JP2003064162A - Epoxy resin composition and semiconductor device - Google Patents

Epoxy resin composition and semiconductor device

Info

Publication number
JP2003064162A
JP2003064162A JP2001260711A JP2001260711A JP2003064162A JP 2003064162 A JP2003064162 A JP 2003064162A JP 2001260711 A JP2001260711 A JP 2001260711A JP 2001260711 A JP2001260711 A JP 2001260711A JP 2003064162 A JP2003064162 A JP 2003064162A
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
weight
phenol
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001260711A
Other languages
Japanese (ja)
Inventor
Shingo Ito
慎吾 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2001260711A priority Critical patent/JP2003064162A/en
Publication of JP2003064162A publication Critical patent/JP2003064162A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an epoxy resin composition for sealing a semiconductor having excellent adhesion to a polyimide resin on the surface of a semiconductor element. SOLUTION: This epoxy resin composition for sealing the semiconductor consists essentially of (A) an epoxy resin containing 40-80 wt.% of a biphenyl type epoxy resin and 20-60 wt.% of an amorphous dicyclopentadiene-modified phenol type epoxy resin having <=60 deg.C softening point, (B) a phenol resin containing 60-90 wt.% of a phenolaralkyl resin and 10-40 wt.% of a modified novolak type phenol resin prepared by condensing phenol with cresols through an aldehyde in the presence of an acidic catalyst, (C) a curing accelerator and (D) an inorganic filler. The epoxy resin composition is characterized in that the equivalent ratio (total number of epoxy groups/total number of phenolic hydroxy groups) is 1.05-1.50 and the amount of the inorganic filler (D) is 85-93 wt.%.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、半導体素子表面の
ポリイミド樹脂との密着性に優れた半導体封止用エポキ
シ樹脂組成物及び耐半田クラック性に優れた半導体装置
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an epoxy resin composition for semiconductor encapsulation having excellent adhesion to a polyimide resin on the surface of a semiconductor element and a semiconductor device having excellent solder crack resistance.

【0002】[0002]

【従来の技術】電子機器の小型化、軽量化、高性能化の
市場動向において、半導体素子の高集積化が年々進み、
又半導体装置の表面実装化が促進されるなかで、半導体
素子の封止に用いられているエポキシ樹脂組成物への要
求は益々厳しいものとなってきている。特に半導体装置
の表面実装化が一般的になってきている現状では、吸水
した半導体装置が半田リフロー処理時に高温にさらさ
れ、半導体素子やリードフレームとエポキシ樹脂組成物
の硬化物との界面に剥離が発生し、ひいては硬化物にク
ラックを生じる等、半導体装置の信頼性を大きく損なう
不良が生じ、これらの不良の防止、即ち耐半田クラック
性の向上が大きな課題となっている。これらの課題に対
し、IC、LSI等の半導体素子の封止用エポキシ樹脂
組成物に使用されるエポキシ樹脂や硬化剤であるフェノ
ール樹脂の改良により、上記の問題に対する特性の向上
が図られてきた。更に封止材料では解決できない問題点
に対しては、リードフレームの形状変更、特に半導体素
子と接着されるアイランドの形状変更により、対策が行
われ、LOC(リードオンチップ)構造、ウインドウ・
パッドフレームがこれに相当する。
2. Description of the Related Art In the market trend of miniaturization, weight reduction, and high performance of electronic devices, semiconductor elements are becoming highly integrated year by year.
Further, as surface mounting of semiconductor devices is promoted, demands for epoxy resin compositions used for sealing semiconductor elements are becoming more and more severe. Particularly in the current situation where surface mounting of semiconductor devices is becoming common, the absorbed semiconductor device is exposed to high temperature during solder reflow processing, and peels off at the interface between the semiconductor element or lead frame and the cured product of the epoxy resin composition. Occurs, resulting in cracks in the cured product and other defects that greatly impair the reliability of the semiconductor device, and prevention of these defects, that is, improvement of solder crack resistance is a major issue. To solve these problems, improvement of the epoxy resin used in the epoxy resin composition for encapsulation of semiconductor elements such as IC and LSI and the phenol resin as a curing agent has been made to improve the characteristics against the above problems. . Furthermore, for problems that cannot be solved by the encapsulating material, measures are taken by changing the shape of the lead frame, especially the shape of the island that is bonded to the semiconductor element, and the LOC (lead-on-chip) structure, window
The pad frame corresponds to this.

【0003】近年、環境負荷物質の撤廃の一環として、
鉛を含まない半田への代替化が進められている。鉛を含
まない半田では、従来の半田に比べ融点が高いため表面
実装時の半田リフロー温度は、従来より20℃程度高
く、260℃が必要とされる。鉛を含まない半田対応の
ための半田リフロー温度の変更によりウインドウ・パッ
ドフレームでもエポキシ樹脂組成物の硬化物と半導体素
子、パッドとの界面での剥離、半導体素子と半導体用樹
脂ペーストとの界面での剥離に起因する半導体装置のク
ラックの問題が生じてきた。特に問題となるのはエポキ
シ樹脂組成物の硬化物と半導体素子の界面で半導体素子
にポリイミド樹脂がコートされている場合である。高集
積化、回路の微細化、半導体素子の大型化が進む半導体
メモリーでは、エポキシ樹脂組成物の硬化収縮や半田工
程時の熱衝撃に伴うアルミ回路のスライド、半導体素子
表面の無機パッシベーション膜(酸化珪素等)のクラッ
クの問題を回避するために、半導体素子表面にポリイミ
ド樹脂をコートすることが行われている。半導体装置を
構成する材料の吸水率はポリイミド樹脂が1%前後、エ
ポキシ樹脂組成物、半導体用樹脂ペースがおおよそ0.
2〜0.3%でポリイミド樹脂が最も高い吸水率を示
す。260℃の半田リフロー温度といった高温プロセス
時には、吸水によって著しく密着強度が低下し、界面剥
離が生じるが、より多くの吸水が存在するエポキシ樹脂
組成物の硬化物とポリイミド樹脂の界面が最も剥離が発
生し易くなる。このため、高温でのポリイミド樹脂との
密着を向上するとともに、流動性を与えることにより微
細構造や異種界面を有する構造との密着性を高めた耐半
田クラック性が良好なエポキシ樹脂組成物が要求されて
いる。更にメモリー用半導体装置ではLOC構造、非L
OC構造、非LOCウインドウパッド構造の薄型半導体
装置が適用されるが、製造工程管理、在庫管理、コスト
の面から、全ての構造に共通して使用できる半導体封止
用エポキシ樹脂組成物が要求されている。
In recent years, as part of the elimination of environmentally hazardous substances,
Replacement of lead-free solder is under way. Since solder containing no lead has a higher melting point than conventional solder, the solder reflow temperature during surface mounting is about 20 ° C. higher than that of the conventional solder, and 260 ° C. is required. By changing the solder reflow temperature to accommodate lead-free solder, even in window / pad frames, peeling occurs at the interface between the cured product of the epoxy resin composition and the semiconductor element / pad, or at the interface between the semiconductor element and the resin paste for semiconductors. The problem of cracking of the semiconductor device due to the peeling of the semiconductor has arisen. A particular problem is that the semiconductor element is coated with a polyimide resin at the interface between the cured product of the epoxy resin composition and the semiconductor element. In semiconductor memories with higher integration, circuit miniaturization, and larger semiconductor elements, the aluminum circuit slides due to curing shrinkage of the epoxy resin composition and thermal shock during the soldering process, inorganic passivation film (oxidation on the surface of the semiconductor element In order to avoid the problem of cracking of silicon or the like), the surface of the semiconductor element is coated with a polyimide resin. Regarding the water absorption rate of the material constituting the semiconductor device, the polyimide resin is about 1%, and the epoxy resin composition and the resin pace for the semiconductor are approximately 0.
The polyimide resin shows the highest water absorption at 2 to 0.3%. During a high temperature process such as a solder reflow temperature of 260 ° C., water absorption significantly lowers the adhesion strength and causes interfacial peeling. However, the most peeling occurs at the interface between the cured epoxy resin composition and the polyimide resin in which more water is present. Easier to do. Therefore, an epoxy resin composition having good solder crack resistance, which improves the adhesion to a polyimide resin at high temperature and enhances the adhesion to a structure having a fine structure or a heterogeneous interface by imparting fluidity, is required. Has been done. Furthermore, in the semiconductor device for memory, LOC structure, non-L
Although a thin semiconductor device having an OC structure or a non-LOC window pad structure is applied, an epoxy resin composition for semiconductor encapsulation that can be commonly used for all structures is required in terms of manufacturing process control, inventory control, and cost. ing.

【0004】[0004]

【発明が解決しようとする課題】本発明は、半導体素子
表面のポリイミド樹脂との密着性に優れた半導体封止用
エポキシ樹脂組成物及び特にメモリー用のLOC構造、
非LOC構造、非LOCウインドウパッド構造といった
各種薄型半導体装置において、耐半田クラック性に優れ
た半導体装置を提供するものである。
DISCLOSURE OF THE INVENTION The present invention provides an epoxy resin composition for semiconductor encapsulation which is excellent in adhesion to a polyimide resin on the surface of a semiconductor element, and particularly a LOC structure for memory.
A thin semiconductor device having a non-LOC structure and a non-LOC window pad structure, which is excellent in solder crack resistance, is provided.

【0005】[0005]

【課題を解決するための手段】本発明は、[1](A)
一般式(1)で示されるエポキシ樹脂を40〜80重量
%、軟化点が60℃以下である非結晶性エポキシ樹脂を
20〜60重量%含むエポキシ樹脂、(B)一般式
(2)で示されるフェノール樹脂を60〜90重量%、
フェノールとクレゾール類とを酸触媒存在下アルデヒド
を介して縮合した変性ノボラック型フェノール樹脂を1
0〜40重量%含むフェノール樹脂、(C)硬化促進剤
及び(D)無機充填材を必須成分とし、当量比(全エポ
キシ基数/全フェノール性水酸基)=1.05〜1.5
0で、かつ無機充填材が85〜93重量%であることを
特徴とする半導体封止用エポキシ樹脂組成物、
The present invention provides [1] (A)
An epoxy resin containing 40 to 80% by weight of the epoxy resin represented by the general formula (1) and 20 to 60% by weight of a non-crystalline epoxy resin having a softening point of 60 ° C. or less, (B) represented by the general formula (2). 60-90% by weight of phenolic resin,
A modified novolac type phenolic resin obtained by condensing phenol and cresols via an aldehyde in the presence of an acid catalyst 1
Phenol resin containing 0 to 40% by weight, (C) curing accelerator and (D) inorganic filler as essential components, equivalent ratio (total number of epoxy groups / total phenolic hydroxyl group) = 1.05 to 1.5
0 and the inorganic filler is 85 to 93% by weight, the epoxy resin composition for semiconductor encapsulation,

【0006】[0006]

【化3】 (R1は、水素原子又は炭素数1〜4のアルキル基を示
し、互いに同じであっても異なっていてもよい。)
[Chemical 3] (R1 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms and may be the same or different.)

【0007】[0007]

【化4】 (nは平均値で、1〜6整数)[Chemical 4] (N is an average value and is an integer of 1 to 6)

【0008】[2]第[1]項記載のエポキシ樹脂組成
物を用いて半導体素子を封止してなることを特徴とする
半導体装置、である。
[2] A semiconductor device comprising a semiconductor element encapsulated with the epoxy resin composition as described in the item [1].

【0009】[0009]

【発明の実施の形態】本発明に用いるエポキシ樹脂は、
一般式(1)で示されるエポキシ樹脂を40〜80重量
%、軟化点が60℃以下である非結晶性エポキシ樹脂を
20〜60重量%含むエポキシ樹脂を必須とする。一般
式(1)で示されるビフェニル型エポキシ樹脂は、溶融
時に低粘度であるため優れた流動性と濡れ性を与える。
ただし、一般式(1)で示されるビフェニル型エポキシ
樹脂は、溶融時には低粘度であるが結晶性であるため溶
融性は劣る。軟化点が60℃以下である非結晶性のエポ
キシ樹脂と併用することにより溶融性を向上することが
できる。
BEST MODE FOR CARRYING OUT THE INVENTION The epoxy resin used in the present invention is
An epoxy resin containing 40 to 80% by weight of the epoxy resin represented by the general formula (1) and 20 to 60% by weight of a non-crystalline epoxy resin having a softening point of 60 ° C. or lower is essential. The biphenyl type epoxy resin represented by the general formula (1) has a low viscosity when melted, and thus provides excellent fluidity and wettability.
However, the biphenyl type epoxy resin represented by the general formula (1) has low viscosity when melted, but has poor crystallinity because it is crystalline. The meltability can be improved by using it together with a non-crystalline epoxy resin having a softening point of 60 ° C. or lower.

【0010】軟化点が60℃以下である非結晶性のエポ
キシ樹脂は、溶融性が非常に良好で、一般式(1)で示
されるビフェニル型エポキシ樹脂と併用した場合、結晶
性エポキシの溶融を促進する効果を付与する。軟化点が
60℃を越えると非結晶性のエポキシ樹脂の溶融を促進
する効果が低下し、又自身の溶融粘度も高くなるため、
エポキシ樹脂組成物の流動性が低下する。軟化点が60
℃以下である非結晶性のエポキシ樹脂の溶融粘度は、一
般式(1)で示されるビフェニル型エポキシ樹脂よりは
高く、一般式(1)で示されるビフェニル型エポキシ樹
脂と併用することで、良好な流動性、濡れ性が得られ
る。エポキシ樹脂の軟化点は、JIS K7234の環
球法に従って測定した。
A non-crystalline epoxy resin having a softening point of 60 ° C. or less has a very good melting property, and when used in combination with the biphenyl type epoxy resin represented by the general formula (1), it melts the crystalline epoxy. Gives an accelerating effect. If the softening point exceeds 60 ° C., the effect of promoting the melting of the non-crystalline epoxy resin decreases, and the melt viscosity of itself increases,
The fluidity of the epoxy resin composition is reduced. Softening point is 60
The melt viscosity of the non-crystalline epoxy resin having a temperature of ℃ or less is higher than that of the biphenyl-type epoxy resin represented by the general formula (1), and it is favorable when used in combination with the biphenyl-type epoxy resin represented by the general formula (1). Excellent fluidity and wettability can be obtained. The softening point of the epoxy resin was measured according to the ring and ball method of JIS K7234.

【0011】一般式(1)のエポキシ樹脂を40〜80
重量%、軟化点が60℃以下である非結晶性エポキシ樹
脂を20〜60重量%とすることで最も良好な溶融性、
低粘度性が得られ、流動性、濡れ性が優れたエポキシ樹
脂組成物を得ることができる。一般式(1)のエポキシ
樹脂が40重量%未満であるとエポキシ樹脂組成物の溶
融粘度が高く良好な流動性、濡れ性が得られない。80
重量%を越えると結晶性エポキシが完全に溶融しないこ
とがあるので良好な流動性、濡れ性が得られない。流動
性、濡れ性が悪いとLOC構造の様な段差のある構造に
対しては、異種界面との間に十分な密着性が得られなか
ったり薄型半導体装置を充填することができない。本発
明で用いられるエポキシ樹脂の特性を損なわない範囲で
他のエポキシ樹脂を併用してもよい。
An epoxy resin of the general formula (1) is used in an amount of 40-80.
Wt%, the best meltability by setting the amorphous epoxy resin having a softening point of 60 ° C. or less to 20 to 60% by weight,
It is possible to obtain an epoxy resin composition having low viscosity and excellent fluidity and wettability. If the epoxy resin of the general formula (1) is less than 40% by weight, the melt viscosity of the epoxy resin composition is high and good flowability and wettability cannot be obtained. 80
If it exceeds 5% by weight, the crystalline epoxy may not be completely melted, so that good fluidity and wettability cannot be obtained. If the fluidity and wettability are poor, a structure having a step, such as an LOC structure, may not have sufficient adhesiveness with a different type interface, or a thin semiconductor device cannot be filled. Other epoxy resins may be used in combination as long as the characteristics of the epoxy resin used in the present invention are not impaired.

【0012】本発明で用いる一般式(2)で示されるフ
ェノール樹脂は、パラキシリレン骨格を有しており、一
般式(2)で示されるフェノール樹脂を用いたエポキシ
樹脂組成物の硬化物は、疎水性の構造を含むことから吸
水率が低く、又架橋密度が低いため、 ガラス転移温度
を越えた高温域での弾性率が低いという特徴があり、表
面実装の半田付け時における熱応力を低減し、リードフ
レーム等の金属類及び半導体素子との密着性に優れると
いう特徴を有している。又フェニル基間のパラキシリレ
ン結合は架橋密度が低い割には耐熱性の低下が少ないと
いう特徴を有する。
The phenolic resin represented by the general formula (2) used in the present invention has a paraxylylene skeleton, and the cured product of the epoxy resin composition using the phenolic resin represented by the general formula (2) is hydrophobic. It has a low water absorption rate due to its structure, and a low cross-linking density, so it has a low elastic modulus in the high temperature region above the glass transition temperature, reducing thermal stress during soldering of surface mounting. It has a feature that it is excellent in adhesion to metals such as lead frames and semiconductor elements. Further, the paraxylylene bond between the phenyl groups has a feature that the heat resistance is less deteriorated although the crosslink density is low.

【0013】本発明で用いるフェノール(c)とクレゾ
ール類(d)とを酸触媒存在下アルデヒドを介して縮合
した変性ノボラック型フェノール樹脂は、フェノール樹
脂の良好な硬化性とクレゾール樹脂の低吸水性を兼ね備
えた特性を発現する。変性ノボラック型フェノール樹脂
中のcとdとのモル比(c:d)としては2:8〜8:
2が好ましい。これは、フェノールの比率が高くなる
と、硬化性や強度は向上するものの耐吸水性が低下し、
クレゾール類の比率が高くなると、耐吸水性は向上する
ものの硬化性や強度が低下するためである。クレゾール
類としては、オルソクレゾール、パラクレゾール及びメ
タクレゾールの3種の異性体があり、これらは単独でも
2種類以上を併用して用いてもよいが、工業製品として
の入手の容易さからオルソクレゾールが好ましい。合成
に用いるアルデヒド源としては特に限定しないが、ホル
ムアルデヒド(ホルマリン)或いはパラホルムアルデヒ
ドが工業的に大量生産され安価である点で好ましい。本
発明の変性ノボラック型フェノール樹脂の合成方法とし
ては、例えばオルソクレゾールとホルムアルデヒド(ホ
ルマリン)を酸触媒の存在下で反応させた後、フェノー
ルとホルムアルデヒド(ホルマリン)を添加して縮合反
応を行って得る方法や、オルソクレゾールとフェノール
にホルムアルデヒド(ホルマリン)を添加して酸触媒の
存在下で縮合反応を行い、未反応物を除去して固形樹脂
として得る方法等があるが、得られた変性ノボラック型
フェノール樹脂中のモル比(c:d)が2:8〜8:2
であれば、特に合成方法は限定しない。
The modified novolac type phenol resin obtained by condensing the phenol (c) and the cresols (d) used in the present invention through an aldehyde in the presence of an acid catalyst is a good curability of the phenol resin and a low water absorption of the cresol resin. The characteristics that combine both are expressed. The molar ratio (c: d) of c and d in the modified novolac type phenol resin is 2: 8 to 8 :.
2 is preferred. This is because when the proportion of phenol is high, the curability and strength are improved, but the water absorption resistance is reduced,
This is because when the proportion of cresols is high, the water absorption resistance is improved but the curability and strength are reduced. As cresols, there are three kinds of isomers of orthocresol, para-cresol and meta-cresol, and these may be used alone or in combination of two or more kinds, but orthocresol is easily available as an industrial product. Is preferred. The aldehyde source used for the synthesis is not particularly limited, but formaldehyde (formalin) or paraformaldehyde is preferable because it is industrially mass-produced and inexpensive. As a method for synthesizing the modified novolac type phenolic resin of the present invention, for example, orthocresol and formaldehyde (formalin) are reacted in the presence of an acid catalyst, and then phenol and formaldehyde (formalin) are added to obtain a condensation reaction. There is also a method, a method of adding formaldehyde (formalin) to orthocresol and phenol, conducting a condensation reaction in the presence of an acid catalyst, and removing unreacted substances to obtain a solid resin. The molar ratio (c: d) in the phenol resin is 2: 8 to 8: 2
If so, the synthesis method is not particularly limited.

【0014】本発明で用いる変性ノボラック型フェノー
ル樹脂の重量平均分子量としては、2000以下が好ま
しい。これは重量平均分子量を2000以下にすること
で、加熱溶融時の粘度が低く抑えられ、無機物の高充填
化が図れるからである。本発明の変性ノボラック型フェ
ノール樹脂は、低吸水性のフェノールアラルキル樹脂と
比較すると、より低粘度で流動特性に優れ、且つ硬化性
が良好であるという特性を有し、より品質に優れたエポ
キシ樹脂組成物を得ることができる。一方低応力性、低
吸水性はフェノールアラルキル樹脂よりは劣る。本発明
における重量平均分子量は、GPC(Gel Permeation
Chromatography)法によりポリスチレン換算して求め
た値である。即ち、東ソー(株)・製GPCカラム(G
1000H×L:1本、G2000H×L:2本、G3
000H×L:1本)を用い、流量1.0cm3/60
秒、溶出溶媒としてテトラヒドロフラン、カラム温度4
0℃の条件で示差屈折計を検出器に用いて測定しポリス
チレン換算して求めた。
The weight average molecular weight of the modified novolac type phenol resin used in the present invention is preferably 2000 or less. This is because by setting the weight average molecular weight to 2000 or less, the viscosity at the time of heating and melting can be suppressed to a low level, and the inorganic material can be highly filled. The modified novolac type phenolic resin of the present invention has a lower viscosity, excellent flow characteristics, and good curability, as compared with a low water-absorbing phenol aralkyl resin, and an epoxy resin of higher quality. A composition can be obtained. On the other hand, low stress and low water absorption are inferior to phenol aralkyl resin. The weight average molecular weight in the present invention is GPC (Gel Permeation
Chromatography) is the value obtained by converting to polystyrene. That is, Tosoh Corp. GPC column (G
1000H x L: 1 line, G2000H x L: 2 lines, G3
000H × L: 1 present) using a flow rate of 1.0 cm 3/60
Sec., Tetrahydrofuran as the eluting solvent, column temperature 4
The value was measured by using a differential refractometer as a detector under the condition of 0 ° C., and calculated in terms of polystyrene.

【0015】一般式(2)で示されるフェノールアラル
キル樹脂を60〜90重量%とフェノールとオルソクレ
ゾール類とを酸触媒存在下アルデヒドを介して縮合した
変性ノボラック型フェノール樹脂を10〜40重量%で
併用した場合、低吸水性、低応力性、低粘度性、硬化性
のバランスが最も良好となり、密着性、耐半田クラック
性に優れたエポキシ樹脂組成物を得ることができる。一
般式(2)で示されるフェノールアラルキル樹脂が60
重量%未満、フェノールとオルソクレゾール類とを酸触
媒存在下アルデヒドを介して縮合した変性ノボラック型
フェノール樹脂が40重量%を越えると、低吸水性、低
応力性が低下し、エポキシ樹脂組成物の密着性、耐半田
クラック性が低下する。フェノールとオルソクレゾール
類とを酸触媒存在下アルデヒドを介して縮合した変性ノ
ボラック型フェノール樹脂が10重量%未満だと、低粘
度性、硬化性が低下し、エポキシ樹脂組成物の密着性、
耐半田クラック性が低下する。本発明で用いられるフェ
ノール樹脂の特性を損なわない範囲で他のフェノール樹
脂を併用してもよい。
60 to 90% by weight of a phenol aralkyl resin represented by the general formula (2) and 10 to 40% by weight of a modified novolac type phenol resin obtained by condensing phenol and orthocresols via an aldehyde in the presence of an acid catalyst. When used in combination, the best balance among low water absorption, low stress, low viscosity, and curability is obtained, and an epoxy resin composition having excellent adhesion and solder crack resistance can be obtained. The phenol aralkyl resin represented by the general formula (2) is 60
If the amount of the modified novolac-type phenol resin, which is less than 40% by weight, of phenol and orthocresols condensed with an aldehyde in the presence of an acid catalyst, exceeds 40% by weight, low water absorption and low stress will be reduced, and the epoxy resin composition Adhesion and solder crack resistance are reduced. When the modified novolac type phenolic resin obtained by condensing phenol and orthocresols via an aldehyde in the presence of an acid catalyst is less than 10% by weight, low viscosity and curability are deteriorated, and the adhesiveness of the epoxy resin composition,
Solder crack resistance is reduced. Other phenol resins may be used in combination as long as the characteristics of the phenol resin used in the present invention are not impaired.

【0016】本発明において密着性の対象とした半導体
素子表面に存在するポリイミド樹脂は、表面がプラズマ
処理されているためにイミド環中のC−N結合が優先的
に切断され、カルボキシル基、アミノ基等の官能基が導
入されている。従って、用いる全エポキシ樹脂と全フェ
ノール樹脂の当量比を1.05〜1.50とすることに
より、架橋構造に寄与しないエポキシ樹脂がポリイミド
樹脂表面のカルボキシ基、アミノ基等の官能基と相溶も
しくは反応し、優れた密着性を与えるものである。本発
明で言う当量比とは、エポキシ樹脂のエポキシ基数/フ
ェノール樹脂のフェノール性水酸基数の比を指す。更に
前記当量比を1.05〜1.50とすることにより架橋
構造に寄与しないエポキシ樹脂が流動性を付与し、ポリ
イミド樹脂のみならず、金属等の異種界面との濡れ性を
向上するといった相乗効果を与える。当量比が1.50
を越えると十分な架橋構造が得られないため、硬化性が
大きく低下し、耐半田クラック性に問題を生じる。一方
当量比が1.05未満だと、架橋構造に寄与しないエポ
キシ樹脂量が極端に少なくなるため、大型化する半導体
素子上のポリイミド樹脂表面への濡れ性が悪くなり、十
分な密着性が得られないので好ましくない。
In the present invention, the polyimide resin present on the surface of the semiconductor element targeted for adhesion has a surface treated with plasma, so that the C—N bond in the imide ring is preferentially cleaved, resulting in a carboxyl group or an amino group. A functional group such as a group has been introduced. Therefore, by setting the equivalent ratio of the total epoxy resin to the total phenolic resin to be 1.05 to 1.50, the epoxy resin that does not contribute to the crosslinked structure is compatible with the functional groups such as carboxy groups and amino groups on the polyimide resin surface. Alternatively, it reacts and gives excellent adhesion. The equivalent ratio referred to in the present invention refers to the ratio of the number of epoxy groups in the epoxy resin / the number of phenolic hydroxyl groups in the phenol resin. Further, by setting the equivalent ratio to 1.05 to 1.50, the epoxy resin that does not contribute to the crosslinked structure imparts fluidity, and not only the polyimide resin but also the wettability with different kinds of interfaces such as metals is enhanced. Give effect. Equivalence ratio is 1.50
If it exceeds, a sufficient crosslinked structure cannot be obtained, so that the curability is greatly reduced, and a problem occurs in solder crack resistance. On the other hand, if the equivalent ratio is less than 1.05, the amount of epoxy resin that does not contribute to the cross-linking structure becomes extremely small, so that the wettability to the polyimide resin surface on the semiconductor element, which becomes large, becomes poor, and sufficient adhesion is obtained. It is not preferable because it cannot be done.

【0017】本発明に用いる硬化促進剤(C)は、エポ
キシ樹脂とフェノール性水酸基との反応を促進させるも
のであればよく、一般に封止用材料に使用されているも
のを広く使用することができ、例えば1,8−ジアザビ
シクロ(5、4、0)ウンデセン−7、トリフェニルホ
スフィン、テトラフェニルホスホニウム・テトラフェニ
ルボレート、2−メチルイミダゾール等を単独又は混合
してもよい。本発明に用いる無機質充填材(D)は、溶
融シリカ、球状シリカ、結晶シリカ、2次凝集シリカ、
多孔質シリカ、2次凝集シリカ又は多孔質シリカを粉砕
したシリカ、アルミナ等が挙げられ、特に溶融シリカが
好ましい。無機充填材は全エポキシ樹脂組成物に対し8
5〜93重量%であることが必須である。85重量%未
満では、エポキシ樹脂組成物の硬化物の強度が不足し、
更に樹脂成分の割合が高くなるため吸水率が増加し耐半
田クラック性が低下する。93重量%を越えると溶融時
の粘度が高くなり、流動性が低下するためメモリー用の
薄型半導体装置を成形することが出来なくなる。
The curing accelerator (C) used in the present invention may be any one as long as it accelerates the reaction between the epoxy resin and the phenolic hydroxyl group, and those generally used for sealing materials can be widely used. For example, 1,8-diazabicyclo (5,4,0) undecene-7, triphenylphosphine, tetraphenylphosphonium tetraphenylborate, 2-methylimidazole and the like may be used alone or in combination. The inorganic filler (D) used in the present invention includes fused silica, spherical silica, crystalline silica, secondary agglomerated silica,
Examples thereof include porous silica, secondary agglomerated silica, silica obtained by pulverizing porous silica, and alumina, and fused silica is particularly preferable. 8 inorganic fillers for all epoxy resin compositions
It is essential to be 5 to 93% by weight. If it is less than 85% by weight, the strength of the cured product of the epoxy resin composition is insufficient,
Further, since the proportion of the resin component is increased, the water absorption rate is increased and the solder crack resistance is deteriorated. If it exceeds 93% by weight, the viscosity at the time of melting becomes high and the fluidity is lowered, so that it becomes impossible to mold a thin semiconductor device for memory.

【0018】本発明のエポキシ樹脂組成物は、(A)〜
(D)を必須成分とするが、これ以外に必要に応じてシ
ランカップリング剤、赤燐系難燃剤、ブロム化エポキシ
樹脂、酸化アンチモン等の難燃剤、カーボンブラック、
ベンガラ等の着色剤及びシリコーンオイル、ゴム等の低
応力添加剤、離型剤等の種々の添加剤を適宜配合しても
差し支えない。本発明のエポキシ樹脂組成物を製造する
には、(A)〜(D)成分、その他の添加剤をミキサー
等により十分に均一混合した後、更に熱ロール又はニー
ダー等で溶融混合し、冷却後粉砕して得ることができ
る。本発明のエポキシ樹脂組成物を用いて、半導体等の
電子部品を封止し、半導体装置を製造するにはトランス
ファーモールド、コンプレッションモールド、インジェ
クションモールド等の従来からの成形方法で硬化成形す
れば良い。
The epoxy resin composition of the present invention comprises (A)-
(D) is an essential component, but if necessary, a silane coupling agent, a red phosphorus flame retardant, a brominated epoxy resin, a flame retardant such as antimony oxide, carbon black,
Coloring agents such as red iron oxide, low-stress additives such as silicone oil and rubber, and various additives such as release agents may be appropriately blended. In order to produce the epoxy resin composition of the present invention, components (A) to (D) and other additives are sufficiently homogeneously mixed with a mixer or the like, and then melt-mixed with a hot roll or a kneader, and after cooling. It can be obtained by crushing. The epoxy resin composition of the present invention may be used to seal electronic components such as semiconductors and to manufacture semiconductor devices by curing and molding by conventional molding methods such as transfer molding, compression molding, and injection molding.

【0019】実施例1〜5以下に本発明を実施例で示
す。実施例で使用したエポキシ樹脂組成物の各成分は下
記のとおりである。配合割合を表1に示した。各成分の
配合割合は重量部とする。 ・エポキシ樹脂A:式(3)で示されるビフェニル型エ
ポキシ樹脂(エポキシ当量190、融点105℃) ・エポキシ樹脂B:オルソクレゾールノボラック型エポ
キシ樹脂(軟化点55℃、エポキシ当量196) ・エポキシ樹脂C:式(4)で示されるエポキシ樹脂
(軟化点53℃、エポキシ当量244) ・フェノール樹脂A:式(2)で示されるフェノールア
ラルキル樹脂(軟化点75℃、水酸基当量174) ・フェノール樹脂B:フェノールとオルソクレゾールと
をモル比(5:5)で酸触媒存在下アルデヒドを介して
縮合した変性ノボラック型フェノール樹脂(水酸基当量
113、重量平均分子量910) ・フェノール樹脂C:フェノールとオルソクレゾールと
をモル比(7.5:2.5)で酸触媒存在下アルデヒド
を介して縮合した変性ノボラック型フェノール樹脂(水
酸基当量108、重量平均分子量900) ・溶融シリカ :平均粒径20um ・赤燐系難燃剤:赤燐の表面を水酸化アルミニウムで被
覆した後、更にその表面をフェノール樹脂で被覆したも
ので、赤燐含有量94重量%、平均粒径4.5um、最
大粒径11um ・1,8−ジアザビシクロ(5、4、0)ウンデセン−
7(以下、DBUという) ・シランカップリング剤 ・カルナバワックス ・カーボンブラック 上記の各成分を表1の処方に従って配合し、常温でミキ
サーを用いて混合し、50〜130℃で2軸ロールによ
り混練し、冷却後粉砕し成形材料とし、これをタブレッ
ト化して半導体封止用エポキシ樹脂組成物を得た。この
エポキシ樹脂組成物を低圧トランスファー成形機(成形
条件:175℃、6.9MPa、120秒)を用いて成
形し、得られた成形品を175℃、8時間で後硬化し評
価した。結果を表1に示す。
Examples 1 to 5 The present invention will be shown below by examples. The components of the epoxy resin composition used in the examples are as follows. The blending ratio is shown in Table 1. The mixing ratio of each component is parts by weight. -Epoxy resin A: Biphenyl type epoxy resin represented by formula (3) (epoxy equivalent 190, melting point 105 ° C) -Epoxy resin B: Orthocresol novolac type epoxy resin (softening point 55 ° C, epoxy equivalent 196) -Epoxy resin C : Epoxy resin represented by the formula (4) (softening point 53 ° C, epoxy equivalent 244) -Phenol resin A: Phenol aralkyl resin represented by the formula (2) (softening point 75 ° C, hydroxyl equivalent 174) -Phenol resin B: Modified novolac type phenol resin obtained by condensing phenol and orthocresol at a molar ratio (5: 5) through an aldehyde in the presence of an acid catalyst (hydroxyl group equivalent 113, weight average molecular weight 910). Phenol resin C: phenol and orthocresol Condensation via aldehyde in the presence of acid catalyst in a molar ratio (7.5: 2.5) Modified novolac type phenol resin (hydroxyl group equivalent weight 108, weight average molecular weight 900) -Fused silica: Average particle size 20um-Red phosphorus flame retardant: Red phosphorus surface is coated with aluminum hydroxide, and then the surface is phenol resin The content of red phosphorus is 94% by weight, the average particle size is 4.5 μm, and the maximum particle size is 11 μm. 1,8-diazabicyclo (5,4,0) undecene-
7 (hereinafter referred to as DBU) -Silane coupling agent-Carnauba wax-Carbon black The above components are blended according to the prescription of Table 1, mixed with a mixer at room temperature, and kneaded with a twin roll at 50 to 130 ° C. Then, it was cooled and pulverized to obtain a molding material, which was tableted to obtain an epoxy resin composition for semiconductor encapsulation. This epoxy resin composition was molded using a low-pressure transfer molding machine (molding condition: 175 ° C., 6.9 MPa, 120 seconds), and the obtained molded product was post-cured at 175 ° C. for 8 hours and evaluated. The results are shown in Table 1.

【0020】[0020]

【化5】 [Chemical 5]

【0021】[0021]

【化6】 [Chemical 6]

【0022】《評価方法》 スパイラルフロー:EMMI−1−66に準じたスパイ
ラルフロー測定用の金型を用いて、金型温度175℃、
注入圧力6.9MPa、硬化時間2分で測定した。スパ
イラルフローは流動性のパラメーターであり、数値が大
きい方が流動性良好である。単位:cm。× 耐半田クラック性、剥離率:使用したパッケージは50
pTSOP(LOC構造、パッケージサイズ:21×1
0×1.0mm、42アロイリードフレーム、チップサ
イズ:8.8×18.8×0.35mm)、44pTS
OP通常構造(非LOC構造、パッケージサイズ:18
×10×1.0mm、42アロイリードフレーム、アイ
ランドサイズ:5.0X8.5mm、チップサイズ:
4.5X8.0X0.35mm)、44pTSOPウイ
ンドウフレーム構造(非LOC構造、パッケージサイ
ズ:18×10×1.0mm、42アロイリードフレー
ム、アイランドサイズ/ウインドウサイズ:5.0×
8.5mm/2.0×5.0mm、チップサイズ:4.
5×8.0×0.35mm)の計3種。表面にポリイミ
ド樹脂皮膜を有する半導体素子をLOC、非LOC2
種、計3種のTSOP型リードフレーム(42アロイ
材、インナーリード先端を銀メッキで被覆)に載置した
後、前記樹脂組成物を用いて175℃、9.8MPa、
1分で硬化し成形品を得、175℃、8時間の後硬化を
行ってサンプルとした。各材料毎に5個のパッケージを
得た。このパッケージを85℃、60%の恒温恒湿槽内
に168時間投入した後に260℃のIRリフロー処理
を行った。顕微鏡で処理後のパッケージを観察し、外部
クラックの発生率[(クラック発生パッケージ数)/
(全パッケージ数)×100]を求めた。単位は%。処
理後のパッケージ内部の半導体素子表面のポリイミド樹
脂皮膜、リードフレームパッド裏面の剥離を超音波探傷
機で観察し、チップと樹脂組成物との剥離面積の割合を
測定した。 剥離率((剥離面積)/(チップ面積)×100)を%
で表示した。
<Evaluation method> Spiral flow: A mold for spiral flow measurement conforming to EMMI-1-66 was used and the mold temperature was 175 ° C.
The injection pressure was 6.9 MPa and the curing time was 2 minutes. The spiral flow is a fluidity parameter, and the larger the value, the better the fluidity. Unit: cm. × Solder crack resistance, peeling rate: The package used is 50
pTSOP (LOC structure, package size: 21 x 1
0x1.0mm, 42 alloy lead frame, chip size: 8.8x18.8x0.35mm), 44pTS
OP normal structure (non-LOC structure, package size: 18
× 10 × 1.0 mm, 42 alloy lead frame, island size: 5.0 × 8.5 mm, chip size:
4.5 × 8.0 × 0.35 mm), 44p TSOP window frame structure (non-LOC structure, package size: 18 × 10 × 1.0 mm, 42 alloy lead frame, island size / window size: 5.0 ×)
8.5 mm / 2.0 × 5.0 mm, chip size: 4.
5 x 8.0 x 0.35 mm) total 3 types. A semiconductor element having a polyimide resin film on the surface is LOC, non-LOC2
, A total of three types of TSOP type lead frames (42 alloy material, inner lead tips coated with silver plating), and then 175 ° C., 9.8 MPa, using the resin composition.
It was cured in 1 minute to obtain a molded product, which was post-cured at 175 ° C. for 8 hours to obtain a sample. Five packages were obtained for each material. This package was placed in a constant temperature and humidity chamber at 85 ° C. and 60% for 168 hours and then subjected to IR reflow treatment at 260 ° C. The package after processing is observed with a microscope and the rate of occurrence of external cracks [(number of cracked packages) /
(Total number of packages) × 100] was determined. Units%. The polyimide resin film on the surface of the semiconductor element inside the package after the treatment and the peeling on the back surface of the lead frame pad were observed with an ultrasonic flaw detector, and the ratio of the peeled area between the chip and the resin composition was measured. Peeling rate ((peeling area) / (chip area) x 100)%
Displayed in.

【0023】比較例1〜8 表2の処方に従って配合し、実施例と同様にしてエポキ
シ樹脂組成物を得、実施例と同様にして評価した。比較
例で使用したエポキシ樹脂組成物の各成分は下記のとお
りである。 ・エポキシ樹脂D:オルソクレゾールノボラック型エポ
キシ樹脂(軟化点65℃、エポキシ当量200) ・エポキシ樹脂E:式(4)で示されるエポキシ樹脂
(軟化点71℃、エポキシ当量248)
Comparative Examples 1 to 8 Compounds were blended according to the formulation shown in Table 2, epoxy resin compositions were obtained in the same manner as in Examples, and evaluated in the same manner as in Examples. Each component of the epoxy resin composition used in the comparative example is as follows. Epoxy resin D: Orthocresol novolac type epoxy resin (softening point 65 ° C., epoxy equivalent 200) Epoxy resin E: epoxy resin represented by the formula (4) (softening point 71 ° C., epoxy equivalent 248)

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【表2】 [Table 2]

【0026】[0026]

【発明の効果】 本発明に従うと半導体素子表面のポリ
イミド樹脂、金属リードフレームとの密着性に優れた半
導体封止用エポキシ樹脂組成物及びメモリー用のLOC
構造、非LOC構造、非LOCウインドウパッド構造と
いった各種薄型半導体装置は耐半田クラック性に優れて
いる。
According to the present invention, a polyimide resin on the surface of a semiconductor device, an epoxy resin composition for semiconductor encapsulation excellent in adhesion to a metal lead frame, and a LOC for a memory.
Various thin semiconductor devices such as a structure, a non-LOC structure, and a non-LOC window pad structure have excellent solder crack resistance.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01L 23/31 Fターム(参考) 4J002 CC054 CC074 CD00X CD04W CE003 DE147 DJ007 DJ017 EU076 EU116 EW016 EW176 EY016 FD017 FD156 GJ02 GQ05 4J036 AA01 AA05 AD07 DA02 DA05 DC41 DD07 FA02 FA05 FB06 FB08 GA04 JA07 4M109 AA01 BA01 CA21 EA06 EB03 EB04 EB12 EC05 EC09 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) H01L 23/31 F term (reference) 4J002 CC054 CC074 CD00X CD04W CE003 DE147 DJ007 DJ017 EU076 EU116 EW016 EW176 EY016 FD017 FD156 GJ02 GQ05 4J036 AA01 AA05 AD07 DA02 DA05 DC41 DD07 FA02 FA05 FB06 FB08 GA04 JA07 4M109 AA01 BA01 CA21 EA06 EB03 EB04 EB12 EC05 EC09

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】(A)一般式(1)で示されるエポキシ樹
脂を40〜80重量%、軟化点が60℃以下である非結
晶性エポキシ樹脂を20〜60重量%含むエポキシ樹
脂、(B)一般式(2)で示されるフェノール樹脂を6
0〜90重量%、フェノールとクレゾール類とを酸触媒
存在下アルデヒドを介して縮合した変性ノボラック型フ
ェノール樹脂を10〜40重量%含むフェノール樹脂、
(C)硬化促進剤及び(D)無機充填材を必須成分と
し、当量比(全エポキシ基数/全フェノール性水酸基)
=1.05〜1.50で、かつ無機充填材が85〜93
重量%であることを特徴とする半導体封止用エポキシ樹
脂組成物。 【化1】 (R1は、水素原子又は炭素数1〜4のアルキル基を示
し、互いに同じであっても異なっていてもよい。) 【化2】 (nは平均値で、1〜6の整数)
1. (A) An epoxy resin containing 40 to 80% by weight of the epoxy resin represented by the general formula (1) and 20 to 60% by weight of an amorphous epoxy resin having a softening point of 60 ° C. or lower, (B) ) The phenolic resin represented by the general formula (2) is added to 6
Phenolic resin containing 0 to 90% by weight, 10 to 40% by weight of a modified novolac type phenolic resin obtained by condensing phenol and cresols via aldehyde in the presence of an acid catalyst,
Equivalent ratio (total number of epoxy groups / total phenolic hydroxyl groups) with (C) curing accelerator and (D) inorganic filler as essential components
= 1.05 to 1.50 and the inorganic filler is 85 to 93
An epoxy resin composition for semiconductor encapsulation, characterized in that the content is wt%. [Chemical 1] (R1 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms and may be the same or different from each other.) (N is an average value and is an integer of 1 to 6)
【請求項2】 請求項1記載のエポキシ樹脂組成物を用
いて半導体素子を封止してなることを特徴とする半導体
装置。
2. A semiconductor device obtained by encapsulating a semiconductor element using the epoxy resin composition according to claim 1.
JP2001260711A 2001-08-30 2001-08-30 Epoxy resin composition and semiconductor device Pending JP2003064162A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001260711A JP2003064162A (en) 2001-08-30 2001-08-30 Epoxy resin composition and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001260711A JP2003064162A (en) 2001-08-30 2001-08-30 Epoxy resin composition and semiconductor device

Publications (1)

Publication Number Publication Date
JP2003064162A true JP2003064162A (en) 2003-03-05

Family

ID=19087871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001260711A Pending JP2003064162A (en) 2001-08-30 2001-08-30 Epoxy resin composition and semiconductor device

Country Status (1)

Country Link
JP (1) JP2003064162A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113004496A (en) * 2015-09-03 2021-06-22 三菱化学株式会社 Epoxy resin, epoxy resin composition, cured product, and electric/electronic component

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11147938A (en) * 1997-11-19 1999-06-02 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2000273280A (en) * 1999-03-26 2000-10-03 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2001064362A (en) * 1999-09-01 2001-03-13 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2001122943A (en) * 1999-10-28 2001-05-08 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2001226461A (en) * 2000-02-17 2001-08-21 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11147938A (en) * 1997-11-19 1999-06-02 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2000273280A (en) * 1999-03-26 2000-10-03 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2001064362A (en) * 1999-09-01 2001-03-13 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2001122943A (en) * 1999-10-28 2001-05-08 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2001226461A (en) * 2000-02-17 2001-08-21 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113004496A (en) * 2015-09-03 2021-06-22 三菱化学株式会社 Epoxy resin, epoxy resin composition, cured product, and electric/electronic component

Similar Documents

Publication Publication Date Title
JP4692885B2 (en) Epoxy resin composition and semiconductor device
JP3334998B2 (en) Epoxy resin composition
JP5034500B2 (en) Epoxy resin composition and semiconductor device
JP4250987B2 (en) Epoxy resin composition and semiconductor device
JP4306329B2 (en) Epoxy resin composition and semiconductor device
JP2002012742A (en) Epoxy resin composition and semiconductor device
JP5098125B2 (en) Epoxy resin composition and semiconductor device
JP2004018721A (en) Epoxy resin composition and semiconductor device
JP2003064162A (en) Epoxy resin composition and semiconductor device
JP3274265B2 (en) Epoxy resin composition
JP2000273277A (en) Epoxy resin composition and semiconductor device
JPH07118366A (en) Epoxy resin composition
JP2002241581A (en) Epoxy resin composition and semiconductor device
JP2006104393A (en) Epoxy resin composition and semiconductor device
JP5142427B2 (en) Epoxy resin composition and semiconductor device
JP4635360B2 (en) Semiconductor device
JP2005281584A (en) Epoxy resin composition and semiconductor device
JP2862777B2 (en) Epoxy resin composition
JP2002241585A (en) Epoxy resin composition and semiconductor device
JPH10147628A (en) Epoxy resin composition for sealing semiconductor
JP3478380B2 (en) Epoxy resin composition and semiconductor device
JP2002317102A (en) Epoxy resin composition and semiconductor device
JP2002179882A (en) Epoxy resin composition and semiconductor device
JP2002293886A (en) Epoxy resin composition and semiconductor device
JP2004067774A (en) Epoxy resin composition and semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110329