JP2007076949A - Black low resistance ceramic and member for semiconductor manufacturing device - Google Patents
Black low resistance ceramic and member for semiconductor manufacturing device Download PDFInfo
- Publication number
- JP2007076949A JP2007076949A JP2005266466A JP2005266466A JP2007076949A JP 2007076949 A JP2007076949 A JP 2007076949A JP 2005266466 A JP2005266466 A JP 2005266466A JP 2005266466 A JP2005266466 A JP 2005266466A JP 2007076949 A JP2007076949 A JP 2007076949A
- Authority
- JP
- Japan
- Prior art keywords
- ceramic
- thermal expansion
- vol
- semiconductor manufacturing
- black
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Compositions Of Oxide Ceramics (AREA)
Abstract
Description
本発明は、黒色低抵抗セラミックス、特に、露光装置等の半導体製造装置用部材として好適に用いられる黒色を呈し、低抵抗で低熱膨張なセラミックスに関するものである。 The present invention relates to black low-resistance ceramics, and in particular, to ceramics exhibiting a black color suitable for use as a member for a semiconductor manufacturing apparatus such as an exposure apparatus, and having low resistance and low thermal expansion.
半導体などの製造工程におけるシリコンウェハを処理する工程において、ウェハ支持治具等の部材には、従来はアルミナ、窒化珪素、炭化珪素、窒化アルミニウムなどのセラミックが広く用いられていた。(たとえば、特許文献1参照。) Conventionally, ceramics such as alumina, silicon nitride, silicon carbide, and aluminum nitride have been widely used for members such as a wafer support jig in a process of processing a silicon wafer in a semiconductor manufacturing process. (For example, see Patent Document 1.)
ところが、近年、デバイスの微細化に伴い、その微細化を達成するために高い精度が求められ、例えば、半導体の露光装置においては、ステージの位置決めに10nm未満の精度が要求されている。したがって、位置合わせ誤差の低減が、今後の製品の品質向上や歩留まり向上の大きな要素技術として捉えられるようになってきている。しかしながら、アルミナ、窒化珪素、炭化珪素、窒化アルミニウムを用いた部材では、熱膨張係数が高いために温度の影響を受けやすく、このような極めて微小な位置決めはできないという問題点があった。 However, in recent years, with the miniaturization of devices, high accuracy is required to achieve the miniaturization. For example, in a semiconductor exposure apparatus, accuracy of less than 10 nm is required for stage positioning. Therefore, the reduction in alignment error has come to be regarded as a major element technology for future product quality improvement and yield improvement. However, a member using alumina, silicon nitride, silicon carbide, or aluminum nitride has a problem that since it has a high thermal expansion coefficient, it is easily affected by temperature, and such extremely fine positioning cannot be performed.
このため、負の熱膨張係数を示すユークリプタイトに、正の熱膨張係数を示す炭化珪素を複合化させて熱膨張係数を制御した低熱膨張セラミックスを得て、これを微小な位置決めが要求される半導体製造装置用材料として適用することが検討されるようになってきた。(たとえば、特許文献2参照。) For this reason, low thermal expansion ceramics in which the thermal expansion coefficient is controlled by combining silicon carbide showing a positive thermal expansion coefficient with eucryptite showing a negative thermal expansion coefficient to obtain a fine positioning are required. Application to semiconductor manufacturing equipment materials has been studied. (For example, see Patent Document 2.)
さらには、近年の半導体製造装置の露光工程での反射率を抑制したいという要求から部材が黒色を呈していることと、及び、半導体ウェハの微細回路の露光に際して静電気による悪影響を除去したいという要求からセラミックスの低抵抗化の検討も行なわれている。(たとえば、特許文献3参照。)
しかしながら、上述したユークリプタイト(理論化学組成式:LiAlSiO4)と炭化珪素の複合セラミックスは緻密化するのが困難で、高密度に焼結するためには熱間静水圧プレス処理(HIP処理とも言う)する必要があり、しかも、1360℃以上の高温を必要とする。したがって、大型な焼結体が得られないという課題を有していた。 However, the above-mentioned composite ceramics of eucryptite (theoretical chemical composition formula: LiAlSiO 4 ) and silicon carbide are difficult to be densified, and in order to sinter at high density, hot isostatic pressing (HIP treatment) And a high temperature of 1360 ° C. or higher is required. Therefore, there has been a problem that a large sintered body cannot be obtained.
また、黒色を呈するためにカーボンを添加すると、セラミックスの緻密化がさらに阻害されるという課題もでてきた。 In addition, when carbon is added to exhibit a black color, there has been a problem that densification of ceramics is further inhibited.
本発明は、これらの課題を解決するために鋭意検討して完成したもので、その目的は、緻密であり低熱膨張性を有するとともに、黒色を呈し抵抗値の低い半導体製造装置用部材として好適なセラミックスを提供することである。 The present invention has been completed through intensive studies to solve these problems, and its purpose is to be dense and have a low thermal expansion, and is suitable as a member for a semiconductor manufacturing apparatus having a black color and a low resistance value. It is to provide ceramics.
上述した本発明の目的は、黒色を呈する黒色低抵抗セラミックスであって、該セラミックスが、ユークリプタイトを70〜85体積%、TiB2、ZrB2、WC、TiC、ZrN、β−SiCから選ばれる1種以上の導電性化合物を4.9〜23体積%、窒化ケイ素を0.1〜3.9体積%、カーボンを3.1〜10体積%含有し、かつ、該セラミックスの体積固有抵抗率が105Ω・cm以下、20℃〜30℃における熱膨張係数が−1×10-6〜1×10-6/℃、相対密度が95%以上であることを特徴とする黒色低抵抗セラミックスによって達成する。 An object of the present invention described above, a black low resistance ceramic exhibiting a black color, the ceramics, the eucryptite 70-85 vol%, selected TiB 2, ZrB 2, WC, TiC, ZrN, from beta-SiC 4.9-23% by volume of one or more conductive compounds, 0.1-3.9% by volume of silicon nitride, 3.1-10% by volume of carbon, and the volume resistivity of the ceramic A low black resistance characterized by a coefficient of 10 5 Ω · cm or less, a coefficient of thermal expansion at 20 ° C. to 30 ° C. of −1 × 10 −6 to 1 × 10 −6 / ° C., and a relative density of 95% or more. Achieved with ceramics.
また本発明の目的は、前記黒色低抵抗セラミックスが、原料粉末を不活性ガス雰囲気中の1250℃〜1400℃の温度で、50kgf/cm2以上の加圧下で焼結することにより得られることを特徴とする黒色低抵抗セラミックスによって達成される。 The object of the present invention is that the black low-resistance ceramic is obtained by sintering the raw material powder at a temperature of 1250 ° C. to 1400 ° C. in an inert gas atmosphere under a pressure of 50 kgf / cm 2 or more. Achieved by the featured black low resistance ceramics.
また、本発明の目的は、前記載の黒色低抵抗セラミックスを少なくとも基材の一部として用いることを特徴とする半導体製造装置用部材によっても達成される。 The object of the present invention is also achieved by a member for a semiconductor manufacturing apparatus, characterized in that the black low-resistance ceramic described above is used as at least a part of a substrate.
本発明によれば、不活性ガス雰囲気中の1250℃〜1400℃の温度で、50kgf/cm2以上の加圧下で、相対密度95%以上に緻密化することが可能なユークリプタイトを主要構成成分とする低熱膨張セラミックスを提供することが可能であり、しかも、黒色を呈し抵抗値の低い半導体製造装置用部材として好適なセラミックスが得られるという効果がある。 According to the present invention, eucryptite that can be densified to a relative density of 95% or higher under a pressure of 50 kgf / cm 2 or higher at a temperature of 1250 ° C. to 1400 ° C. in an inert gas atmosphere is a main component. It is possible to provide a low thermal expansion ceramic as a component, and there is an effect that a ceramic suitable as a member for a semiconductor manufacturing apparatus having a black color and a low resistance value can be obtained.
本発明者らは、たとえば、半導体製造装置、精密機器、計測機器等に用いられる材料として、種々の材料からなる低熱膨張セラミックスを提案している。
特に、ユークリプタイトは負の熱膨張係数を示すので、正の熱膨張係数を示す第2の材料と組み合わせることにより、極めて低い熱膨張係数を得ることが可能である。このため、第2の材料として炭化珪素を組み合わせた複合材料からなる低熱膨張セラミックスについても鋭意検討を行ってきた。
For example, the present inventors have proposed low thermal expansion ceramics made of various materials as materials used in semiconductor manufacturing equipment, precision equipment, measuring equipment, and the like.
In particular, since eucryptite exhibits a negative coefficient of thermal expansion, an extremely low coefficient of thermal expansion can be obtained by combining with a second material exhibiting a positive coefficient of thermal expansion. For this reason, the low thermal expansion ceramic which consists of a composite material which combined silicon carbide as a 2nd material has also earnestly examined.
ここで、本発明のセラミックスが、ユークリプタイトを70〜85体積%、TiB2、ZrB2、WC、TiC、ZrN、β−SiCから選ばれる1種以上の導電性化合物を4.9〜23体積%、窒化ケイ素を0.1〜3.9体積%、カーボンを3.1〜10体積%含有する理由は、この範囲で構成することにより、20〜30℃における熱膨張係数が−1×10-6〜1×10-6/℃と低熱膨張で、かつ、相対密度が95%以上と緻密にすることができ、さらには、剛性も高めることができるため好ましいからである。したがって、本発明のセラミックスは半導体回路の微細化に適合可能な半導体製造装置部材として好適となる。 Here, the ceramic of the present invention contains eucryptite in an amount of 70 to 85% by volume, and one or more conductive compounds selected from TiB 2 , ZrB 2 , WC, TiC, ZrN, and β-SiC 4.9 to 23. The reason for containing 0.1% to 3.9% by volume of silicon nitride, 0.1% to 3.9% by volume of silicon nitride, and 3.1% to 10% by volume of carbon is that the thermal expansion coefficient at 20 to 30 ° C. is −1 × by constituting in this range. This is because it has a low thermal expansion of 10 −6 to 1 × 10 −6 / ° C., can be made dense with a relative density of 95% or more, and can further increase rigidity. Therefore, the ceramic of the present invention is suitable as a semiconductor manufacturing apparatus member that can be adapted to miniaturization of semiconductor circuits.
ここで、本発明の低熱膨張セラミックスを構成する材料組成で、窒化ケイ素を0.1〜3.9体積%含有することが、相対密度を95%以上に緻密化するために重要である。ただし、窒化ケイ素を3.9体積%を超えて含有するとセラミックスにクラックが発生して好ましくない。 Here, in the material composition constituting the low thermal expansion ceramic of the present invention, containing 0.1 to 3.9% by volume of silicon nitride is important for densifying the relative density to 95% or more. However, if silicon nitride is contained in an amount exceeding 3.9% by volume, the ceramic is cracked, which is not preferable.
また、本発明の低熱膨張セラミックスを構成する材料組成で、カーボンを3.1〜10体積%含有することが、均一で斑のない黒色セラミックスを得るために重要である。ここで、カーボンの含有量が3.1体積%未満では黒色度が十分でないか色斑が発生して好ましくなく、カーボンの含有量が10体積%を超えると緻密化が困難となるため好ましくない。 Further, in the material composition constituting the low thermal expansion ceramic of the present invention, it is important to contain 3.1 to 10% by volume of carbon in order to obtain a black ceramic with uniform and no spots. Here, if the carbon content is less than 3.1% by volume, the blackness is not sufficient or color spots are not preferable, and if the carbon content exceeds 10% by volume, densification becomes difficult, which is not preferable. .
また、本発明の低熱膨張セラミックスを構成する材料組成で、TiB2、ZrB2、WC、TiC、ZrN、β−SiCから選ばれる1種以上の導電性化合物を4.9〜23体積%含有することが重要である。
これにより、セラミックスの体積固有抵抗率を105Ω・cm以下とすることが可能となり、静電気による帯電を除去することが可能となる。
ただし、導電性化合物を23体積%を超えて含有すると緻密化が困難となるため好ましくない。また、導電性化合物が4.9体積%より少ないとセラミックスの体積固有抵抗率を105Ω・cm以下とすることができない。
ここで、20℃〜30℃における熱膨張係数を−1×10-6〜1×10-6/℃と本発明の範囲に調整する場合、導電性化合物としては、β−SiCが特に好ましい。その理由は、ユークリプタイト以外の構成成分としては導電性化合物の体積割合が最も多く、したがって、前記の導電性化合物のうちで最も熱膨張係数が小さいβ−SiCが、熱膨張制御に好適であるからである。
Further, in the material composition constituting the low thermal expansion ceramic of the present invention, TiB 2, ZrB 2, WC , TiC, ZrN, 1 or more conductive compounds selected from beta-SiC containing 4.9 to 23 vol% This is very important.
As a result, the volume resistivity of the ceramic can be made 10 5 Ω · cm or less, and it is possible to remove static electricity.
However, if the conductive compound is contained in an amount exceeding 23% by volume, densification becomes difficult, which is not preferable. If the conductive compound is less than 4.9% by volume, the volume resistivity of the ceramic cannot be made 10 5 Ω · cm or less.
Here, when adjusting the thermal expansion coefficient at 20 ° C. to 30 ° C. to −1 × 10 −6 to 1 × 10 −6 / ° C. within the range of the present invention, β-SiC is particularly preferable as the conductive compound. The reason is that, as a constituent component other than eucryptite, the volume ratio of the conductive compound is the largest, and therefore β-SiC having the smallest thermal expansion coefficient among the conductive compounds is suitable for the thermal expansion control. Because there is.
次に、本発明においては、原料粉末を不活性ガス雰囲気中の1250℃〜1400℃の温度で、50kgf/cm2以上の加圧下で焼結することにより得られる黒色低抵抗セラミックスを提案している。 Next, in the present invention, a black low resistance ceramic obtained by sintering raw material powder at a temperature of 1250 ° C. to 1400 ° C. in an inert gas atmosphere under a pressure of 50 kgf / cm 2 or more is proposed. Yes.
ここで、本発明においては、原料粉末を前記した条件化で焼結する理由は、セラミックスの20〜30℃における熱膨張係数を−1×10-6〜1×10-6/℃の範囲とすることができ、さらには、相対密度を95%以上とすることができるため半導体回路の精細化に適合可能な半導体製造装置部材として好適となるからである。
ここで、不活性ガス雰囲気としては、窒素やアルゴン等を用いることができる。
また、本発明における原料粉末の粉砕工程には、公知のボールミル粉砕以外にも、乳鉢による粉砕や、遊星型ボールミルによる粉砕等が適用できる。
さらに、成形工程を伴う場合はでは、一軸加圧成形や静水圧加圧成形等が適用できる。
Here, in the present invention, the reason why the raw material powder is sintered under the above-described conditions is that the thermal expansion coefficient of the ceramic at 20 to 30 ° C. is in the range of −1 × 10 −6 to 1 × 10 −6 / ° C. Further, since the relative density can be 95% or more, it is suitable as a semiconductor manufacturing apparatus member that can be adapted to refinement of a semiconductor circuit.
Here, nitrogen, argon, or the like can be used as the inert gas atmosphere.
In addition, in the pulverizing step of the raw material powder in the present invention, pulverization with a mortar, pulverization with a planetary ball mill, or the like can be applied in addition to known ball mill pulverization.
Further, in the case where a molding process is involved, uniaxial pressure molding, isostatic pressing, or the like can be applied.
また、本発明では、前記した黒色低抵抗セラミックスを少なくとも基材の一部として用いることを特徴とする半導体製造装置用部材を提案している。
すなわち、本発明の黒色低抵抗セラミックスを半導体製造装置用部材の基材の一部として用いると、低熱膨張であるため微細な回路も高歩留まりで製造可能となり、部材が黒色を呈していることから半導体の露光工程での反射率を抑制でき、低抵抗であるため静電気による半導体ウェハへの微細回路形成のへの悪影響を除去することができる。したがって、信頼性の高い半導体を高歩留まりで製造することが可能となる。
Further, the present invention proposes a member for a semiconductor manufacturing apparatus characterized by using the above-described black low-resistance ceramic as at least a part of a base material.
That is, when the black low resistance ceramic of the present invention is used as a part of the base material of a member for a semiconductor manufacturing apparatus, it is possible to manufacture a fine circuit with a high yield due to low thermal expansion, and the member exhibits a black color. The reflectance in the semiconductor exposure process can be suppressed, and since it has low resistance, adverse effects on the formation of microcircuits on the semiconductor wafer due to static electricity can be eliminated. Therefore, a highly reliable semiconductor can be manufactured with a high yield.
次に、本発明を具体的な実施例と比較例により説明する。
(1)原料粉末の配合と粉砕
原料粉末としては、市販のβ−ユークリプタイト粉末とβ−SiCなどの導電性化合物と窒化ケイ素粉末とカーボン粉末とを用い、各原料粉末の配合はセラミックス焼結体中の各構成成分の含有率が表1の組成(体積%)となるようにした。
次に、表1に示した組成割合の各原料粉末をエタノール溶媒とアルミナボールと共にボールミル内に投入し、16時間湿式にて混合粉砕を行った。このようにして得られた混合粉砕粉末を乾燥し、解砕した。
Next, the present invention will be described with reference to specific examples and comparative examples.
(1) Mixing of raw material powder and pulverization As the raw material powder, commercially available β-eucryptite powder, conductive compound such as β-SiC, silicon nitride powder, and carbon powder are used. The content of each constituent component in the bonded body was set to the composition (volume%) shown in Table 1.
Next, each raw material powder having the composition ratio shown in Table 1 was put into a ball mill together with an ethanol solvent and an alumina ball, and mixed and pulverized by wet for 16 hours. The mixed and pulverized powder thus obtained was dried and crushed.
(2)焼結体の作製と相対密度の測定
上記のようにして得られた混合粉砕粉末を表1に示した焼成温度で、窒素の不活性ガス雰囲気中で、50〜200kgf/cm2の加圧下で焼結を行いセラミックス焼結体を作製した。
(2) Preparation of sintered body and measurement of relative density 50 to 200 kgf / cm 2 of the mixed pulverized powder obtained as described above at a firing temperature shown in Table 1 in an inert gas atmosphere of nitrogen Sintering was performed under pressure to produce a ceramic sintered body.
以上のようにして得られたセラミックス焼結体をアルキメデス法により相対密度を測定し、それらの測定結果を表1にまとめて示した。
(3)熱膨張率と体積抵抗率の測定
表1中の焼結体について、クラックが発生しなかった焼結体について、別途同様にして試験体を作成し、これらの試験体をJIS R3251「低膨張ガラスのレーザ干渉計による線膨張率の測定方法」に規定されている方法により20〜30℃における熱膨張係数を測定した。
また、体積抵抗率は、寸法4×3×30mmの試料の両端部及び端部から10mmの位置に、導電性ペーストで1mm幅の電極を形成し、四端子法(JIS K7194「導電性プラスチックの4探針法による抵抗率試験方法」に準拠)により測定した。得られた結果を表1にまとめて示した。
The relative density of the ceramic sintered body obtained as described above was measured by the Archimedes method, and the measurement results are summarized in Table 1.
(3) Measurement of thermal expansion coefficient and volume resistivity With respect to the sintered bodies in Table 1, test bodies were separately prepared in the same manner for the sintered bodies in which no cracks occurred, and these test bodies were designated as JIS R3251 “ The coefficient of thermal expansion at 20 to 30 ° C. was measured by the method defined in “Method of measuring linear expansion coefficient by laser interferometer of low expansion glass”.
In addition, the volume resistivity was determined by forming a 1 mm wide electrode with a conductive paste at both ends and 10 mm from the end of a sample having a size of 4 × 3 × 30 mm, and using a four-terminal method (JIS K7194 “conductive plastic Measured according to “Resistivity test method by 4-probe method”). The obtained results are summarized in Table 1.
(4)焼結体の呈色度合いの評価
表1中の焼結体について、黒色の呈色の状況と色斑の発生度合いを目視により観測して評価した。その結果も表1にまとめて示した。
(4) Evaluation of degree of coloration of sintered body The sintered body in Table 1 was evaluated by visually observing the state of coloration of black and the degree of occurrence of color spots. The results are also summarized in Table 1.
(5)評価結果
表1の結果から、実施例であるNo.1〜12の全ての試験体が、体積固有抵抗率が105Ω・cm以下と低抵抗であり、20℃〜30℃における熱膨張係数が−1×10-6〜1×10-6/℃と低熱膨張であり、相対密度が95%以上と緻密であることを確認した。また、呈色の状況も色斑がなく均一な黒色を呈していた。
一方、比較例であるNo.13〜22のいずれも、緻密で黒色を呈し抵抗値の低い半導体製造装置用部材として好適なセラミックスとして使用可能なものは得られなかった。
(5) Evaluation results From the results in Table 1, No. which is an example. All the specimens 1 to 12 have a low volume resistivity of 10 5 Ω · cm or less and a thermal expansion coefficient at 20 ° C. to 30 ° C. of −1 × 10 −6 to 1 × 10 −6 / It was confirmed that the temperature was low and thermal expansion was low, and the relative density was 95% or higher. In addition, the coloration was uniform and black with no color spots.
On the other hand, No. which is a comparative example. None of 13 to 22 could be used as a ceramic suitable as a member for a semiconductor manufacturing apparatus having a dense and black color and a low resistance value.
以上説明したように、本発明によれば、不活性ガス雰囲気中の1250℃〜1400℃の温度で、50kgf/cm2以上の加圧下で、相対密度95%以上に緻密化できるユークリプタイトを主要構成成分とする低熱膨張セラミックスを提供することが可能であり、しかも、黒色を呈し抵抗値の低い半導体製造装置用部材として好適なセラミックスが得られるという効果がある。 As described above, according to the present invention, eucryptite that can be densified to a relative density of 95% or higher under a pressure of 50 kgf / cm 2 or higher at a temperature of 1250 ° C. to 1400 ° C. in an inert gas atmosphere. It is possible to provide a low thermal expansion ceramic as a main component, and there is an effect that a ceramic suitable as a member for a semiconductor manufacturing apparatus having a black color and a low resistance value can be obtained.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005266466A JP4897263B2 (en) | 2005-09-14 | 2005-09-14 | Black low resistance ceramics and semiconductor manufacturing equipment components |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005266466A JP4897263B2 (en) | 2005-09-14 | 2005-09-14 | Black low resistance ceramics and semiconductor manufacturing equipment components |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007076949A true JP2007076949A (en) | 2007-03-29 |
JP4897263B2 JP4897263B2 (en) | 2012-03-14 |
Family
ID=37937620
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005266466A Expired - Fee Related JP4897263B2 (en) | 2005-09-14 | 2005-09-14 | Black low resistance ceramics and semiconductor manufacturing equipment components |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4897263B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011023842A2 (en) | 2009-08-27 | 2011-03-03 | Consejo Superior De Investigaciones Científicas (Csic) | Method for obtaining ceramic compounds and resulting material |
WO2011073483A1 (en) | 2009-12-16 | 2011-06-23 | Consejo Superior De Investigaciones Científicas (Csic) (50%) | Composite material of electroconductor having controlled coefficient of thermal expansion |
WO2011083193A1 (en) | 2009-12-21 | 2011-07-14 | Consejo Superior De Investigaciones Científicas (Csic) | Composite material having controlled coefficient of thermal expansion with oxidic ceramics and procedure for the obtainment thereof |
JP2014051416A (en) * | 2012-09-07 | 2014-03-20 | Taiheiyo Cement Corp | Low-thermal-expansion ceramics, stage for exposure apparatus, and method of manufacturing low-thermal-expansion ceramics |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002220277A (en) * | 2001-01-24 | 2002-08-09 | Sumitomo Metal Ind Ltd | Black low thermal expansion ceramic and member for aligner |
JP2003048771A (en) * | 2001-08-02 | 2003-02-21 | Taiheiyo Cement Corp | Low thermal expansion ceramics and method of manufacturing the same |
JP2003197725A (en) * | 2001-12-27 | 2003-07-11 | Sumitomo Metal Ind Ltd | Vacuum chuck |
JP2004284846A (en) * | 2003-03-20 | 2004-10-14 | Taiheiyo Cement Corp | Low thermal expansion ceramic and method of manufacturing the same |
-
2005
- 2005-09-14 JP JP2005266466A patent/JP4897263B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002220277A (en) * | 2001-01-24 | 2002-08-09 | Sumitomo Metal Ind Ltd | Black low thermal expansion ceramic and member for aligner |
JP2003048771A (en) * | 2001-08-02 | 2003-02-21 | Taiheiyo Cement Corp | Low thermal expansion ceramics and method of manufacturing the same |
JP2003197725A (en) * | 2001-12-27 | 2003-07-11 | Sumitomo Metal Ind Ltd | Vacuum chuck |
JP2004284846A (en) * | 2003-03-20 | 2004-10-14 | Taiheiyo Cement Corp | Low thermal expansion ceramic and method of manufacturing the same |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011023842A2 (en) | 2009-08-27 | 2011-03-03 | Consejo Superior De Investigaciones Científicas (Csic) | Method for obtaining ceramic compounds and resulting material |
CN102811970A (en) * | 2009-08-27 | 2012-12-05 | 西班牙高等科研理事会 | Method For Obtaining Ceramic Compounds And Resulting Material |
CN102811970B (en) * | 2009-08-27 | 2014-05-07 | 西班牙高等科研理事会 | Method For Obtaining Ceramic Compounds And Resulting Material |
US8828281B2 (en) | 2009-08-27 | 2014-09-09 | Consejo Superior De Investigaciones Cientificas (Csic) | Method for obtaining ceramic compounds and resulting material |
WO2011073483A1 (en) | 2009-12-16 | 2011-06-23 | Consejo Superior De Investigaciones Científicas (Csic) (50%) | Composite material of electroconductor having controlled coefficient of thermal expansion |
WO2011083193A1 (en) | 2009-12-21 | 2011-07-14 | Consejo Superior De Investigaciones Científicas (Csic) | Composite material having controlled coefficient of thermal expansion with oxidic ceramics and procedure for the obtainment thereof |
JP2014051416A (en) * | 2012-09-07 | 2014-03-20 | Taiheiyo Cement Corp | Low-thermal-expansion ceramics, stage for exposure apparatus, and method of manufacturing low-thermal-expansion ceramics |
Also Published As
Publication number | Publication date |
---|---|
JP4897263B2 (en) | 2012-03-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11011404B2 (en) | Ceramic structure, member for substrate-holding apparatus, and method for producing the ceramic structure | |
EP2090557B1 (en) | Yttrium oxide material, member for use in semiconductor manufacturing apparatus, and method for producing yttrium oxide material | |
JP6529999B2 (en) | Method of manufacturing silicon nitride substrate | |
KR102039014B1 (en) | Composite ceramics and a component member for semiconductor manufacturing apparatus | |
KR102339550B1 (en) | Aluminum nitride sintered compact and members for semiconductor manufacturing apparatus including the same | |
JP6960636B2 (en) | Silicon carbide member for plasma processing equipment and its manufacturing method | |
JP4897263B2 (en) | Black low resistance ceramics and semiconductor manufacturing equipment components | |
CN114180943B (en) | Composite sintered body, semiconductor manufacturing device member, and method for manufacturing composite sintered body | |
KR101652336B1 (en) | LOW RESISTIVITY SiC CERAMICS MATERIALS USING PRESSURELESS SINTERING AND MANUFACTURING METHOD | |
JP2006069843A (en) | Ceramic member for semiconductor manufacturing apparatus | |
JP4429742B2 (en) | Sintered body and manufacturing method thereof | |
CN116693300A (en) | High-heat-conductivity silicon nitride substrate sintering formula and sintering process | |
KR20230042679A (en) | Composite sintered body and method of manufacturing composite sintered body | |
JP2004284846A (en) | Low thermal expansion ceramic and method of manufacturing the same | |
KR20220088972A (en) | Aluminium nitride ceramics composition and manufacturing method of the same | |
JP2008288428A (en) | Electrostatic chuck | |
JP2006240960A (en) | High specific resistance silicon carbide sintered compact | |
JP5006490B2 (en) | Low thermal expansion ceramics and method for producing the same | |
JP2008024530A (en) | Free-cutting ceramic sintered compact and probe guiding component | |
JP2004224607A (en) | Method for manufacturing low thermal expansion ceramic | |
JP2005219937A (en) | Silicon carbide sintered compact containing phosphorus, silicon carbide powder to be raw material of the same, and method of manufacturing these | |
JP2006298690A (en) | Aluminum nitride metallizing degreased intermediate and metallizing substrate | |
TW200418123A (en) | Wafer holder for semiconductor manufacturing device and semiconductor manufacturing device in which it is installed | |
JP2000247732A (en) | Low-resistance ceramic, its production and member for semiconductor producing apparatus | |
JP2005255451A (en) | Low thermal expansion ceramic and method of manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080115 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100215 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20100810 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110405 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110603 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20111220 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20111222 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4897263 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150106 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |