JPH07128273A - Measuring device for iron ion concentration in pickling solution - Google Patents

Measuring device for iron ion concentration in pickling solution

Info

Publication number
JPH07128273A
JPH07128273A JP27399493A JP27399493A JPH07128273A JP H07128273 A JPH07128273 A JP H07128273A JP 27399493 A JP27399493 A JP 27399493A JP 27399493 A JP27399493 A JP 27399493A JP H07128273 A JPH07128273 A JP H07128273A
Authority
JP
Japan
Prior art keywords
pickling solution
flow cell
iron ion
ion concentration
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP27399493A
Other languages
Japanese (ja)
Inventor
Toshiyuki Ota
利行 大田
Shigeo Itano
重夫 板野
Yukio Kanda
行雄 神田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP27399493A priority Critical patent/JPH07128273A/en
Publication of JPH07128273A publication Critical patent/JPH07128273A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

PURPOSE:To provide a measuring device for iron ion concentration in pickling solution which is applied to a device for continuously picking a stainless steel band. CONSTITUTION:This measuring device has 1) a device for supplying a pickling solution from a pickling line 11 to a flow cell 13 in a fixed quantity through a constant pump 12, 2) a device 16 for diluting the pickling solution in the flow cell 13 with pure water into an optional dilution, 3) a device 17 for automatically dropping an oxidizing agent to the diluted pickling solution in the flow cell, 4) an A/D converter 20 for oxidation-reduction potential and monitoring thereof which is set in the flow cell 13 to measure the change of the oxidation- reduction potential in each operation of the above 1)-3), and 5) an arithmetic device 19 for calculating iron ion concentration from the oxidizing agent titre when the oxidation-reduction potential begins to sharply change in the operation of 3), each oxidation-reduction potential of 1)-3), and the dilution in 2).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は例えばステンレス鋼帯等
を連続的に酸洗する装置に適用される酸洗液中の鉄イオ
ン濃度測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for measuring the concentration of iron ions in a pickling solution, which is applied to an apparatus for continuously pickling stainless steel strips.

【0002】[0002]

【従来の技術】例えばステンレス鋼帯等を連続に酸洗し
た酸洗液中の鉄イオン濃度を測定する場合、従来におい
ては、人手による化学分析に頼っていた。この化学分析
による測定方法は種々提案されているが、その内でよく
使用されるEDTA(エチレンジアミン四酢酸)による
「キレート滴定法」について以下説明する。
2. Description of the Related Art For example, when measuring the iron ion concentration in a pickling solution obtained by continuously pickling a stainless steel strip or the like, a manual chemical analysis was conventionally used. Although various measurement methods by this chemical analysis have been proposed, the "chelate titration method" using EDTA (ethylenediaminetetraacetic acid), which is often used among them, will be described below.

【0003】1)Fe3+(第二鉄イオン)濃度の測定 試料(酸洗液)に緩衝剤(塩酸−酢酸ナトリウム,p−
クロルアニリン)を添加し、スルホサリチル酸を試料1
00mlにつき約0.2gの割合で加え、pHを2〜3に調
整する。次に、濃度0.1〜0.05ml/L EDTA標準液
で滴定し、溶液の色が青→緑→黄に順に変色するに際
し、緑色が完全に消え去って黄色になった点を終点とす
る。 ここで、0.1mol /L EDTA…1ml=5.585mgFe として、滴定量より第2鉄イオン(Fe3+)濃度を求め
る。
1) Measurement of Fe 3+ (ferric ion) concentration A buffer (hydrochloric acid-sodium acetate, p-) was added to a sample (pickling solution).
Chloraniline) was added and sulfosalicylic acid was added to sample 1
The pH is adjusted to 2-3 by adding about 0.2 g per 00 ml. Next, titrate with a concentration of 0.1 to 0.05 ml / L EDTA standard solution, and when the color of the solution changes from blue → green → yellow in order, the point where the green color completely disappears and turns yellow is taken as the end point. . Here, the concentration of ferric ion (Fe 3+ ) is determined from the titration amount, assuming that 0.1 mol / L EDTA ... 1 ml = 5.585 mg Fe.

【0004】2)Fe2+(第一鉄イオン)濃度の測定 酸化剤として過硫酸アンモンを試料に加えた後、短時間
煮沸し、Fe2+をFe 3+に酸化し、次いで、過剰の酸化
剤も完全に分解しておく。冷却後、上記1)のFe3+
度の測定と同様に緩衝剤を添加し、スルホサリチル酸を
加えてpHを2〜3に調整する。この後、EDTA標準
液で滴定し、Fe3+(第二鉄イオン)濃度を求める。こ
の濃度は第一鉄イオンと第二鉄イオンとの合計量、即
ち、 Fe2++Fe3+=FeTOTAL を示している。 従って、第一鉄イオン(Fe2+)を求めるには、上記
1)の操作で求めた第二鉄イオン(Fe3+)を、下記に
示すように、本操作で求めた総鉄イオン(FeTO TAL
濃度から引くことにより得られる。 Fe2+=FeTOTAL −Fe3+
2) Fe2+(Ferrous iron ion) concentration measurement Short time after adding ammonium persulfate as an oxidant to the sample
Boiled, Fe2+For Fe 3+To excess and then excess oxidation
The agent is also completely decomposed. After cooling, Fe of 1) above3+Dark
As in the measurement of the degree, add a buffering agent and add sulfosalicylic acid.
In addition, the pH is adjusted to 2-3. After this, EDTA standard
Titrate with liquid, Fe3+Determine the (ferric ion) concentration. This
Is the total amount of ferrous and ferric ions,
Chi, Fe2++ Fe3+= FeTOTALIs shown. Therefore, ferrous ion (Fe2+), Above
Ferric ion (Fe3+) Below
As shown, total iron ions (FeTO TAL)
Obtained by subtracting from the concentration. Fe2+= FeTOTAL-Fe3+

【0005】[0005]

【発明が解決しようとする課題】[Problems to be Solved by the Invention]

1)従来技術に係る問題点 キレート滴定法は、指示薬の変色が他の混在する微量の
重金属等によって妨げられるという問題がある。また、
硝酸とフッ酸液との混液のような酸化性酸洗液中のFe
3+濃度をEDTAで滴定分析を行う場合、EDTAが自
己触媒作用を起して、Fe2+をFe3+に酸化するため、
Fe3+濃度測定値が実際より多く分析され、この結果、
逆にFe 2+濃度は少ない測定値を示すことになり、測定
精度の誤差が生じる。
 1) Problems related to the prior art The chelate titration method has a small amount of discoloration of the indicator mixed with other impurities.
There is a problem that it is hindered by heavy metals and the like. Also,
Fe in an oxidizing pickling solution such as a mixture of nitric acid and hydrofluoric acid
3+When performing the titration analysis with EDTA, the EDTA
Fe self-catalyzing2+For Fe3+Because it oxidizes to
Fe3+The concentration readings were analyzed more than they actually were, and as a result,
Conversely, Fe 2+The concentration shows a small measured value,
Accuracy error occurs.

【0006】2)さらに、従来においては手作業による
分析をその度行っているため、常時連続して酸洗液中の
鉄イオン濃度を監視することが望まれている。
2) Further, conventionally, since manual analysis is performed each time, it is desired to constantly monitor the iron ion concentration in the pickling solution continuously.

【0007】[0007]

【課題を解決するための手段】前記課題を解決する本発
明に係る酸洗液中の鉄イオン濃度測定装置の構成は、酸
洗液中の鉄イオン濃度を測定する測定装置において、 1)酸洗ラインより酸洗液をフローセルに一定量供給す
る装置と、 2)フローセル中へ酸洗液を純水で任意の希釈率に希釈
する装置と、 3)フローセル中の希釈酸洗液に酸化剤を自動的に滴下
する装置と、 4)上記1)〜3)の各操作における酸化還元電位の変
化を計測する為にフローセル中に設置された酸化還元電
位及びそのモニター用のA/D変換器と、 5)上記3)の操作において酸化還元電位が急激に変化
しはじめたときの酸化剤滴定量と、1)〜3)の各酸化
還元電位及び上記2)の希釈率から鉄イオン濃度を演算
する演算装置と、を具備してなることを特徴とする。
The structure of the iron ion concentration measuring device in the pickling solution according to the present invention for solving the above-mentioned problems is as follows: 1) acid A device for supplying a fixed amount of the pickling solution from the washing line to the flow cell, 2) a device for diluting the pickling solution into the flow cell to an arbitrary dilution ratio with pure water, and 3) an oxidizing agent for the diluted pickling solution in the flow cell. 4) a device for automatically dropping the redox potential, and 4) an oxidation-reduction potential installed in a flow cell for measuring a change in the redox potential in each of the operations 1) to 3) and an A / D converter for monitoring the redox potential. And 5) the iron ion concentration from the titration amount of the oxidant when the redox potential starts to change rapidly in the operation of 3) above, the redox potentials of 1) to 3) and the dilution rate of 2) above. And a computing device for computing That.

【0008】[0008]

【作用】[Action]

1)酸洗ラインから定量ポンプを介して試料(酸洗液)
を一定量フローセル中に移送する。 2)原試料につき酸化還元電極を用いて先ず酸化還元電
位を求める。 3)フローセル中の酸洗液の濃度を希釈水供給装置から
の希釈水により任意倍率に希釈する。 4)希釈後の試料について酸化還元電位を求める。 5)希釈後の試料に酸化剤を自動滴定装置により滴下
し、演算装置の演算により酸化還元電位が急減に上昇し
はじめる点を求め、希釈時の第一鉄イオン(Fe 2+)濃
度を求める。 6)希釈時の酸化還元電位および第一鉄イオン(F
2+)′濃度より、希釈時の第二鉄イオン(Fe3+)′
を演算装置の演算により求めると共に、原試料中の第一
鉄イオン濃度(Fe2+)濃度及び第二鉄イオン(F
3+)濃度を求める。 7)滴定後は、フローセルから速やかに排出し、次の測
定に備える。
 1) Sample (pickling solution) from the pickling line via a metering pump
Is transferred into the flow cell in a fixed amount. 2) First, using the redox electrode for the original sample,
Ask for rank. 3) Adjust the concentration of the pickling solution in the flow cell from the dilution water supply device.
Dilute to arbitrary ratio with the dilution water of. 4) Obtain the redox potential of the diluted sample. 5) Add oxidizer to diluted sample with automatic titrator
However, the redox potential suddenly rises due to the calculation of the calculation device.
Finding the starting point, ferrous ions (Fe 2+)
Ask for degrees. 6) Redox potential at dilution and ferrous ion (F
e2+) ′ Concentration, ferric ion (Fe3+) ′
Is calculated by the calculation device and the first
Iron ion concentration (Fe2+) Concentration and ferric ion (F
e3+) Obtain the concentration. 7) After titration, immediately discharge from the flow cell and
Be prepared

【0009】[0009]

【実施例】以下、本発明に係る酸洗液中の鉄イオン濃度
測定装置の好適な一実施例を図面を参照して詳細に説明
する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A preferred embodiment of the apparatus for measuring the concentration of iron ions in a pickling solution according to the present invention will be described in detail below with reference to the drawings.

【0010】図1は本実施例に係る鉄イオン濃度測定装
置の概略図である。同図中、符号11は酸洗ライン、1
2は定量ポンプ、13はフローセル、14は照合電極、
15は白金電極、16は希釈水供給装置、17は自動滴
定装置、18は排出装置、19は演算装置、20はA/
D変換器を、各々図示する。
FIG. 1 is a schematic view of an iron ion concentration measuring apparatus according to this embodiment. In the figure, reference numeral 11 is a pickling line, 1
2 is a metering pump, 13 is a flow cell, 14 is a reference electrode,
Reference numeral 15 is a platinum electrode, 16 is a dilution water supply device, 17 is an automatic titration device, 18 is a discharge device, 19 is a calculation device, and 20 is A /
Each D converter is shown in the figure.

【0011】すなわち、酸洗ライン11から試粉分析用
のフローセル13へ試料を一定量供給する手段として、
定量ポンプ12を設置した。上記フローセル13中の試
料を任意の倍率に希釈する手段として希釈水供給装置1
6を設置すると共に、当該フローセル13中の試料への
酸化剤を自動的に滴下するための自動滴定装置17を設
置した。また、上記フローセル13中試料の酸化還元電
位を監視する照合電極14と白金電極15とからなる酸
化還元電極を設けると共に、A/D変換器20を介装し
て演算装置19に測定データを送っている。尚、A/D
変換器20は測定データの取込み及び各処理装置への命
令の役割をしている。
That is, as means for supplying a fixed amount of sample from the pickling line 11 to the flow cell 13 for sample powder analysis,
A metering pump 12 was installed. As a means for diluting the sample in the flow cell 13 to an arbitrary magnification, a dilution water supply device 1
6 was installed, and an automatic titrator 17 for automatically dropping the oxidant to the sample in the flow cell 13 was installed. Further, an oxidation-reduction electrode composed of a reference electrode 14 and a platinum electrode 15 for monitoring the oxidation-reduction potential of the sample in the flow cell 13 is provided, and measurement data is sent to the arithmetic unit 19 via the A / D converter 20. ing. A / D
The converter 20 is responsible for the acquisition of measurement data and the command to each processing unit.

【0012】次に本装置を用いた酸洗液中の鉄イオン濃
度の測定手順を説明する。
Next, the procedure for measuring the iron ion concentration in the pickling solution using this apparatus will be described.

【0013】酸洗ライン11から、定量ポンプ12によ
り試料を一定量測定用フローセル13に供給する。 先ず、原試料について酸化還元電極14,15で酸
化還元電位(φRP)を測定し、下記「数1」に示す式
(1)によりFe2+/Fe3+濃度比(mol/L)/(mol/
L)を求める。
From the pickling line 11, a fixed amount of the sample is supplied to the flow cell 13 for measuring a fixed amount by a metering pump 12. First, the redox potentials (φRP) of the original sample were measured with the redox electrodes 14 and 15, and the Fe 2+ / Fe 3+ concentration ratio (mol / L) / (was calculated by the formula (1) shown in the following "Equation 1". mol /
L) is calculated.

【数1】 次に、試料を蒸留水等を使って希釈水供給装置16
により、原試料を任意の希釈倍率にうすめる。 希釈後の試料について酸化還元電位を測定し、前述
と同様に(Fe3+)′/(Fe2+)′濃度比を求める。 希釈試料へ酸化剤を自動滴定装置17により滴下
し、照合電極14,白金電極15の酸化還元電位14,
15が図2に示すようにピークが急激に上昇しはじめる
までの、滴下量を求める。 この滴下量から、相当当量の(Fe2+)′(第一鉄イオ
ン)を求める。例えば過マンガン酸で滴定した場合の反
応式は下記「化1」に示す式(I)のようになる。
[Equation 1] Next, the sample is diluted with distilled water or the like to supply the dilution water 16
The original sample is diluted to an arbitrary dilution ratio by. The redox potential of the diluted sample is measured, and the (Fe 3+ ) ′ / (Fe 2+ ) ′ concentration ratio is determined in the same manner as described above. The oxidizing agent is dropped onto the diluted sample by the automatic titrator 17, and the redox potential 14 of the reference electrode 14 and the platinum electrode 15 is dropped.
As shown in FIG. 2, the amount of dropping is determined until the peak of 15 rapidly starts rising. From this drop amount, the equivalent amount of (Fe 2+ ) ′ (ferrous iron ion) is determined. For example, the reaction formula in the case of titration with permanganate is as shown in formula (I) below.

【化1】 即ちKMn 4 の1モルはFe2+の5モルと当量であ
る。これらの反応は下記「化2」に示す式(II) ,(II
I) の2つの式の酸化還元系の和である。
[Chemical 1] That is, 1 mol of KM n O 4 is equivalent to 5 mol of Fe 2+ . These reactions are represented by the following formulas (II) and (II
It is the sum of the two redox systems of I).

【化2】 希釈時の酸化還元電位φRP′及び第一鉄イオン濃
度(Fe2+)′より第二鉄イオン濃度(Fe3+)′を下
記「数2」の式(2)により求める。
[Chemical 2] The ferric ion concentration (Fe 3+ ) ′ is determined from the redox potential φRP ′ at the time of dilution and the ferrous ion concentration (Fe 2+ ) ′ according to the following equation (2).

【数2】 これらから、希釈時の合計鉄イオン濃度を(下記
「数3」に示す式(3)により求める。
[Equation 2] From these, the total iron ion concentration at the time of dilution is calculated by the formula (3) shown in the following "Equation 3".

【数3】 希釈時の合計鉄イオン濃度(Fe)を下記「数4」
に示す式(4)により、希釈倍率を用いて計算する。
[Equation 3] The total iron ion concentration (Fe) at the time of dilution is shown in the following "Equation 4".
Calculation is performed using the dilution ratio according to the formula (4) shown in.

【数4】 原試料の酸化還元電位(φRP)から鉄イオン濃度
の分配比(Fe3+/Fe 2+)を求め、合計鉄イオン濃度
(Fe)を用いて、第一鉄イオン(Fe2+)、第二鉄イ
オン(Fe3+)濃度を計算する。 滴定後、試料はすみやかに排出装置18によりブロ
−ダウンする。測定後のフローセル13は試料液で共洗
いし、次の測定に備える。尚、試料の採取、排出等は演
算装置19からA/D変換器20を介して制御される。
又、測定値はA/D変換器20を介して演算装置19内
に読み込まれ、計算に使用される。
[Equation 4] From the redox potential (φRP) of the original sample to the iron ion concentration
Distribution ratio (Fe3+/ Fe 2+), The total iron ion concentration
(Fe), ferrous ion (Fe2+), Ferric iron
On (Fe3+) Calculate the concentration. After the titration, the sample is immediately blown by the ejector 18.
-Down. Flow cell 13 after measurement is washed with sample solution
Prepare for the next measurement. In addition, sample collection, discharge, etc.
It is controlled from the arithmetic unit 19 via the A / D converter 20.
In addition, the measured value is stored in the arithmetic unit 19 via the A / D converter 20.
Read into and used for calculations.

【0014】[0014]

【実施例】【Example】

(実施例1)試料として、液温50℃の硝酸系酸洗液を
使用した。図3に従来より、行なわれている湿式分析
(手分析)によるTotal−Fe濃度測定結果と本シ
ステムによるTotal−Fe濃度測定結果の相関関係
を示す。
(Example 1) As a sample, a nitric acid-based pickling solution having a solution temperature of 50 ° C was used. FIG. 3 shows the correlation between the result of measurement of Total-Fe concentration by wet analysis (hand analysis) that has been conventionally performed and the result of measurement of Total-Fe concentration by this system.

【0015】実際の操業ではTotal−Fe濃度は2
0g/L 以下であることから、Total−Fe濃度に
関しては従来法によく一致しており、測定精度の問題は
ない。
In actual operation, the Total-Fe concentration is 2
Since it is 0 g / L or less, the total Fe concentration is in good agreement with the conventional method, and there is no problem in measurement accuracy.

【0016】Total−Feの内訳について、従来法
と本システムの違いを図4に示す。Fe3+濃度が高い場
合は、Fe3+/Fe2+濃度比は両者においてほとんどな
い。しかし、Fe2+濃度が高くなると(Fe3+/Fe2+
濃度比が小さくなると)両者間で差異が生じる。この原
因として本システムはin Situ 測定なのに対し、従来法
では、サンプリングして、滴定するので次の様な問題点
を有している。 サンプリングして分析するまでの間に空気酸化をう
けFe2+イオンの一部がFe3+イオンに変わる。 試料が非酸化性酸液の場合(例えば、塩酸,硫酸)
は問題にならないが、酸化性酸液例えば硝酸等の場合、
EDTA等の指示薬がそれ自身触媒作用を示し、試料中
のFe2+の一部をFe3+に酸化する。 これらの理由から本装置と、従来法の分析結果に差異が
生じたものである。従って、本装置による測定法は、分
析値詳細についても、従来法に比べ優れていることが解
る。
Regarding the breakdown of Total-Fe, the difference between the conventional method and this system is shown in FIG. When the Fe 3+ concentration is high, there is almost no Fe 3+ / Fe 2+ concentration ratio in both. However, when the Fe 2+ concentration becomes high (Fe 3+ / Fe 2+
A difference occurs between the two when the concentration ratio decreases. The cause of this is that in-situ measurement is performed by this system, but in the conventional method, sampling and titration are performed, so there are the following problems. During the period between sampling and analysis, some of the Fe 2+ ions are converted to Fe 3+ ions by undergoing air oxidation. When the sample is a non-oxidizing acid solution (eg hydrochloric acid, sulfuric acid)
Is not a problem, but in the case of oxidizing acid solutions such as nitric acid,
An indicator such as EDTA exhibits a catalytic action by itself, and oxidizes a part of Fe 2+ in the sample to Fe 3+ . For these reasons, there is a difference between the analysis results of this device and the conventional method. Therefore, it can be seen that the measurement method using this device is superior to the conventional method in terms of analysis value details as well.

【0017】上述した本実施例に係る測定装置を用いて
鉄イオン濃度を測定することにより、以下に示すよう
に、I.鉄イオン濃度の測定に際し自動化が図れ、II.
測定精度の向上が図れ、さらにIII.コストの低廉化を図
ることができた。
By measuring the iron ion concentration by using the measuring apparatus according to the present embodiment described above, I.V. Automation can be achieved in measuring iron ion concentration, II.
We were able to improve the measurement accuracy and further reduce the cost of III.

【0018】I 自動化 センサーがイオン電極方式であるため測定値を直接
電圧として出力できる為、測定値処理回路が簡単にな
る。 測定値を電気出力として取出せる為、酸液の補給等
酸洗液の管理制御鵜用信号と結合可能で、システムが自
動化できる。 II 測定精度 活量補正すれば、pHと同じ電気出力値を得られる
為、実用上測定精度で問題になることはない。一方、手
分析の場合、個人差によるバラツキが若干でてくる。 EDTA法では、Fe2+が多い場合、かなり誤差を
生じる。 III コスト センサーがイオン電極なので、イオンクロマトグラ
フィー等に比べ安価である。 電極方式であり、汚れ等に対するメンテナンスがや
りやすい、又希釈操作により、強酸にさらされる時間が
短くなり電極の長寿命化が計れる。
I Since the automated sensor is of the ion electrode type, the measured value can be directly output as a voltage, which simplifies the measured value processing circuit. Since the measured value can be taken out as an electric output, it can be combined with a signal for managing and controlling the pickling solution such as replenishment of the acid solution, and the system can be automated. II Measurement accuracy If the activity is corrected, the same electric output value as pH can be obtained, so there is no practical problem with measurement accuracy. On the other hand, in the case of manual analysis, there are slight variations due to individual differences. In the EDTA method, a large amount of Fe 2+ causes an error. III Cost Since the sensor is an ion electrode, it is cheaper than ion chromatography. It is an electrode type, so maintenance is easy to perform against dirt and the like, and the diluting operation shortens the time of exposure to strong acid, and extends the life of the electrode.

【0019】[0019]

【発明の効果】以上、実施例と共に述べたように、本発
明によれば従来法に酸洗液中の鉄イオン濃度の測定を自
動化できオンライン検出できると共に、その測定精度が
向上し、さらに測定に係るランニングコストが低廉とな
るという効果を奏する。
As described above in connection with the embodiments, according to the present invention, the measurement of the iron ion concentration in the pickling solution can be automated by the conventional method and can be detected online, and the measurement accuracy is improved. This has the effect of reducing the running cost associated with.

【図面の簡単な説明】[Brief description of drawings]

【図1】本実施例に係る鉄イオン濃度測定装置の概略図
である。
FIG. 1 is a schematic view of an iron ion concentration measuring device according to this embodiment.

【図2】KMn 4 によるFe2+滴定曲線図である。FIG. 2 is a Fe 2+ titration curve diagram with KM n O 4 .

【図3】Total−Fe濃度の相関図である。FIG. 3 is a correlation diagram of Total-Fe concentration.

【図4】Fe3+/Fe2+濃度比を示すグラフである。FIG. 4 is a graph showing the Fe 3+ / Fe 2+ concentration ratio.

【符号の説明】[Explanation of symbols]

11 酸洗ライン 12 定量ポンプ 13 フローセル 14 照合電極 15 白金電極 16 希釈水供給装置 17 自動測定装置 18 排出装置 19 演算装置 20 A/D変換器 11 Pickling Line 12 Metering Pump 13 Flow Cell 14 Reference Electrode 15 Platinum Electrode 16 Diluting Water Supply Device 17 Automatic Measuring Device 18 Discharge Device 19 Computing Device 20 A / D Converter

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 酸洗液中の鉄イオン濃度を測定する測定
装置において、 1)酸洗ラインより酸洗液をフローセルに一定量供給す
る装置と、 2)フローセル中へ酸洗液を純水で任意の希釈率に希釈
する装置と、 3)フローセル中の希釈酸洗液に酸化剤を自動的に滴下
する装置と、 4)上記1)〜3)の各操作における酸化還元電位の変
化を計測する為にフローセル中に設置された酸化還元電
位及びそのモニター用のA/D変換器と、 5)上記3)の操作において酸化還元電位が急激に変化
しはじめたときの酸化剤滴定量と、1)〜3)の各酸化
還元電位及び上記2)の希釈率とから鉄イオン濃度を演
算する演算装置とを、 具備してなることを特徴とする酸洗液中の鉄イオン濃度
測定装置。
1. A measuring device for measuring iron ion concentration in a pickling solution, comprising: 1) a device for supplying a fixed amount of the pickling solution to a flow cell from a pickling line; and 2) pure water of the pickling solution into the flow cell. A device for diluting to an arbitrary dilution ratio with 3), a device for automatically dropping an oxidant into a diluted pickling solution in a flow cell, and 4) a change in redox potential in each of the operations 1) to 3) above. A / D converter installed in the flow cell for measurement and an A / D converter for monitoring the same, and 5) Oxidizing agent titration amount when the redox potential starts to change rapidly in the operation of 3) above. 1. An apparatus for measuring iron ion concentration in a pickling solution, comprising: an arithmetic unit that calculates the iron ion concentration from the redox potentials of 1) to 3) and the dilution rate of 2) above. .
JP27399493A 1993-11-02 1993-11-02 Measuring device for iron ion concentration in pickling solution Withdrawn JPH07128273A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27399493A JPH07128273A (en) 1993-11-02 1993-11-02 Measuring device for iron ion concentration in pickling solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27399493A JPH07128273A (en) 1993-11-02 1993-11-02 Measuring device for iron ion concentration in pickling solution

Publications (1)

Publication Number Publication Date
JPH07128273A true JPH07128273A (en) 1995-05-19

Family

ID=17535468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27399493A Withdrawn JPH07128273A (en) 1993-11-02 1993-11-02 Measuring device for iron ion concentration in pickling solution

Country Status (1)

Country Link
JP (1) JPH07128273A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000033061A1 (en) * 1998-12-02 2000-06-08 Henkel Kgaa Device and method to control steel pickling processes
JP2010101724A (en) * 2008-10-23 2010-05-06 Mitsubishi Chemical Analytech Co Ltd Potential-difference titration method and potential-difference titration device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000033061A1 (en) * 1998-12-02 2000-06-08 Henkel Kgaa Device and method to control steel pickling processes
JP2010101724A (en) * 2008-10-23 2010-05-06 Mitsubishi Chemical Analytech Co Ltd Potential-difference titration method and potential-difference titration device

Similar Documents

Publication Publication Date Title
Jagner Potentiometric stripping analysis in non-deaerated samples
US6537822B1 (en) Method for analyzing free fluorine in solutions containing hydrofluoric acid solution, and apparatus for practicing the method
US5175502A (en) Method and apparatus for determining acid concentration
CN107478766A (en) The method of chloride determination in sodium hypophosphite
CN112513624A (en) Component concentration measuring device of mixed acid solution for metal pickling
JP3321289B2 (en) Mixed acid analysis method and pickling solution management method
CN103487550A (en) Method for determining content of nitric acid in titanium plate pickling solution
JPH07128273A (en) Measuring device for iron ion concentration in pickling solution
US7906340B2 (en) Method for quantitative determination of hydrogen peroxide using potentiometric titration
US5286358A (en) Method of analyzing the complexing power of a pickling liquor
JP2721024B2 (en) Method and apparatus for analyzing metal cleaning liquid
JP4470075B2 (en) Method for measuring component concentration of sulfuric acid-hydrofluoric acid type pickling solution
KR20100071260A (en) Analysis method of free acid in mixed acid pickling solution for stainless steel
JP2021021656A (en) Management method of hydrazine concentration in aqueous solution containing hydrazine, and method for setting reference value of oxidation-reduction potential of aqueous solution containing hydrazine
JP3468889B2 (en) Method for measuring iron ion concentration in pickling liquid
JPH0666766A (en) Method for measuring iron ion concentration of pickling bath for steel strip
Tutunji Determination of formation constants of metal complexes by potentiometric stripping analysis
Lindroos Determination of free hydrofluoric and nitric acids in pickling bath liquors using a fluoride-selective electrode and alkalimetric titration
JP3342241B2 (en) Method and apparatus for pickling stainless steel
Walters et al. The potential of the Yb+++-Yb++ electrode
JPH0235809Y2 (en)
JPH0835944A (en) Clinical electrolyte measuring instrument
JPS6234297Y2 (en)
JP2007248297A (en) Apparatus and method for analyzing acid concentration in mixed acid
JPH0137690B2 (en)

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010130