JP2003048771A - Low thermal expansion ceramics and method of manufacturing the same - Google Patents

Low thermal expansion ceramics and method of manufacturing the same

Info

Publication number
JP2003048771A
JP2003048771A JP2001234669A JP2001234669A JP2003048771A JP 2003048771 A JP2003048771 A JP 2003048771A JP 2001234669 A JP2001234669 A JP 2001234669A JP 2001234669 A JP2001234669 A JP 2001234669A JP 2003048771 A JP2003048771 A JP 2003048771A
Authority
JP
Japan
Prior art keywords
ceramics
thermal expansion
low thermal
sic
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001234669A
Other languages
Japanese (ja)
Other versions
JP4907791B2 (en
Inventor
Mamoru Ishii
守 石井
Masahito Iguchi
真仁 井口
Masako Kataoka
昌子 片岡
Masaya Kikuchi
真哉 菊地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2001234669A priority Critical patent/JP4907791B2/en
Publication of JP2003048771A publication Critical patent/JP2003048771A/en
Application granted granted Critical
Publication of JP4907791B2 publication Critical patent/JP4907791B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a technique relating to low thermal expansion ceramics component making the density >=98% in relative humidity by atmosphere sintering alone and a method of efficiently manufacturing the same. SOLUTION: The ceramics having low thermal expansion and high rigidity is manufactured by sintering a molding consisting of 50 to 95 vol.% encryptite and 5 to 50 vol.% >=1 kind of compounds selected from α-SiC, β-SiC, Si3 N4 , TiB2 , ZrB2 , WC, TiC, and ZrN at 1,100 to 1,550 deg.C in a vacuum or inert gaseous atmosphere while controlling respective manufacturing process steps in such a manner that the content of Fe2 O3 in the ceramics attain <=0.05 wt.%.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、低熱膨張セラミッ
クスおよびその製造方法に関するもので、さらに詳しく
は、低熱膨張でかつ高剛性であり半導体製造工程等に好
適に用いられる低熱膨張セラミックスおよびその製造方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to low thermal expansion ceramics and a method for producing the same, and more specifically, low thermal expansion ceramics having low thermal expansion and high rigidity, which are suitable for use in semiconductor manufacturing processes and the like, and a method for producing the same. It is about.

【0002】[0002]

【従来の技術】近年、半導体製造装置、精密機器、計測
機器等の部品として、セラミックスが広く使用されてき
ている。例えば、半導体ウエハを指示するサセプタ、真
空チャック、絶縁リング等には、従来アルミナ、窒化珪
素、炭化珪素などのセラミックスが用いられていた。最
近ではLSIなどの高度集積化の要求により、製造現場
での温度変化の影響を受けにくいユークリプタイトやコ
ージエライトなどの熱膨張の小さいセラミックスが用い
られるようになってきている。
2. Description of the Related Art In recent years, ceramics have been widely used as parts for semiconductor manufacturing equipment, precision instruments, measuring instruments and the like. For example, ceramics such as alumina, silicon nitride, and silicon carbide have been conventionally used for a susceptor, a vacuum chuck, an insulating ring, and the like for indicating a semiconductor wafer. Recently, due to the demand for high integration of LSIs and the like, ceramics such as eucryptite and cordierite, which are not easily affected by temperature changes at the manufacturing site, have come to be used.

【0003】しかし、これらのセラミックスは、熱膨張
係数は小さいものの、剛性は十分でなく外的な応力によ
り歪むため、例えば露光装置のテーブル部材として使用
する場合、振動等によるのテーブルの変形により精密な
位置決めができないという問題点があった。したがっ
て、本出願人は、熱膨張係数が負の値を有するユークリ
プタイト50〜95体積%と熱膨張係数が正であり高剛
性を有するα−SiC、β−SiC、Si34、TiB
2、ZrB2、WC、TiC、ZrNから選ばれる1種以
上の化合物5〜50体積%とを複合させることによって
低熱膨張でかつ高剛性なセラミックスが得られることに
着目して既に出願を行っている。
However, although these ceramics have a small coefficient of thermal expansion, they do not have sufficient rigidity and are distorted by external stress. Therefore, when they are used as a table member of an exposure apparatus, they are precisely deformed by the table due to vibration or the like. There was a problem that it could not be positioned correctly. Therefore, the applicant of the present invention has found that eucryptite having a negative thermal expansion coefficient of 50 to 95% by volume and positive thermal expansion coefficient of α-SiC, β-SiC, Si 3 N 4 , and TiB having high rigidity.
The application has already been filed, paying attention to the fact that by combining 5 to 50% by volume of one or more compounds selected from 2 , ZrB 2 , WC, TiC, and ZrN, ceramics with low thermal expansion and high rigidity can be obtained. There is.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、本出願
人が提案した低熱膨張セラミックスは、相対密度を98
%以上に高密度化することが難しく、高密度化するため
には相対密度90%以上となるように常圧焼結した後
に、100気圧以上で高圧焼結する必要があった。これ
は、本出願人が提案した低熱膨張セラミックスの緻密化
温度と溶融温度が近接しているため、常圧焼結のみによ
り相対密度を98%以上に高密度化しようとすると緻密
化が完了する前に一部が溶融してしまうという課題があ
ったためである。したがって、焼結工程と緻密化工程の
2工程が必要となり、量産効率が悪いという問題点があ
った。
However, the low thermal expansion ceramics proposed by the present applicant has a relative density of 98.
%, It was difficult to densify it to a high density, and in order to densify it, it was necessary to sinter under normal pressure so that the relative density would be 90% or higher, and then under high pressure at 100 atm or higher. This is because the densification temperature and the melting temperature of the low thermal expansion ceramics proposed by the present applicant are close to each other, so that the densification is completed when the relative density is increased to 98% or more only by the atmospheric pressure sintering. This is because there was a problem that some of them melted before. Therefore, two steps, a sintering step and a densification step, are required, which causes a problem of poor mass production efficiency.

【0005】[0005]

【課題を解決するための手段】本出願人は前記した問題
点を解決するために鋭意検討した結果、セラミックス中
に含まれるFe23の含有量が0.05重量%以下とな
るように各製造工程を制御することにより常圧焼結のみ
でも相対密度98%以上と高密度化できることに着目し
て本発明を完成したものである。すなわち、本発明の目
的は、常圧焼結のみでも相対密度98%以上と高密度化
できる低熱膨張セラミックスおよびその製造方法に係わ
る技術を提供することを目的としている。
Means for Solving the Problems As a result of intensive studies for solving the above-mentioned problems, the present applicant has found that the content of Fe 2 O 3 contained in ceramics should be 0.05% by weight or less. The present invention has been completed by focusing on the fact that the relative density can be increased to 98% or more only by pressureless sintering by controlling each manufacturing process. That is, an object of the present invention is to provide a technique related to a low thermal expansion ceramics which can be densified to a relative density of 98% or more even by pressureless sintering alone, and a technique relating to a manufacturing method thereof.

【0006】上記した本発明の目的は、ユークリプタイ
ト50〜95体積%、並びにα−SiC、β−SiC、
Si34、TiB2、ZrB2、WC、TiC、ZrNか
ら選ばれる1種以上の化合物5〜50体積%を含有する
低熱膨張セラミックスであって、前記セラミックス中に
含まれるFe23の含有量が0.05重量%以下である
ことを特徴とする低熱膨セラミックスによって達成され
る。また、セラミックスの相対密度が98%以上、室温
でのヤング率が120GPa以上、10〜40℃におけ
る熱膨張係数が−1〜1×10-6/℃以下であることを
特徴とする前記の低熱膨セラミックスによって達成され
る。さらに本発明の目的は、セラミックス中のFe23
の含有量が0.05重量%以下となるように各製造工程
を制御しながら、ユークリプタイト50〜95体積%、
並びにα−SiC、β−SiC、Si34、TiB2
ZrB2、WC、TiC、ZrNから選ばれる1種以上
の化合物5〜50体積%からなる成形体を真空または不
活性ガス雰囲気中で1100〜1550℃の温度で焼結
させることを特徴とする低熱膨張セラミックスの製造方
法によって達成される。
The above-mentioned objects of the present invention are 50 to 95% by volume of eucryptite, α-SiC, β-SiC,
Si 3 N 4, TiB 2, ZrB 2, WC, TiC, a low thermal expansion ceramics containing 5-50 vol% of one or more compounds selected from ZrN, of Fe 2 O 3 contained in the ceramics This is achieved by the low thermal expansion ceramics characterized in that the content is 0.05% by weight or less. In addition, the relative density of ceramics is 98% or more, the Young's modulus at room temperature is 120 GPa or more, and the coefficient of thermal expansion at 10 to 40 ° C. is −1 to 1 × 10 −6 / ° C. or less. Achieved by expanded ceramics. A further object of the present invention is to provide Fe 2 O 3 in ceramics.
While controlling each manufacturing process so that the content of eucryptite is 0.05% by weight or less, 50 to 95% by volume of eucryptite,
And α-SiC, β-SiC, Si 3 N 4 , TiB 2 ,
Low heat, characterized by sintering a molded body composed of 5 to 50% by volume of one or more compounds selected from ZrB 2 , WC, TiC and ZrN at a temperature of 1100 to 1550 ° C. in a vacuum or an inert gas atmosphere. This is achieved by the method for producing expanded ceramics.

【0007】[0007]

【発明の実施の形態】本発明のセラミックスでは、ユー
クリプタイト50〜95体積%、並びにα−SiC、β
−SiC、Si34、TiB2、ZrB2、WC、Ti
C、ZrNから選ばれる1種以上の化合物5〜50体積
%を含有する低熱膨張である。その理由は、ユークリプ
タイトが50体積%未満では熱膨張率が高くなり、95
体積%を越えるとヤング率が低くなり(剛性が小さくな
り)好ましくないからである。
BEST MODE FOR CARRYING OUT THE INVENTION In the ceramics of the present invention, 50-95% by volume of eucryptite, α-SiC, β
-SiC, Si 3 N 4, TiB 2, ZrB 2, WC, Ti
Low thermal expansion containing 5 to 50% by volume of one or more compounds selected from C and ZrN. The reason is that when eucryptite is less than 50% by volume, the coefficient of thermal expansion becomes high, and
This is because the Young's modulus becomes low (rigidity becomes low) when it exceeds the volume%, which is not preferable.

【0008】また本発明では、セラミックスの相対密度
が98%以上、室温でのヤング率が120GPa以上、
10〜40℃における熱膨張係数が−1〜1×10-6
℃以下であることを特徴とする低熱膨セラミックスを提
案している。その理由は、密度が緻密化していないと強
度が低下したり、耐食性が劣るからであり、ヤング率が
低いと剛性が小さいため歪みやすくなるからであり、ま
た、熱膨張係数が低くないと製造現場の温度変化を受け
て高集積化した半導体装置の製造には好ましくなくなる
からである。
Further, in the present invention, the relative density of the ceramics is 98% or more, the Young's modulus at room temperature is 120 GPa or more,
Thermal expansion coefficient at 10 to 40 ° C is -1 to 1 x 10 -6 /
We have proposed a low thermal expansion ceramics, which is characterized by being below ℃. The reason is that if the density is not densified, the strength is reduced, or the corrosion resistance is inferior, and if the Young's modulus is low, the rigidity is low and the strain is likely to occur. This is because it becomes unfavorable for manufacturing highly integrated semiconductor devices due to temperature changes in the field.

【0009】また、本発明ではセラミックス中のFe2
3の含有量が0.05重量%以下となるように各製造
工程を制御している。これは、Fe23が本発明のセラ
ミックスの融点を他の不純物にも増して低下させ緻密化
温度と溶融温度を近接させる作用があり、したがって、
緻密化を効率的に行うためにはFe23の含有量を制御
することが重要となるからである。ここで、セラミック
ス中のFe23の含有量を0.05重量%以下とした理
由は、これにより融点温度をFe23の含有量制御前の
1350℃から1390℃まで高めることができ、13
70℃の常圧焼結のみでも相対密度98%以上の緻密な
セラミックスを得ることができるからである。
Further, in the present invention, Fe 2 in the ceramic is
Each manufacturing process is controlled so that the content of O 3 is 0.05% by weight or less. This is because Fe 2 O 3 has a function of lowering the melting point of the ceramics of the present invention more than other impurities to bring the densification temperature and the melting temperature close to each other, and therefore,
This is because it is important to control the content of Fe 2 O 3 for efficient densification. Here, the reason why the content of Fe 2 O 3 in the ceramics is 0.05% by weight or less is that the melting point temperature can be increased from 1350 ° C. before controlling the content of Fe 2 O 3 to 1390 ° C. , 13
This is because a dense ceramic having a relative density of 98% or more can be obtained only by normal pressure sintering at 70 ° C.

【0010】次に、セラミックス中のFe23の含有量
が0.05重量%以下となるように制御するに際して
は、原料粉末調整工程、成形工程、焼成工程、加工工程
の各製造工程において、Fe23の含有量が限定した値
を越えないように抑制することが重要であり、このう
ち、原料粉末調整工程の制御には他の工程より特別の注
意を払う必要がある。すなわち、高純度の原料粉末を準
備するのと同時に原料粉末の混練時にFe23の混入を
避けるように特別な配慮をすることが好ましい。
Next, when controlling the content of Fe 2 O 3 in the ceramics to be not more than 0.05% by weight, the raw material powder adjusting step, the molding step, the firing step, and the processing step should be performed. , Fe 2 O 3 It is important to suppress the content of Fe 2 O 3 so as not to exceed the limited value. Among these, the control of the raw material powder adjusting step requires special attention than the other steps. That is, it is preferable to take special consideration so as to avoid mixing Fe 2 O 3 when kneading the raw material powders at the same time as preparing the high-purity raw material powders.

【0011】さらに、本出願人が提案したセラミックス
中のFe23の含有量を0.05重量%以下とすると、
セラミックスの比透磁率を1.000以下とすることが
可能となり、磁性を帯びた材料を使用できない電子線描
画装置用の材料としては好適に使用できるようになると
いう効果もある。なぜなら、電子線描画装置のマスクホ
ルダー等に使用する場合、比透磁率が1.000を越え
て大きい材料を使用すると、電子線が磁性により影響を
受けて描画精度を低下させて好ましくないという課題が
あったからである。
Further, when the content of Fe 2 O 3 in the ceramics proposed by the applicant is set to 0.05% by weight or less,
It is also possible to make the relative magnetic permeability of the ceramics 1.000 or less, and it is possible to suitably use the material as a material for an electron beam drawing apparatus in which a magnetic material cannot be used. This is because when used in a mask holder or the like of an electron beam drawing apparatus, if a material having a relative magnetic permeability exceeding 1.000 is used, the electron beam is affected by magnetism and the drawing accuracy is lowered, which is not preferable. Because there was.

【0012】以下に、本発明を実施例と比較例により詳
細に説明するが、本発明は実施例に限定されるものでは
ない。 (1)複合セラミックスの製造方法 平均粒径4μm以下の市販の高純度のユークリプタイト
粉末、および、表1に示したα−SiC、β−SiC、
Si34、TiB2、ZrB2、WC、TiC、ZrN粉
末を出発原料として種々の割合に配合し、配合原料を作
成した。この配合原料粉末100重量部に有機系結合剤
2重量部を加えて、24時間混合粉砕した。得られた粉
末を50×50×10mmの大きさに10MPaで予備
成形した後、100MPaで冷間静水圧プレスで成形を
行った。この成形体を、窒素雰囲気において500℃で
脱脂した後、アルゴン雰囲気中で1370℃で焼成し、
複合セラミックスを得た。比較例として高純度でない市
販のユークリプタイト粉末を用いて実施例と同様の条件
で得られた成形体についてもアルゴン雰囲気中で134
0℃と1370℃で焼結を行った。
The present invention will be described in detail below with reference to examples and comparative examples, but the present invention is not limited to the examples. (1) Method for producing composite ceramics Commercially available high-purity eucryptite powder having an average particle size of 4 μm or less, and α-SiC and β-SiC shown in Table 1.
Si 3 N 4, TiB 2, ZrB 2, WC, TiC, and formulated into various proportions ZrN powder as a starting material to prepare a mixed material. To 100 parts by weight of this blended raw material powder, 2 parts by weight of an organic binder was added and mixed and pulverized for 24 hours. The obtained powder was preformed into a size of 50 × 50 × 10 mm at 10 MPa, and then subjected to cold isostatic pressing at 100 MPa. This molded body was degreased at 500 ° C. in a nitrogen atmosphere and then fired at 1370 ° C. in an argon atmosphere,
A composite ceramic was obtained. As a comparative example, a molded body obtained by using a commercially available eucryptite powder having a high purity and under the same conditions as in the example was used in an argon atmosphere.
Sintering was performed at 0 ° C and 1370 ° C.

【0013】[0013]

【表1】 [Table 1]

【0014】(2)評価 次に、得られた焼結体から試験片を切り出し、相対密度
はアルキメデス法により、熱膨張係数はレーザ熱膨張計
により、ヤング率はJISR1602に規定された方法
により、比透磁率は磁気天秤法により、体積抵抗率はJ
IS C2141に規定された方法により測定した。ま
た、各焼結体に含まれるFe23の含有量についても公
知の分析方法により測定した。得られた評価結果を表2
にまとめて示した。(ここで、No.1〜10は本発明
の実施例で比1と比2は比較例である。)
(2) Evaluation Next, a test piece was cut out from the obtained sintered body, the relative density was measured by the Archimedes method, the thermal expansion coefficient was measured by a laser thermal expansion meter, and the Young's modulus was measured by the method specified in JISR1602. The relative permeability is measured by the magnetic balance method, and the volume resistivity is J
It was measured by the method specified in IS C2141. The content of Fe 2 O 3 contained in each sintered body was also measured by a known analysis method. Table 2 shows the obtained evaluation results.
Are summarized in. (Here, Nos. 1 to 10 are examples of the present invention, and ratios 1 and 2 are comparative examples.)

【0015】[0015]

【表2】 [Table 2]

【0016】表2の結果から明らかなように、本発明に
よるものは相対密度が98%以上と高密度であり、しか
も、室温でのヤング率が120GPa以上、10〜40
℃における熱膨張係数が−1〜1×10-6/℃以下とな
った。さらには、比透磁率を1.000以下とすること
が可能となり、磁性を帯びた材料を使用できない電子線
描画装置用の材料として好適に使用できることを確認し
た。一方、比較例2では溶融し、緻密な焼結体を得るこ
とができなかった。また、焼成温度を下げて焼結した比
較例1では、密度が低く、しかも比透磁率は1.000
を越えた値となった。
As is clear from the results shown in Table 2, according to the present invention, the relative density is as high as 98% or more, and the Young's modulus at room temperature is 120 GPa or more, 10-40.
The coefficient of thermal expansion at ℃ became -1 to 1 × 10 -6 / ℃ or less. Furthermore, it has been confirmed that the relative magnetic permeability can be set to 1.000 or less, and that the material can be suitably used as a material for an electron beam drawing apparatus in which a magnetic material cannot be used. On the other hand, in Comparative Example 2, it was melted and a dense sintered body could not be obtained. In Comparative Example 1 in which the firing temperature was lowered, the density was low and the relative magnetic permeability was 1.000.
The value exceeded.

【0017】[0017]

【発明の効果】以上説明したように、本発明によれば、
高剛性を有する低熱膨張セラミックスを常圧焼結のみで
も相対密度98%以上に高密度化できるという効果があ
る。
As described above, according to the present invention,
There is an effect that the relative density of the low thermal expansion ceramics having high rigidity can be increased to 98% or more only by the normal pressure sintering.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 菊地 真哉 千葉県佐倉市大作2−4−2 太平洋セメ ント株式会社中央研究所内 Fターム(参考) 4G030 AA02 AA45 AA47 AA49 AA52 AA54 BA24 GA24 GA27    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Shinya Kikuchi             2-4-2 Daisaku Sakura City, Chiba Prefecture Pacific Semé             Central Research Institute F-term (reference) 4G030 AA02 AA45 AA47 AA49 AA52                       AA54 BA24 GA24 GA27

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ユークリプタイト50〜95体積%、並
びにα−SiC、β−SiC、Si34、TiB2、Z
rB2、WC、TiC、ZrNから選ばれる1種以上の
化合物5〜50体積%を含有する低熱膨張セラミックス
であって、前記セラミックス中に含まれるFe23の含
有量が0.05重量%以下であることを特徴とする低熱
膨セラミックス。
1. Eucryptite 50 to 95% by volume, and α-SiC, β-SiC, Si 3 N 4 , TiB 2 , Z.
rB 2, WC, TiC, a low thermal expansion ceramics containing 5-50 vol% of one or more compounds selected from ZrN, the content of Fe 2 O 3 contained in said ceramic 0.05 wt% A low thermal expansion ceramics characterized by being:
【請求項2】 セラミックスの相対密度が98%以上、
室温でのヤング率が120GPa以上、10〜40℃に
おける熱膨張係数が−1〜1×10-6/℃以下であるこ
とを特徴とする請求項1記載の低熱膨セラミックス。
2. The relative density of ceramics is 98% or more,
The low thermal expansion ceramics according to claim 1, wherein the Young's modulus at room temperature is 120 GPa or more and the thermal expansion coefficient at 10 to 40 ° C is -1 to 1 x 10 -6 / ° C or less.
【請求項3】 セラミックス中のFe23の含有量が
0.05重量%以下となるように各製造工程を制御しな
がら、ユークリプタイト50〜95体積%、並びにα−
SiC、β−SiC、Si34、TiB2、ZrB2、W
C、TiC、ZrNから選ばれる1種以上の化合物5〜
50体積%からなる成形体を真空または不活性ガス雰囲
気中で1100〜1550℃の温度で焼結させることを
特徴とする請求項1または請求項2記載の低熱膨張セラ
ミックスの製造方法。
3. Eucryptite 50 to 95% by volume, and α-, while controlling each manufacturing process so that the content of Fe 2 O 3 in the ceramics is 0.05% by weight or less.
SiC, β-SiC, Si 3 N 4 , TiB 2 , ZrB 2 , W
One or more compounds selected from C, TiC and ZrN 5
The method for producing a low thermal expansion ceramics according to claim 1 or 2, wherein a molded body made of 50% by volume is sintered at a temperature of 1100 to 1550 ° C in a vacuum or an inert gas atmosphere.
JP2001234669A 2001-08-02 2001-08-02 Low thermal expansion ceramics and method for producing the same Expired - Fee Related JP4907791B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001234669A JP4907791B2 (en) 2001-08-02 2001-08-02 Low thermal expansion ceramics and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001234669A JP4907791B2 (en) 2001-08-02 2001-08-02 Low thermal expansion ceramics and method for producing the same

Publications (2)

Publication Number Publication Date
JP2003048771A true JP2003048771A (en) 2003-02-21
JP4907791B2 JP4907791B2 (en) 2012-04-04

Family

ID=19066233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001234669A Expired - Fee Related JP4907791B2 (en) 2001-08-02 2001-08-02 Low thermal expansion ceramics and method for producing the same

Country Status (1)

Country Link
JP (1) JP4907791B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007076949A (en) * 2005-09-14 2007-03-29 Taiheiyo Cement Corp Black low resistance ceramic and member for semiconductor manufacturing device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5232596A (en) * 1975-09-09 1977-03-11 Tdk Corp Conductive composite ceramics
JPS5815081A (en) * 1981-07-20 1983-01-28 松下電器産業株式会社 Low heat-expansion heating body composition
JPH10294264A (en) * 1997-04-21 1998-11-04 Hitachi Ltd Electron beam lithography device
JPH11322411A (en) * 1998-05-19 1999-11-24 Taiheiyo Cement Corp Production of ceramic
JP2000281328A (en) * 1999-03-30 2000-10-10 Toshiba Ceramics Co Ltd Purified silicon carbide powder for member of semiconductor device, its purification, sintered compact for member of semiconductor device obtained from the powder, and its production
JP2001068536A (en) * 1999-08-24 2001-03-16 Taiheiyo Cement Corp Aligner and support member used for the same
JP2001307671A (en) * 2000-04-21 2001-11-02 Fujitsu Ltd Material for electrode, electrode for charged particle beam apparatus and manufacturing method therefor
JP2002160972A (en) * 2000-11-21 2002-06-04 Hitachi Chem Co Ltd High rigidity and low thermal expansion ceramic and its manufacturing method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5232596A (en) * 1975-09-09 1977-03-11 Tdk Corp Conductive composite ceramics
JPS5815081A (en) * 1981-07-20 1983-01-28 松下電器産業株式会社 Low heat-expansion heating body composition
JPH10294264A (en) * 1997-04-21 1998-11-04 Hitachi Ltd Electron beam lithography device
JPH11322411A (en) * 1998-05-19 1999-11-24 Taiheiyo Cement Corp Production of ceramic
JP2000281328A (en) * 1999-03-30 2000-10-10 Toshiba Ceramics Co Ltd Purified silicon carbide powder for member of semiconductor device, its purification, sintered compact for member of semiconductor device obtained from the powder, and its production
JP2001068536A (en) * 1999-08-24 2001-03-16 Taiheiyo Cement Corp Aligner and support member used for the same
JP2001307671A (en) * 2000-04-21 2001-11-02 Fujitsu Ltd Material for electrode, electrode for charged particle beam apparatus and manufacturing method therefor
JP2002160972A (en) * 2000-11-21 2002-06-04 Hitachi Chem Co Ltd High rigidity and low thermal expansion ceramic and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007076949A (en) * 2005-09-14 2007-03-29 Taiheiyo Cement Corp Black low resistance ceramic and member for semiconductor manufacturing device

Also Published As

Publication number Publication date
JP4907791B2 (en) 2012-04-04

Similar Documents

Publication Publication Date Title
JP4416191B2 (en) Low thermal expansion ceramics, manufacturing method thereof, and semiconductor manufacturing component
Maity et al. High‐temperature strength of liquid‐phase‐sintered silicon carbide ceramics: a review
JP2002003276A (en) Reaction synthesis of silicon carbide-boron nitride composite material
JP2013100216A (en) Oxide ceramic sintered compact and method of manufacturing the same
JP4907791B2 (en) Low thermal expansion ceramics and method for producing the same
TWI759081B (en) Machinable ceramic composite and method for preparing the same
JPH06100306A (en) Sialon crystal particle and sintered compact of complex ceramics
JP2003246676A (en) Sialon ceramic porous body and manufacturing method thereof
JP2736386B2 (en) Silicon nitride sintered body
JP3426823B2 (en) Silicon nitride sintered body and method for producing the same
JP3454993B2 (en) Silicon nitride sintered body and method for producing the same
JP4761617B2 (en) Aluminum nitride sintered body, method for producing the same, and electronic component using the same
JP3034100B2 (en) Silicon nitride sintered body and method for producing the same
JP3932349B2 (en) Reaction synthesis of non-oxide boron nitride composites
JPH025711B2 (en)
JPH1179848A (en) Silicon carbide sintered compact
JPH0632658A (en) Silicon nitride-based sintered compact
JPH0753256A (en) Aluminous composite sintered compact and its production
JP3677360B2 (en) Method for producing silicon nitride sintered body
JPH082961A (en) Sintered compact of metal particle-dispersed aluminum oxide base and its production
JP2001302339A (en) Member for precise measuring instrument and manufacturing method thereof
JP2687633B2 (en) Method for producing silicon nitride sintered body
JP2003321271A (en) Composite ceramic and method for producing the same
JPH05178669A (en) Production of silicon nitride sintered body
JP2002201083A (en) Ceramic porous compact and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100216

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4907791

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees