes, passed through a sieve with an opening of 40 μm, the repulp liquid under the sieve was transferred to a Buchner funnel and filtered, and washed with 2 liters of pure water. It was evaporated to dryness at 100°C. The obtained powder was passed through a 150 μm sieve to obtain TiO 2 particles 2.

<比較例1>
純水1200mLに対し、硫酸チタニル濃縮液600mL、NaCl360gを添加・混合した。混合溶液を90℃で加熱撹拌し、3時間還流をおこなった。得られたスラリーをろ過・水洗し固形分を得た。固形分を再度純水にリパルプし、スラリーのpHが8-9程度になるまでアンモニア水溶液を添加した。再度純水にて洗浄を行い、固形分を乾燥することでメタチタン酸凝集体を得た。
得られたメタチタン酸凝集体を純水に対して分散させ、メタチタン酸凝集体中のTiOに対し、Pとして3.0wt%の85%リン酸を添加・混合し、100℃で蒸発乾固させた。得られた粉体を、900℃で4時間焼成後、0.1MのHClで洗浄し、乾燥させ、比較TiO粒子1を得た。
<Comparative example 1>
To 1200 mL of pure water, 600 mL of titanyl sulfate concentrate and 360 g of NaCl were added and mixed. The mixed solution was heated and stirred at 90° C. and refluxed for 3 hours. The obtained slurry was filtered and washed with water to obtain solid content. The solid content was again repulped into pure water, and an ammonia aqueous solution was added until the pH of the slurry became about 8-9. Washing was performed again with pure water, and the solid content was dried to obtain metatitanic acid aggregates.
The obtained metatitanic acid aggregates were dispersed in pure water, 3.0 wt% of 85% phosphoric acid was added and mixed as P2O5 to TiO2 in the metatitanic acid aggregates, and the mixture was stirred at 100°C. Evaporated to dryness. The obtained powder was calcined at 900° C. for 4 hours, washed with 0.1 M HCl, and dried to obtain comparative TiO 2 particles 1.

<比較例2>
TiO(堺化学工業社製品:SA-120)を比較TiO粒子2とした。
<Comparative example 2>
TiO 2 (Sakai Chemical Industry Co., Ltd. product: SA-120) was used as comparative TiO 2 particles 2.

<実施例3>
純水200mLに、実施例2で得たTiO粒子2を24.75g、及び、比較例2で得た比較TiO粒子2を0.2475g添加し、スターラーで30分間撹拌し、100℃で乾固させた後、150μmの篩に通し、TiO粒子3を得た。
<Example 3>
24.75 g of TiO 2 particles 2 obtained in Example 2 and 0.2475 g of Comparative TiO 2 particles 2 obtained in Comparative Example 2 were added to 200 mL of pure water, stirred with a stirrer for 30 minutes, and heated at 100 ° C. After drying, it was passed through a 150 μm sieve to obtain TiO 2 particles 3.

<比較例3>
純水200mLに、実施例2で得たTiO粒子2を23.75g、及び、比較例2で得た比較TiO粒子2を1.1875g添加し、スターラーで30分間撹拌し、100℃で乾固させた後、150μmの篩に通し、比較TiO粒子3を得た。
<Comparative example 3>
23.75 g of TiO 2 particles 2 obtained in Example 2 and 1.1875 g of Comparative TiO 2 particles 2 obtained in Comparative Example 2 were added to 200 mL of pure water, stirred with a stirrer for 30 minutes, and heated at 100 ° C. After drying, it was passed through a 150 μm sieve to obtain comparative TiO 2 particles 3.

<比較例4>
純水200mLに、実施例2で得たTiO粒子2を22.5g、及び、比較例2で得た比較TiO粒子2を2.250g添加し、スターラーで30分間撹拌し、100℃で乾固させた後、150μmの篩に通し、比較TiO粒子4を得た。
<Comparative example 4>
22.5 g of TiO 2 particles 2 obtained in Example 2 and 2.250 g of Comparative TiO 2 particles 2 obtained in Comparative Example 2 were added to 200 mL of pure water, stirred with a stirrer for 30 minutes, and heated at 100 ° C. After drying, it was passed through a 150 μm sieve to obtain comparative TiO 2 particles 4.

実施例1~3又は比較例1~4の酸化チタン粒子について、上記物性評価を行い、表1に示した。粒度分布において、一次粒子径(長径)が0nmより大きく、300nm未満の粒子の割合を存在比Aとし、一次粒子径(長径)が300nm以上、3000nm未満の粒子の割合を存在比Bとし、一次粒子径(長径)が3000nm以上の粒子の割合を存在比Cとした。 The above physical properties were evaluated for the titanium oxide particles of Examples 1 to 3 or Comparative Examples 1 to 4, and the results are shown in Table 1. In the particle size distribution, the proportion of particles whose primary particle diameter (length) is greater than 0 nm and less than 300 nm is defined as the abundance ratio A, and the proportion of particles whose primary particle diameter (length) is 300 nm or more and less than 3000 nm is defined as the abundance ratio B. The proportion of particles having a particle diameter (length) of 3000 nm or more was defined as the abundance ratio C.

Figure 2023167178000001
Figure 2023167178000001

実施例1~3のTiO粒子1~3及び比較例2~4の比較TiO粒子2~4について、焼成温度650℃、700℃、750℃におけるLAGPとの副反応率を測定した。
結果を表2に示す。
For TiO 2 particles 1 to 3 of Examples 1 to 3 and comparative TiO 2 particles 2 to 4 of Comparative Examples 2 to 4, the side reaction rate with LAGP at firing temperatures of 650° C., 700° C., and 750° C. was measured.
The results are shown in Table 2.

Figure 2023167178000002
Figure 2023167178000002

<電極の作製>
メノウ乳鉢に、実施例1のTiO粒子1、アセチレンブラック、及び、ポリテトラフルオロエチレン(PTFE)をそれぞれ重量比80:10:10の割合で加え、アセトンを滴下しながら1時間よく混合し、ペーストを作製した。作製したペーストをニッケルメッシュに貼り付け、真空下、150℃で乾燥させ、電極1を作製した。
実施例2のTiO粒子2、比較例1、2の比較TiO粒子1、2を用いて、上記実施例1と同様に電極2、比較電極1、比較電極2を作製した。
<Preparation of electrode>
Add TiO 2 particles 1 of Example 1, acetylene black, and polytetrafluoroethylene (PTFE) in a weight ratio of 80:10:10 to an agate mortar, and mix well for 1 hour while dropping acetone. A paste was made. The prepared paste was pasted on a nickel mesh and dried at 150° C. under vacuum to prepare electrode 1.
Using TiO 2 particles 2 of Example 2 and comparison TiO 2 particles 1 and 2 of Comparative Examples 1 and 2, electrode 2, comparative electrode 1, and comparative electrode 2 were produced in the same manner as in Example 1 above.

<電極性能評価>
負極ボディ上に、銅箔、実施例1のTiO粒子1を用いて作製した電極1、セパレータ、金属Li箔、銅箔の順に重ね、最後に正極ボディを被せてねじ締めを行った。電解液には1mol/L LiPF EC:DEC(1:1v/v%)を使用し、電極性能評価用の電池を構成した。以下の方法により、電極性能評価を行った。
上記実施例2のTiO粒子、比較例1、2の比較TiO粒子1、2を用いた電極2、比較電極1、2についても同様にして電極性能評価を行った。結果を表3及び図1に示す。
充放電試験は、開回路電圧で12時間放置した後、0.05Cの電流密度で3サイクル行った。
なお、ここでは、下記式(3)、(4)の通り、酸化チタンへのリチウムの挿入反応を充電、リチウムの脱離反応を放電と定義した。
《充電》
TiO(A)+Li+e→LiTiO (3)
《放電》
LiTiO→TiO(A)+Li+e (4)
各条件について、充電はCC充電で1-2cycleは1.6V終止、3cycle目は1.0V終止、放電はCC放電で3.0V終止とした。3サイクル目の充電曲線を用いて、表3に示す電極性能の解析を行った。
<Electrode performance evaluation>
On the negative electrode body, a copper foil, the electrode 1 produced using the TiO 2 particles 1 of Example 1, a separator, a metal Li foil, and a copper foil were stacked in this order, and finally the positive electrode body was placed on top and screwed. A battery for electrode performance evaluation was constructed using 1 mol/L LiPF 6 EC:DEC (1:1 v/v%) as the electrolyte. Electrode performance was evaluated using the following method.
Electrode performance was similarly evaluated for electrode 2 and comparative electrodes 1 and 2 using the TiO 2 particles of Example 2 and comparison TiO 2 particles 1 and 2 of Comparative Examples 1 and 2. The results are shown in Table 3 and Figure 1.
The charge/discharge test was performed at a current density of 0.05 C for 3 cycles after being left at an open circuit voltage for 12 hours.
Note that, as shown in the following formulas (3) and (4), the insertion reaction of lithium into titanium oxide was defined as charging, and the desorption reaction of lithium was defined as discharging.
"charging"
TiO 2 (A) + Li + +e →LiTiO 2 (3)
《Discharge》
LiTiO 2 →TiO 2 (A) + Li + +e - (4)
Regarding each condition, charging was CC charging and the 1.2V termination was 1.6V, the 3rd cycle was 1.0V termination, and the discharging was CC discharge and 3.0V termination. Using the charging curve of the third cycle, the electrode performance shown in Table 3 was analyzed.

Figure 2023167178000003
Figure 2023167178000003

表2の結果より、一次粒子径が300nm未満の粒子の存在比が12%未満である実施例1~3は、焼成温度が700℃、750℃であっても固体電解質との副反応を充分に抑制することができることが明らかとなった。
また、表3の結果より、平均一次粒子径が1500nm以下である実施例1、2は、充放電特性にも優れることが明らかとなった。
From the results in Table 2, in Examples 1 to 3, in which the abundance ratio of particles with a primary particle size of less than 300 nm was less than 12%, the side reaction with the solid electrolyte was sufficiently suppressed even when the firing temperature was 700°C or 750°C. It has become clear that it is possible to suppress the
Moreover, from the results in Table 3, it became clear that Examples 1 and 2, in which the average primary particle diameter was 1500 nm or less, also had excellent charge-discharge characteristics.

<TiOとLAGPの混合物を650℃で焼成した際の副反応量の評価(充放電試験)>
調製例1で調製したglass-LAGPと実施例1のTiO粒子1とを重量比1:1の割合で加え3時間混合した粉末を650℃で4時間焼成(昇温速度300℃/h)した。
メノウ乳鉢に、上記焼成粉末、アセチレンブラック、及び、ポリテトラフルオロエチレン(PTFE)をそれぞれ重量比80:10:10の割合で加え、アセトンを滴下しながら1時間よく混合し、ペーストを作製した。作製したペーストをニッケルメッシュに貼り付け、真空下、で150℃で乾燥させ、電極1A(650℃)、を作製した。
また、実施例2のTiO粒子2、比較例2の比較TiO粒子2を用いて、上記電極1Aと同様に電極2A、比較電極2Aを作製した。
<Evaluation of the amount of side reactions when a mixture of TiO 2 and LAGP is fired at 650°C (charge/discharge test)>
The glass-LAGP prepared in Preparation Example 1 and the TiO 2 particles 1 of Example 1 were added at a weight ratio of 1:1 and mixed for 3 hours. The powder was then baked at 650°C for 4 hours (heating rate 300°C/h). did.
The above baked powder, acetylene black, and polytetrafluoroethylene (PTFE) were added to an agate mortar at a weight ratio of 80:10:10, and mixed thoroughly for 1 hour while dropping acetone to prepare a paste. The prepared paste was attached to a nickel mesh and dried at 150° C. under vacuum to produce an electrode 1A (650° C.).
Further, using the TiO 2 particles 2 of Example 2 and the comparative TiO 2 particles 2 of Comparative Example 2, electrode 2A and comparative electrode 2A were produced in the same manner as the electrode 1A.

電極1、2、比較電極2の代わりに電極1A、電極2A、比較電極2Aを用いた以外は実施例1と同様にして、電極性能評価を行った。
電極1A、電極2A、比較電極2Aをそれぞれ備える電池について、充電開始からの電圧(V)と充電容量Q(mAh/g)とをプロットし(プロットA)、更に、dV/dQの絶対値(|dV/dQ|)と充電容量Qとをプロットした(プロットB)。
プロットBにおいて、電池の充電開始から充電終了までの領域は以下の3つに分けることができる。
(1)領域1:充電開始から1.6V付近で|dV/dQ|=0.0025となる点まで
領域1はTiOを活物質とする本来の電極反応、TiO2とLAGPとの副反応によって生成するLATPによる充電反応も進行する領域である。
(2)領域2:領域1以降で|dV/dQ|≦0.0025の範囲
領域2はLATPによる充電反応が進行しない一方、アナタース型TiOに由来する可逆的な充電反応が進行する領域である。
(3)領域3:領域2以降で充電終了まで
各成分の充電反応が十分に進行した領域である。
これら各領域での充電容量を測定し、(領域1での充電容量)/(領域1+領域2での充電容量)の値(C値と呼ぶ)から、酸化チタン電極における副反応の程度を評価する。
結果を表4に示す。
Electrode performance evaluation was performed in the same manner as in Example 1, except that electrodes 1A, 2A, and 2A were used instead of electrodes 1, 2, and comparison electrode 2.
For batteries each equipped with electrode 1A, electrode 2A, and comparison electrode 2A, the voltage (V) from the start of charging and the charging capacity Q (mAh/g) are plotted (plot A), and the absolute value of dV/dQ ( |dV/dQ|) and charging capacity Q were plotted (plot B).
In plot B, the region from the start of battery charging to the end of charging can be divided into the following three regions.
(1) Region 1: From the start of charging to the point where |dV/dQ|=0.0025 around 1.6V, region 1 is caused by the original electrode reaction using TiO 2 as an active material and the side reaction between TiO 2 and LAGP. This is also the region where the charging reaction due to generated LATP also progresses.
(2) Region 2: Range of |dV/dQ|≦0.0025 after region 1 Region 2 is a region where charging reaction by LATP does not proceed, but reversible charging reaction originating from anatase type TiO 2 proceeds. be.
(3) Region 3: This is the region after region 2 where the charging reaction of each component has sufficiently progressed until the end of charging.
The charging capacity in each of these regions is measured, and the degree of side reaction in the titanium oxide electrode is evaluated from the value (called the C value) of (charging capacity in region 1)/(charging capacity in region 1 + region 2) do.
The results are shown in Table 4.

Figure 2023167178000004
Figure 2023167178000004

表4の結果より、実施例1、2は、比較例2よりもC値が低く、副反応が十分に抑制できていることが確認できる。
比較例2は、表3の結果より、充放電容量に優れるものの、表2及び4の結果より、LAGPとの副反応が顕著に進行することが確認され、電極の高電位化が起こり易いといえる。
From the results in Table 4, it can be confirmed that Examples 1 and 2 have lower C values than Comparative Example 2, and side reactions can be sufficiently suppressed.
Although Comparative Example 2 has excellent charge/discharge capacity from the results in Table 3, it is confirmed from the results in Tables 2 and 4 that the side reaction with LAGP progresses significantly, and the potential of the electrode is likely to increase. I can say that.

以上より、アナタース型結晶構造を有する酸化チタン粒子において、平均一次粒子径を所定の範囲とし、かつ、一次粒子径が300nm未満の粒子の存在比を所定の割合以下とすることにより、600℃よりも高温で焼結を行った場合でも副反応を抑制することができ、かつ、十分な充放電容量を確保できることが明らかとなった。 From the above, in titanium oxide particles having an anatase crystal structure, by setting the average primary particle size within a predetermined range and keeping the abundance ratio of particles with a primary particle size of less than 300 nm below a predetermined ratio, it is possible to It has become clear that even when sintering is performed at high temperatures, side reactions can be suppressed and sufficient charge/discharge capacity can be ensured.

Claims (4)

酸化チタン粒子を含む電極材料であって、
該酸化チタン粒子は、アナタース型結晶構造を有する酸化チタン粒子を含み、電子顕微鏡にて定方向径を計測することによる平均一次粒子径が300nm~1500nmであり、一次粒子径が300nm未満の粒子の存在比が12%未満である、電極材料。
An electrode material containing titanium oxide particles,
The titanium oxide particles include titanium oxide particles having an anatase crystal structure, and have an average primary particle diameter of 300 nm to 1500 nm as determined by measuring the diameter in a direction using an electron microscope, and particles with a primary particle diameter of less than 300 nm. An electrode material having an abundance ratio of less than 12%.
前記電極材料は、XRD測定におけるルチル型酸化チタンの回折ピーク(面指数110)のピーク高さIと、アナタース型酸化チタンの回折ピーク(面指数101)のピーク高さIにおいて、(I×1.32/(I+I×1.32))×100の値が50.0未満である、請求項1に記載の電極材料。 The electrode material has (I The electrode material according to claim 1, wherein the value of R x 1.32/(I A + I R x 1.32)) x 100 is less than 50.0. 前記電極材料は、全固体電池に用いられる、請求項1又は2に記載の電極材料。 The electrode material according to claim 1 or 2, wherein the electrode material is used for an all-solid-state battery. 請求項1又は2に記載の電極材料を備える全固体電池。 An all-solid-state battery comprising the electrode material according to claim 1 or 2.
JP2022078154A 2022-05-11 2022-05-11 Electrode material and all-solid-state battery using the same Pending JP2023167178A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022078154A JP2023167178A (en) 2022-05-11 2022-05-11 Electrode material and all-solid-state battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022078154A JP2023167178A (en) 2022-05-11 2022-05-11 Electrode material and all-solid-state battery using the same

Publications (1)

Publication Number Publication Date
JP2023167178A true JP2023167178A (en) 2023-11-24

Family

ID=88838154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022078154A Pending JP2023167178A (en) 2022-05-11 2022-05-11 Electrode material and all-solid-state battery using the same

Country Status (1)

Country Link
JP (1) JP2023167178A (en)

Similar Documents

Publication Publication Date Title
JP6380608B2 (en) Method for producing lithium composite compound particle powder, method for using lithium composite compound particle powder in non-aqueous electrolyte secondary battery
JP6260535B2 (en) Method for producing carbon composite lithium manganese iron phosphate particle powder, and method for producing a non-aqueous electrolyte secondary battery using the particle powder
JP5879761B2 (en) Lithium composite compound particle powder, method for producing the same, and nonaqueous electrolyte secondary battery
JP5505608B2 (en) Li-Ni composite oxide particle powder for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP5293936B2 (en) Non-aqueous electrolyte secondary battery olivine-type composite oxide, method for producing the same, and secondary battery
JP5450159B2 (en) Titanium oxide compound for electrode and lithium secondary battery using the same
JP6089433B2 (en) Li-Ni composite oxide particle powder, method for producing the same, and nonaqueous electrolyte secondary battery
KR101532807B1 (en) Lithium manganate particle powder for nonaqueous electrolyte secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery
WO2012029697A1 (en) Lithium titanate particulate powder and production method for same, mg-containing lithium titanate particulate powder and production method for same, negative electrode active material particulate powder for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
EP2936592B1 (en) Lmfp cathode materials with improved electrochemical performance
WO2014061654A1 (en) Li-Ni COMPLEX OXIDE PARTICLE POWDER AND NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY
JP7292574B2 (en) Positive electrode active material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
JP2016501806A (en) Layered and spinel type lithium titanate and its preparation process
JP2011132095A (en) Method for producing olivine-type compound particle powder, and nonaqueous electrolyte secondary battery
Mao et al. Improved cycling stability of high nickel cathode material for lithium ion battery through Al-and Ti-based dual modification
JP2024517022A (en) Lithium iron phosphate positive electrode material, its manufacturing method and lithium ion battery
JP5876771B2 (en) Titanium oxide for electrode and method for producing the same
Liang et al. Electrochemical properties and kinetics of Li–Cu co-doping LiMn 2 O 4 cathode materials
JP5708939B2 (en) Lithium titanate particle powder and method for producing the same, negative electrode active material particle powder for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
Liu et al. Electrochemical properties of LiNi 0.6 Co 0.12 Mn 0.2 V 0.08 O 2 as the tetrad cathode material of lithium-ion battery under high cut-off voltages
JP2023167178A (en) Electrode material and all-solid-state battery using the same
JP4553095B2 (en) Cobalt oxide particle powder and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery, production method thereof, and non-aqueous electrolyte secondary battery
JP5830842B2 (en) Method for producing lithium titanate particle powder and non-aqueous electrolyte secondary battery
JP7272134B2 (en) Positive electrode active material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
WO2013129423A1 (en) Lithium titanate particulate powder, negative electrode active material particulate powder for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery