JP2002531700A - Apparatus and method for controlling the pickling process of steel - Google Patents

Apparatus and method for controlling the pickling process of steel

Info

Publication number
JP2002531700A
JP2002531700A JP2000585647A JP2000585647A JP2002531700A JP 2002531700 A JP2002531700 A JP 2002531700A JP 2000585647 A JP2000585647 A JP 2000585647A JP 2000585647 A JP2000585647 A JP 2000585647A JP 2002531700 A JP2002531700 A JP 2002531700A
Authority
JP
Japan
Prior art keywords
concentration
analysis
pickling
vessel
pickling tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000585647A
Other languages
Japanese (ja)
Inventor
ジオルダニ・パオロ
ムシアニ・ファビオ
デマルトヅィス・イオアニス
フォルツナチ・サンドロ
マンチア・フランコ
ノヴァロ・エヅィオ
Original Assignee
ヘンケル・コマンディトゲゼルシャフト・アウフ・アクテイーン
アッチアイ スペテチアリ テルニ ソシエタ ペル アチオニ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヘンケル・コマンディトゲゼルシャフト・アウフ・アクテイーン, アッチアイ スペテチアリ テルニ ソシエタ ペル アチオニ filed Critical ヘンケル・コマンディトゲゼルシャフト・アウフ・アクテイーン
Publication of JP2002531700A publication Critical patent/JP2002531700A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
  • Detergent Compositions (AREA)
  • Coating With Molten Metal (AREA)
  • Spray Control Apparatus (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

(57)【要約】 酸洗い工程を制御する装置と方法が記述される、ここで制御装置は分析されるべき槽の試料を採取する手段(C);前記試料の酸化還元電位値とその温度だけでなく比伝導度及び電位差計方法論に従って多数のパラメーターを測定するために前記試料を分析する手段(CA,D,EM);上記測定値に従って、前記パラメーターの値を望ましいレベルに回復するために酸洗い槽に添加されるべき補正薬品の量を適切に計算し、且つ補正薬品の前記量を前記酸洗い槽の中に添加する少なくとも一つの装置を作動させる回復手段より成っている。伝導度方法論に従って測定されるパラメーターは硫酸、フッ化水素酸、又は別の無機酸の濃度であり;電位差計方法論に従って測定されるパラメーターは二価と三価の鉄イオン及び過酸化水素の濃度であり又補正薬品は硫酸、フッ化水素酸及び酸化剤 (57) Abstract: An apparatus and a method for controlling an acid pickling step are described, wherein the controller is means (C) for collecting a sample of a tank to be analyzed; the oxidation-reduction potential value of the sample and its temperature Means (CA, D, EM) for analyzing the sample to measure a number of parameters according to the specific conductivity and potentiometric methodologies as well as to restore the values of the parameters to desired levels according to the measured values. Recovery means for appropriately calculating the amount of correction chemical to be added to the pickling tank and activating at least one device for adding said amount of correction chemical into the pickling tank. The parameter measured according to the conductivity methodology is the concentration of sulfuric acid, hydrofluoric acid, or another inorganic acid; the parameters measured according to the potentiometer methodology are the concentrations of divalent and trivalent iron ions and hydrogen peroxide. Available correction chemicals are sulfuric acid, hydrofluoric acid and oxidizing agent

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】 (技術分野) 本発明は炭素鋼、オーステナイト系、フェライト系及びマルテンサイト系ステ
ンレス鋼、2相鋼及び特殊合金について酸洗い工程を制御する装置と方法にある
、そこにおいて前記装置は(比伝導度と電位差計方法論に従って)精確なプロセ
スパラメーターを規定し且つ酸洗い槽中の必須化学薬品の望ましい濃度を回復す
るために酸洗い槽のサンプリングと前記試料の分析を自動的に操作する。
[0001] The present invention resides in an apparatus and method for controlling the pickling process for carbon steel, austenitic, ferritic and martensitic stainless steels, duplex stainless steels and special alloys, wherein the apparatus comprises: The pickling bath sampling and the analysis of said sample are automatically operated to define precise process parameters (according to specific conductivity and potentiometric methodology) and to restore the desired concentration of essential chemicals in the pickling bath.

【0002】 本発明は又処理中の特定の種類の物質の酸洗いについて最も適切な操作条件を
自動的に検索して実現化する遠隔作動できる操作手順の明確化を通して処理中の
鋼の特化した酸洗い条件を制御することも可能にする。
[0002] The present invention also specializes in the processing of steel through the clarification of remotely operable operating procedures that automatically retrieve and implement the most appropriate operating conditions for pickling of a particular type of material during processing. It is also possible to control the pickling conditions.

【0003】 (背景技術) 鋼製品(板、帯、管、棒のような)の圧延、引抜き、押出、熱処理では、不動
態と耐食性だけでなく立派な仕上り外観を得るため、及び更なる作業を可能にす
るための両方で取除かねばならない酸化物層がその表面に形成される。
BACKGROUND OF THE INVENTION In the rolling, drawing, extrusion and heat treatment of steel products (such as plates, strips, tubes, bars), not only passivation and corrosion resistance but also a fine finished appearance and further work are required. An oxide layer is formed on the surface which must be removed both to allow for

【0004】 前記表面の酸化物層は通常適当な希釈と温度で、無機鉱酸(硫酸、塩酸、硝酸
、フッ化水素酸)単独又は互いの混合液を含んでいる一つ又はそれ以上の酸浴の
作用、続いて少なくとも一回の水での仕上げ濯ぎに基づいた化学的処理(酸洗い
)により消去される。
The oxide layer on the surface, usually at an appropriate dilution and temperature, comprises one or more acids containing inorganic mineral acids (sulfuric, hydrochloric, nitric, hydrofluoric) alone or in a mixture with one another. The action of the bath is followed by a chemical treatment (pickling) based on at least one finishing rinse with water.

【0005】 ステンレス鋼については、通常の酸洗い工程(浸漬、噴霧又は乱流の何れか)
は硝酸とフッ化水素酸の混合液を必要とする;該工程は排水中の多量の硝酸塩類
の問題だけでなく大気中への反応副産物(極めて毒性のある窒素酸化物)の放出
による非常に深刻なエコロジカルな問題を引きずっている。
[0005] For stainless steel, the usual pickling process (either dipping, spraying or turbulent)
Requires a mixture of nitric acid and hydrofluoric acid; the process is not only due to the problem of large amounts of nitrates in the wastewater, but also due to the release of reaction by-products (extremely toxic nitrogen oxides) into the atmosphere. Dragging serious ecological problems.

【0006】 これ故、極最近代案となる多くの“エコロジカルな”工程が硝酸を無くすこと
を特徴として案出された。
[0006] Therefore, a number of "ecological" alternative processes have recently been devised which are characterized by the elimination of nitric acid.

【0007】 斯かる工程の中で、特に工業的規模で有効なものは硫酸又は塩酸、フッ化水素
酸及び第二鉄イオンの混合液を使用するものである、そこでは酸洗い槽中の斯か
るイオンの適正な濃度は二酸化水素の添加によって維持される。斯かる工程の幾
つかはイタリア特許第1,245,594号と第1,255,655号に記され
ている。
Among such processes, those particularly effective on an industrial scale are those that use a mixture of sulfuric acid or hydrochloric acid, hydrofluoric acid and ferric ions, where the mixture in a pickling tank is used. The proper concentration of such ions is maintained by the addition of hydrogen dioxide. Some of such steps are described in Italian Patents 1,245,594 and 1,255,655.

【0008】 伝統的な酸洗い技術では、工程の管理は通常酸性度の手動滴定、又は溶液の伝
導度及びその鉄含有量(又は溶液密度の測定による全金属量)の測定を通して酸
洗い槽の場当たり的な制御を含む;それは又特定のイオン選択性電極によってフ
ッ化水素酸の含有量の測定も可能である。
[0008] In traditional pickling techniques, the control of the process is usually performed by manual titration of the acidity or by measuring the conductivity of the solution and its iron content (or total metal by measuring solution density). Includes ad hoc control; it also allows for the measurement of hydrofluoric acid content by specific ion selective electrodes.

【0009】 これらの技術の幾つかはステンレス鋼の硝酸を基にした酸洗い工程の単独操作
の自動化に使用された。
[0009] Some of these techniques have been used to automate the single operation of a pickling process based on nitric acid in stainless steel.

【0010】 米国特許第4,060,717号(LECO社)は硝酸とフッ化水素酸を含ん
でいる酸洗い槽中の硝酸(又はその他の強酸)及びフッ化水素酸の濃度を測定す
るのにフッ素と水素イオン用のイオン選択性電極の使用を開示している;制御回
路により集められた電圧データは二つの酸の濃度を計算し且つ関連する濃度を調
整するためマイクロプロセッサーにより念入りに処理される。
US Pat. No. 4,060,717 (LECO) measures the concentration of nitric acid (or other strong acid) and hydrofluoric acid in a pickling bath containing nitric acid and hydrofluoric acid. Discloses the use of ion-selective electrodes for fluorine and hydrogen ions; the voltage data collected by the control circuit is carefully processed by a microprocessor to calculate the concentrations of the two acids and adjust the relevant concentrations. Is done.

【0011】 日本特許第55040908号(新日鐵)は酸の濃度を調整するために、溶液
がイオン交換膜を通過した後関連する陰イオンのイオン選択性電極による決定を
通してフッ化水素酸ともう一つの強酸(硝酸、塩酸、硫酸)の決定法を開示して
いる。
[0011] Japanese Patent No. 55040908 (Nippon Steel) discloses that to adjust the concentration of acid, hydrofluoric acid and another hydrofluoric acid are determined through ion-selective electrode determination of the relevant anions after the solution has passed through the ion exchange membrane. A method for determining one strong acid (nitric acid, hydrochloric acid, sulfuric acid) is disclosed.

【0012】 米国特許第5,286,368号(フォックスボロ社)は混合液中の酸の濃度
の決定を可能にする、フッ素イオンに向う三価鉄イオンの錯体形成能力を通して
硝酸とフッ化水素酸の混合液中のフッ化水素酸の濃度を測定する。
US Pat. No. 5,286,368 (Foxboro) discloses nitric acid and hydrogen fluoride through the ability to complex ferric ions towards fluoride ions, which allows the determination of the concentration of acid in the mixture. The concentration of hydrofluoric acid in the acid mixture is measured.

【0013】 硝酸をベースにした斯かる酸洗い工程の連続自動管理は、例えば一日に二・三
回行われる時々の手動又は自動制御よりは良いけれども、処理される物質の品質
にに関する工程には不可欠ではない、何故ならば斯かる槽の機能的特性、特にス
テンレス鋼の酸洗いでは、斯かる槽は通常高い硝酸濃度(約12−15%)と約
2−5%のフッ化水素酸濃度を有しているからである。高い硝酸濃度は高い酸性
度と殆ど一定の酸化力の両方を同時に確保して、時々の化学薬品の添加を通した
工程を操作することを可能にしている。その上、酸濃度の決定は槽の酸洗い能力
の適切な制御を持つのに十分である。
[0013] The continuous automatic control of such pickling processes based on nitric acid is better than, for example, manual or automatic control sometimes performed two or three times a day, but for processes relating to the quality of the material to be treated. Is not essential, since the functional properties of such tanks, especially in pickling stainless steel, such tanks usually have a high nitric acid concentration (about 12-15%) and about 2-5% hydrofluoric acid. This is because it has a concentration. The high nitric acid concentration simultaneously ensures both high acidity and almost constant oxidizing power, making it possible to operate the process through the occasional addition of chemicals. Moreover, the determination of the acid concentration is sufficient to have adequate control of the pickling capacity of the bath.

【0014】 これに反して、前に引用したような無硝酸酸洗いシステムは第二鉄イオン(F
3+)濃度の測定、又はもっと良いのはFe3+/Fe2+比についてのシステムの
酸化特性を見出した。
On the contrary, the nitric acid-free pickling system as cited above has a ferric ion (F
e 3+ ) concentration measurements, or better, the oxidation properties of the system with respect to the Fe 3+ / Fe 2+ ratio.

【0015】 この場合、ステンレス帯鋼生産用の連続工程又は棒酸洗い用の自動、高生産性
設備における酸洗い反応(1)のせいで、 2Fe3++FeO→3Fe2+ (1) 三価の鉄イオン濃度、Fe3+/Fe2+比及び従って溶液の酸化能力は急速に減少
し、連続的に且つ強烈に槽の振舞いを変える傾向にある。
In this case, 2Fe 3+ + FeO → 3Fe 2+ (1) trivalent due to the pickling reaction (1) in a continuous process for producing stainless steel strip or an automatic, high-productivity facility for pickling bars. The iron ion concentration, the Fe 3+ / Fe 2+ ratio and therefore the oxidizing capacity of the solution tend to decrease rapidly and change the behavior of the vessel continuously and intensely.

【0016】 それ故、最適条件は過酸化水素のような酸化剤によって連続的に調整されねば
ならない。
Therefore, the optimum conditions must be continuously adjusted with an oxidizing agent such as hydrogen peroxide.

【0017】 更に、三価の鉄濃度の変動は槽中に存在する遊離酸の濃度にも間接的に影響を
与える。
Furthermore, fluctuations in the concentration of trivalent iron also indirectly affect the concentration of free acid present in the tank.

【0018】 例えば、硫酸、フッ化水素酸と第二鉄塩混合液をベースにした酸洗いシステム
では、この影響は以下の好ましい平衡式に関連がある: Fe3++nF-→FeFn (3-n)+ Fe2++SO4 2-→FeSO4 この故に、1対のFe3+/Fe2+の酸化/還元反応の間に、硫酸及びフッ化水素
酸夫々の遊離が関係する錯塩から起る、斯くして槽の組成が変る。
For example, in a pickling system based on a mixture of sulfuric acid, hydrofluoric acid and ferric salt, this effect is related to the following preferred equilibrium equation: Fe 3+ + nF → FeF n (3 -n) + Fe 2+ + SO 4 2- → FeSO 4 Therefore, during the oxidation / reduction reaction of a pair of Fe 3+ / Fe 2+ , from the complex salts involved in the release of sulfuric acid and hydrofluoric acid respectively. Occurs, thus altering the composition of the bath.

【0019】 時たまの分析測定によるプロセス制御、続いて最良の酸洗い条件に回復するた
めの化学薬品の大量の添加は、それ故、製品の品質とプロセスのコストに関して
反対の結論を持つ余りにも大きな槽パラメーターの変化をもたらす。
The occasional process control by analytical measurements, followed by the large addition of chemicals to restore the best pickling conditions, is therefore too great to have opposite conclusions regarding product quality and process cost. Causes changes in tank parameters.

【0020】 一方、頻繁な手動制御と関連する組成の調整は時間も掛かりコスト高である、
それ故これは十分な制御頻度(例えば1時間毎に1回の制御)を確保するには多
くの人手を必要とする。
On the other hand, adjusting the composition associated with frequent manual control is time consuming and costly.
Therefore, this requires a lot of manpower to ensure a sufficient control frequency (e.g., one control per hour).

【0021】 無硝酸酸洗い工程の臨界(criticality)は単位時間当たりに溶解する鉄の総量
、制御されるべき酸洗いタンクの数、異なった操作条件を必要とする物質の数及
びタンクの中に頻繁に酸を手動添加するのに必要な実行能力に明らかに関連する
The criticality of the nitric acid-free pickling process is the total amount of iron dissolved per unit time, the number of pickling tanks to be controlled, the number of substances requiring different operating conditions and the It is clearly related to the performance required to frequently add the acid manually.

【0022】 ステンレス帯鋼の連続酸洗い設備又は棒工程用の高生産性自動設備について前
に引用したようなステンレス鋼の酸洗い工程の管理は最終製品の品質に重大であ
ることを証明した;それは又反応物質のサンプリング、制御及び投薬に自動シス
テムの使用無しでは非経済的でもあり得る。
[0022] Control of the stainless steel pickling process as previously cited for stainless steel strip continuous pickling equipment or high productivity automated equipment for the bar process has proven critical to the quality of the final product; It can also be uneconomical without the use of automated systems for reactant sampling, control and dosing.

【0023】 本発明に従う制御装置と方法は斯かる工程の適正な管理について独特の技巧と
分析方法の利用を必要とする。
The control apparatus and method according to the present invention require the use of unique techniques and analytical methods for proper management of such steps.

【0024】 (発明の開示) 本発明の目的は分析されるべき槽の試料を採取する手段;前記試料の酸化還元
電位値とその温度だけでなく比伝導度方法論(フッ化水素酸、硫酸又は別の無機
強酸の濃度を見付けるため)及び電位差計(三価と二価の鉄の濃度を見付けるた
め)に従って多数のパラメーターを測定するために前記試料を分析する手段;上
記測定値に従って、前記パラメーターの値を望ましいレベルに回復するために酸
洗い槽に添加されるべき補正薬品(なるべくならフッ化水素酸、硫酸及び酸化剤
)の量を適切に計算し、且つ補正薬品の前記量を前記酸洗い槽の中に添加する少
なくとも一つの装置を作動させる回復手段より成っている無硝酸酸洗い槽の制御
装置と制御方法である。
DISCLOSURE OF THE INVENTION It is an object of the present invention to provide a means for taking a sample of a tank to be analyzed; Means for analyzing the sample to determine a number of parameters according to the concentration of another inorganic strong acid) and potentiometer (to find the concentration of trivalent and divalent iron); Calculate the amount of correction chemicals (preferably hydrofluoric acid, sulfuric acid and oxidizing agent) to be added to the pickling tank to restore the value of A control device and a control method for a nitric acid-free pickling tank, comprising a recovery means for operating at least one device added to the washing tank.

【0025】 (発明を実施するための最良の形態) 図1は本発明に従う分析装置より成っている設備を概略的に示しており、下記
諸項より成っている: ・複数の酸洗いタンクV(V1,…,Vn); ・ここで既述した実施例では、同時に別のパラメーターについて作業する一組の
分析装置(A1,A2)を含む分析装置A(図2の簡単化した概略図を参照しな
がら後述する); ・複数の容器S(S1,S2,S3)その各々はタンクVの一つの中に添加され
るべき補正薬品(強酸、なるべくなら硫酸、フッ化水素酸及び酸化剤、なるべく
なら必ずしも過酸化水素ではなくても)の一つの与えられた濃度の溶液を収容し
ている。 ・分析装置Aのサンプリング入口I(図2)にタンクVを連結している、複数の
永久再循環配管; ・タンクVに容器Sを連結している、補正薬品を供給する複数の配管; ・分析装置Aが容器Sに容れられた補正薬品のタンクVの中への添加を可能にす
る添加手段。
FIG. 1 schematically shows a facility comprising an analyzer according to the invention, comprising: a plurality of pickling tanks V; (V1,..., Vn); In the embodiment described here, the analyzer A (comprising a simplified schematic diagram of FIG. 2) comprising a set of analyzers (A1, A2) working simultaneously on different parameters A plurality of containers S (S1, S2, S3) each of which is a correction chemical (strong acid, preferably sulfuric acid, hydrofluoric acid and oxidizing agent) to be added into one of the tanks V; (Preferably not necessarily hydrogen peroxide) at a given concentration. A plurality of permanent recirculation pipes connecting the tank V to the sampling inlet I of the analyzer A (FIG. 2); a plurality of pipes connecting the container S to the tank V, supplying correction chemicals; An adding means for allowing the analyzer A to add the correction chemical contained in the container S into the tank V;

【0026】 簡単のために、図1では寧ろその他の回路部品ばかりでなく、それ自体周知の
バルブ、ポンプ、アクチュエーター、濾過及び濯ぎの手段のような、本発明には
関係のない部品は省略された。
For the sake of simplicity, FIG. 1 omits not only other circuit parts but also parts not relevant to the invention, such as valves, pumps, actuators, filtration and rinsing means known per se. Was.

【0027】 分析装置AはタンクVから酸洗い溶液の試料を採取する手段;比伝導度と電位
差計方法論に従って、プリセットパラメーター(三価と二価の鉄のものだけでな
く、例えば硫酸のような強酸、及びフッ化水素酸の濃度)、酸化還元電位及び前
記希釈された試料の温度を測定するためそれを分析する手段、前記パラメーター
を調整するため容器SからタンクVに送られるべき補正薬品の量を計算する手段
及び前記補正薬品の計算された量を酸洗い槽中に送るため容器Sの出力で装置を
作動させる手段より成っている(図2)。
Analyzer A is a means for taking a sample of the pickling solution from tank V; according to the specific conductivity and potentiometer methodology, the preset parameters (not only those of trivalent and divalent iron, but also of sulfuric acid, for example) Means for analyzing the concentration of the strong acid and hydrofluoric acid), the oxidation-reduction potential and the temperature of the diluted sample, the correction chemicals to be sent from the vessel S to the tank V to adjust the parameters, It comprises means for calculating the amount and means for operating the device at the output of the container S for sending the calculated amount of said correction chemical into the pickling tank (FIG. 2).

【0028】 これより後、“硫酸”は任意の強鉱酸を意味するであろう。[0028] Hereinafter, "sulfuric acid" will mean any strong mineral acid.

【0029】 硫酸とフッ化水素酸の濃度を測定するのに必要な時間は鉄イオン濃度の測定に
必要なそれよりも短いから(まさに数分対約30分)、分析装置(A1,A2)
はなるべくなら分割されて、その各々は前記分析の中の一つだけ(硫酸とフッ化
水素酸、鉄イオン濃度の夫々の測定)に特殊化されるのがよい。
Since the time required to measure the concentrations of sulfuric acid and hydrofluoric acid is shorter than that required to measure the iron ion concentration (just several minutes to about 30 minutes), the analyzers (A1, A2)
Preferably, each is divided, preferably each of which is specialized to only one of the analyses (the respective measurements of sulfuric acid, hydrofluoric acid, and iron ion concentration).

【0030】 分析装置(A1,A2)はそれ自体既知の双方向送信手段を介して分析装置(
A1,A2)に連結されて、現場に(in loco)又は遠隔場所に設置できる、図
には示されていないより高レベルの論理演算器により操作され得る。
The analyzers (A1, A2) are connected to each other via a bidirectional transmission means known per se.
A1, A2) and can be operated by a higher level logic unit, not shown, which can be installed in loco or at a remote location.

【0031】 代案では、前記分析装置(A1,A2)は同型のものであって且つ酸類(硫酸
とフッ化水素酸)と鉄イオンの両方の濃度を測定するのに適した分析手段より成
ることが出来る。
Alternatively, said analyzers (A1, A2) are of the same type and comprise analytical means suitable for measuring the concentration of both acids (sulfuric acid and hydrofluoric acid) and iron ions. Can be done.

【0032】 斯かる場合、本発明に従う装置は分析装置(A1,A2)の中の一つが故障の
場合でも作業が出来た。
In such a case, the device according to the invention was able to work even if one of the analyzers (A1, A2) failed.

【0033】 図2は図1の分析装置A(A1,A2)の簡略化した図式を示しており、以下
の諸項の組合せ関係で成っている: ・サンプリングモジュールC、そのサンプリング入力I(I1,…,In)は酸
洗いタンクV(V1,…,Vn;図1)と分析装置A間の永久再循環配管に順々
に連結されており;分析されるべき槽の試料が容れられる少なくとも一つの容器
(図示されていない)がサンプリングモジュールCの内部に備えられる; ・分析用化学薬品が入っている試薬貯蔵部DR; ・分析に必要な量の化学薬品を引出して且つ分析容器CAの中に同薬品を移送す
るのに適した投薬手段D(D1,D2)、投薬手段Dの一部は高量の薬品を低確
度(約2から約5%まで)で引出すのに適しており、残りの投薬手段は少量の薬
品を高確度(約0.1%)で引出すのに適している;図2では低と高確度を持つ
投薬手段Dが夫々二つの異なった機能単位(D1,D2)に分けられている; ・測定電極(一般的に図2ではEMと名付けられる)を含んでおり、サンプリング
モジュールCから分析されるべき槽の試料を、投薬手段Dから分析に必要な化学
薬品を又容器W(図示されていない)から望まれる希釈率まで前記試料を希釈す
るのに必要な水(なるべくなら100マイクロジーメンス以下の伝導度を有して
いる)を受容れる分析容器CA;図2では、本発明の部分にはない、分析容器C
A中に存在するそれ以上の要素(攪拌機のような)は省略された; ・分析手順の制御と管理を為し、測定電極EMからの情報を取得して精巧に加工
し又容器S(図1)に容れられた補正薬品の溶液を酸洗い槽中に送る手段を作動
させる論理演算部UL。
FIG. 2 shows a simplified diagram of the analyzer A (A1, A2) of FIG. 1, consisting of a combination of the following items: a sampling module C, its sampling input I (I1 ,..., In) are in turn connected to a permanent recirculation line between the pickling tank V (V1,..., Vn; FIG. 1) and the analyzer A; at least the sample of the tank to be analyzed is contained. One container (not shown) is provided inside the sampling module C; a reagent reservoir DR containing the chemicals for analysis; Dosing means D (D1, D2) suitable for transferring the same drug into, and a part of the dosing means D is suitable for withdrawing a large amount of drug with low accuracy (from about 2 to about 5%). , The remaining dosing means is accurate Suitable for withdrawing in degrees (approximately 0.1%); in FIG. 2 the dosing means D with low and high accuracy are each divided into two different functional units (D1, D2); (Generally referred to as EM in FIG. 2), from the sampling module C to the sample of the tank to be analyzed, from the dosing means D to the chemicals required for the analysis and to the container W (not shown). Analytical vessel CA that receives the water (preferably having a conductivity of less than 100 microsiemens) necessary to dilute the sample to the desired dilution rate; FIG. 2 is not part of the invention , Analysis container C
Further elements present in A (such as a stirrer) have been omitted; control and control of the analysis procedure, obtain information from the measuring electrode EM, elaborate and process the vessel S (fig. A logic operation unit UL for activating means for sending the solution of the correction chemical contained in 1) into the pickling tank.

【0034】 好ましいがそれに制限するわけではない実施例では、機能単位D1の投薬手段
は一定送出量を持つ蠕動ポンプであり、一方機能単位D2の投薬手段は電気ステ
ッピングモーターにより操作される制酸材料(例えばPES)の注射器である。
In a preferred, but non-limiting embodiment, the dosing means of functional unit D1 is a peristaltic pump with a constant delivery, while the dosing means of functional unit D2 is an antacid material operated by an electric stepper motor (Eg, PES) syringe.

【0035】 再び好ましい実施例では、分析装置は又(これ以後は図3と4を参照して記述
される)各測定後に分析容器CAと測定電極EMを水で又与えられた回数の測定
後は薬品溶液(なるべくなら必ずしも10−20%塩酸と云うわけではないが)
で濯ぐことを可能にする手段も含む、斯くして測定電極EMを最適状態に保ち、
信頼できる分析データを持ち、保守中断を最少に減らし又電極寿命を高くあげる
ことを可能にする。
In the preferred embodiment again, the analyzer is also provided with an analytical vessel CA and a measuring electrode EM with water after each measurement (hereinafter described with reference to FIGS. 3 and 4) after a given number of measurements. Is a chemical solution (preferably not necessarily 10-20% hydrochloric acid)
Means to enable rinsing with, thus keeping the measuring electrode EM in an optimal state,
It has reliable analytical data and allows for minimal maintenance interruptions and increased electrode life.

【0036】 一定品質の最終製品を確保するために、酸洗いされるべき材料の各タイプ又は
族は規格と特性パラメーター(フッ化水素酸と硫酸濃度、三価と二価の鉄イオン
濃度、三価と二価の鉄イオン間の比、過酸化水素濃度、分析されるべき試料の温
度、等々)に従って処理されねばならない;本発明の好ましい実施例では、すべ
てが特定の作業段階に関係して酸洗い槽について別々の分析を行うことを可能に
する、分析装置Aの操作に関するものだけでなく各作業段階を特徴付けているパ
ラメーターは材料それ自身と二つの独特に相関した操作手順に分けられて且つ必
要な時には酸洗いされるべき材料に従って呼び出される論理演算部ULに記憶さ
れる。
[0036] In order to ensure a final product of constant quality, each type or family of material to be pickled is subject to specifications and characteristic parameters (hydrofluoric acid and sulfuric acid concentrations, trivalent and divalent iron ion concentrations, Must be processed according to the ratio between divalent and divalent iron ions, the concentration of hydrogen peroxide, the temperature of the sample to be analyzed, etc .; in a preferred embodiment of the invention, all The parameters that characterize each working step, as well as those relating to the operation of Analyzer A, which enable a separate analysis to be performed on the pickling tank, can be divided into the material itself and two uniquely correlated operating procedures. When necessary, it is stored in the logical operation unit UL called according to the material to be pickled.

【0037】 なるべくなら必ずしもそうではないが、操作手順は少なくとも以下の情報より
成っている: ・実行されるべき分析の順序と種類; ・酸洗い槽についてのパラメーターの既定された値; ・規定値に関して許容できる偏差の大きさ、それを越えると論理演算部ULが酸
洗い槽の中に容器Sに容れられた補正薬品の溶液を送る前記手段を作動させる;
・分析されるべき酸洗い槽の試料の分析容器CAにおける水との希釈率。
The operating procedure comprises, but preferably not necessarily, at least the following information: the sequence and type of analysis to be performed; the predefined values of the parameters for the pickling bath; The magnitude of the deviation which is permissible with regard to which, the logic unit UL activates said means for feeding the solution of the correction chemical contained in the container S into the pickling tank;
The dilution ratio of the sample of the pickling tank to be analyzed with water in the analysis container CA.

【0038】 分析装置Aの適正な操作は定期的に且つ自動的に有効に点検できる;この目的
のために本発明の好ましい実施例では、更なる効果的な自動較正手順が与えられ
た回数の分析の後活性化する論理演算部ULに保存され、且つ容器(なるべくな
ら然し必ずしも試薬貯蔵部DRに設置されたと云うわけではない)から既知の組
成を有している標準溶液の一定量を引出して、それを分析容器CAの中に移送し
、それを分析し、得られた分析結果を既知の組成と比較してもしも得られた分析
結果と既知の濃度との間のずれが望まれる値よりも大きければ警報信号を発する
機能的諸段階より成っている。
[0038] Proper operation of the analyzer A can be effectively and periodically checked automatically; for this purpose a preferred embodiment of the invention provides a further effective auto-calibration procedure for a given number of times. Withdrawing an aliquot of a standard solution having a known composition from a container (preferably but not necessarily located in the reagent storage DR) which is stored in the logic operation unit UL which is activated after the analysis. Then, it is transferred into an analysis container CA, analyzed, and the obtained analysis result is compared with a known composition. If the difference between the obtained analysis result and the known concentration is desired, If it is greater, it comprises functional steps for issuing a warning signal.

【0039】 図では示されていない本発明の実施例によれば、論理演算部ULは中央操作部
及び/又はより高レベルの論理演算部に連結できて、それによって制御と管理が
為され得る;上記のように、このより高レベルの論理演算部は“その場”又は遠
隔場所に設置できる。
According to an embodiment of the invention not shown in the figures, the logic unit UL can be connected to a central control unit and / or a higher-level logic unit so that control and management can be performed. As noted above, this higher level logic unit may be located "on the fly" or at a remote location.

【0040】 特に作業活動の各変化の際、中央部の操作員は一つ又はそれ以上の論理演算部
ULにより実行される操作手順を修正できて、開始されるべき活動に関したもの
を活性化する;操作員は又一つ又はそれ以上の論理演算部ULから操作手順を呼
出して、それを修正し且つ論理演算部ULにより実行されるべきそれを持ち及び
/又は論理演算部ULにそれを保存する新しい操作手順をインプットすることも
出来る。
In particular, at each change of work activity, the central operator can modify the operating procedure performed by one or more logic units UL and activate those relating to the activity to be started The operator also invokes the operating procedure from one or more of the logic units UL, modifies it and has it to be executed by the logic unit UL and / or sends it to the logic unit UL. You can also enter new operating procedures to be saved.

【0041】 酸洗い槽の分析に使用される分析方法は本発明の一部であり、既述した詳細を
もっとよく理解するため今記述されるであろう。
The analytical method used for the analysis of the pickling bath is part of the present invention and will now be described for a better understanding of the details already set forth.

【0042】 a)フッ化水素酸及び硫酸(又はフッ化水素酸に関する以外の強酸)の伝導度 決定法。 この決定法はフッ化水素酸のような弱酸と硫酸のような強酸の混合液により形
成される水溶液では、溶液の伝導度は同じ濃度における強酸のそれに実際上等価
である;その方法は又(硫酸濃度を測定するため十分に希釈した槽の試料につい
ての最初の伝導度測定に続く段階で)既知濃度の塩として溶液中に存在する金属
陽イオンに対するフッ化水素酸の高い親和力も利用する。塩の陰イオンの大部分
は寧ろ強酸(例えば硝酸又は塩酸)から由来するから金属陽イオンとフッ化水素
酸のフッ素錯体を形成する反応は2番目の伝導度測定により測定された、十分に
解離した強酸の等価な量の形成に起因する伝導度の重大な増加を起すであろう。
A ) A method for determining the conductivity of hydrofluoric acid and sulfuric acid (or strong acids other than those related to hydrofluoric acid) . This method of determination is that in aqueous solutions formed by a mixture of a weak acid such as hydrofluoric acid and a strong acid such as sulfuric acid, the conductivity of the solution is practically equivalent to that of a strong acid at the same concentration; It also utilizes the high affinity of hydrofluoric acid for metal cations present in solution as a salt of known concentration (in a step subsequent to the first conductivity measurement on a sufficiently diluted bath sample to measure sulfuric acid concentration). Most of the anions in the salt are derived from strong acids (eg, nitric acid or hydrochloric acid), so the reaction to form the fluorine complex of the metal cation and hydrofluoric acid was determined by a second conductivity measurement, which was fully dissociated. Will cause a significant increase in conductivity due to the formation of an equivalent amount of strong acid.

【0043】 例えば: nHF+Fe(NO33→FeFn (3-n)++nHNO3 それ故、斯かる伝導度の増加は適正な較正後に定量的に測定できるフッ化水素酸
の濃度に比例する。斯かる塩類は例えば硝酸第二鉄、塩化第二鉄、硝酸アルミニ
ウム、塩化アルミニウムであり得る;本発明の好ましい実施例では、硝酸第二鉄
・9H2Oが750g/lの濃度で使用される。
For example: nHF + Fe (NO 3 ) 3 → FeF n (3-n) ++ nHNO 3 Therefore, such an increase in conductivity is proportional to the concentration of hydrofluoric acid which can be measured quantitatively after proper calibration. . Such salts can be, for example, ferric nitrate, ferric chloride, aluminum nitrate, aluminum chloride; in a preferred embodiment of the invention, ferric nitrate.9H 2 O is used at a concentration of 750 g / l. .

【0044】 酸濃度の変動から伝導度の十分に線形な依存性を確実にするため、試料の希釈
は分析されるべき槽中に存在する酸の濃度の関数として注意深く評価されねばな
らない;制限しない例として、200g/lまでの硫酸濃度と60g/lまでの
フッ化水素酸濃度、1:100から5:100までの希釈率、そしてなるべくな
ら4:100が許容できると考えられる。
In order to ensure a sufficiently linear dependence of the conductivity from fluctuations in the acid concentration, the dilution of the sample must be carefully evaluated as a function of the concentration of the acid present in the vessel to be analyzed; By way of example, sulfuric acid concentrations up to 200 g / l and hydrofluoric acid concentrations up to 60 g / l, dilution ratios from 1: 100 to 5: 100 and preferably 4: 100 are considered to be acceptable.

【0045】 信頼できる結果(それは分析装置Aの論理演算部ULにより管理されねばなら
ない)の取得に本質的なもう一つの変数は水で希釈後の試料の温度である;事実
、工業では水の温度は天候、水源及び容器Wの中での保持時間に従ってかなりの
変動(通常+5と+40℃の間)を持ち得る。
Another variable essential for obtaining reliable results (which must be managed by the logic unit UL of analyzer A) is the temperature of the sample after dilution with water; The temperature can have a considerable variation (usually between +5 and + 40 ° C.) according to the weather, the water source and the holding time in the container W.

【0046】 伝導度測定が温度によって大きく影響を受けることは明らかである、又通常こ
の問題は測定装置の中に組込まれた自動補償システムにより克服される;現在の
場合、自動補償は第一の伝導度測定(硫酸濃度の決定)に関する効果でのみ正確
に調整できて、溶液組成が変化するので硝酸第二鉄の添加後に行われる第二のそ
れ(フッ化水素酸濃度の決定)に関してではない、又事実、温度からのその依存
性は硝酸第二鉄添加の前と後では違っている。
It is clear that conductivity measurements are greatly affected by temperature, and this problem is usually overcome by an automatic compensation system built into the measurement device; in the present case, automatic compensation is the first It can only be adjusted precisely with the effect on the conductivity measurement (determination of the sulfuric acid concentration) and not on the second one (determination of the hydrofluoric acid concentration) performed after the addition of ferric nitrate as the solution composition changes And, in fact, its dependence on temperature is different before and after ferric nitrate addition.

【0047】 この重大な問題は本発明に従う分析装置Aにより解決される、そこでは論理演
算部ULが試料温度に依存している硝酸第二鉄溶液の容積v3の添加に起因する
伝導度の変化を考慮する。
This significant problem is solved by the analyzer A according to the invention, in which the logic unit UL changes the conductivity due to the addition of the volume v3 of the ferric nitrate solution which is dependent on the sample temperature. Consider.

【0048】 滴定中に使用される硝酸第二鉄の量はフッ化水素酸の完全な錯体化を確実にせ
ねばならない;考察中のシステムでは、60g/l以下のフッ化水素酸濃度につ
いて硝酸第二鉄・9H2Oの750g/l溶液の容積v3と槽の試料の容積v1
の間の比が0.5より高くなければならないそしてなるべくなら1がよい。
The amount of ferric nitrate used during the titration must ensure complete complexation of hydrofluoric acid; in the system under consideration, for nitric acid concentrations of less than 60 g / l, ferric · 9H 2 O in 750 g / l volume of the sample volume v3 and bath solutions v1
The ratio between must be higher than 0.5 and preferably 1 is better.

【0049】 制限を付けない実施例として、以下の操作手順が試料の容積希釈率4:100
について関連する計算と共に与えられる: ・4:100の希釈率を得るために100マイクロジーメンスより少ない伝導度
を有している与えられた水の容積v2を投薬手段D2により分析容器CAに充填
する; ・分析されるべき酸洗い槽の試料の与えられた容積v1をサンプリングモジュー
ルCから(投薬手段D2により)汲上げる; ・溶液の攪拌を開始する; ・第一の伝導度測定(L1); ・硝酸第二鉄・9H2Oの750g/l溶液の与えられた容積v3=v1の添加
; ・溶液の攪拌とその温度Tの測定; ・第二の伝導度測定(L2)。
As a non-limiting example, the following procedure was followed by a sample volume dilution of 4: 100.
Filling the analytical vessel CA with the dosing means D2 a given water volume v2 having a conductivity of less than 100 microSiemens to obtain a dilution of 4: 100; Pumping a given volume v1 of the sample of the pickling tank to be analyzed from the sampling module C (by the dosing means D2); starting stirring of the solution; first conductivity measurement (L 1 ); Addition of a given volume v3 = v1 of a 750 g / l solution of ferric nitrate 9H 2 O; stirring of the solution and measurement of its temperature T; second conductivity measurement (L 2 ).

【0050】 論理演算部ULはデータL1,L2,Tを取得して以下の計算により酸類の濃度
を自動的に見出す: ・硫酸濃度(g/l): a・L1 2+b・L1−c ・フッ化水素酸濃度(g/l): a1・δ2+b1・δ−c1 ここで: a,b,c,a1,b1,c1は二次方程式の係数であり; δ=L2−L1−φ; φ=c2+(c3・T); c2,c3は第二の伝導度測定の前に希釈された試料に添加される硝酸第二鉄・9
2Oの量に依存する定数である。
The logical operation unit UL data L 1, L 2, to get the T automatically find the concentration of the acid by the following calculation: Sulfuric acid concentration (g / l): a · L 1 2 + b · L 1 -c · hydrofluoric acid concentration (g / l): a 1 · δ 2 + b 1 · δ-c 1 where: a, b, c, coefficients a 1, b 1, c 1 is quadratic Δ = L 2 −L 1 −φ; φ = c 2 + (c 3 · T); where c 2 and c 3 are nitric acid added to the diluted sample before the second conductivity measurement. Nitetsu 9
It is a constant depending on the amount of H 2 O.

【0051】 この実施例では: a=0.0066;b=5.015;c=6.98; a1=0.0120;b1=2.881;c1=3.81; c2=9.632;c3=0.297。[0051] In this embodiment: a = 0.0066; b = 5.015 ; c = 6.98; a 1 = 0.0120; b 1 = 2.881; c 1 = 3.81; c 2 = 9.632; c 3 = 0.297.

【0052】 図3は特殊な形態が溶液の高粘度に起因するネガティブな効果を最少にし且つ
測定白金板の濯ぎを容易にすることを許す、伝導度セルCCの特徴を示す。
FIG. 3 shows the characteristics of the conductivity cell CC that allows the special morphology to minimize the negative effects due to the high viscosity of the solution and to facilitate the rinsing of the measuring platinum plate.

【0053】 前記伝導度セルCCはガラス製で実質的に円筒形状を有しており、二つの白金
黒の板ELを含んでいる中空本体Bより成っている;中空本体Bの下部と上部に
は分析されるべき試料を中空本体Bの内部で循環させる孔(F1,F2)がある
The conductivity cell CC is made of glass and has a substantially cylindrical shape and consists of a hollow body B containing two platinum black plates EL; Has holes (F1, F2) for circulating the sample to be analyzed inside the hollow body B.

【0054】 なるべくなら、中空本体Bは約20mm(そしてとにかく約17と23mmの
間より成る)の直径と約40mm(そしてとにかく約35と45mmの間より成
る)の高さを持つ;EL板の寸法は約10×5mm(そしてとにかく約8×12
mmと約3×7mmの間)であり、お互いの距離は約15mm(そしてとにかく
約12と18mmの間)である。
Preferably, the hollow body B has a diameter of about 20 mm (and comprises anyway between about 17 and 23 mm) and a height of about 40 mm (and comprises anyway between about 35 and 45 mm); The dimensions are about 10 x 5 mm (and about 8 x 12
mm and about 3 × 7 mm) and the distance to each other is about 15 mm (and between about 12 and 18 mm anyway).

【0055】 電極ELの分極を避けるために、伝導度セルCCに接続される測定電気回路(
図示されていない)は高周波数(25と40kHzの間)で動作せねばならない
In order to avoid polarization of the electrode EL, a measuring electric circuit (
(Not shown) must operate at high frequencies (between 25 and 40 kHz).

【0056】 b)二価の鉄の決定法 二価の鉄の決定法は古典的方法論に従って過マンガン酸カリウム滴定法により、
電位差分析を通して為すことが出来る。
B) Method for determination of divalent iron The method for determination of divalent iron was determined by potassium permanganate titration according to classical methodology.
This can be done through potentiometric analysis.

【0057】 操作手順は以下を必要とする: ・希釈率≧1:50を得るために溢流管TPを通して与えられた水の容積v2を
分析容器CAの中に注入する; ・分析されるべき酸洗い槽の試料の与えられた容積v1をサンプリングモジュー
ルCから(投薬手段D2により)汲上げ、そして分析容器CAの中に前記試料を
添加する; ・強酸の溶液、例えば重量比1:1の硫酸溶液、の与えられた概略量の(投薬手
段D1による)分析容器CAの中への添加による希釈された酸洗い槽試料の酸性
化; ・投薬手段D2により分析容器CAの中に添加された0.1N過マンガン酸カリ
ウム溶液でプリセット終点を持っているか又は終点の自動探査による、電位差滴
定; ・分析容器CAを空にして濯ぐ。
The operating procedure requires the following: • Inject the volume v2 of the water provided through the overflow TP into the analytical vessel CA to obtain a dilution ratio ≧ 1: 50; Pump a given volume v1 of the sample in the pickling bath from the sampling module C (by the dosing means D2) and add the sample into the analysis vessel CA; a solution of a strong acid, eg 1: 1 by weight Acidification of the diluted pickling bath sample by addition of a given approximate amount of sulfuric acid solution into the analytical vessel CA (by the dosing means D1);-added into the analytical vessel CA by the dosing means D2 Potentiometric titration with 0.1 N potassium permanganate solution with preset end point or by automatic exploration of end point;-Empty and rinse analytical vessel CA.

【0058】 c)三価の鉄の決定法 三価の鉄はヨウ素滴定法により測定される、然し自動装置の使用と信頼できて再
現可能な結果の取得を可能にするには幾つかの特別の注意を払うことである。
C) Determination of trivalent iron Trivalent iron is measured by iodometric titration, but some special measures are required to allow the use of automated equipment and the acquisition of reliable and reproducible results. Is to pay attention.

【0059】 前記決定法は以下の操作手順を必要とする: ・希釈率≧1:50を得るために溢流管TPを通して与えられた水の容積v2を
分析容器CAの中に注入する; ・分析されるべき酸洗い槽の試料の与えられた容積v1をサンプリングモジュー
ルCから(投薬手段D2により)汲上げ、そして分析容器CAの中に前記試料を
添加する; ・攪拌の開始; ・既知濃度を有している硝酸ランタン溶液の既定の概略量の(投薬手段D1によ
る)分析容器CAの中への添加; ・攪拌せずに30秒待機; ・容積比1:1の塩酸溶液の既定概略量の(投薬手段D1による)分析容器CA
の中への添加; ・例えば1kg/lの濃度で、ヨウ化カリウム溶液の既定概略量の(投薬手段D
1による)分析容器CAの中への添加; ・攪拌せずに5分間の待機; ・溶液攪拌の開始; ・三価の鉄とヨウ化カリウムとの反応により遊離したヨウ素の(投薬手段D2に
より添加される)0.1Nチオ硫酸ナトリウムとの電位差滴定; ・分析容器CAを空にして水で濯ぐ。
The method of determination requires the following operating procedure: Inject the volume v2 of the given water through the overflow TP into the analytical vessel CA in order to obtain a dilution ratio ≧ 1: 50; Pump a given volume v1 of the sample of the pickling tank to be analyzed from the sampling module C (by the dosing means D2) and add the sample into the analysis vessel CA; start of agitation; known concentration Of a predetermined approximate amount of the lanthanum nitrate solution having the following formula (by the dosing means D1) into the analytical vessel CA: wait for 30 seconds without stirring; default definition of the hydrochloric acid solution with a volume ratio of 1: 1 Quantity of analytical container CA (by dosing means D1)
A predetermined approximate amount of potassium iodide solution, for example at a concentration of 1 kg / l (dosing means D
1) Addition into analysis vessel CA; 5 minutes without stirring; start of solution stirring; iodine released by reaction of trivalent iron with potassium iodide (by dosing means D2) Potentiometric titration with 0.1 N sodium thiosulfate (added);-Empty the analysis vessel CA and rinse with water.

【0060】 この自動分析について、最も目立つ面は硝酸ランタンの使用である;事実、鉄
イオンに連結したフッ素と錯体化できる陽イオンを含んでいる塩の添加はヨウ素
滴定分析による第二鉄イオンの定量分析には本質的である。
For this automated analysis, the most striking aspect is the use of lanthanum nitrate; in fact, the addition of salts containing cations capable of complexing with fluorine linked to iron ions involves the addition of ferric ions by iodometric analysis. It is essential for quantitative analysis.

【0061】 この分析は塩化カルシウムの溶液を使用して手動で実行できる;然し塩化カル
シウムは三価の鉄の自動滴定には使用できないことが証明された、何故ならば連
続的に分析容器CAの中の電極に付着し、重大なエラーと複雑な補修を引き起す
傾向があるフッ化カルシウムと硫酸カルシウムの引続く沈殿にある。逆に、ラン
タン塩は粉末状で付着しないフッ化ランタンを生成し、第二鉄イオンを定量的に
解放できる、斯くして高い信頼性と非常に制限された補修費で工程の自動管理を
可能にする。
This analysis can be performed manually using a solution of calcium chloride; however, it has been proven that calcium chloride cannot be used for automatic titration of trivalent iron, since it is necessary to continuously analyze the analytical vessel CA. The subsequent precipitation of calcium fluoride and calcium sulphate tends to adhere to the inner electrode and cause serious errors and complex repairs. Conversely, lanthanum salts produce lanthanum fluoride, which does not adhere in powder form, and can quantitatively release ferric ions, thus enabling automatic control of the process with high reliability and very limited repair costs To

【0062】 これと同じ結果はどのようにしてでもヨウ化カリウムとの引続く反応の間それ
を定量的に解放できる、鉄イオンについての錯化剤をシステムに添加することに
よっても達成できる;EDTA(エチレンジアミン四酢酸)のような錯化剤はこ
の目的に適合できる。
The same result can be achieved in any way by adding a complexing agent for iron ions to the system, which can quantitatively release it during the subsequent reaction with potassium iodide; EDTA Complexing agents such as (ethylenediaminetetraacetic acid) are suitable for this purpose.

【0063】 図4で概略的に図解されている電位差計システムは分析容器CAの中に浸され
た測定電極(作業環境には不活性)と前記分析容器CAの外側に設置され且つ小
さなプラスチックの管Tの末端に設置された多孔質隔壁SPを連続的に通過させ
られる電解液(タンクSRに容れられている)より成っている食塩水ブリッジを
通して測定下の溶液と接触している参照電極(なるべくならガラス製で、Ag/
AgClタイプ)より成っている。
The potentiometer system schematically illustrated in FIG. 4 comprises a measuring electrode (inactive in the working environment) immersed in an analytical container CA and a small plastic A reference electrode (which is in contact with the solution under measurement through a saline bridge consisting of an electrolyte (contained in a tank SR) that can be passed continuously through a porous partition SP located at the end of the tube T Preferably made of glass, Ag /
AgCl type).

【0064】 隔壁SPを通る電解液の連続通過は隔壁SPとフッ化水素酸の間の接触を避け
又電解液を連続的に更新するために、電気的導通に一致する意向である。
The continuous passage of the electrolyte through the partition SP is intended to coincide with the electrical conduction in order to avoid contact between the partition SP and hydrofluoric acid and to continuously renew the electrolyte.

【0065】 好ましい実施例では、測定電極Eはその末端で、その一方の面、下側の面を鏡
面仕上げした白金板Pを支えている制酸材料製の本体から作られ、斯くして板P
の測定面上に沈殿する反応生成物から誘導している塩類がそれを汚すことを予防
している。
In a preferred embodiment, the measuring electrode E is made at its end from a body made of an antacid material supporting a platinum plate P whose one surface, the lower surface, has been mirror-finished, thus the plate P
To prevent salts derived from the reaction product settling on the measuring surface of the sample from fouling it.

【0066】 都合好く、電解液(なるべくなら3モルの塩化カリウム)には粘度を高め且つ
流速を減らすためにグリセリン(20℃での粘度が1.15と1.45センチポ
アズを有しており、作業環境に不活性で且つ機能的に等価な他の安定な製品)の
10%溶液を添加できて、タンクSRの与えられた容積について電位差計システ
ムのより良い自律性を可能にする。
Advantageously, the electrolyte (preferably 3 moles of potassium chloride) has glycerin (viscosity at 20 ° C. 1.15 and 1.45 centipoise) to increase viscosity and reduce flow rate. , A 10% solution of another stable product that is inert and functionally equivalent to the working environment, allowing better autonomy of the potentiometer system for a given volume of tank SR.

【0067】 d)過酸化水素の決定法 ここで述べたもののような無硝酸酸洗い工程中の遊離過酸化水素の決定はフェ
ライト系及びマルテンサイト系鋼の処理において一般的に最終濯ぎの前の最後の
操作の時に使用される仕上げ/不動態化槽の制御のために必要である;通常前記
槽溶液は硫酸(20−60g/l)、過酸化水素(3−10g/l)そして時に
はフッ化水素酸より成っている。
D) Method for Determining Hydrogen Peroxide Determination of free hydrogen peroxide during a nitric acid-free pickling process, such as those described herein, is commonly used in the treatment of ferritic and martensitic steels prior to final rinsing. Necessary for control of the finishing / passivation bath used during the last operation; usually the bath solution is sulfuric acid (20-60 g / l), hydrogen peroxide (3-10 g / l) and sometimes hydrofluoric acid. Consists of hydrofluoric acid.

【0068】 過酸化水素の決定に使用される分析方法論と操作手順は酸洗い槽中の二価の鉄
の決定に使用されるのと同一である。
The analytical methodology and operating procedures used for the determination of hydrogen peroxide are the same as those used for the determination of divalent iron in the pickling tank.

【0069】 e)酸化還元電位の決定法 本発明に従う装置は二価の鉄の決定の前に、記述の電位差計システムに使用す
る希釈された酸洗い槽の試料に関して溶液の酸化還元電位を測定する;斯くして
得られた値はその希釈前に槽中で測定された酸化還元電位に非常に近い(±20
mV)。得られた値はシステムの補正操作の第一信号として使用されるべく論理
演算部ULの中に保存された値の範囲(通常200と550mVの間より成って
いる)と比較される:もし測定値が前記範囲外であるならば、分析装置Aの論理
演算部ULは分析手順を停止して警報を送信する。電位差計システムの較正は既
知の電位(通常468mV)の標準溶液についての酸化還元電位測定により既定
の頻度(例えば、週に1回)で為される。
E) Method of Determining the Redox Potential The device according to the invention measures the redox potential of the solution on the diluted pickling tank sample used in the potentiometer system described before the determination of the divalent iron. The value thus obtained is very close to the oxidation-reduction potential measured in the tank before its dilution (± 20
mV). The value obtained is compared to a range of values (usually consisting of between 200 and 550 mV) stored in the logic unit UL to be used as the first signal of the correction operation of the system: If the value is out of the range, the logical operation unit UL of the analyzer A stops the analysis procedure and sends an alarm. Calibration of the potentiometer system is performed at a predetermined frequency (eg, once a week) by measuring the redox potential of a standard solution of known potential (typically 468 mV).

【0070】 既述の如く、本発明に従う分析装置Aの論理演算部ULは、分析下にある酸洗
い槽の試料に関する望まれるパラメーターを測定後、容器Sに入れられた既知濃
度の補正薬品(硫酸、フッ化水素酸及び酸化剤)で溶液の各々の量を計算する、
前記薬品は望まれる組成値に回復するため酸洗い槽に時に応じて添加されている
、又補正薬品の前記計算された量を酸洗い槽中に送るため容器Sの出力で添加手
段(例えば、投薬ポンプ又は電磁弁のような)を作動させる。
As described above, the logical operation unit UL of the analyzer A according to the present invention measures the desired parameter relating to the sample in the pickling tank under analysis, and then corrects the known concentration correction chemical ( Sulfuric acid, hydrofluoric acid and oxidizing agent) to calculate the amount of each of the solutions,
The chemical is added from time to time to the pickling tank to restore the desired composition value, and addition means (e.g., Activate the dosing pump or solenoid valve).

【0071】 酸洗い槽に添加される補正薬品の補正量を持つために施設の特性値(タンクV
の容量、各添加手段の送出量、前記補正薬品のプリセットされた濃度値、前記薬
品の濃度、等々)が知られていて、論理演算部ULはまさに前記添加手段の作動
時間を計算せねばならない。
In order to have the correction amount of the correction chemical added to the pickling tank, the characteristic value of the facility (tank V
, The amount of delivery of each addition means, the preset concentration value of the correction medicine, the concentration of the medicine, etc.) are known, and the logical operation unit UL has to calculate exactly the operating time of the addition means. .

【0072】 本出願人の研究と実験は、硫酸、フッ化水素酸、三価の鉄イオン及び酸化剤の
酸洗い槽中の濃度を望ましい値に回復させるために、論理演算部ULは以下の表
現式により与えられる時間s(秒)の期間、硫酸、フッ化水素酸及び酸化剤溶液
の酸洗い槽中への添加を調節する添加手段の各々を作動させねばならないことを
示した: s=K・(v0−vm)・vb/p ここで: s=作動時間(秒); K=補正薬品の濃度に反比例する因子(l/g); v0=特定の補正薬品に与えられた濃度(g/l); vm=分析の結果得られた前記特定の補正薬品の濃度(g/l); vb=タンクの容量; p=添加手段の送出量(l/s)。
The applicant's research and experiments have shown that, in order to restore the concentrations of sulfuric acid, hydrofluoric acid, trivalent iron ions and oxidizing agent in the pickling tank to desired values, the logical operation unit UL It has been shown that for a period of time s (seconds) given by the expression, each of the addition means for controlling the addition of sulfuric acid, hydrofluoric acid and oxidant solution into the pickling tank must be activated: s = K · (v 0 −v m ) · v b / p where: s = operating time (seconds); K = factor (l / g) inversely proportional to the concentration of the correction chemical; v 0 = given the specific correction chemical V m = concentration of the specific correction chemical obtained as a result of the analysis (g / l); v b = volume of the tank; p = amount delivered by the addition means (l / s) .

【0073】 三価と二価の鉄イオンの濃度の間の比Rを望ましい値に戻すために、論理演算
部ULは酸化剤溶液を酸洗い槽中に送込む添加手段の作動時間s1(秒で)を以
下の操作により計算する: ・B1=A・R を計算する、ここでAは過マンガン酸塩による滴定から結果す
る二価の鉄イオン濃度(g/l)であり、Rは夫々三価と二価の鉄イオンの濃度
間の望まれる比であり、そしてB1は三価の鉄イオンの理論的濃度である; ・B1と三価の鉄イオンの測定濃度B(g/l)とを比較する; ・もしB≧B1(三価の鉄イオンの測定濃度が二価のそれよりも大きい)ならば
、論理演算部ULは動作しない; ・もしB<B1(三価の鉄イオン濃度が測定値よりも小さい)ならば、論理演算
部ULは酸化剤溶液の酸洗い槽への添加を調節する添加手段の作動時間s1を次
式によって計算する: s1=K・K1・C/p ここで: s1=作動時間(秒); K=補正薬品の濃度に反比例する因子(l/g); K1=タンク容量Vに比例する因子(l); C=(B1−B)/R=鉄イオン濃度(g/l)について望まれる値に回復する
ため酸化されるべき二価鉄イオンの量; p=添加手段の送出量(l/s)。
In order to return the ratio R between the concentration of trivalent and divalent iron ions to a desired value, the logical operation unit UL operates the addition time s 1 (to supply the oxidizing solution into the pickling tank). Calculate (in seconds) by the following operation: Calculate B 1 = A · R where A is the divalent iron ion concentration (g / l) resulting from titration with permanganate and R Is the desired ratio between the concentrations of trivalent and divalent iron ions, respectively, and B1 is the theoretical concentration of trivalent iron ions; B 1 and the measured concentration of trivalent iron ions B (g / L); if B ≧ B 1 (the measured concentration of trivalent iron ions is larger than that of divalent iron), the logic operation unit UL does not operate; if B <B 1 ( If the trivalent iron ion concentration is lower than the measured value), the logical operation unit UL adjusts the addition of the oxidizing agent solution to the pickling tank. That the operating time s 1 of adding means for calculating the following formula: s 1 = K · K 1 · C / p where: s 1 = actuating time (seconds); K = factor inversely proportional to the concentration of the correction chemicals (l K 1 = factor proportional to tank volume V (l); C = (B 1 -B) / R = second to be oxidized to restore the desired value for iron ion concentration (g / l) The amount of ferrous ions; p = the delivery amount of the addition means (l / s).

【0074】 代案として槽は以下の計算式に従って三価の鉄と二価の鉄の間の比Rの関数で
管理できる: ・全鉄イオンの計算T=A+B ここでAは過マンガン酸滴定分析から得られたFe2+の濃度でありBはヨウ素
滴定分析から得られたFe3+の濃度である; ・計算R=B/A; ・R(現在比)をR1(既定比)と比較する; ・もしR>R1ならば、論理演算部ULは酸化剤のどんな添加も行わない; ・もしR<R1ならば、論理演算部ULは次式に従って酸化剤溶液の酸洗い槽中
への添加を調節する添加手段の作動時間s1(秒)を計算する: s1=K・K1・C/p ここで、 C=A−[(A+B)/(R1+1)]=現在比Rを既定値R1に回復させるため
酸化するべき二価の鉄の量; s1=作動時間(秒); K=係数、タンクの容量V(l)に反比例する; p=添加手段の送出量(l/s)。
Alternatively, the vessel can be managed as a function of the ratio R between trivalent and divalent iron according to the following formula: Calculation of total iron ions T = A + B where A is the permanganate titration analysis a and B is the concentration of Fe 2+ obtained is the concentration of Fe 3+ obtained from iodometric analysis from; - calculating R = B / a; - R (present ratio) with R 1 (default ratio) comparison; • If R> if R 1, logical operation unit UL does not perform any addition of an oxidizing agent; - if if R <R 1, pickling bath of the oxidizing agent solution in accordance with the logic operation unit UL by the following equation Calculate the operating time s 1 (second) of the addition means for adjusting the addition into the medium: s 1 = K · K 1 · C / p where C = A-[(A + B) / (R 1 +1)] = amount of bivalent iron to oxidize to restore the present ratio R to the default R 1; s 1 = actuating time (seconds); K = coefficient, the tank Inversely proportional to the amount V (l); p = delivery of the addition means (l / s).

【0075】 図3は概略的に図2の分析容器CAの分解図を示し、伝導度型の測定システム
及び分析容器CAと測定セルCCの濯ぎ手段の好ましい実施例より成っている。
FIG. 3 schematically shows an exploded view of the analytical vessel CA of FIG. 2, comprising a preferred embodiment of a conductivity-type measuring system and rinsing means for the analytical vessel CA and the measuring cell CC.

【0076】 図3では下記を見ることが可能である: ・伝導度測定に使用される伝導度セルCC; ・分析容器CA; ・分析容器CAの中の液面を設定し、又同じく容器を空にするのに合わせてその
位置(論理演算部ULにより制御される)が移動できる溢流管TP; ・論理演算部ULにより制御される濯ぎ手段(F,U)、分析容器CAと伝導度
測定セルCCの濯ぎが可能である。
In FIG. 3, it is possible to see: a conductivity cell CC used for conductivity measurement; an analysis container CA; a liquid level in the analysis container CA, and An overflow pipe TP whose position (controlled by the logic operation unit UL) can be moved as it is emptied; rinsing means (F, U) controlled by the logic operation unit UL, the analysis container CA and the conductivity Rinsing of the measuring cell CC is possible.

【0077】 図4は概略的に図2の分析容器CAの分解図を示し、図3のそれと同様に、分
析容器CAと測定電極の濯ぎ手段の好ましい実施例だけでなく電位差測定システ
ムより成っている。
FIG. 4 schematically shows an exploded view of the analysis vessel CA of FIG. 2, which, like that of FIG. 3, comprises not only a preferred embodiment of the rinsing means for the analysis vessel CA and the measuring electrode but also a potential difference measuring system. I have.

【0078】 図4では下記を見ることが出来る: ・測定電極E、分析容器CAの外側に位置決めされた参照電極R、及び小さなプ
ラスチック管Tの一端に設置された多孔性隔壁SPを連続的に通過して、タンク
SRに容れられた電解液を含む食塩水ブリッジより成っている、電位差計システ
ム; ・分析容器CA; ・分析容器CAの中の液面を設定し、又同じ分析容器を空にするのに合わせてそ
の位置(論理演算部ULにより制御される)が移動できる溢流管TP; ・論理演算部ULにより制御される濯ぎ手段(F,U)、分析容器CA、電極E
の末端及び多孔性隔壁SPの濯ぎが可能である。
In FIG. 4, it can be seen that: The measuring electrode E, the reference electrode R positioned outside the analytical vessel CA, and the porous partition SP installed at one end of a small plastic tube T are continuously connected. A potentiometer system consisting of a saline bridge containing the electrolyte passed through and contained in a tank SR; an analysis vessel CA; setting the liquid level in the analysis vessel CA and emptying the same analysis vessel. An overflow pipe TP whose position (controlled by the logical operation unit UL) can be moved in accordance with the following: rinsing means (F, U) controlled by the logical operation unit UL, the analysis container CA, the electrode E
And the porous partition SP can be rinsed.

【0079】 図3と4で示された好ましい実施例では、斯かる濯ぎ手段は分析容器CAの上
縁に沿って配置された複数のスリットF及び測定電極Eと多孔性隔壁SP、伝導
度測定セルCC夫々の末端を水スプレーで濯ぐのに適したノズルUより成ってい
る;図3と4では、分析容器CA用の蓋CPと電位差計システムの電極E、小さ
な管T、伝導度測定セルCCを支持している手段MS及び投薬手段D(D1,D
2)と分析容器CAを連結している小さな管(図3と4には明示していない)も
見ることが出来る;蓋CPと支持手段MSはそれ自体周知であるし又兎に角本発
明には関係がないから、説明しないであろう。
In the preferred embodiment shown in FIGS. 3 and 4, such rinsing means comprises a plurality of slits F and measuring electrodes E and a porous septum SP arranged along the upper edge of the analytical vessel CA, a conductivity measurement. The end of each cell CC consists of a nozzle U suitable for rinsing with a water spray; in FIGS. 3 and 4, a lid CP for the analytical vessel CA and an electrode E of the potentiometer system, a small tube T, a conductivity measurement. The means MS supporting the cell CC and the dosing means D (D1, D
One can also see a small tube (not explicitly shown in FIGS. 3 and 4) linking 2) to the analysis vessel CA; the lid CP and the support means MS are well known per se, and the invention is not limited thereto. Has nothing to do with it and will not be described.

【0080】 なるべくなら、分析容器CA、測定電極Eと多孔性隔壁SP(夫々分析容器C
Aと伝導度測定セルCC)は各分析後に水で濯がれ又既定回数の分析後に化学薬
品溶液で洗浄される。
Preferably, the analysis container CA, the measurement electrode E, and the porous partition wall SP (each of the analysis container C
A and the conductivity measuring cell CC) are rinsed with water after each analysis and washed with a chemical solution after a predetermined number of analyses.

【0081】 各分析後に水で前記部品を濯ぐには、論理演算部ULは次々に以下の段階を実
行する: ・分析容器(CA)を完全に空にする; ・スリット(F)を通して多量の水を前記分析容器(CA)に注ぐ; ・電極Eの先端と多孔性隔壁SP、伝導度測定セルCC夫々が浸されるまで分析
容器(CA)を水で充たす; ・分析容器(CA)を空にする; ・更にノズル(U)を通してある程度の水をそれらの上に噴霧することにより電
極Eの先端と多孔性隔壁SP、伝導度測定セルCC夫々を濯ぐ; ・分析容器(CA)を空にし次の分析に備える。
To rinse the parts with water after each analysis, the logic unit UL performs the following steps one after the other: completely empty the analysis vessel (CA); a large amount of water through the slit (F). Is poured into the analysis container (CA);-Fill the analysis container (CA) with water until the tip of the electrode E, the porous partition wall SP, and the conductivity measurement cell CC are immersed;-Empty the analysis container (CA). Rinse the tip of the electrode E, the porous partition wall SP, and the conductivity measurement cell CC by spraying a certain amount of water onto them through the nozzle (U); and empty the analysis container (CA). Prepare for the next analysis.

【0082】 既定回数の分析後に化学薬品溶液(なるべくなら10−20%塩酸)で分析容
器CA、電極Eの先端と多孔性隔壁SP(分析容器CAと伝導度測定セルCC夫
々)を洗浄するには、論理演算部ULは電極Eの先端と多孔性隔壁SP、伝導度
測定セルCC夫々が浸されるまでスリットFを通して分析容器CAを水で満たし
、前記化学洗浄に必要な量の製品(なるべくなら塩酸)をタンク(なるべくなら
然し必ずしも試薬貯蔵部DRの内部に置かれたものでなくても良い)から汲上げ
てそれを分析容器CAの中に送る;既定の時間後論理演算部ULは分析容器CA
を空にして化学溶液のどんな痕跡も消し去るために、それを水で濯ぐ。
After the predetermined number of analyses, the analytical container CA, the tip of the electrode E and the porous partition wall SP (the analytical container CA and the conductivity measuring cell CC, respectively) are washed with a chemical solution (preferably 10-20% hydrochloric acid). The logical operation unit UL fills the analysis container CA with water through the slit F until the tip of the electrode E, the porous partition wall SP, and the conductivity measurement cell CC are immersed, and the amount of the product necessary for the chemical cleaning (as much as possible) Then, hydrochloric acid) is pumped from a tank (preferably not necessarily placed inside the reagent storage unit DR) and sent to the analysis container CA; after a predetermined time, the logical operation unit UL Analysis container CA
It is rinsed with water in order to empty and erase any traces of the chemical solution.

【0083】 更に、作業しない時は、分析容器CAは電極Eの先端、多孔性隔壁SP、及び
伝導度測定セルCCのどんな汚れ及び/又は傷も避けるために、スリットFとノ
ズルUを通して水で満たされる。
Furthermore, when not in operation, the analytical vessel CA is filled with water through the slit F and the nozzle U in order to avoid any dirt and / or scratches on the tip of the electrode E, the porous partition SP and the conductivity measuring cell CC. It is.

【0084】 通常の経験により又当然の技術的進化によって示唆されるように、本記述に従
って、尚本発明の範囲内に残っている酸洗い槽の制御装置を修正し改良すること
は専門家には可能である。
According to the present description, as suggested by routine experience and by natural technological evolution, modifying and improving the control of the pickling tank, which still remains within the scope of the present invention, is to the expert. Is possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明に従う分析装置より成っている設備を概略的に示す図。FIG. 1 is a diagram schematically showing equipment comprising an analyzer according to the present invention.

【図2】 本発明に従う分析装置の簡単化した図式。FIG. 2 is a simplified diagram of an analyzer according to the invention.

【図3】 伝導度測定システム及び容器それ自身と測定電極の濯ぎ手段の好ましい実施例
より成っている、図2の分析容器CAを概略的に示す図。
FIG. 3 schematically shows the analysis container CA of FIG. 2 comprising a preferred embodiment of the conductivity measuring system and the container itself and the rinsing means of the measuring electrode.

【図4】 電位差測定システム及び容器それ自身と測定電極の濯ぎ手段の好ましい実施例
より成っている、図2の分析容器CAを概略的に示す図。
FIG. 4 schematically shows the analysis container CA of FIG. 2 comprising a preferred embodiment of a potentiometric measurement system and a rinsing means for the container itself and the measuring electrode.

【手続補正書】特許協力条約第34条補正の翻訳文提出書[Procedural Amendment] Submission of translation of Article 34 Amendment of the Patent Cooperation Treaty

【提出日】平成12年11月13日(2000.11.13)[Submission date] November 13, 2000 (2001.11.13)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】全文[Correction target item name] Full text

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【発明の名称】鋼の酸洗い工程を制御する装置と方法Apparatus and method for controlling the pickling process of steel

【特許請求の範囲】[Claims]

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】 (技術分野) 本発明は炭素鋼、オーステナイト系、フェライト系及びマルテンサイト系ステ
ンレス鋼、2相鋼及び特殊合金について酸洗い工程を制御する装置と方法にある
、そこにおいて前記装置は(比伝導度と電位差計方法論に従って)精確なプロセ
スパラメーターを規定し且つ酸洗い槽中の必須化学薬品の望ましい濃度を回復す
るために酸洗い槽のサンプリングと前記試料の分析を自動的に操作する。
[0001] The present invention resides in an apparatus and method for controlling the pickling process for carbon steel, austenitic, ferritic and martensitic stainless steels, duplex stainless steels and special alloys, wherein the apparatus comprises: The pickling bath sampling and the analysis of said sample are automatically operated to define precise process parameters (according to specific conductivity and potentiometric methodology) and to restore the desired concentration of essential chemicals in the pickling bath.

【0002】 本発明は又処理中の特定の種類の物質の酸洗いについて最も適切な操作条件を
自動的に検索して実現化する遠隔作動できる操作手順の明確化を通して処理中の
鋼の特化した酸洗い条件を制御することも可能にする。
[0002] The present invention also specializes in the processing of steel through the clarification of remotely operable operating procedures that automatically retrieve and implement the most appropriate operating conditions for pickling of a particular type of material during processing. It is also possible to control the pickling conditions.

【0003】 (背景技術) 鋼製品(板、帯、管、棒のような)の圧延、引抜き、押出、熱処理では、不動
態と耐食性だけでなく立派な仕上り外観を得るため、及び更なる作業を可能にす
るための両方で取除かねばならない酸化物層がその表面に形成される。
BACKGROUND OF THE INVENTION In the rolling, drawing, extrusion and heat treatment of steel products (such as plates, strips, tubes, bars), not only passivation and corrosion resistance but also a fine finished appearance and further work are required. An oxide layer is formed on the surface which must be removed both to allow for

【0004】 前記表面の酸化物層は通常適当な希釈と温度で、無機鉱酸(硫酸、塩酸、硝酸
、フッ化水素酸)単独又は互いの混合液を含んでいる一つ又はそれ以上の酸浴の
作用、続いて少なくとも一回の水での仕上げ濯ぎに基づいた化学的処理(酸洗い
)により消去される。
The oxide layer on the surface, usually at an appropriate dilution and temperature, comprises one or more acids containing inorganic mineral acids (sulfuric, hydrochloric, nitric, hydrofluoric) alone or in a mixture with one another. The action of the bath is followed by a chemical treatment (pickling) based on at least one finishing rinse with water.

【0005】 ステンレス鋼については、通常の酸洗い工程(浸漬、噴霧又は乱流の何れか)
は硝酸とフッ化水素酸の混合液を必要とする;該工程は排水中の多量の硝酸塩類
の問題だけでなく大気中への反応副産物(極めて毒性のある窒素酸化物)の放出
による非常に深刻なエコロジカルな問題を引きずっている。
[0005] For stainless steel, the usual pickling process (either dipping, spraying or turbulent)
Requires a mixture of nitric acid and hydrofluoric acid; the process is not only due to the problem of large amounts of nitrates in the wastewater, but also due to the release of reaction by-products (extremely toxic nitrogen oxides) into the atmosphere. Dragging serious ecological problems.

【0006】 これ故、極最近代案となる多くの“エコロジカルな”工程が硝酸を無くすこと
を特徴として案出された。
[0006] Therefore, a number of "ecological" alternative processes have recently been devised that feature nitric acid elimination.

【0007】 斯かる工程の中で、特に工業的規模で有効なものは硫酸又は塩酸、フッ化水素
酸及び第二鉄イオンの混合液を使用するものである、そこでは酸洗い槽中の斯か
るイオンの適正な濃度は二酸化水素の添加によって維持される。斯かる工程の幾
つかはイタリア特許第1,245,594号と第1,255,655号(米国特 許US−A−5345383に対応している)及び欧州特許出願番号EP−A− 0769575 に記されている。
Among such processes, those particularly effective on an industrial scale are those that use a mixture of sulfuric acid or hydrochloric acid, hydrofluoric acid and ferric ions, where the mixture in a pickling tank is used. The proper concentration of such ions is maintained by the addition of hydrogen dioxide. Such several steps (corresponding to U.S. Patent US-A-5345383) Italian patent No. 1,245,594 and No. 1,255,655 and European Patent Application No. EP-A- 0769575 It is noted.

【0008】 伝統的な酸洗い技術では、工程の管理は通常酸性度の手動滴定、又は溶液の伝
導度及びその鉄含有量(又は溶液密度の測定による全金属量)の測定を通して酸
洗い槽の場当たり的な制御を含む;それは又特定のイオン選択性電極によってフ
ッ化水素酸の含有量の測定も可能である。
[0008] In traditional pickling techniques, the control of the process is usually performed by manual titration of the acidity or by measuring the conductivity of the solution and its iron content (or total metal by measuring solution density). Includes ad hoc control; it also allows for the measurement of hydrofluoric acid content by specific ion selective electrodes.

【0009】 これらの技術の幾つかはステンレス鋼の硝酸を基にした酸洗い工程の単独操作
の自動化に使用された。
[0009] Some of these techniques have been used to automate the single operation of a pickling process based on nitric acid in stainless steel.

【0010】 米国特許第4,060,717号(LECO社)は硝酸とフッ化水素酸を含ん
でいる酸洗い槽中の硝酸(又はその他の強酸)及びフッ化水素酸の濃度を測定す
るのにフッ素と水素イオン用のイオン選択性電極の使用を開示している;制御回
路により集められた電圧データは二つの酸の濃度を計算し且つ関連する濃度を調
整するためマイクロプロセッサーにより念入りに処理される。
US Pat. No. 4,060,717 (LECO) measures the concentration of nitric acid (or other strong acid) and hydrofluoric acid in a pickling bath containing nitric acid and hydrofluoric acid. Discloses the use of ion-selective electrodes for fluorine and hydrogen ions; the voltage data collected by the control circuit is carefully processed by a microprocessor to calculate the concentrations of the two acids and adjust the relevant concentrations. Is done.

【0011】 日本特許第55040908号(新日鐵)は酸の濃度を調整するために、溶液
がイオン交換膜を通過した後関連する陰イオンのイオン選択性電極による決定を
通してフッ化水素酸ともう一つの強酸(硝酸、塩酸、硫酸)の決定法を開示して
いる。
[0011] Japanese Patent No. 55040908 (Nippon Steel) discloses that to adjust the concentration of acid, hydrofluoric acid and another hydrofluoric acid are determined through ion-selective electrode determination of the relevant anions after the solution has passed through the ion-exchange membrane. A method for determining one strong acid (nitric acid, hydrochloric acid, sulfuric acid) is disclosed.

【0012】 米国特許第5,286,368号(フォックスボロ社)は混合液中の酸の濃度
の決定を可能にする、フッ素イオンに向う三価鉄イオンの錯体形成能力を通して
硝酸とフッ化水素酸の混合液中のフッ化水素酸の濃度を測定する。 日本特許第072944509号(川崎製鉄)はサリチル酸鉄錯体の吸光光度 法により鉄イオンの濃度を、鉄アセチルアセトン錯体の退色吸光光度法による遊 離フッ化水素酸の濃度をそして中和滴定法による遊離酸の総濃度を測定すること により酸洗い溶液中の遊離フッ化水素酸と硝酸及び鉄イオンのそれを測定する、 遊離硝酸の濃度は遊離酸の総濃度から遊離フッ化水素酸の濃度を引算することに より測定されている。 日本特許第081660003号(三菱重工)は酸洗い溶液中の鉄イオン濃度 を連続的に測定する方法に関する。
US Pat. No. 5,286,368 (Foxboro) discloses nitric acid and hydrogen fluoride through the ability to complex ferric ions towards fluoride ions, which allows the determination of the concentration of acid in the mixture. The concentration of hydrofluoric acid in the acid mixture is measured. Japanese Patent No. 072944509 (Kawasaki Steel) is the free acid concentration of iron ion by absorptiometry of salicylic acid iron complex, the concentration of Yu away hydrofluoric acid by discoloration spectrophotometry of iron acetylacetone complex and by neutralization titration method Measure the concentration of free hydrofluoric acid and nitric acid and iron ions in the pickling solution by measuring the total concentration of free nitric acid. The concentration of free nitric acid is calculated by subtracting the concentration of free hydrofluoric acid from the total concentration of free acid. It is more determined to. Japanese Patent No. 081660003 (Mitsubishi Heavy Industries) relates to a method for continuously measuring the iron ion concentration in a pickling solution .

【0013】 硝酸をベースにした斯かる酸洗い工程の連続自動管理は、例えば一日に二・三
回行われる時々の手動又は自動制御よりは良いけれども、処理される物質の品質
にに関する工程には不可欠ではない、何故ならば斯かる槽の機能的特性、特にス
テンレス鋼の酸洗いでは、斯かる槽は通常高い硝酸濃度(約12−15%)と約
2−5%のフッ化水素酸濃度を有しているからである。高い硝酸濃度は高い酸性
度と殆ど一定の酸化力の両方を同時に確保して、時々の化学薬品の添加を通した
工程を操作することを可能にしている。その上、酸濃度の決定は槽の酸洗い能力
の適切な制御を持つのに十分である。
[0013] The continuous automatic control of such pickling processes based on nitric acid is better than, for example, manual or automatic control sometimes performed two or three times a day, but for processes relating to the quality of the material to be treated. Is not essential, since the functional properties of such tanks, especially in pickling stainless steel, such tanks usually have a high nitric acid concentration (about 12-15%) and about 2-5% hydrofluoric acid. This is because it has a concentration. The high nitric acid concentration simultaneously ensures both high acidity and almost constant oxidizing power, making it possible to operate the process through the occasional addition of chemicals. Moreover, the determination of the acid concentration is sufficient to have adequate control of the pickling capacity of the bath.

【0014】 これに反して、前に引用したような無硝酸酸洗いシステムは第二鉄イオン(F
3+)濃度の測定、又はもっと良いのはFe3+/Fe2+比についてのシステムの
酸化特性を見出した。
On the contrary, the nitric acid-free pickling system as cited above has a ferric ion (F
e 3+ ) concentration measurements, or better, the oxidation properties of the system with respect to the Fe 3+ / Fe 2+ ratio.

【0015】 この場合、ステンレス帯鋼生産用の連続工程又は棒酸洗い用の自動、高生産性
設備における酸洗い反応(1)のせいで、 2Fe3++FeO→3Fe2+ (1) 三価の鉄イオン濃度、Fe3+/Fe2+比及び従って溶液の酸化能力は急速に減少
し、連続的に且つ強烈に槽の振舞いを変える傾向にある。
In this case, 2Fe 3+ + FeO → 3Fe 2+ (1) trivalent due to the pickling reaction (1) in a continuous process for producing stainless steel strip or an automatic, high-productivity facility for pickling bars. The iron ion concentration, the Fe 3+ / Fe 2+ ratio and therefore the oxidizing capacity of the solution tend to decrease rapidly and change the behavior of the vessel continuously and intensely.

【0016】 それ故、最適条件は過酸化水素のような酸化剤によって連続的に調整されねば
ならない。
Therefore, the optimum conditions must be continuously adjusted with an oxidizing agent such as hydrogen peroxide.

【0017】 更に、三価の鉄濃度の変動は槽中に存在する遊離酸の濃度にも間接的に影響を
与える。
Furthermore, fluctuations in the concentration of trivalent iron also indirectly affect the concentration of free acid present in the tank.

【0018】 例えば、硫酸、フッ化水素酸と第二鉄塩混合液をベースにした酸洗いシステム
では、この影響は以下の好ましい平衡式に関連がある: Fe3++nF-→FeFn (3-n)+ Fe2++SO4 2-→FeSO4 この故に、1対のFe3+/Fe2+の酸化/還元反応の間に、硫酸及びフッ化水
素酸夫々の遊離が関係する錯塩から起る、斯くして槽の組成が変る。
For example, in a pickling system based on a mixture of sulfuric acid, hydrofluoric acid and ferric salt, this effect is related to the following preferred equilibrium equation: Fe 3+ + nF → FeF n (3 -n) + Fe 2+ + SO 4 2- → FeSO 4 Therefore, during the oxidation / reduction reaction of a pair of Fe 3+ / Fe 2+ , from the complex salts involved in the release of sulfuric acid and hydrofluoric acid respectively. Occurs, thus altering the composition of the bath.

【0019】 時たまの分析測定によるプロセス制御、続いて最良の酸洗い条件に回復するた
めの化学薬品の大量の添加は、それ故、製品の品質とプロセスのコストに関して
反対の結論を持つ余りにも大きな槽パラメーターの変化をもたらす。
The occasional process control by analytical measurements, followed by the large addition of chemicals to restore the best pickling conditions, is therefore too great to have opposite conclusions regarding product quality and process cost. Causes changes in tank parameters.

【0020】 一方、頻繁な手動制御と関連する組成の調整は時間も掛かりコスト高である、
それ故これは十分な制御頻度(例えば1時間毎に1回の制御)を確保するには多
くの人手を必要とする。
On the other hand, adjusting the composition associated with frequent manual control is time consuming and costly.
Therefore, this requires a lot of manpower to ensure a sufficient control frequency (e.g., one control per hour).

【0021】 無硝酸酸洗い工程の臨界(criticality)は単位時間当たりに溶解する鉄の総量
、制御されるべき酸洗いタンクの数、異なった操作条件を必要とする物質の数及
びタンクの中に頻繁に酸を手動添加するのに必要な実行能力に明らかに関連する
The criticality of the nitric acid-free pickling process is the total amount of iron dissolved per unit time, the number of pickling tanks to be controlled, the number of substances requiring different operating conditions and the It is clearly related to the performance required to frequently add the acid manually.

【0022】 ステンレス帯鋼の連続酸洗い設備又は棒工程用の高生産性自動設備について前
に引用したようなステンレス鋼の酸洗い工程の管理は最終製品の品質に重大であ
ることを証明した;それは又反応物質のサンプリング、制御及び投薬に自動シス
テムの使用無しでは非経済的でもあり得る。
[0022] Control of the stainless steel pickling process as previously cited for stainless steel strip continuous pickling equipment or high productivity automated equipment for the bar process has proven critical to the quality of the final product; It can also be uneconomical without the use of automated systems for reactant sampling, control and dosing.

【0023】 本発明に従う制御装置と方法は斯かる工程の適正な管理について独特の技巧と
分析方法の利用を必要とする。
The control apparatus and method according to the present invention require the use of unique techniques and analytical methods for proper management of such steps.

【0024】 (発明の開示) 本発明の目的は分析されるべき槽の試料を採取する手段;前記試料の酸化還元
電位値とその温度を測定するだけでなく比伝導度方法論(フッ化水素酸、硫酸又
は別の無機強酸の濃度を見付けるため)及び電位差計方法論(三価と二価の鉄の
濃度を見付けるため)に従って多数のパラメーターを測定するために前記試料を
分析する手段;上記測定値に従って、前記パラメーターの値を望ましいレベルに
回復するために酸洗い槽に添加されるべき補正薬品(なるべくならフッ化水素酸
、硫酸及び酸化剤)の量を適切に計算し、且つ補正薬品の前記量を前記酸洗い槽
の中に添加する少なくとも一つの装置を作動させる回復手段より成っている無硝
酸酸洗い槽の制御装置である。 なるべくなら、測定されるパラメーターは硫酸の濃度、フッ化水素酸のそれ及 び二価と三価の鉄イオンのそれらである。 本発明の更なる目的は無硝酸酸洗い槽を制御するための制御方法であり、それ は少なくとも以下の諸段階より成っている: −酸洗い槽溶液の試料を採取する; −酸類、二価の鉄及び三価の鉄の酸洗い槽の前記試料中の濃度を測定する; −酸洗い槽の前記試料の酸化還元電位と温度を測定する; −酸洗い槽に補正薬品の計算量を添加することにより前記酸洗い槽中の前記測定 濃度の値をプリセットレベルに回復させる。
DISCLOSURE OF THE INVENTION It is an object of the present invention to provide a means for collecting a sample of a tank to be analyzed; not only measuring the oxidation-reduction potential value of the sample and its temperature , but also the specific conductivity methodology (hydrofluoric acid) Means for analyzing said sample to determine a number of parameters according to a method for finding the concentration of sulfuric acid or another inorganic strong acid) and potentiometric methodology (for finding the concentration of trivalent and divalent iron); Appropriately calculate the amount of correction chemicals (preferably hydrofluoric acid, sulfuric acid and oxidizing agent) to be added to the pickling tank in order to restore the value of said parameter to the desired level, and A control device for a nitric acid-free pickling tank comprising recovery means for activating at least one device for adding an amount into said pickling tank. If possible, the parameters to be measured is their concentration, hydrofluoric acid it及 beauty divalent and trivalent iron ions of sulfuric acid. A further object of the invention is a control method for controlling a nitric acid-free pickling bath, which comprises at least the following steps: -taking a sample of the pickling bath solution; -acids, divalent Measuring the concentration of iron and trivalent iron in the sample in the pickling tank ; measuring the oxidation-reduction potential and temperature of the sample in the pickling tank ; adding the calculated amount of correction chemical to the pickling tank By doing so, the value of the measured concentration in the pickling tank is restored to a preset level.

【0025】 (発明を実施するための最良の形態) 図1は本発明に従う分析装置より成っている設備を概略的に示しており、下記
諸項より成っている: ・複数の酸洗いタンクV(V1,…,Vn); ・ここで既述した実施例では、同時に別のパラメーターについて作業する一組の
分析装置(A1,A2)を含む分析装置A(図2の簡単化した概略図を参照しな
がら後述する); ・複数の容器S(S1,S2,S3)その各々はタンクVの一つの中に添加され
るべき補正薬品(強酸、なるべくなら硫酸、フッ化水素酸及び酸化剤、なるべく
なら必ずしも過酸化水素ではなくても)の一つの与えられた濃度の溶液を収容し
ている。 ・分析装置Aのサンプリング入口I(図2)にタンクVを連結している、複数の
永久再循環配管; ・タンクVに容器Sを連結している、補正薬品を供給する複数の配管; ・分析装置Aが容器Sに容れられた補正薬品のタンクVの中への添加を可能にす
る添加手段。
FIG. 1 schematically shows a facility comprising an analyzer according to the invention, comprising: a plurality of pickling tanks V; (V1,..., Vn); In the embodiment described here, the analyzer A (comprising a simplified schematic diagram of FIG. 2) comprising a set of analyzers (A1, A2) working simultaneously on different parameters A plurality of containers S (S1, S2, S3) each of which is a correction chemical (strong acid, preferably sulfuric acid, hydrofluoric acid and oxidizing agent) to be added into one of the tanks V; (Preferably not necessarily hydrogen peroxide) at a given concentration. A plurality of permanent recirculation pipes connecting the tank V to the sampling inlet I of the analyzer A (FIG. 2); a plurality of pipes connecting the container S to the tank V, supplying correction chemicals; An adding means for allowing the analyzer A to add the correction chemical contained in the container S into the tank V;

【0026】 簡単のために、図1では寧ろその他の回路部品ばかりでなく、それ自体周知の
バルブ、ポンプ、アクチュエーター、濾過及び濯ぎの手段のような、本発明には
関係のない部品は省略された。
For the sake of simplicity, FIG. 1 omits not only other circuit parts but also parts not relevant to the invention, such as valves, pumps, actuators, filtration and rinsing means known per se. Was.

【0027】 分析装置AはタンクVから酸洗い溶液の試料を採取する手段;比伝導度と電位
差計方法論に従って、プリセットパラメーター(三価と二価の鉄のものだけでな
く、例えば硫酸のような強酸、及びフッ化水素酸の濃度)、酸化還元電位及び前
記希釈された試料の温度を測定するためそれを分析する手段、前記パラメーター
を調整するため容器SからタンクVに送られるべき補正薬品の量を計算する手段
及び前記補正薬品の計算された量を酸洗い槽中に送るため容器Sの出力で装置を
作動させる手段より成っている(図2)。
Analyzer A is a means for taking a sample of the pickling solution from tank V; according to the specific conductivity and potentiometer methodology, the preset parameters (not only those of trivalent and divalent iron, but also of sulfuric acid, for example) Means for analyzing the concentration of the strong acid and hydrofluoric acid), the oxidation-reduction potential and the temperature of the diluted sample, the correction chemicals to be sent from the vessel S to the tank V to adjust the parameters, It comprises means for calculating the amount and means for operating the device at the output of the container S for sending the calculated amount of said correction chemical into the pickling tank (FIG. 2).

【0028】 これより後、“硫酸”は任意の強鉱酸を意味するであろう。[0028] Hereinafter, "sulfuric acid" will mean any strong mineral acid.

【0029】 硫酸とフッ化水素酸の濃度を測定するのに必要な時間は鉄イオン濃度の測定に
必要なそれよりも短いから(まさに数分対約30分)、分析装置(A1,A2)
はなるべくなら分割されて、その各々は前記分析の中の一つだけ(硫酸とフッ化
水素酸、鉄イオン濃度の夫々の測定)に特殊化されるのがよい。
Since the time required to measure the concentrations of sulfuric acid and hydrofluoric acid is shorter than that required to measure the iron ion concentration (just several minutes to about 30 minutes), the analyzers (A1, A2)
Preferably, each is divided, preferably each of which is specialized to only one of the analyses (the respective measurements of sulfuric acid, hydrofluoric acid, and iron ion concentration).

【0030】 分析装置(A1,A2)はそれ自体既知の双方向送信手段を介して分析装置(
A1,A2)に連結されて、“in loco”又は遠隔場所に設置できる、図には示
されていないより高レベルの論理演算器により操作され得る。
The analyzers (A1, A2) are connected to each other via a bidirectional transmission means known per se.
A1, A2) and can be operated by a higher level logic unit, not shown, which can be installed "in loco" or at a remote location.

【0031】 代案では、前記分析装置(A1,A2)は同型のものであって且つ酸類(硫酸
とフッ化水素酸)と鉄イオンの両方の濃度を測定するのに適した分析手段より成
ることが出来る。
Alternatively, said analyzers (A1, A2) are of the same type and comprise analytical means suitable for measuring the concentration of both acids (sulfuric acid and hydrofluoric acid) and iron ions. Can be done.

【0032】 斯かる場合、本発明に従う装置は分析装置(A1,A2)の中の一つが故障の
場合でも作業が出来た。
In such a case, the device according to the invention was able to work even if one of the analyzers (A1, A2) failed.

【0033】 図2は図1の分析装置A(A1,A2)の簡略化した図式を示しており、以下
の諸項の組合せ関係で成っている: ・サンプリングモジュールC、そのサンプリング入力I(I1,…,In)は酸
洗いタンクV(V1,…,Vn;図1)と分析装置A間の永久再循環配管に順々
に連結されており;分析されるべき槽の試料が容れられる少なくとも一つの容器
(図示されていない)がサンプリングモジュールCの内部に備えられる; ・分析用化学薬品が入っている試薬貯蔵部DR; ・分析に必要な量の化学薬品を引出して且つ分析容器CAの中に同薬品を移送す
るのに適した投薬手段D(D1,D2)、投薬手段Dの一部は高量の薬品を低確
度(約2から約5%まで)で引出すのに適しており、残りの投薬手段は少量の薬
品を高確度(約0.1%)で引出すのに適している;図2では低と高確度を持つ
投薬手段Dが夫々二つの異なった機能単位(D1,D2)に分けられている; ・測定電極(一般的に図2ではEMと名付けられる)を含んでおり、サンプリング
モジュールCから分析されるべき槽の試料を、投薬手段Dから分析に必要な化学
薬品を又容器W(図示されていない)から望まれる希釈率まで前記試料を希釈す
るのに必要な水(なるべくなら100マイクロジーメンス以下の伝導度を有して
いる)を受容れる分析容器CA;図2では、本発明の部分にはない、分析容器C
A中に存在するそれ以上の要素(攪拌機のような)は省略された; ・分析手順の制御と管理を為し、測定電極EMからの情報を取得して精巧に加工
し又容器S(図1)に容れられた補正薬品の溶液を酸洗い槽中に送る手段を作動
させる論理演算部UL。
FIG. 2 shows a simplified diagram of the analyzer A (A1, A2) of FIG. 1, consisting of a combination of the following items: a sampling module C, its sampling input I (I1 ,..., In) are in turn connected to a permanent recirculation line between the pickling tank V (V1,..., Vn; FIG. 1) and the analyzer A; at least the sample of the tank to be analyzed is contained. One container (not shown) is provided inside the sampling module C; a reagent reservoir DR containing the chemicals for analysis; Dosing means D (D1, D2) suitable for transferring the same drug into, and a part of the dosing means D is suitable for withdrawing a large amount of drug with low accuracy (from about 2 to about 5%). , The remaining dosing means is accurate Suitable for withdrawing in degrees (approximately 0.1%); in FIG. 2 the dosing means D with low and high accuracy are each divided into two different functional units (D1, D2); (Generally referred to as EM in FIG. 2), from the sampling module C to the sample of the tank to be analyzed, from the dosing means D to the chemicals required for the analysis and to the container W (not shown). Analytical vessel CA that receives the water (preferably having a conductivity of less than 100 microsiemens) necessary to dilute the sample to the desired dilution rate; FIG. 2 is not part of the invention , Analysis container C
Further elements present in A (such as a stirrer) have been omitted; control and control of the analysis procedure, obtain information from the measuring electrode EM, elaborate and process the vessel S (fig. A logic operation unit UL for activating means for sending the solution of the correction chemical contained in 1) into the pickling tank.

【0034】 好ましいがそれに制限するわけではない実施例では、機能単位D1の投薬手段
は一定送出量を持つ蠕動ポンプであり、一方機能単位D2の投薬手段は電気ステ
ッピングモーターにより操作される制酸材料(例えばPES)の注射器である。
In a preferred, but non-limiting embodiment, the dosing means of functional unit D1 is a peristaltic pump with a constant delivery, while the dosing means of functional unit D2 is an antacid material operated by an electric stepper motor (Eg, PES) syringe.

【0035】 再び好ましい実施例では、分析装置は又(これ以後は図3と4を参照して記述
される)各測定後に分析容器CAと測定電極EMを水で又与えられた回数の測定
後は薬品溶液(なるべくなら必ずしも10−20%塩酸と云うわけではないが)
で濯ぐことを可能にする手段も含む、斯くして測定電極EMを最適状態に保ち、
信頼できる分析データを持ち、保守中断を最少に減らし又電極寿命を高くあげる
ことを可能にする。
In the preferred embodiment again, the analyzer is also provided with an analytical vessel CA and a measuring electrode EM with water after each measurement (hereinafter described with reference to FIGS. 3 and 4) after a given number of measurements. Is a chemical solution (preferably not necessarily 10-20% hydrochloric acid)
Means to enable rinsing with, thus keeping the measuring electrode EM in an optimal state,
It has reliable analytical data and allows for minimal maintenance interruptions and increased electrode life.

【0036】 一定品質の最終製品を確保するために、酸洗いされるべき材料の各タイプ又は
族は規格と特性パラメーター(フッ化水素酸と硫酸濃度、三価と二価の鉄イオン
濃度、三価と二価の鉄イオン間の比、過酸化水素濃度、分析されるべき試料の温
度、等々)に従って処理されねばならない;本発明の好ましい実施例では、すべ
てが特定の作業段階に関係して酸洗い槽について別々の分析を行うことを可能に
する、分析装置Aの操作に関するものだけでなく各作業段階を特徴付けているパ
ラメーターは材料それ自身と二つの独特に相関した操作手順に分けられて且つ必
要な時には酸洗いされるべき材料に従って呼び出される論理演算部ULに記憶さ
れる。
[0036] In order to ensure a final product of constant quality, each type or family of material to be pickled is subject to specifications and characteristic parameters (hydrofluoric acid and sulfuric acid concentrations, trivalent and divalent iron ion concentrations, Must be processed according to the ratio between divalent and divalent iron ions, the concentration of hydrogen peroxide, the temperature of the sample to be analyzed, etc .; in a preferred embodiment of the invention, all The parameters that characterize each working step, as well as those relating to the operation of Analyzer A, which enable a separate analysis to be performed on the pickling tank, can be divided into the material itself and two uniquely correlated operating procedures. When necessary, it is stored in the logical operation unit UL called according to the material to be pickled.

【0037】 なるべくなら必ずしもそうではないが、操作手順は少なくとも以下の情報より
成っている: ・実行されるべき分析の順序と種類; ・酸洗い槽についてのパラメーターの既定された値; ・規定値に関して許容できる偏差の大きさ、それを越えると論理演算部ULが酸
洗い槽の中に容器Sに容れられた補正薬品の溶液を送る前記手段を作動させる;
・分析されるべき酸洗い槽の試料の分析容器CAにおける水との希釈率。
The operating procedure comprises, but preferably not necessarily, at least the following information: the sequence and type of analysis to be performed; the predefined values of the parameters for the pickling bath; The magnitude of the deviation which is permissible with regard to which, the logic unit UL activates said means for feeding the solution of the correction chemical contained in the container S into the pickling tank;
The dilution ratio of the sample of the pickling tank to be analyzed with water in the analysis container CA.

【0038】 分析装置Aの適正な操作は定期的に且つ自動的に有効に点検できる;この目的
のために本発明の好ましい実施例では、更なる効果的な自動較正手順が与えられ
た回数の分析の後活性化する論理演算部ULに保存され、且つ容器(なるべくな
ら然し必ずしも試薬貯蔵部DRに設置されたと云うわけではない)から既知の組
成を有している標準溶液の一定量を引出して、それを分析容器CAの中に移送し
、それを分析し、得られた分析結果を既知の組成と比較してもしも得られた分析
結果と既知の濃度との間のずれが望まれる値よりも大きければ警報信号を発する
機能的諸段階より成っている。
[0038] Proper operation of the analyzer A can be effectively and periodically checked automatically; for this purpose a preferred embodiment of the invention provides a further effective auto-calibration procedure for a given number of times. Withdrawing an aliquot of a standard solution having a known composition from a container (preferably but not necessarily located in the reagent storage DR) which is stored in the logic operation unit UL which is activated after the analysis. Then, it is transferred into an analysis container CA, analyzed, and the obtained analysis result is compared with a known composition. If the difference between the obtained analysis result and the known concentration is desired, If it is greater, it comprises functional steps for issuing a warning signal.

【0039】 図では示されていない本発明の実施例によれば、論理演算部ULは中央操作部
及び/又はより高レベルの論理演算部に連結できて、それによって制御と管理が
為され得る;上記のように、このより高レベルの論理演算部は“その場”又は遠
隔場所に設置できる。
According to an embodiment of the invention not shown in the figures, the logic unit UL can be connected to a central control unit and / or a higher-level logic unit so that control and management can be performed. As noted above, this higher level logic unit may be located "on the fly" or at a remote location.

【0040】 特に作業活動の各変化の際、中央部の操作員は一つ又はそれ以上の論理演算部
ULにより実行される操作手順を修正できて、開始されるべき活動に関したもの
を活性化する;操作員は又一つ又はそれ以上の論理演算部ULから操作手順を呼
出して、それを修正し且つ論理演算部ULにより実行されるべきそれを持ち及び
/又は論理演算部ULにそれを保存する新しい操作手順をインプットすることも
出来る。
In particular, at each change of work activity, the central operator can modify the operating procedure performed by one or more logic units UL and activate those relating to the activity to be started The operator also invokes the operating procedure from one or more of the logic units UL, modifies it and has it to be executed by the logic unit UL and / or sends it to the logic unit UL. You can also enter new operating procedures to be saved.

【0041】 酸洗い槽の分析に使用される分析方法は本発明の一部であり、既述した詳細を
もっとよく理解するため今記述されるであろう。
The analytical method used for the analysis of the pickling bath is part of the present invention and will now be described for a better understanding of the details already set forth.

【0042】 a)フッ化水素酸及び硫酸(又はフッ化水素酸に関する以外の強酸)の伝導度 決定法。 この決定法はフッ化水素酸のような弱酸と硫酸のような強酸の混合液により形
成される水溶液では、溶液の伝導度は同じ濃度における強酸のそれに実際上等価
である;その方法は又(硫酸濃度を測定するため十分に希釈した槽の試料につい
ての最初の伝導度測定に続く段階で)既知濃度の塩として溶液中に存在する金属
陽イオンに対するフッ化水素酸の高い親和力も利用する。塩の陰イオンの大部分
は寧ろ強酸(例えば硝酸又は塩酸)から由来するから金属陽イオンとフッ化水素
酸のフッ素錯体を形成する反応は2番目の伝導度測定により測定された、十分に
解離した強酸の等価な量の形成に起因する伝導度の重大な増加を起すであろう。
A ) A method for determining the conductivity of hydrofluoric acid and sulfuric acid (or strong acids other than those related to hydrofluoric acid) . This method of determination is that in aqueous solutions formed by a mixture of a weak acid such as hydrofluoric acid and a strong acid such as sulfuric acid, the conductivity of the solution is practically equivalent to that of a strong acid at the same concentration; It also utilizes the high affinity of hydrofluoric acid for metal cations present in solution as a salt of known concentration (in a step subsequent to the first conductivity measurement on a sufficiently diluted bath sample to measure sulfuric acid concentration). Most of the anions in the salt are derived from strong acids (eg, nitric acid or hydrochloric acid), so the reaction to form the fluorine complex of the metal cation and hydrofluoric acid was determined by a second conductivity measurement, which was fully dissociated. Will cause a significant increase in conductivity due to the formation of an equivalent amount of strong acid.

【0043】 例えば: nHF+Fe(NO33→FeFn (3-n)++nHNO3それ故、斯
かる伝導度の増加は適正な較正後に定量的に測定できるフッ化水素酸の濃度に比
例する。斯かる塩類は例えば硝酸第二鉄、塩化第二鉄、硝酸アルミニウム、塩化
アルミニウムであり得る;本発明の好ましい実施例では、硝酸第二鉄・9H2
が750g/lの濃度で使用される。
For example: nHF + Fe (NO 3 ) 3 → FeF n (3-n) ++ nHNO 3 Therefore, such an increase in conductivity is proportional to the concentration of hydrofluoric acid which can be measured quantitatively after proper calibration. . Such salts can be, for example, ferric nitrate, ferric chloride, aluminum nitrate, aluminum chloride; in a preferred embodiment of the invention, ferric nitrate.9H 2 O
Are used at a concentration of 750 g / l.

【0044】 酸濃度の変動から伝導度の十分に線形な依存性を確実にするため、試料の希釈
は分析されるべき槽中に存在する酸の濃度の関数として注意深く評価されねばな
らない;制限しない例として、200g/lまでの硫酸濃度と60g/lまでの
フッ化水素酸濃度、1:100から5:100までの希釈率、そしてなるべくな
ら4:100が許容できると考えられる。
In order to ensure a sufficiently linear dependence of the conductivity from fluctuations in the acid concentration, the dilution of the sample must be carefully evaluated as a function of the concentration of the acid present in the vessel to be analyzed; By way of example, sulfuric acid concentrations up to 200 g / l and hydrofluoric acid concentrations up to 60 g / l, dilution ratios from 1: 100 to 5: 100 and preferably 4: 100 are considered to be acceptable.

【0045】 信頼できる結果(それは分析装置Aの論理演算部ULにより管理されねばなら
ない)の取得に本質的なもう一つの変数は水で希釈後の試料の温度である;事実
、工業では水の温度は天候、水源及び容器Wの中での保持時間に従ってかなりの
変動(通常+5と+40℃の間)を持ち得る。
Another variable essential for obtaining reliable results (which must be managed by the logic unit UL of analyzer A) is the temperature of the sample after dilution with water; The temperature can have a considerable variation (usually between +5 and + 40 ° C.) according to the weather, the water source and the holding time in the container W.

【0046】 伝導度測定が温度によって大きく影響を受けることは明らかである、又通常こ
の問題は測定装置の中に組込まれた自動補償システムにより克服される;現在の
場合、自動補償は第一の伝導度測定(硫酸濃度の決定)に関する効果でのみ正確
に調整できて、溶液組成が変化するので硝酸第二鉄の添加後に行われる第二のそ
れ(フッ化水素酸濃度の決定)に関してではない、又事実、温度からのその依存
性は硝酸第二鉄添加の前と後では違っている。
It is clear that conductivity measurements are greatly affected by temperature, and this problem is usually overcome by an automatic compensation system built into the measurement device; in the present case, automatic compensation is the first It can only be adjusted precisely with the effect on the conductivity measurement (determination of the sulfuric acid concentration) and not on the second one (determination of the hydrofluoric acid concentration) performed after the addition of ferric nitrate as the solution composition changes And, in fact, its dependence on temperature is different before and after ferric nitrate addition.

【0047】 この重大な問題は本発明に従う分析装置Aにより解決される、そこでは論理演
算部ULが試料温度に依存している硝酸第二鉄溶液の容積v3の添加に起因する
伝導度の変化を考慮する。
This significant problem is solved by the analyzer A according to the invention, in which the logic unit UL changes the conductivity due to the addition of the volume v3 of the ferric nitrate solution which is dependent on the sample temperature. Consider.

【0048】 滴定中に使用される硝酸第二鉄の量はフッ化水素酸の完全な錯体化を確実にせ
ねばならない;考察中のシステムでは、60g/l以下のフッ化水素酸濃度につ
いて硝酸第二鉄・9H2Oの750g/l溶液の容積v3と槽の試料の容積v1
の間の比が0.5より高くなければならないそしてなるべくなら1がよい。
The amount of ferric nitrate used during the titration must ensure complete complexation of hydrofluoric acid; in the system under consideration, for nitric acid concentrations of less than 60 g / l, ferric · 9H 2 O in 750 g / l volume of the sample volume v3 and bath solutions v1
The ratio between must be higher than 0.5 and preferably 1 is better.

【0049】 制限を付けない実施例として、以下の操作手順が試料の容積希釈率4:100
について関連する計算と共に与えられる: ・4:100の希釈率を得るために100マイクロジーメンスより少ない伝導度
を有している与えられた水の容積v2を投薬手段D2により分析容器CAに充填
する; ・分析されるべき酸洗い槽の試料の与えられた容積v1をサンプリングモジュー
ルCから(投薬手段D2により)汲上げる; ・溶液の攪拌を開始する; ・第一の伝導度測定(L1); ・硝酸第二鉄・9H2Oの750g/l溶液の与えられた容積v3=v1の添加
; ・溶液の攪拌とその温度Tの測定; ・第二の伝導度測定(L2)。
As a non-limiting example, the following procedure was followed by a sample volume dilution of 4: 100.
Filling the analytical vessel CA with the dosing means D2 a given water volume v2 having a conductivity of less than 100 microSiemens to obtain a dilution of 4: 100; Pumping a given volume v1 of the sample of the pickling tank to be analyzed from the sampling module C (by the dosing means D2); starting stirring of the solution; first conductivity measurement (L 1 ); Addition of a given volume v3 = v1 of a 750 g / l solution of ferric nitrate 9H 2 O; stirring of the solution and measurement of its temperature T; second conductivity measurement (L 2 ).

【0050】 論理演算部ULはデータL1,L2,Tを取得して以下の計算により酸類の濃度
を自動的に見出す: ・硫酸濃度(g/l): a・L1 2+b・L1−c ・フッ化水素酸濃度(g/l): a1・δ2+b1・δ−c1 ここで: a,b,c,a1,b1,c1は二次方程式の係数であり; δ=L2−L1−φ; φ=c2+(c3・T); c2,c3は第二の伝導度測定の前に希釈された試料に添加される硝酸第二鉄・9
2Oの量に依存する定数である。
The logical operation unit UL data L 1, L 2, to get the T automatically find the concentration of the acid by the following calculation: Sulfuric acid concentration (g / l): a · L 1 2 + b · L 1 -c · hydrofluoric acid concentration (g / l): a 1 · δ 2 + b 1 · δ-c 1 where: a, b, c, coefficients a 1, b 1, c 1 is quadratic Δ = L 2 −L 1 −φ; φ = c 2 + (c 3 · T); where c 2 and c 3 are nitric acid added to the diluted sample before the second conductivity measurement. Nitetsu 9
It is a constant depending on the amount of H 2 O.

【0051】 この実施例では: a=0.0066;b=5.015;c=6.98; a1=0.0120;b1=2.881;c1=3.81; c2=9.632;c3=0.297。[0051] In this embodiment: a = 0.0066; b = 5.015 ; c = 6.98; a 1 = 0.0120; b 1 = 2.881; c 1 = 3.81; c 2 = 9.632; c 3 = 0.297.

【0052】 図3は特殊な形態が溶液の高粘度に起因するネガティブな効果を最少にし且つ
測定白金板の濯ぎを容易にすることを許す、伝導度セルCCの特徴を示す。
FIG. 3 shows the characteristics of the conductivity cell CC that allows the special morphology to minimize the negative effects due to the high viscosity of the solution and to facilitate the rinsing of the measuring platinum plate.

【0053】 前記伝導度セルCCはガラス製で実質的に円筒形状を有しており、二つの白金
黒の板ELを含んでいる中空本体Bより成っている;中空本体Bの下部と上部に
は分析されるべき試料を中空本体Bの内部で循環させる孔(F1,F2)がある
The conductivity cell CC is made of glass and has a substantially cylindrical shape and consists of a hollow body B containing two platinum black plates EL; Has holes (F1, F2) for circulating the sample to be analyzed inside the hollow body B.

【0054】 なるべくなら、中空本体Bは約20mm(そしてとにかく約17と23mmの
間より成る)の直径と約40mm(そしてとにかく約35と45mmの間より成
る)の高さを持つ;EL板の寸法は約10×5mm(そしてとにかく約8×12
mmと約3×7mmの間)であり、お互いの距離は約15mm(そしてとにかく
約12と18mmの間)である。
Preferably, the hollow body B has a diameter of about 20 mm (and comprises anyway between about 17 and 23 mm) and a height of about 40 mm (and comprises anyway between about 35 and 45 mm); The dimensions are about 10 x 5 mm (and about 8 x 12
mm and about 3 × 7 mm) and the distance to each other is about 15 mm (and between about 12 and 18 mm anyway).

【0055】 電極ELの分極を避けるために、伝導度セルCCに接続される測定電気回路(
図示されていない)は高周波数(25と40kHzの間)で動作せねばならない
In order to avoid polarization of the electrode EL, a measuring electric circuit (
(Not shown) must operate at high frequencies (between 25 and 40 kHz).

【0056】 b)二価の鉄の決定法 二価の鉄の決定法は古典的方法論に従って過マンガン酸カリウム滴定法により、
電位差分析を通して為すことが出来る。
B) Method for determination of divalent iron The method for determination of divalent iron was determined by potassium permanganate titration according to classical methodology.
This can be done through potentiometric analysis.

【0057】 操作手順は以下を必要とする: ・希釈率≧1:50を得るために溢流管TPを通して与えられた水の容積v2を
分析容器CAの中に注入する; ・分析されるべき酸洗い槽の試料の与えられた容積v1をサンプリングモジュー
ルCから(投薬手段D2により)汲上げ、そして分析容器CAの中に前記試料を
添加する; ・強酸の溶液、例えば重量比1:1の硫酸溶液、の与えられた概略量の(投薬手
段D1による)分析容器CAの中への添加による希釈された酸洗い槽試料の酸性
化; ・投薬手段D2により分析容器CAの中に添加された0.1N過マンガン酸カリ
ウム溶液でプリセット終点を持っているか又は終点の自動探査による、電位差滴
定; ・分析容器CAを空にして濯ぐ。
The operating procedure requires the following: • Inject the volume v2 of the water provided through the overflow TP into the analytical vessel CA to obtain a dilution ratio ≧ 1: 50; Pump a given volume v1 of the sample in the pickling bath from the sampling module C (by the dosing means D2) and add the sample into the analysis vessel CA; a solution of a strong acid, eg 1: 1 by weight Acidification of the diluted pickling bath sample by addition of a given approximate amount of sulfuric acid solution into the analytical vessel CA (by the dosing means D1);-added into the analytical vessel CA by the dosing means D2 Potentiometric titration with 0.1 N potassium permanganate solution with preset end point or by automatic exploration of end point;-Empty and rinse analytical vessel CA.

【0058】 c)三価の鉄の決定法 三価の鉄はヨウ素滴定法により測定される、然し自動装置の使用と信頼できて再
現可能な結果の取得を可能にするには幾つかの特別の注意を払うことである。
C) Determination of trivalent iron Trivalent iron is measured by iodometric titration, but some special measures are required to allow the use of automated equipment and the acquisition of reliable and reproducible results. Is to pay attention.

【0059】 前記決定法は以下の操作手順を必要とする: ・希釈率≧1:50を得るために溢流管TPを通して与えられた水の容積v2を
分析容器CAの中に注入する; ・分析されるべき酸洗い槽の試料の与えられた容積v1をサンプリングモジュー
ルCから(投薬手段D2により)汲上げ、そして分析容器CAの中に前記試料を
添加する; ・攪拌の開始; ・既知濃度を有している硝酸ランタン溶液の既定の概略量の(投薬手段D1によ
る)分析容器CAの中への添加; ・攪拌せずに30秒待機; ・容積比1:1の塩酸溶液の既定概略量の(投薬手段D1による)分析容器CA
の中への添加; ・例えば1kg/lの濃度で、ヨウ化カリウム溶液の既定概略量の(投薬手段D
1による)分析容器CAの中への添加; ・攪拌せずに5分間の待機; ・溶液攪拌の開始; ・三価の鉄とヨウ化カリウムとの反応により遊離したヨウ素の(投薬手段D2に
より添加される)0.1Nチオ硫酸ナトリウムとの電位差滴定; ・分析容器CAを空にして水で濯ぐ。
The method of determination requires the following operating procedure: Inject the volume v2 of the given water through the overflow TP into the analytical vessel CA in order to obtain a dilution ratio ≧ 1: 50; Pump a given volume v1 of the sample of the pickling tank to be analyzed from the sampling module C (by the dosing means D2) and add the sample into the analysis vessel CA; start of agitation; known concentration Of a predetermined approximate amount of the lanthanum nitrate solution having the following formula (by the dosing means D1) into the analytical vessel CA: wait for 30 seconds without stirring; default definition of the hydrochloric acid solution with a volume ratio of 1: 1 Quantity of analytical container CA (by dosing means D1)
A predetermined approximate amount of potassium iodide solution, for example at a concentration of 1 kg / l (dosing means D
1) Addition into analysis vessel CA; 5 minutes without stirring; start of solution stirring; iodine released by reaction of trivalent iron with potassium iodide (by dosing means D2) Potentiometric titration with 0.1 N sodium thiosulfate (added);-Empty the analysis vessel CA and rinse with water.

【0060】 この自動分析について、最も目立つ面は硝酸ランタンの使用である;事実、鉄
イオンに連結したフッ素と錯体化できる陽イオンを含んでいる塩の添加はヨウ素
滴定分析による第二鉄イオンの定量分析には本質的である。
For this automated analysis, the most striking aspect is the use of lanthanum nitrate; in fact, the addition of salts containing cations capable of complexing with fluorine linked to iron ions involves the addition of ferric ions by iodometric analysis. It is essential for quantitative analysis.

【0061】 この分析は塩化カルシウムの溶液を使用して手動で実行できる;然し塩化カル
シウムは三価の鉄の自動滴定には使用できないことが証明された、何故ならば連
続的に分析容器CAの中の電極に付着し、重大なエラーと複雑な補修を引き起す
傾向があるフッ化カルシウムと硫酸カルシウムの引続く沈殿にある。逆に、ラン
タン塩は粉末状で付着しないフッ化ランタンを生成し、第二鉄イオンを定量的に
解放できる、斯くして高い信頼性と非常に制限された補修費で工程の自動管理を
可能にする。
This analysis can be performed manually using a solution of calcium chloride; however, it has been proven that calcium chloride cannot be used for automatic titration of trivalent iron, since it is necessary to continuously analyze the analytical vessel CA. The subsequent precipitation of calcium fluoride and calcium sulphate tends to adhere to the inner electrode and cause serious errors and complex repairs. Conversely, lanthanum salts produce lanthanum fluoride, which does not adhere in powder form, and can quantitatively release ferric ions, thus enabling automatic control of the process with high reliability and very limited repair costs To

【0062】 これと同じ結果はどのようにしてでもヨウ化カリウムとの引続く反応の間それ
を定量的に解放できる、鉄イオンについての錯化剤をシステムに添加することに
よっても達成できる;EDTA(エチレンジアミン四酢酸)のような錯化剤はこ
の目的に適合できる。
The same result can be achieved in any way by adding a complexing agent for iron ions to the system, which can quantitatively release it during the subsequent reaction with potassium iodide; EDTA Complexing agents such as (ethylenediaminetetraacetic acid) are suitable for this purpose.

【0063】 図4で概略的に図解されている電位差計システムは分析容器CAの中に浸され
た測定電極(作業環境には不活性)と前記分析容器CAの外側に設置され且つ小
さなプラスチックの管Tの末端に設置された多孔質隔壁SPを連続的に通過させ
られる電解液(タンクSRに容れられている)より成っている食塩水ブリッジを
通して測定下の溶液と接触している参照電極(なるべくならガラス製で、Ag/
AgClタイプ)より成っている。
The potentiometer system schematically illustrated in FIG. 4 comprises a measuring electrode (inactive in the working environment) immersed in an analytical container CA and a small plastic A reference electrode (which is in contact with the solution under measurement through a saline bridge consisting of an electrolyte (contained in a tank SR) that can be passed continuously through a porous partition SP located at the end of the tube T Preferably made of glass, Ag /
AgCl type).

【0064】 隔壁SPを通る電解液の連続通過は隔壁SPとフッ化水素酸の間の接触を避け
又電解液を連続的に更新するために、電気的導通に一致する意向である。
The continuous passage of the electrolyte through the partition SP is intended to coincide with the electrical conduction in order to avoid contact between the partition SP and hydrofluoric acid and to continuously renew the electrolyte.

【0065】 好ましい実施例では、測定電極Eはその末端で、その一方の面、下側の面を鏡
面仕上げした白金板Pを支えている制酸材料製の本体から作られ、斯くして板P
の測定面上に沈殿する反応生成物から誘導している塩類がそれを汚すことを予防
している。
In a preferred embodiment, the measuring electrode E is made at its end from a body made of an antacid material supporting a platinum plate P whose one surface, the lower surface, has been mirror-finished, thus the plate P
To prevent salts derived from the reaction product settling on the measuring surface of the sample from fouling it.

【0066】 都合好く、電解液(なるべくなら3モルの塩化カリウム)には粘度を高め且つ
流速を減らすためにグリセリン(20℃での粘度が1.15と1.45センチポ
アズを有しており、作業環境に不活性で且つ機能的に等価な他の安定な製品)の
10%溶液を添加できて、タンクSRの与えられた容積について電位差計システ
ムのより良い自律性を可能にする。
Advantageously, the electrolyte (preferably 3 moles of potassium chloride) has glycerin (viscosity at 20 ° C. 1.15 and 1.45 centipoise) to increase viscosity and reduce flow rate. , A 10% solution of another stable product that is inert and functionally equivalent to the working environment, allowing better autonomy of the potentiometer system for a given volume of tank SR.

【0067】 d)過酸化水素の決定法 ここで述べたもののような無硝酸酸洗い工程中の遊離過酸化水素の決定はフェ
ライト系及びマルテンサイト系鋼の処理において一般的に最終濯ぎの前の最後の
操作の時に使用される仕上げ/不動態化槽の制御のために必要である;通常前記
槽溶液は硫酸(20−60g/l)、過酸化水素(3−10g/l)そして時に
はフッ化水素酸より成っている。
D) Method for Determining Hydrogen Peroxide Determination of free hydrogen peroxide during a nitric acid-free pickling process, such as those described herein, is commonly used in the treatment of ferritic and martensitic steels prior to final rinsing. Necessary for control of the finishing / passivation bath used during the last operation; usually the bath solution is sulfuric acid (20-60 g / l), hydrogen peroxide (3-10 g / l) and sometimes hydrofluoric acid. Consists of hydrofluoric acid.

【0068】 過酸化水素の決定に使用される分析方法論と操作手順は酸洗い槽中の二価の鉄
の決定に使用されるのと同一である。
The analytical methodology and operating procedures used for the determination of hydrogen peroxide are the same as those used for the determination of divalent iron in the pickling tank.

【0069】 e)酸化還元電位の決定法 本発明に従う装置は二価の鉄の決定の前に、記述の電位差計システムに使用す
る希釈された酸洗い槽の試料に関して溶液の酸化還元電位を測定する;斯くして
得られた値はその希釈前に槽中で測定された酸化還元電位に非常に近い(±20
mV)。得られた値はシステムの補正操作の第一信号として使用されるべく論理
演算部ULの中に保存された値の範囲(通常200と550mVの間より成って
いる)と比較される:もし測定値が前記範囲外であるならば、分析装置Aの論理
演算部ULは分析手順を停止して警報を送信する。電位差計システムの較正は既
知の電位(通常468mV)の標準溶液についての酸化還元電位測定により既定
の頻度(例えば、週に1回)で為される。
E) Method of Determining the Redox Potential The device according to the invention measures the redox potential of the solution on the diluted pickling tank sample used in the potentiometer system described before the determination of the divalent iron. The value thus obtained is very close to the oxidation-reduction potential measured in the tank before its dilution (± 20
mV). The value obtained is compared to a range of values (usually consisting of between 200 and 550 mV) stored in the logic unit UL to be used as the first signal of the correction operation of the system: If the value is out of the range, the logical operation unit UL of the analyzer A stops the analysis procedure and sends an alarm. Calibration of the potentiometer system is performed at a predetermined frequency (eg, once a week) by measuring the redox potential of a standard solution of known potential (typically 468 mV).

【0070】 既述の如く、本発明に従う分析装置Aの論理演算部ULは、分析下にある酸洗
い槽の試料に関する望まれるパラメーターを測定後、容器Sに入れられた既知濃
度の補正薬品(硫酸、フッ化水素酸及び酸化剤)で溶液の各々の量を計算する、
前記薬品は望まれる組成値に回復するため酸洗い槽に時に応じて添加されている
、又補正薬品の前記計算された量を酸洗い槽中に送るため容器Sの出力で添加手
段(例えば、投薬ポンプ又は電磁弁のような)を作動させる。
As described above, the logical operation unit UL of the analyzer A according to the present invention measures the desired parameter relating to the sample in the pickling tank under analysis, and then corrects the known concentration correction chemical ( Sulfuric acid, hydrofluoric acid and oxidizing agent) to calculate the amount of each of the solutions,
The chemical is added from time to time to the pickling tank to restore the desired composition value, and addition means (e.g., Activate the dosing pump or solenoid valve).

【0071】 酸洗い槽に添加される補正薬品の補正量を持つために施設の特性値(タンクV
の容量、各添加手段の送出量、前記補正薬品のプリセットされた濃度値、前記薬
品の濃度、等々)が知られていて、論理演算部ULはまさに前記添加手段の作動
時間を計算せねばならない。
In order to have the correction amount of the correction chemical added to the pickling tank, the characteristic value of the facility (tank V
, The amount of delivery of each addition means, the preset concentration value of the correction medicine, the concentration of the medicine, etc.) are known, and the logical operation unit UL has to calculate exactly the operating time of the addition means. .

【0072】 本出願人の研究と実験は、硫酸、フッ化水素酸、三価の鉄イオン及び酸化剤の
酸洗い槽中の濃度を望ましい値に回復させるために、論理演算部ULは以下の表
現式により与えられる時間s(秒)の期間、硫酸、フッ化水素酸及び酸化剤溶液
の酸洗い槽中への添加を調節する添加手段の各々を作動させねばならないことを
示した: s=K・(v0−vm)・vb/p ここで: s=作動時間(秒); K=補正薬品の濃度に反比例する因子(l/g); v0=特定の補正薬品に与えられた濃度(g/l); vm=分析の結果得られた前記特定の補正薬品の濃度(g/l); vb=タンクの容量; p=添加手段の送出量(l/s)。
The applicant's research and experiments have shown that, in order to restore the concentrations of sulfuric acid, hydrofluoric acid, trivalent iron ions and oxidizing agent in the pickling tank to desired values, the logical operation unit UL It has been shown that for a period of time s (seconds) given by the expression, each of the addition means for controlling the addition of sulfuric acid, hydrofluoric acid and oxidant solution into the pickling tank must be activated: s = K · (v 0 −v m ) · v b / p where: s = operating time (seconds); K = factor (l / g) inversely proportional to the concentration of the correction chemical; v 0 = given the specific correction chemical V m = concentration of the specific correction chemical obtained as a result of the analysis (g / l); v b = volume of the tank; p = amount delivered by the addition means (l / s) .

【0073】 三価と二価の鉄イオンの濃度の間の比Rを望ましい値に戻すために、論理演算
部ULは酸化剤溶液を酸洗い槽中に送込む添加手段の作動時間s1(秒で)を以
下の操作により計算する: ・B1=A・R を計算する、ここでAは過マンガン酸塩による滴定から結果す
る二価の鉄イオン濃度(g/l)であり、Rは夫々三価と二価の鉄イオンの濃度
間の望まれる比であり、そしてB1は三価の鉄イオンの理論的濃度である; ・B1と三価の鉄イオンの測定濃度B(g/l)とを比較する; ・もしB≧B1(三価の鉄イオンの測定濃度が二価のそれよりも大きい)ならば
、論理演算部ULは動作しない; ・もしB<B1(三価の鉄イオン濃度が測定値よりも小さい)ならば、論理演算
部ULは酸化剤溶液の酸洗い槽への添加を調節する添加手段の作動時間s1を次
式によって計算する: s1=K・K1・C/p ここで: s1=作動時間(秒); K=補正薬品の濃度に反比例する因子(l/g); K1=タンク容量Vに比例する因子(l); C=(B1−B)/R=鉄イオン濃度(g/l)について望まれる値に回復する
ため酸化されるべき二価鉄イオンの量; p=添加手段の送出量(l/s)。
In order to return the ratio R between the concentration of trivalent and divalent iron ions to a desired value, the logical operation unit UL operates the addition time s 1 (to supply the oxidizing solution into the pickling tank). Calculate (in seconds) by the following operation: Calculate B 1 = A · R where A is the divalent iron ion concentration (g / l) resulting from titration with permanganate and R Is the desired ratio between the concentrations of trivalent and divalent iron ions, respectively, and B 1 is the theoretical concentration of trivalent iron ions; the measured concentration of B 1 and trivalent iron ions B ( If & If B ≧ B 1 (the measured concentration of the trivalent iron ions is greater than that of divalent), the logical operation unit UL does not operate;; g / l) and comparing the & If B <B 1 If the trivalent iron ion concentration is lower than the measured value, the logical operation unit UL adjusts the addition of the oxidizing agent solution to the pickling tank. The operating time s 1 of the addition means is calculated by the following equation: s 1 = K · K 1 · C / p where: s 1 = operating time (seconds); K = a factor (l K 1 = factor proportional to tank volume V (l); C = (B 1 -B) / R = second to be oxidized to restore the desired value for iron ion concentration (g / l) The amount of ferrous ions; p = the delivery amount of the addition means (l / s).

【0074】 代案として槽は以下の計算式に従って三価の鉄と二価の鉄の間の比Rの関数で
管理できる: ・全鉄イオンの計算T=A+B ここでAは過マンガン酸滴定分析から得られたFe2+の濃度でありBはヨウ素
滴定分析から得られたFe3+の濃度である; ・計算R=B/A; ・R(現在比)をR1(既定比)と比較する; ・もしR>R1ならば、論理演算部ULは酸化剤のどんな添加も行わない; ・もしR<R1ならば、論理演算部ULは次式に従って酸化剤溶液の酸洗い槽中
への添加を調節する添加手段の作動時間s1(秒)を計算する: s1=K・K1・C/p ここで、 C=A−[(A+B)/(R1+1)]=現在比Rを既定値R1に回復させるため
酸化するべき二価の鉄の量; s1=作動時間(秒); K=係数、タンクの容量V(l)に反比例する; p=添加手段の送出量(l/s)。
Alternatively, the vessel can be managed as a function of the ratio R between trivalent and divalent iron according to the following formula: Calculation of total iron ions T = A + B where A is the permanganate titration analysis a and B is the concentration of Fe 2+ obtained is the concentration of Fe 3+ obtained from iodometric analysis from; - calculating R = B / a; - R (present ratio) with R 1 (default ratio) comparison; • If R> if R 1, logical operation unit UL does not perform any addition of an oxidizing agent; - if if R <R 1, pickling bath of the oxidizing agent solution in accordance with the logic operation unit UL by the following equation Calculate the operating time s 1 (second) of the addition means for adjusting the addition into the medium: s 1 = K · K 1 · C / p where C = A-[(A + B) / (R 1 +1)] = amount of bivalent iron to oxidize to restore the present ratio R to the default R 1; s 1 = actuating time (seconds); K = coefficient, the tank Inversely proportional to the amount V (l); p = delivery of the addition means (l / s).

【0075】 図3は概略的に図2の分析容器CAの分解図を示し、伝導度型の測定システム
及び分析容器CAと測定セルCCの濯ぎ手段の好ましい実施例より成っている。
FIG. 3 schematically shows an exploded view of the analytical vessel CA of FIG. 2, comprising a preferred embodiment of a conductivity-type measuring system and rinsing means for the analytical vessel CA and the measuring cell CC.

【0076】 図3では下記を見ることが可能である: ・伝導度測定に使用される伝導度セルCC; ・分析容器CA; ・分析容器CAの中の液面を設定し、又同じく容器を空にするのに合わせてその
位置(論理演算部ULにより制御される)が移動できる溢流管TP; ・論理演算部ULにより制御される濯ぎ手段(F,U)、分析容器CAと伝導度
測定セルCCの濯ぎが可能である。
In FIG. 3, it is possible to see: a conductivity cell CC used for conductivity measurement; an analysis container CA; a liquid level in the analysis container CA, and An overflow pipe TP whose position (controlled by the logic operation unit UL) can be moved as it is emptied; rinsing means (F, U) controlled by the logic operation unit UL, the analysis container CA and the conductivity Rinsing of the measuring cell CC is possible.

【0077】 図4は概略的に図2の分析容器CAの分解図を示し、図3のそれと同様に、分
析容器CAと測定電極の濯ぎ手段の好ましい実施例だけでなく電位差測定システ
ムより成っている。
FIG. 4 schematically shows an exploded view of the analysis vessel CA of FIG. 2, which, like that of FIG. 3, comprises not only a preferred embodiment of the rinsing means for the analysis vessel CA and the measuring electrode but also a potential difference measuring system. I have.

【0078】 図4では下記を見ることが出来る: ・測定電極E、分析容器CAの外側に位置決めされた参照電極R、及び小さなプ
ラスチック管Tの一端に設置された多孔性隔壁SPを連続的に通過して、タンク
SRに容れられた電解液を含む食塩水ブリッジより成っている、電位差計システ
ム; ・分析容器CA; ・分析容器CAの中の液面を設定し、又同じ分析容器を空にするのに合わせてそ
の位置(論理演算部ULにより制御される)が移動できる溢流管TP; ・論理演算部ULにより制御される濯ぎ手段(F,U)、分析容器CA、電極E
の末端及び多孔性隔壁SPの濯ぎが可能である。
In FIG. 4, it can be seen that: The measuring electrode E, the reference electrode R positioned outside the analytical vessel CA, and the porous partition SP installed at one end of a small plastic tube T are continuously connected. A potentiometer system consisting of a saline bridge containing the electrolyte passed through and contained in a tank SR; an analysis vessel CA; setting the liquid level in the analysis vessel CA and emptying the same analysis vessel. An overflow pipe TP whose position (controlled by the logical operation unit UL) can be moved in accordance with the following: rinsing means (F, U) controlled by the logical operation unit UL, the analysis container CA, the electrode E
And the porous partition SP can be rinsed.

【0079】 図3と4で示された好ましい実施例では、斯かる濯ぎ手段は分析容器CAの上
縁に沿って配置された複数のスリットF及び測定電極Eと多孔性隔壁SP、伝導
度測定セルCC夫々の末端を水スプレーで濯ぐのに適したノズルUより成ってい
る;図3と4では、分析容器CA用の蓋CPと電位差計システムの電極E、小さ
な管T、伝導度測定セルCCを支持している手段MS及び投薬手段D(D1,D
2)と分析容器CAを連結している小さな管(図3と4には明示していない)も
見ることが出来る;蓋CPと支持手段MSはそれ自体周知であるし又兎に角本発
明には関係がないから、説明しないであろう。
In the preferred embodiment shown in FIGS. 3 and 4, such rinsing means comprises a plurality of slits F and measuring electrodes E and a porous septum SP arranged along the upper edge of the analytical vessel CA, a conductivity measurement. The end of each cell CC consists of a nozzle U suitable for rinsing with a water spray; in FIGS. 3 and 4, a lid CP for the analytical vessel CA and an electrode E of the potentiometer system, a small tube T, a conductivity measurement. The means MS supporting the cell CC and the dosing means D (D1, D
One can also see a small tube (not explicitly shown in FIGS. 3 and 4) linking 2) to the analysis vessel CA; the lid CP and the support means MS are well known per se, and the invention is not limited thereto. Has nothing to do with it and will not be described.

【0080】 なるべくなら、分析容器CA、測定電極Eと多孔性隔壁SP(夫々分析容器C
Aと伝導度測定セルCC)は各分析後に水で濯がれ又既定回数の分析後に化学薬
品溶液で洗浄される。
Preferably, the analysis container CA, the measurement electrode E, and the porous partition wall SP (each of the analysis container C
A and the conductivity measuring cell CC) are rinsed with water after each analysis and washed with a chemical solution after a predetermined number of analyses.

【0081】 各分析後に水で前記部品を濯ぐには、論理演算部ULは次々に以下の段階を実
行する: ・分析容器(CA)を完全に空にする; ・スリット(F)を通して多量の水を前記分析容器(CA)に注ぐ; ・電極Eの先端と多孔性隔壁SP、伝導度測定セルCC夫々が浸されるまで分析
容器(CA)を水で充たす; ・分析容器(CA)を空にする; ・更にノズル(U)を通してある程度の水をそれらの上に噴霧することにより電
極Eの先端と多孔性隔壁SP、伝導度測定セルCC夫々を濯ぐ; ・分析容器(CA)を空にし次の分析に備える。
To rinse the parts with water after each analysis, the logic unit UL performs the following steps one after the other: completely empty the analysis vessel (CA); a large amount of water through the slit (F). Is poured into the analysis container (CA);-Fill the analysis container (CA) with water until the tip of the electrode E, the porous partition wall SP, and the conductivity measurement cell CC are immersed;-Empty the analysis container (CA). Rinse the tip of the electrode E, the porous partition wall SP, and the conductivity measurement cell CC by spraying a certain amount of water onto them through the nozzle (U); and empty the analysis container (CA). Prepare for the next analysis.

【0082】 既定回数の分析後に化学薬品溶液(なるべくなら10−20%塩酸)で分析容
器CA、電極Eの先端と多孔性隔壁SP(分析容器CAと伝導度測定セルCC夫
々)を洗浄するには、論理演算部ULは電極Eの先端と多孔性隔壁SP、伝導度
測定セルCC夫々が浸されるまでスリットFを通して分析容器CAを水で満たし
、前記化学洗浄に必要な量の製品(なるべくなら塩酸)をタンク(なるべくなら
然し必ずしも試薬貯蔵部DRの内部に置かれたものでなくても良い)から汲上げ
てそれを分析容器CAの中に送る;既定の時間後論理演算部ULは分析容器CA
を空にして化学溶液のどんな痕跡も消し去るために、それを水で濯ぐ。
After the predetermined number of analyses, the analytical container CA, the tip of the electrode E and the porous partition wall SP (the analytical container CA and the conductivity measuring cell CC, respectively) are washed with a chemical solution (preferably 10-20% hydrochloric acid). The logical operation unit UL fills the analysis container CA with water through the slit F until the tip of the electrode E, the porous partition wall SP, and the conductivity measurement cell CC are immersed, and the amount of the product necessary for the chemical cleaning (as much as possible) Then, hydrochloric acid) is pumped from a tank (preferably not necessarily placed inside the reagent storage unit DR) and sent to the analysis container CA; after a predetermined time, the logical operation unit UL Analysis container CA
It is rinsed with water in order to empty and erase any traces of the chemical solution.

【0083】 更に、作業しない時は、分析容器CAは電極Eの先端、多孔性隔壁SP、及び
伝導度測定セルCCのどんな汚れ及び/又は傷も避けるために、スリットFとノ
ズルUを通して水で満たされる。
Furthermore, when not in operation, the analytical vessel CA is filled with water through the slit F and the nozzle U in order to avoid any dirt and / or scratches on the tip of the electrode E, the porous partition SP and the conductivity measuring cell CC. It is.

【0084】 通常の経験により又当然の技術的進化によって示唆されるように、本記述に従
って、尚本発明の範囲内に残っている酸洗い槽の制御装置を修正し改良すること
は専門家には可能である。
According to the present description, as suggested by routine experience and by natural technological evolution, modifying and improving the control of the pickling tank, which still remains within the scope of the present invention, is to the expert. Is possible.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G01N 27/30 G01N 27/30 F 311 311C 27/401 313A (72)発明者 ムシアニ・ファビオ イタリア国、48024 マサッロンバルダ、 ヴィア ボッテ 9 (72)発明者 デマルトヅィス・イオアニス イタリア国、20137 ミラン、ヴィア ガ ディボナ 18 (72)発明者 フォルツナチ・サンドロ イタリア国、05100 テルニ、ヴィアーレ ベネデッィト ブリン 218 アッチア イ スペテチアリ テルニ ソシエタ ペ ル アチオニ内 (72)発明者 マンチア・フランコ イタリア国、00129 ローマ、ヴィア デ ィ カステル ロマノ 100/102 セント ロ シヴィルッポ、マテリィアリ ソシエ タ ペル アチオニ内 (72)発明者 ノヴァロ・エヅィオ イタリア国、00129 ローマ、ヴィア デ ィ カステル ロマノ 100/102 セント ロ シヴィルッポ、マテリィアリ ソシエ タ ペル アチオニ内 Fターム(参考) 2G060 AA06 AC04 AC05 AE17 AF08 AF15 FA15 HC10 HD03 4K053 PA02 PA03 PA07 QA01 RA15 RA17 RA29 SA06 XA24 YA03 YA05 YA14 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) G01N 27/30 G01N 27/30 F 311 311C 27/401 313A (72) Inventor Muscianni Fabio Italy, 48024 Massa Lombarda, Via Botte 9 (72) Inventor Demartis Ioannis Italy, 20137 Milan, Via Ga Divona 18 (72) Inventor Forznazi Sandro Italy, 05100 Terni, Viale Benedetto Brin 218 Atchia I Spettiettiari Terni Societa (72) Inventor Manchia Franco Italy, 00129 Rome, Via di Castel Romano 100/102 St. Lo Civilruppo, Materiali Societe Tapel Within Thioni (72) Inventor Novaro Ezio Italy, 00129 Via di Castel Romano, Rome 100/102 Centro Civilruppo, Materiali Societe Inside Felme Terme d'Azioni (reference) 2G060 AA06 AC04 AC05 AE17 AF08 AF15 FA15 HC10 HD03 4K053 PA02 PA03 PA07 QA01 RA15 RA17 RA29 SA06 XA24 YA03 YA05 YA14

Claims (49)

【特許請求の範囲】[Claims] 【請求項1】 分析されるべき槽の試料を採取する手段;前記試料の酸化還
元電位値とその温度だけでなく比伝導度及び電位差計方法論に従って多数のパラ
メーターを測定するために前記試料を分析する手段;上記測定値に従って、前記
パラメーターの値を望ましいレベルに回復するために酸洗い槽に添加されるべき
補正薬品の量を適切に計算し、且つ補正薬品の前記量を前記酸洗い槽の中に添加
する少なくとも一つの装置を作動させる回復手段より成っていることを特徴とす
る無硝酸酸洗い槽用の制御装置。
Means for taking a sample of the vessel to be analyzed; analyzing said sample to determine a number of parameters according to the specific conductivity and potentiometric methodology as well as the redox potential value and temperature of said sample. Means for appropriately calculating, in accordance with said measurements, the amount of correction chemical to be added to the pickling tank in order to restore the value of said parameter to a desired level, and said amount of correction chemical to the pickling tank A control device for a nitric acid-free pickling tank, characterized by comprising a recovery means for operating at least one device added therein.
【請求項2】 前記パラメーターが硫酸、フッ化水素酸及び二価と三価の鉄
イオンの諸濃度であることを特徴とする、請求項1に記載の制御装置。
2. The control device according to claim 1, wherein the parameters are various concentrations of sulfuric acid, hydrofluoric acid, and divalent and trivalent iron ions.
【請求項3】 前記回復手段が既知の濃度を有している前記補正薬品の溶液
の計算された量を酸洗い槽中に導入することを特徴とする、請求項1に記載の制
御装置。
3. The control device according to claim 1, wherein the recovery means introduces a calculated amount of the solution of the correction chemical having a known concentration into the pickling tank.
【請求項4】 補正薬品が硫酸、フッ化水素酸及び酸化剤であることを特徴
とする、請求項3に記載の制御装置。
4. The control device according to claim 3, wherein the correction chemicals are sulfuric acid, hydrofluoric acid and an oxidizing agent.
【請求項5】 前記酸化剤が過酸化水素であることを特徴とする、請求項4
に記載の制御装置。
5. The method according to claim 4, wherein the oxidizing agent is hydrogen peroxide.
The control device according to claim 1.
【請求項6】 それが少なくとも一つの分析装置(A)より成っていること
を特徴とする、請求項1に記載の制御装置。
6. The control device according to claim 1, wherein it comprises at least one analyzer (A).
【請求項7】 それが別々のパラメーターについて同時に作動する二つの分
析装置(A1、A2)より成っていることを特徴とする、請求項6に記載の制御
装置。
7. Control device according to claim 6, characterized in that it consists of two analyzers (A1, A2) operating simultaneously on different parameters.
【請求項8】 分析装置の一つ(A1、A2夫々)が硫酸及びフッ化水素酸
の酸洗い槽中の濃度を測定して適切な既定濃度レベルに回復するために酸洗い槽
に硫酸及びフッ化水素酸を添加する、その間他の分析装置(A2、A1夫々)は
鉄イオンの酸洗い槽中の濃度を測定して三価の鉄イオン濃度及び/又は三価と二
価の鉄イオン間の比の既定値を回復するために酸洗い槽に酸化剤を添加すること
を特徴とする、請求項2、4及び7に記載の制御装置。
8. One of the analyzers (A1, A2) measures the concentrations of sulfuric acid and hydrofluoric acid in the pickling tank and returns sulfuric acid and hydrogen fluoride to the pickling tank in order to restore the concentration to an appropriate predetermined concentration level. During the addition of hydrofluoric acid, other analyzers (A2, A1 respectively) measure the concentration of iron ions in the pickling tank and determine the trivalent iron ion concentration and / or trivalent and divalent iron ions. Control device according to claims 2, 4 and 7, characterized in that an oxidizing agent is added to the pickling bath in order to restore a predetermined value of the ratio between.
【請求項9】 分析装置(A)が:分析されるべき酸洗い槽の試料をサンプ
リングモジュール(C)の内部に置かれた少なくとも一つの容器に送るため酸洗
いタンク(V)に順々に連結されたサンプリング入力(I)を備えたサンプリン
グモジュール(C);前記酸洗い槽試料の分析に使用される試薬類のタンクが少
なくとも入っている試薬貯蔵部(DR);試薬貯蔵部(DR)の中の前記タンク
から既定量の薬品を適切に引出して同じく分析容器(CA)の中に移送する投薬
手段(D);酸洗い槽試料を分析するのに使用される測定電極(EM)を含んで
おり、分析されるべき槽試料をサンプリングモジュール(C)からそして又分析
に必要な薬品を投薬手段(D)から受取っている、分析容器(CA);分析手順
を制御して操作し、測定電極(EM)からの情報を取得して加工し且つ酸洗い槽
の中に補正薬品を含んでいる溶液を送込む手段を作動させる論理演算部(UL)
、の組合せより成ることを特徴とする、請求項6に記載の制御装置。
9. An analyzing device (A) comprising: a pickling tank (V) for sequentially sending a sample of a pickling tank to be analyzed to at least one container placed inside a sampling module (C); A sampling module (C) with a connected sampling input (I); a reagent storage (DR) containing at least a tank of reagents used for the analysis of the pickling tank sample; a reagent storage (DR) Dosing means (D) for appropriately withdrawing a predetermined amount of chemicals from the tank in the container and transferring the same to the analysis container (CA); a measuring electrode (EM) used for analyzing a pickling tank sample; An analysis vessel (CA) containing and receiving the bath sample to be analyzed from the sampling module (C) and also the medication required for the analysis from the dosing means (D); controlling and operating the analysis procedure; Measuring power A logic operation unit (UL) that obtains and processes information from the pole (EM) and activates means for sending a solution containing a correction chemical into the pickling tank.
The control device according to claim 6, wherein the control device comprises a combination of:
【請求項10】 投薬手段(D)の一部が多量の薬品を低い確度(約2%か
ら約5%まで)で適切に引出し、又残りの投薬手段が少量の薬品を高い確度(約0
.1%)で適切に引出すことを特徴とする、請求項9に記載の制御装置。
10. A portion of the dosing means (D) withdraws a large amount of the drug properly with low accuracy (from about 2% to about 5%), and the other means of dispensing a small amount of the drug with high accuracy (about 0%).
. 10. The control device according to claim 9, wherein the control device is appropriately drawn at 1%).
【請求項11】 低い確度と高い確度を有している前記投薬手段(D)が夫
々二つの異なった部分(D1、D2)に分けられることを特徴とする、請求項1
0に記載の制御装置。
11. The device according to claim 1, wherein the dispensing means having a low accuracy and a high accuracy are respectively divided into two different parts (D1, D2).
The control device according to 0.
【請求項12】 それが分析容器(CA)の中に同容器(CA)と測定電極
(EM)を濯ぐため及び分析容器(CA)の中に容れられた酸洗い槽試料を望ま
しい希釈率に希釈するため水を送込む手段からも成っていることを特徴とする、
請求項9に記載の制御装置。
12. It is used for rinsing the container (CA) and the measuring electrode (EM) in the analytical container (CA), and for diluting the pickling tank sample contained in the analytical container (CA) with a desired dilution ratio. Characterized in that it also comprises means for sending water for dilution into
The control device according to claim 9.
【請求項13】 濯ぎと希釈用の水が100マイクロジーメンスより少ない
伝導度を有することを特徴とする、請求項12に記載の制御装置。
13. The control device according to claim 12, wherein the water for rinsing and dilution has a conductivity of less than 100 microsiemens.
【請求項14】 各論理演算部(UL)がそれによって制御され又管理され
得る、中央操作部及び/又はより高レベルの論理演算部に連結されることを特徴
とする、請求項9に記載の制御装置。
14. The logic unit according to claim 9, wherein each logic unit is connected to a central control unit and / or a higher-level logic unit which can be controlled and managed by it. Control device.
【請求項15】 伝導度測定を実行する前記手段がその一端にガラスの中空
体(B)を備え且つ実質的に円筒形状を有しており、一対の白金黒の板(EL)
が入っていて、前記中空体(B)の下部と上部には分析されるべき試料が流れる
孔(F1、F2)が備えられていて、中空体(B)の内部を循環させるため分析
容器(CA)の中に入れられる伝導度測定セル(CC)より成っていることを特
徴とする、請求項1に記載の制御装置。
15. The means for performing a conductivity measurement comprises a hollow glass body (B) at one end and has a substantially cylindrical shape and a pair of platinum black plates (EL).
And holes (F1, F2) through which a sample to be analyzed flows are provided at the lower and upper portions of the hollow body (B), and an analysis container ( Control device according to claim 1, characterized in that it comprises a conductivity measuring cell (CC) contained in CA).
【請求項16】 中空体(B)が約17と23mmの間の直径及び約35と
45mmの間の高さ、約8×12mmと約3×7mmの間にある(EL)板寸法
、約12と18mmの間にあるお互いの距離を有することを特徴とする、請求項
15に記載の制御装置。
16. The (EL) plate wherein the hollow body (B) has a diameter between about 17 and 23 mm and a height between about 35 and 45 mm, between about 8 × 12 mm and about 3 × 7 mm, about Control device according to claim 15, characterized in that it has a mutual distance between 12 and 18 mm.
【請求項17】 中空体(B)が約20mmの直径と約40mmの高さ、約
10×5mmの板(EL)寸法、約15mmのお互いの距離を有することを特徴
とする、請求項16に記載の制御装置。
17. The hollow body (B) having a diameter of about 20 mm, a height of about 40 mm, a plate (EL) size of about 10 × 5 mm, and a distance from each other of about 15 mm. The control device according to claim 1.
【請求項18】 電位差測定を実行する前記手段が分析容器(CA)の中に
浸された測定電極(E)及び小さなプラスチック管(T)の一端に置かれた多孔
質隔壁(SP)へ連続的に通過している電解液によって構成される食塩水ブリッ
ジにより測定下の溶液に連結される、分析容器(CA)の外に配置された参照電
極(R)より成ることを特徴とする、請求項1に記載の制御装置。
18. The means for performing a potentiometric measurement is connected to a measuring electrode (E) immersed in an analytical vessel (CA) and a porous partition (SP) placed at one end of a small plastic tube (T). Characterized in that it comprises a reference electrode (R) arranged outside the analysis vessel (CA), which is connected to the solution under measurement by a saline bridge constituted by an electrolytic solution passing through it. Item 2. The control device according to Item 1.
【請求項19】 電解液が20℃で1.15と1.45センチポアズの間の
粘度を有している生成物を含むことを特徴とする、請求項18に記載の制御装置
19. The control device according to claim 18, wherein the electrolyte comprises a product having a viscosity at 20 ° C. between 1.15 and 1.45 centipoise.
【請求項20】 電解液がグリセリン10%を含むことを特徴とする、請求
項19に記載の制御装置。
20. The control device according to claim 19, wherein the electrolyte contains 10% glycerin.
【請求項21】 測定電極(E)がその一端で下側が鏡面仕上げをした表面
を有している白金板(P)を支持をしている制酸材料製の本体により構成される
ことを特徴とする、請求項18に記載の制御装置。
21. A measuring electrode (E) comprising a body made of an antacid material supporting a platinum plate (P) having a mirror-polished surface on one side at one end thereof. The control device according to claim 18, wherein:
【請求項22】 分析装置(A)が分析容器(CA)、測定電極(E)及び
食塩水ブリッジの多孔質隔壁(SP)、又分析容器(CA)及び伝導度測定セル
(CC)夫々に化学的洗浄と水濯ぎの手段からも成っており、前記手段が測定電
極(E)の端部と多孔質隔壁(SP)、又伝導度測定セル(CC)夫々に直接水
流が掛かるよう容器(CA)の上縁に沿って配置された小さなスリット(F)と
ノズル(U)より成っていることを特徴とする、請求項9、15及び18に記載
の制御装置。
22. An analyzer (A) comprising an analysis container (CA), a measurement electrode (E) and a porous partition wall (SP) of a saline solution bridge, an analysis container (CA) and a conductivity measurement cell (CC), respectively. It also comprises means for chemical washing and water rinsing, said means being a container (1) for direct water flow to the end of the measuring electrode (E), the porous partition (SP) and the conductivity measuring cell (CC) respectively. 19. Control device according to claim 9, 15 and 18, characterized in that it comprises a small slit (F) and a nozzle (U) arranged along the upper edge of CA).
【請求項23】 それが少なくとも以下の諸段階: ・酸洗い槽中の酸の濃度測定; ・酸洗い槽中の二価の鉄イオンの濃度測定; ・酸洗い槽中の三価の鉄イオンの濃度測定; ・酸洗い槽溶液の酸化還元電位の測定、 より成ることを特徴とする、無硝酸酸洗い槽を制御する方法。23. It comprises at least the following steps: measurement of the concentration of acid in the pickling tank; measurement of the concentration of divalent iron ions in the pickling tank; trivalent iron ions in the pickling tank. A method for controlling a nitric acid-free pickling tank, comprising: measuring the oxidation-reduction potential of a pickling tank solution. 【請求項24】 それがフェライト系及びマルテンサイト系鋼の処理の最終
濯ぎの前の最後の作業として使用される仕上げ/不動態化の槽中の遊離過酸化水
素の濃度を測定する段階も含むことを特徴とする、請求項23に記載の方法。
24. Measuring the concentration of free hydrogen peroxide in a finishing / passivation bath where it is used as a final operation prior to a final rinse in the treatment of ferritic and martensitic steels. A method according to claim 23, characterized in that:
【請求項25】 酸類の酸洗い槽中の濃度の測定が少なくとも以下の操作:
・高精度の投薬手段(D2)により、既定の希釈率を得るため100マイクロジ
ーメンス以下の伝導度を有している与えられた容量の水で分析容器(CA)を満
たす; ・高精度の投薬手段(D2)により、分析されるべき酸洗い槽試料の既定の容積
をサンプリングモジュール(C)から汲上げてそれを分析容器(CA)の中に挿
入する; ・溶液を攪拌する; ・最初の伝導度の測定(L1)を行う; ・既定の容量の硝酸第二鉄・9H2Oの溶液を分析容器(CA)の中に添加する
; ・溶液を攪拌してその温度(T)を測定する; ・二度目の伝導度の測定(L2)を行う; ・分析容器(CA)を空にする、 より成ることを特徴とする、請求項23に記載の方法。
25. The method for measuring the concentration of acids in a pickling tank comprises the following steps:
By means of a precise dosing means (D2), to fill the analytical vessel (CA) with a given volume of water having a conductivity of less than 100 microsiemens in order to obtain a defined dilution rate; By means (D2) pump a predetermined volume of the pickling tank sample to be analyzed from the sampling module (C) and insert it into the analysis vessel (CA); agitate the solution; Conductivity measurement (L 1 ); add a defined volume of ferric nitrate 9H 2 O solution into the analytical vessel (CA); stir the solution to reduce its temperature (T). measurements are; - second time measurement of conductivity (L 2) is carried out; empty-analysis vessel (CA), characterized in that it further consists, the method of claim 23.
【請求項26】 分析容器(CA)に分析されるべき酸洗い槽試料と同容量
を有している750g/lの硝酸第二鉄溶液が添加されることを特徴とする、請
求項25に記載の方法。
26. The method according to claim 25, wherein a 750 g / l ferric nitrate solution having the same volume as the pickling tank sample to be analyzed is added to the analysis vessel (CA). The described method.
【請求項27】 硫酸の酸洗い槽中の濃度(as)が次式: as=a・L1 2+b・L1−c ここでa、b及びcは二次方程式の係数、に従って計算されることを特徴とす
る、請求項25に記載の方法。
27. Concentration of pickling bath of sulfuric acid (as) the following equation: as = a · L 1 2 + b · L 1 -c where a, b and c are calculated in accordance with the coefficient of the quadratic equation, 26. The method of claim 25, wherein:
【請求項28】 フッ化水素酸の酸洗い槽中の濃度(af)が次式: af=a1・δ2+b1・δ−c1 ここでa1、b1、c1は二次方程式の係数;δ=L2−L1−φ;φ=c2+(c 3 ・T);c2、c3は分析容器(CA)の中に添加された硝酸第二鉄・9H2Oの
量に依存する定数、に従って計算されることを特徴とする、請求項25に記載の
方法。
28. The concentration (af) of hydrofluoric acid in the pickling tank is represented by the following formula: af = a1・ ΔTwo+ B1・ Δ-c1 Where a1, B1, C1Is the coefficient of the quadratic equation; δ = LTwo-L1-Φ; φ = cTwo+ (C Three · T); cTwo, CThreeIs ferric nitrate 9H added to the analytical vessel (CA)TwoO's
26. The method according to claim 25, characterized in that it is calculated according to a quantity-dependent constant.
Method.
【請求項29】 酸洗い槽中の二価鉄イオン濃度の決定が過マンガン酸滴定
法によって行われることを特徴とする、請求項23に記載の方法。
29. The method according to claim 23, wherein the determination of the concentration of ferrous ions in the pickling tank is performed by a permanganate titration method.
【請求項30】 酸洗い槽中の二価鉄イオン濃度の決定が少なくとも以下の
操作: ・既定の希釈率を得るために、既定の容量の水で分析容器(CA)を満たす; ・高精度の投薬手段(D2)により、分析されるべき酸洗い槽試料の既定の容積
をサンプリングモジュール(C)から汲出して、それを分析容器(CA)の中に
添加する; ・低精度の投薬手段(D1)により、既知濃度を有している強酸溶液の既定概略
量の、分析容器(CA)への添加により希釈された酸洗い槽試料を酸性化する;
・高精度の投薬手段(D2)により分析容器(CA)の中に添加された既知濃度
の過マンガン酸カリウムによる電位差滴定、前記電位差滴定は見せる終点か又は
終点の自動探索法を有している; ・分析容器(CA)を空にする、 より成ることを特徴とする、請求項29に記載の方法。
30. The determination of the concentration of divalent iron ions in the pickling tank is at least the following operations: Filling the analytical vessel (CA) with a predetermined volume of water to obtain a predetermined dilution; Pumping a predetermined volume of the pickling tank sample to be analyzed from the sampling module (C) by means of the dosing means (D2) and adding it into the analytical vessel (CA); (D1) acidifying a diluted pickling bath sample by adding a predefined approximate amount of a strong acid solution having a known concentration to an analytical vessel (CA);
-Potentiometric titration with a known concentration of potassium permanganate added into the analytical vessel (CA) by means of high precision dosing means (D2), the potentiometric titration has an end point to show or an automatic search for the end point 30. The method according to claim 29, comprising: emptying the analysis vessel (CA).
【請求項31】 酸洗い槽中の三価鉄イオン濃度の決定がヨウ素滴定法によ
り為されることを特徴とする、請求項23に記載の方法。
31. The method according to claim 23, wherein the determination of the trivalent iron ion concentration in the pickling tank is performed by an iodometric method.
【請求項32】 酸洗い槽中の三価鉄イオン濃度の決定が少なくとも以下の
操作: ・既定の希釈率を得るために、既定の容量の水で分析容器(CA)を充たす; ・高精度の投薬手段(D2)により、分析されるべき酸洗い槽試料の既定の容積
をサンプリングモジュール(C)からの汲出し、及び分析容器(CA)の中への
前記槽試料の添加; ・攪拌の開始; ・低精度の投薬手段(D1)により、硫酸及びフッ化水素酸と反応して、可溶な
塩類又は容易に除去できる沈殿物を形成する元素の塩の既知濃度の既定概略量の
溶液を分析容器(CA)の中に添加する; ・攪拌無しで与えられた期間待機する; ・低精度の投薬手段(D1)により、既知濃度で既定概略量の塩酸溶液を分析容
器(CA)の中に添加する; ・低精度の投薬手段(D1)により、既知濃度で既定概略量のヨウ化カリウム溶
液を分析容器(CA)の中に添加する; ・攪拌無しで与えられた期間待機する; ・溶液を攪拌する; ・高精度の投薬手段(D2)により添加された、三価鉄イオンのヨウ化カリウム
との反応により遊離させられたヨウ素の、既知濃度のチオ硫酸ナトリウムとの電
位差滴定; ・分析容器(CA)を空にする、 より成ることを特徴とする、請求項31に記載の方法。
32. The determination of the concentration of trivalent iron ions in the pickling tank is at least the following operations: • Filling the analytical vessel (CA) with a predetermined volume of water to obtain a predetermined dilution rate; Pumping a predetermined volume of the pickling tank sample to be analyzed from the sampling module (C) by means of the dosing means (D2) and adding said tank sample into the analysis vessel (CA); Start; a solution of a known approximate concentration of a known concentration of an element which reacts with sulfuric acid and hydrofluoric acid by low precision dosing means (D1) to form soluble salts or easily removable precipitates Into the analytical vessel (CA); wait for the given period without agitation; and, by means of a low-precision dosing means (D1), add a predefined approximate amount of hydrochloric acid solution of known concentration to the analytical vessel (CA). • Low-precision dosing means (D1) Add a known approximate concentration of potassium iodide solution with known concentration into the analytical vessel (CA); wait for a given period without agitation; agitate the solution; high-precision dosing means (D2 ), Potentiometric titration of iodine liberated by reaction of ferric ion with potassium iodide with sodium thiosulfate of known concentration;-emptying the analytical vessel (CA) The method according to claim 31, characterized in that:
【請求項33】 硫酸及びフッ化水素酸と反応して、可溶な塩類及び容易に
除去できる沈殿物を形成する元素の塩が硝酸ランタンであることを特徴とする、
請求項32に記載の方法。
33. The salt of an element which reacts with sulfuric acid and hydrofluoric acid to form soluble salts and easily removable precipitates is lanthanum nitrate,
33. The method according to claim 32.
【請求項34】 前記容量の水が分析容器(CA)の中に組込まれた溢流管
を通して分析容器(CA)の中に充填されることを特徴とする、請求項30又は
32に記載の方法。
34. The analysis container (CA) according to claim 30, wherein the volume of water is filled into the analysis container (CA) through an overflow tube incorporated in the analysis container (CA). Method.
【請求項35】 酸洗い槽の酸化還元電位の決定が二価の鉄濃度の決定前に
為されること、そうして得られた酸化還元電位の値が既定値の範囲と比較される
こと且つもし測定値が前記範囲の外にあるならば分析手順は停止させられて警報
信号が発せられることを特徴とする、請求項23に記載の方法。
35. The determination of the oxidation-reduction potential of the pickling tank is made before the determination of the divalent iron concentration, and the value of the oxidation-reduction potential thus obtained is compared with a predetermined range. 24. The method according to claim 23, wherein if the measured value is outside the range, the analysis procedure is stopped and an alarm signal is issued.
【請求項36】 遊離過酸化水素の決定が少なくとも以下の操作: ・既定の希釈率を得るために、既定の容量の水で分析容器(CA)を満たす; ・高精度の投薬手段(D2)により、分析されるべき酸洗い槽試料の既定容積を
サンプリングモジュール(C)から引出して、それを分析容器(CA)の中に添
加する; ・低精度の投薬手段(D1)により、既知濃度の強酸の既定概略量の、分析容器
(CA)への添加により希釈された酸洗い槽試料を酸性化する; ・高精度の投薬手段(D2)により分析容器(CA)の中に添加された既知濃度
の過マンガン酸カリウムによる電位差滴定、前記電位差滴定は見せる終点か又は
終点の自動探索法を有している; ・分析容器(CA)を空にする、 より成ることを特徴とする、請求項24に記載の方法。
36. The procedure for determining the free hydrogen peroxide is at least the following: Filling the analytical vessel (CA) with a predetermined volume of water to obtain a predetermined dilution rate; High precision dosing means (D2) Withdraws a predetermined volume of the pickling tank sample to be analyzed from the sampling module (C) and adds it into the analysis vessel (CA) by means of a low-precision dosing means (D1) Acidify the diluted pickling tank sample by adding a defined approximate amount of strong acid to the analytical vessel (CA); a known dose added into the analytical vessel (CA) by precision dosing means (D2) Potentiometric titration with potassium permanganate at a concentration, said potentiometric titration has a visible endpoint or an automatic search for endpoint; emptying the analytical vessel (CA). Method according to 24 .
【請求項37】 各分析の後で、分析容器(CA)の、電位差測定をする手
段の及び伝導度測定セルの;即ち分析容器(CA)、電位差測定をする手段、伝
導度測定セル及び既定の回数の分析の後で化学的に洗浄をした伝導度測定セルの
水濯ぎ操作も含むことを特徴とする、請求項23に記載の方法。
37. After each analysis, of the analytical vessel (CA), of the means for measuring the potential difference and of the conductivity measuring cell; ie, the analytical vessel (CA), of the means for measuring the potential difference, the conductivity measuring cell and the predetermined 24. The method according to claim 23, further comprising a water rinsing operation of the conductivity measuring cell that has been chemically cleaned after the analysis of the number of times.
【請求項38】 前記水濯ぎが少なくとも以下の操作: ・分析容器(CA)を完全に空にする; ・分析容器(CA)の上縁に沿って配置されたスリット(F)を通して多量の水
を前記分析容器(CA)に注ぐ; ・前記電位差測定をする手段と伝導度測定セルの先端が浸されるまで前記分析容
器(CA)を水で満たす; ・分析容器(CA)を空にする; ・更に前記電位差測定をする手段と伝導度測定セルの先端を濯いで、分析容器(
CA)に設置されたノズル(U)を通してある程度の水をそれらの上に噴霧する
; ・分析容器(CA)を空にし次の分析に備える、 より成ることを特徴とする、請求項37に記載の方法。
38. The water rinse comprises at least the following operations:-completely emptying the analytical vessel (CA);-plenty of water through a slit (F) arranged along the upper edge of the analytical vessel (CA). Is poured into the analytical vessel (CA); the means for measuring the potential difference and the tip of the conductivity measuring cell are filled with water until the analytical vessel (CA) is immersed; Rinsing the tip of the conductivity measuring cell and the means for measuring the potential difference,
38. Spraying some water onto them through a nozzle (U) located in CA);-Emptying the analysis vessel (CA) for the next analysis; the method of.
【請求項39】 化学的洗浄が少なくとも以下の操作: ・前記電位差測定をする手段と伝導度測定セルの先端が浸されるまで分析容器(
CA)の上縁の周りに配置されたスリット(F)を通して分析容器(CA)を水
で満たす; ・化学洗浄溶液を得るのに必要な量の製品をタンクから汲上げてそれを前記分析
容器(CA)に送込む; ・既定の期間の後、分析容器(CA)を空にして洗浄化学溶液のどんな痕跡も消
去するため水で濯ぐ、 より成ることを特徴とする、請求項37及び38に記載の方法。
39. The chemical washing comprises at least the following operations: the means for measuring the potential difference and the analysis container until the tip of the conductivity measuring cell is immersed.
Fill the analytical vessel (CA) with water through a slit (F) arranged around the upper edge of the CA); pump the required quantity of product from the tank to obtain a chemical cleaning solution and remove it from the analytical vessel (CA); rinsing the analytical vessel (CA) after a predetermined period of time and rinsing with water to eliminate any traces of the cleaning chemical solution. 38. The method of claim 38.
【請求項40】 前記化学洗浄が10−20%塩酸で為されることを特徴と
する、請求項39に記載の方法。
40. The method of claim 39, wherein said chemical cleaning is performed with 10-20% hydrochloric acid.
【請求項41】 化学洗浄溶液を作るのに必要な量の製品が試薬貯蔵部(D
R)に置かれたタンクから引出されることを特徴とする、請求項39に記載の方
法。
41. The amount of product required to make the chemical cleaning solution is in the reagent reservoir (D).
40. The method according to claim 39, wherein the method is withdrawn from a tank located in R).
【請求項42】 作業しない時、分析容器(CA)が分析容器(CA)の上
縁に沿って配置されたスリット(F)と前記容器の中に設置されたノズル(U)
を通って水で満たされることを特徴とする、請求項23に記載の方法。
42. A slit (F) in which the analytical container (CA) is arranged along the upper edge of the analytical container (CA) and a nozzle (U) installed in the container when not operating.
24. The method according to claim 23, characterized by being filled with water through.
【請求項43】 硫酸、フッ化水素酸、三価の鉄イオン及び酸化剤の酸洗い
槽中の濃度が次式: s=K・(v0−vm)・vb/p ここで: s=作動時間; K=補正薬品の濃度に反比例する因子; v0=特定の補正薬品に与えられた濃度; vm=分析の結果得られた前記特定の補正薬品の濃度; vb=タンクの容量; p=添加手段の送出量、 により与えられた時間(s)の期間対応する補正薬品の酸洗い槽の中への添加を
調節する各投薬手段の作動により望ましい値に戻されることを特徴とする、請求
項23に記載の方法。
43. A sulfuric acid, hydrofluoric acid, trivalent iron ion and the concentration of pickling bath of the oxidizing agent is the following formula: s = K · (v 0 -v m) · v b / p where: s = actuating time; the concentration of resulting the particular correction chemicals were of v m = analysis;; K = correction factor is inversely proportional to the concentration of the drug; v 0 = specific correction chemicals given concentration v b = tank P = amount delivered by the dosing means; p = amount delivered by the means for adjusting the dosing of the corresponding correction chemical into the pickling bath for a period of time (s) given by 24. The method of claim 23, wherein the method is characterized.
【請求項44】 酸洗い槽中の三価の鉄イオンと二価の鉄イオンの濃度の間
の比Rが以下の操作: ・B1=A・R を計算する: ここでAは過マンガン酸塩による滴定から結果する二価の鉄イオン濃度であり
、Rは夫々三価と二価の鉄イオンの濃度間の望まれる比であり、そしてB1は三
価の鉄イオンの理論的濃度である; ・B1と三価の鉄イオンの測定濃度Bとを比較する; ・もしB≧B1ならば、酸化剤の酸洗い槽の中への投入を調節する投薬手段(D
2)を作動させない; ・もしB<B1ならば、次式によって表現される時間(s1)酸化剤の酸洗い槽の
中への投入を調節する投薬手段(D2)を作動させる: s1=K・K1・C/p ここで: s1=作動時間; K=補正薬品の濃度に反比例する因子; K1=タンク容量に比例する因子; C=(B1−B)/R=鉄イオン濃度について望まれる値に回復するため酸化さ
れるべき二価鉄イオンの量; p=添加手段の送出量、 により望ましい値に戻されることを特徴とする、請求項23に記載の方法。
44. The ratio, R, between the concentration of trivalent iron ions and divalent iron ions in the pickling tank is calculated as follows: B 1 = A · R where A is permanganese Is the divalent iron ion concentration resulting from titration with an acid salt, R is the desired ratio between the trivalent and divalent iron ion concentrations, respectively, and B 1 is the theoretical concentration of trivalent iron ion Comparing B 1 with the measured concentration B of trivalent iron ions; and if B ≧ B 1 , a dosing means (D) that regulates the charging of the oxidizing agent into the pickling bath.
2) not operate the; - if if B <B 1, actuating the time represented by the following formula (s 1) dispensing means for regulating the introduction of into the pickling bath of the oxidizing agent (D2): s 1 = K · K 1 · C / p where: s 1 = actuating time; factor proportional to K 1 = tank volume;; K = factor inversely proportional to the concentration of the correction chemicals C = (B 1 -B) / R 24. The method according to claim 23, characterized in that: = the amount of ferrous ions to be oxidized to restore the desired value for the iron ion concentration; p = the delivery of the addition means; .
【請求項45】 酸洗い槽中の三価の鉄イオンと二価の鉄イオンの濃度の間
の比Rが以下の操作: ・全鉄イオンの計算T=A+B ここでAは過マンガン酸滴定分析から得られたFe2+の濃度でありBはヨウ素
滴定分析から得られたFe3+の濃度である; ・計算R=B/A; ・R(現在比)をR1(既定比)と比較する; ・もしR>R1ならば、論理演算部ULは酸化剤のどんな添加も行わない; ・もしR<R1ならば、論理部演算ULは次式に従って酸化剤溶液の酸洗い槽中
への添加を調節する添加手段の作動時間s1(秒)を計算する: s1=K・K1・C/p ここで、 C=A−[(A+B)/(R1+1)]=現在比Rを既定値R1に回復させるため
酸化するべき二価の鉄の量; s1=作動時間(秒); K=係数、タンクの容量V(l)に反比例する; p=添加手段の送出量(l/s)、 により望ましい値に戻されることを特徴とする、請求項23に記載の方法。
45. The ratio R between the concentration of trivalent iron ions and the concentration of divalent iron ions in the pickling tank is as follows: Calculation of total iron ions T = A + B where A is the permanganate titration The concentration of Fe 2+ obtained from the analysis and B is the concentration of Fe 3+ obtained from the iodometric titration analysis. ・ Calculation R = B / A; ・ R (current ratio) is R 1 (predetermined ratio) compared with; - if R> if R 1, logical operation unit UL does not perform any addition of an oxidizing agent; - if if R <R 1, pickling of the oxidizing agent solution in accordance with the logic unit operation UL the following formula Calculate the operating time s 1 (second) of the adding means for adjusting the addition into the tank: s 1 = K · K 1 · C / p where C = A − [(A + B) / (R 1 +1) ] = amount of bivalent iron to oxidize to restore the present ratio R to the default R 1; s 1 = actuating time (seconds); K = coefficient, the capacity of the tank V ( Is inversely proportional to); p = delivery of the addition means (l / s), characterized in that it is returned to the desired value by the method of claim 23.
【請求項46】 論理演算部(UL)がそのメモリーにロードされた操作手
順の一つによって酸洗い槽を管理し且つ特定の操作を特徴付けている複数のパラ
メーター及び前記特定の操作に関連して酸洗い槽を分析する分析装置の作業パラ
メーターより成っていることを特徴とする、請求項23に記載の方法。
46. A logic unit (UL) manages the pickling bath by one of the operating procedures loaded into its memory and associates a plurality of parameters characterizing the particular operation with the particular operation. 24. The method according to claim 23, comprising operating parameters of the analyzer for analyzing the pickling bath.
【請求項47】 操作手順の各々が少なくとも以下の情報: ・実行されるべき分析の順序と種類; ・酸洗い槽で検査する諸パラメーターの既定値; ・前記既定値に関して許容できる偏差の大きさ、それを超えると論理演算部(U
L)は補正薬品を酸洗い槽中に送込む投薬手段(D)を作動させる; ・分析される酸洗い槽試料の水による希釈率、 を含むことを特徴とする、請求項46に記載の方法。
47. Each of the operating procedures has at least the following information: • the order and type of analysis to be performed; • the default values of the parameters to be examined in the pickling bath; , The logical operation unit (U
47. The method according to claim 46, characterized in that L) activates a dosing means (D) for delivering the corrective chemical into the pickling bath; diluting the pickling bath sample to be analyzed with water. Method.
【請求項48】 論理演算部(UL)が以下の諸段階: ・既知の組成を有している溶液の与えられた量を容器から汲上げて且つそれを分
析する; ・前記溶液を分析容器(CA)に移送する; ・分析により得られた値を期待値と比較する; ・もし測定値と期待値の間の偏差が与えられた量より高ければ警報を出す、 より成っている、既定回数の分析の後で動作する自動較正操作手順も実行するこ
とを特徴とする、請求項46に記載の方法。
48. The logic unit (UL) pumps a given amount of a solution having a known composition from a container and analyzes it, comprising the steps of: (CA); • Compare the value obtained from the analysis with the expected value; • Raise an alarm if the deviation between the measured value and the expected value is greater than a given amount; 47. The method of claim 46, further comprising performing an automatic calibration procedure that operates after the analysis of the number.
【請求項49】 既知の組成を持つ溶液が試薬貯蔵部(DR)中に設置され
た容器から汲上げられることを特徴とする、請求項48に記載の方法。
49. The method according to claim 48, wherein a solution having a known composition is pumped from a container located in the reagent reservoir (DR).
JP2000585647A 1998-12-02 1999-12-02 Apparatus and method for controlling the pickling process of steel Pending JP2002531700A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
IT98A002612 1998-12-02
IT1998MI002612A IT1303814B1 (en) 1998-12-02 1998-12-02 APPARATUS AND METHOD TO CONTROL PERACCIAIO PICKLING PROCESSES.
PCT/EP1999/009367 WO2000033061A1 (en) 1998-12-02 1999-12-02 Device and method to control steel pickling processes

Publications (1)

Publication Number Publication Date
JP2002531700A true JP2002531700A (en) 2002-09-24

Family

ID=11381178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000585647A Pending JP2002531700A (en) 1998-12-02 1999-12-02 Apparatus and method for controlling the pickling process of steel

Country Status (9)

Country Link
EP (1) EP1141686B1 (en)
JP (1) JP2002531700A (en)
AT (1) ATE318408T1 (en)
CA (1) CA2353387A1 (en)
DE (1) DE69930001T2 (en)
ES (1) ES2258863T3 (en)
IT (1) IT1303814B1 (en)
MX (1) MXPA01005464A (en)
WO (1) WO2000033061A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6494961B2 (en) * 2001-03-30 2002-12-17 Alcan International Limited Method of controlling solution concentration in strip cleaning line
CA2443763A1 (en) * 2001-04-09 2002-10-17 Ak Properties Inc. Pickle liquor acid analyzer
EP1552038B1 (en) * 2002-08-30 2007-08-01 Henkel Kommanditgesellschaft auf Aktien An economic method for restoring the oxidation potential of a pickling solution
GB2499000A (en) 2012-02-02 2013-08-07 Henkel Ag & Co Kgaa Aqueous acidic pickling solution with hydroxylamine accelerators
KR102131004B1 (en) * 2018-07-25 2020-07-07 주식회사 포스코 Analytical apparatus of component concentration of mixed acid solution for pickling of metal
DE102020208769A1 (en) 2020-07-14 2022-01-20 Continental Teves Ag & Co. Ohg Electromechanical braking device
DE102021212879A1 (en) 2021-11-16 2023-05-17 Continental Automotive Technologies GmbH Electromechanical braking device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04304391A (en) * 1991-03-29 1992-10-27 Itb Srl Method of pickling stainless steel without using nitric acid and passivating stainless steel
JPH0518926A (en) * 1991-07-08 1993-01-26 Nisshin Steel Co Ltd Method for measuring concentration of component of iron chloride bath for acid cleaning of alloy steel strip
JPH07134112A (en) * 1993-11-09 1995-05-23 Yoshikazu Kobayashi Automated titration analyzer

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1383637A (en) * 1973-07-18 1974-02-12 Centralec Soc Electrochemical cell for quantitative analysis
JPS549120A (en) * 1977-06-24 1979-01-23 Tokai Electro Chemical Co Method of controlling acid cleaning liquid for stainless steel
US5354383A (en) * 1991-03-29 1994-10-11 Itb, S.R.L. Process for pickling and passivating stainless steel without using nitric acid
JPH0666766A (en) * 1992-08-20 1994-03-11 Mitsubishi Heavy Ind Ltd Method for measuring iron ion concentration of pickling bath for steel strip
JPH07128273A (en) * 1993-11-02 1995-05-19 Mitsubishi Heavy Ind Ltd Measuring device for iron ion concentration in pickling solution
JP3321289B2 (en) * 1994-04-25 2002-09-03 川崎製鉄株式会社 Mixed acid analysis method and pickling solution management method
JP3468889B2 (en) * 1994-12-05 2003-11-17 三菱重工業株式会社 Method for measuring iron ion concentration in pickling liquid
IT1276954B1 (en) * 1995-10-18 1997-11-03 Novamax Itb S R L PICKLING AND PASSIVATION PROCESS OF STAINLESS STEEL WITHOUT THE USE OF NITRIC ACID
DE19543468A1 (en) * 1995-11-22 1997-05-28 Metallgesellschaft Ag Waste water-free special steel pickling process
GB9620877D0 (en) * 1996-10-07 1996-11-27 Solvay Interox Ltd Metal surface treatment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04304391A (en) * 1991-03-29 1992-10-27 Itb Srl Method of pickling stainless steel without using nitric acid and passivating stainless steel
JPH0518926A (en) * 1991-07-08 1993-01-26 Nisshin Steel Co Ltd Method for measuring concentration of component of iron chloride bath for acid cleaning of alloy steel strip
JPH07134112A (en) * 1993-11-09 1995-05-23 Yoshikazu Kobayashi Automated titration analyzer

Also Published As

Publication number Publication date
ITMI982612A1 (en) 2000-06-02
EP1141686A1 (en) 2001-10-10
ATE318408T1 (en) 2006-03-15
MXPA01005464A (en) 2002-07-02
ES2258863T3 (en) 2006-09-01
DE69930001D1 (en) 2006-04-27
WO2000033061A1 (en) 2000-06-08
IT1303814B1 (en) 2001-02-23
CA2353387A1 (en) 2000-06-08
EP1141686B1 (en) 2006-02-22
DE69930001T2 (en) 2006-08-24

Similar Documents

Publication Publication Date Title
JP2002531700A (en) Apparatus and method for controlling the pickling process of steel
US5175502A (en) Method and apparatus for determining acid concentration
JP3623991B2 (en) Automatic analysis method and equipment
JP2977646B2 (en) Method for measuring the concentration of main components in neutral salt electrolytic bath for descaling stainless steel strip
JP4714209B2 (en) COD automatic measuring instrument and COD measuring method using the same
JP3046132B2 (en) Control method of nitric acid hydrofluoric acid bath for descaling stainless steel strip and its continuous descaling device
CN112630284A (en) Phosphating tank liquid on-line detection and automatic supply system
JP2521215Y2 (en) COD automatic measuring device
CN214097257U (en) Phosphating tank liquid on-line detection and automatic supply system
TW202424479A (en) Non-reagent chloride analysis in acid copper plating baths
JP3388325B2 (en) Automatic titration analyzer
JPH0235809Y2 (en)
JP2933727B2 (en) Aging control method of neutral salt electrolytic bath for descaling stainless steel strip
JP3150483B2 (en) Pickling method
JPS6235059B2 (en)
JPH0137690B2 (en)
CN117161019A (en) Online cleaning device and method for removing chloride ion determination sediment
JPH03216543A (en) Apparatus for measuring concentration of hydrogen peroxide
JP2823437B2 (en) How to manage salt bath
JPS6096771A (en) Controlling method of nitrite ion concentration
RU2102736C1 (en) Method of inversion-volt-amperometric determination of heterovalent arsenic forms in aqueous solutions
JPH04295754A (en) Method for analyzing nitrite in phosphate treating solution
JPH01268878A (en) Automatic analysis administration device for plating liquid
JPH02254181A (en) Method for managing stabilizer of etching bath
JP2009082839A (en) Treatment method and automated apparatus for treatment of chromium-containing waste liquid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090828

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20091125

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20091207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100806

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110118