JPS6234297Y2 - - Google Patents

Info

Publication number
JPS6234297Y2
JPS6234297Y2 JP3025786U JP3025786U JPS6234297Y2 JP S6234297 Y2 JPS6234297 Y2 JP S6234297Y2 JP 3025786 U JP3025786 U JP 3025786U JP 3025786 U JP3025786 U JP 3025786U JP S6234297 Y2 JPS6234297 Y2 JP S6234297Y2
Authority
JP
Japan
Prior art keywords
water
operation control
dilution
measurement
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3025786U
Other languages
Japanese (ja)
Other versions
JPS61146761U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP3025786U priority Critical patent/JPS6234297Y2/ja
Publication of JPS61146761U publication Critical patent/JPS61146761U/ja
Application granted granted Critical
Publication of JPS6234297Y2 publication Critical patent/JPS6234297Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)

Description

【考案の詳細な説明】 〈技術分野〉 本考案は検水に硫酸銀を注入して塩素イオンを
塩化銀として除き、次に過マンガン酸カリウムと
硫酸を注入し、沸騰浴液中にて約30分間加熱する
と共に、然る後修酸ナトリウムを加え、過マンガ
ン酸カリウムにて逆滴定する所謂COD(化学的
酸素消費量)自動測定装置に関し、特に測定結果
より最良の検水量を判断し、その判断に基づいて
自動的に最適の検水量を秤量することにより適正
な測定結果が得られるようにしたCOD自動測定
装置に関するものである。
[Detailed description of the invention] <Technical field> The invention involves injecting silver sulfate into sample water to remove chloride ions as silver chloride, then injecting potassium permanganate and sulfuric acid, and boiling the water in a boiling bath liquid to remove chlorine ions. Regarding the so-called COD (chemical oxygen consumption) automatic measuring device, which heats for 30 minutes, then adds sodium oxalate, and back-titrates with potassium permanganate, the best water volume to be tested is determined based on the measurement results. This invention relates to an automatic COD measurement device that automatically weighs the optimal amount of water to be tested based on that judgment, thereby obtaining appropriate measurement results.

〈従来技術〉 一般にCODの分析は検水に過マンガン酸カリ
ウム等を添加し、その酸化力を利用して検水中の
有機物質等を分解したときに消費する過マンガン
酸カリウムの量(消費量)をもつて検水中の汚濁
量の総体指標としてとらえている。
<Prior art> In general, COD analysis involves adding potassium permanganate, etc. to sample water, and calculating the amount of potassium permanganate consumed when organic substances, etc. in the sample water are decomposed using its oxidizing power. ) is taken as an overall indicator of the amount of contamination in the sample water.

ところでこの方法では過マンガン酸カリウムの
酸化力の特性により分析値が異なる場合がある。
即ち、1/40規定、10mlの過マンガン酸カリウムの
酸化能力は理論的にはCOD20ppmに相当する。
しかし実際の手分析においては検体の種類によつ
てCOD0〜20ppmの範囲で直線的にその酸化力は
示さない。つまり低濃度範囲(約0〜2ppm)で
は高い酸化力を示し、高濃度範囲(約10〜
20ppm)になる程低い酸化力を示す傾向にあ
る。従つて例えばJIS−K−0102等では理論酸化
力の1/2以下つまり10ppm以下の値を採用するこ
とになつている。
However, in this method, the analytical values may differ depending on the oxidizing power characteristics of potassium permanganate.
That is, the oxidation ability of 10ml of potassium permanganate at 1/40 normality theoretically corresponds to COD of 20ppm.
However, in actual manual analysis, the oxidizing power does not show linearly in the COD range of 0 to 20 ppm, depending on the type of specimen. In other words, it shows high oxidizing power in the low concentration range (approximately 0 to 2 ppm), and shows high oxidizing power in the high concentration range (approximately 10 to 2 ppm).
20ppm), it tends to show a lower oxidizing power. Therefore, for example, JIS-K-0102 etc. require a value of 1/2 or less of the theoretical oxidizing power, that is, 10 ppm or less.

然るに従来のCOD測定装置にあつては、理論
酸化力を基準に測定範囲が設定されている。即ち
1/40規定、10mlの過マンガン酸カリウムを使用し
た場合、その測定範囲はCOD0〜20ppmとなつて
いる。したがつて検体の種類によつては実際より
も高い測定結果が得られたり、或いは低い測定結
果が得られるという欠点があつた。
However, in conventional COD measurement devices, the measurement range is set based on the theoretical oxidizing power. That is,
When using 1/40 standard and 10ml of potassium permanganate, the measurement range is COD 0 to 20ppm. Therefore, depending on the type of specimen, a measurement result that is higher or lower than the actual value may be obtained.

〈考案の目的〉 本考案は上記従来の欠点に鑑み、測定結果より
最良の検水量を判断し、その判断に基づいて自動
的に最適の検水量を秤量することにより適正な測
定結果が得られるようにしたCOD自動測定装置
を提供するものである。
<Purpose of the invention> In view of the above-mentioned conventional drawbacks, the present invention determines the best amount of water to be tested from the measurement results, and automatically weighs the optimal amount of water based on that judgment, thereby obtaining appropriate measurement results. The present invention provides an automatic COD measurement device that does the following.

〈実施例〉 以下本考案を図に基づいて詳細に説明する。<Example> The present invention will be explained in detail below based on the drawings.

第1図は本考案に係るCOD自動測定装置のフ
ローシート図、第2図は同要部詳細図、第3図は
同測定値出力と過マンガン酸カリウムの滴定量と
の関係図である。第1図において、検水はピンチ
バルブ1の開成により検水供給管2を介して秤量
槽3に導入される。一方検水を希釈する希釈水は
ピンチバルブ4の開成により希釈水槽5から希釈
水供給管6を介して秤量槽3に導入される。ピン
チバルブ1,4及び後述するピンチバルブ8は演
算部13或いは他の制御部(図示せず)からの信
号によりその動作が制御される。今、秤量槽3に
よる1回の操作にて秤量できる容量は20mlとなつ
ており、それ以上はオーバーフロー管7を介して
排水される。秤量槽3に導入された検水或いは希
釈水はピンチバルブ8の開成により導管9を介し
て測定槽10に導入され、更に該測定槽10には
所定の試薬の導入によつて検水のCOD値が測定
される。検出電極11にて測定槽10内の酸化還
元電位を検出すると、その検出値は検出部12に
送られ増幅されたのち演算部13に転送される。
演算部13では転送されてきた検出値にもとづい
てピンチバルブ1,4及び8の動作制御信号を導
出する。ここで第2,3図にもとづいて検出部1
2、演算部13を詳細に説明すると、まず第3図
に示す様に測定値出力と過マンガン酸カリウムの
滴定量の関係において、測定値として採用できる
範囲は先のJISとの関連から図中A点とB点の範
囲内(測定範囲が0〜50ppm〈理論値〉の場合
A点は5ppm、B点は25ppmに相当する。)であ
る。そこで第2図において、20は検出電極11
からの測定値を増幅する指示増幅部であり、この
増幅部は第1図に示す検出部12に含まれる。2
1は第3図において説明したように、JISとの関
連により測定値として採用できる範囲A点〜B点
を設定すると共に、指示増幅部20からの測定値
出力がA点以下のものであれば希釈率を小さくす
るような希釈率切替信号を、またB点以上であれ
ば希釈率を大きくするような希釈率切換信号を導
出する希釈率判定部、22はA点以下とB点以上
のときのピンチバルブ1,4,8の動作制御プロ
グラムを予め記憶し、判定部21からの希釈率切
換信号に応答してバルブ動作の制御信号を導出す
るバルブ動作制御部を示し、上記希釈率判定部2
1と共に第1図の演算部13に含まれる。
Fig. 1 is a flow sheet diagram of the automatic COD measuring device according to the present invention, Fig. 2 is a detailed view of the main parts thereof, and Fig. 3 is a diagram showing the relationship between the measured value output and the titration amount of potassium permanganate. In FIG. 1, test water is introduced into a weighing tank 3 via a test water supply pipe 2 when a pinch valve 1 is opened. On the other hand, dilution water for diluting the sample water is introduced from the dilution water tank 5 into the weighing tank 3 via the dilution water supply pipe 6 by opening the pinch valve 4 . The operations of the pinch valves 1 and 4 and a pinch valve 8 to be described later are controlled by signals from a calculation section 13 or another control section (not shown). Currently, the capacity that can be weighed in one operation using the weighing tank 3 is 20 ml, and any excess volume is drained via the overflow pipe 7. The test water or dilution water introduced into the weighing tank 3 is introduced into the measurement tank 10 via the conduit 9 by opening the pinch valve 8, and the COD of the test water is further introduced into the measurement tank 10 by introducing a predetermined reagent. The value is measured. When the detection electrode 11 detects the oxidation-reduction potential in the measurement tank 10, the detected value is sent to the detection section 12, amplified, and then transferred to the calculation section 13.
The calculation unit 13 derives operation control signals for the pinch valves 1, 4, and 8 based on the transferred detection values. Here, based on FIGS. 2 and 3, the detection unit 1
2. To explain the calculation unit 13 in detail, first, as shown in Figure 3, in the relationship between the measured value output and the titration amount of potassium permanganate, the range that can be adopted as the measured value is as shown in the figure in relation to the JIS mentioned earlier. It is within the range between point A and point B (if the measurement range is 0 to 50 ppm (theoretical value), point A corresponds to 5 ppm and point B corresponds to 25 ppm). Therefore, in FIG. 2, 20 is the detection electrode 11.
This amplification section is included in the detection section 12 shown in FIG. 1. 2
1, as explained in FIG. 3, sets the range A point to B point that can be adopted as a measured value in relation to JIS, and if the measured value output from the instruction amplification section 20 is below point A. A dilution rate determination unit 22 derives a dilution rate switching signal that reduces the dilution rate, and a dilution rate switching signal that increases the dilution rate when it is above point B and when it is below point A and above point B; shows a valve operation control section that stores in advance an operation control program for the pinch valves 1, 4, and 8, and derives a valve operation control signal in response to a dilution rate switching signal from the determination section 21; 2
1 and included in the arithmetic unit 13 in FIG.

尚、第1図の14〜17はCOD分析に必要な
各種試薬を測液する貯液槽を示し、貯液槽16,
17の試薬はポンプP1,P2にてそれぞれ試薬秤量
槽18に送られ秤量されたのち補助秤量槽19を
介して測定槽10に送られる。またこの補助秤量
槽19には必要に応じてピンチバルブの開成によ
り希釈水槽5から希釈水が供給される。一方貯液
槽14,15の試薬はポンプP3,P4にて直接測定
槽10に送られる。
In addition, 14 to 17 in FIG. 1 indicate liquid storage tanks for measuring various reagents necessary for COD analysis, and the liquid storage tanks 16,
The 17 reagents are sent to the reagent weighing tank 18 by pumps P 1 and P 2 and weighed, and then sent to the measurement tank 10 via the auxiliary weighing tank 19. Further, dilution water is supplied to this auxiliary weighing tank 19 from the dilution water tank 5 by opening a pinch valve as necessary. On the other hand, the reagents in the liquid storage tanks 14 and 15 are directly sent to the measurement tank 10 by pumps P 3 and P 4 .

以上の構成において、今最初に設定された測定
範囲が0〜50ppm(理論値)の場合、検水を40
ml、希釈水を60mlを測定槽10に導入する必要が
ある。そこでまずピンチバルブ1の開成により20
mlの検水が秤量槽3にて秤量されると、次に該バ
ルブ1の閉成と同時にピンチバルブ8が開成し、
上記20mlの検水は導管9を通つて測定槽10に導
入される。以上の操作を2回行つて計40mlの検水
を測定槽10に供給し終ると、次にピンチバルブ
4の開成により20mlの希釈水が秤量槽3にて秤量
され、上記同様ピンチバルブ4の閉成と同時にピ
ンチバルブ8が開成し20mlの希釈水が測定槽10
に導入される。以上の操作を3回行つて計60mlの
希釈水が測定槽10に供給される。
In the above configuration, if the measurement range initially set is 0 to 50 ppm (theoretical value), the sample water is
ml, it is necessary to introduce 60 ml of dilution water into the measuring tank 10. Therefore, first, by opening pinch valve 1, 20
When ml of test water is weighed in the weighing tank 3, the pinch valve 8 is opened at the same time as the valve 1 is closed.
The 20 ml sample water is introduced into the measuring tank 10 through the conduit 9. After performing the above operation twice and supplying a total of 40 ml of test water to the measuring tank 10, next, 20 ml of dilution water is weighed in the weighing tank 3 by opening the pinch valve 4, and the pinch valve 4 is opened as described above. At the same time as closing, the pinch valve 8 opens and 20ml of dilution water flows into the measuring tank 10.
will be introduced in By performing the above operation three times, a total of 60 ml of dilution water is supplied to the measuring tank 10.

以上の様に測定槽10に検水40mlと希釈水60ml
の供給が完了すると次にポンプP1〜P4の作動によ
り貯液槽14〜17内の試薬、過マンガン酸カリ
ウム等が上記測定槽10に添加され、沸騰溶液中
にて約30分間加熱した後、シユウ酸ナトリウムを
加え、過マンガン酸カリウムにて逆滴定し、この
時の酸化還元電位を検出電極によつて検出する。
As above, 40ml of test water and 60ml of dilution water are placed in measurement tank 10.
When the supply of the liquid was completed, the reagents, potassium permanganate, etc. in the liquid storage tanks 14 to 17 were added to the measurement tank 10 by the operation of the pumps P1 to P4 , and heated in the boiling solution for about 30 minutes. After that, sodium oxalate is added and back titrated with potassium permanganate, and the redox potential at this time is detected by a detection electrode.

そこで、いま検出電極にて検出した値が0.5V
以上即ち第3図B点(25ppm)以上の場合、こ
の値が希釈率判定部21に転送されると、該判定
部21では転送されてきた値が0.5V以上と判定
し、過マンガン酸カリウムの消費量が添加量(10
ml)の1/2以上であると判断する。そして結局判
定部21は判定結果にもとづいて検水量を少なく
するための信号、即ち希釈率を大きくするような
希釈率切換信号を導出する。この信号を受けたバ
ルブ動作制御部22からは導入した信号に対応す
る動作制御プログラムに基づくバルブ動作制御信
号、この場合検水秤量操作を1回(20ml)行つて
測定槽10に供給し、次に希釈水秤量操作を4回
(80ml)行つて測定槽10に供給するようなバル
ブ動作制御信号がピンチバルブ1,4,8に送ら
れ、該各バルブはその制御信号に基づいて開閉成
動作する。そして再度測定を行う。なお、上述か
ら検出電極にて検出した値が0.1V以下即ち第3
図A点以下の場合は判定部21では希釈率を小さ
くするような希釈率切換信号を導出する。また該
値が測定範囲内であれば判定部21からは切換信
号が導出しない。
Therefore, the value detected by the detection electrode is 0.5V.
or above, that is, at point B (25 ppm) in Figure 3, when this value is transferred to the dilution rate determination section 21, the judgment section 21 determines that the transferred value is 0.5V or above, and potassium permanganate. The consumption amount is the addition amount (10
ml) is determined to be 1/2 or more. Finally, the determination unit 21 derives a signal for reducing the amount of water to be tested, that is, a dilution rate switching signal for increasing the dilution rate, based on the determination result. After receiving this signal, the valve operation control unit 22 sends a valve operation control signal based on the operation control program corresponding to the introduced signal, in this case performs the test water weighing operation once (20 ml), supplies it to the measuring tank 10, and then A valve operation control signal is sent to the pinch valves 1, 4, and 8 to perform dilution water weighing operation four times (80 ml) and supply it to the measuring tank 10, and each valve opens and closes based on the control signal. do. Then, measure again. Note that from the above, the value detected by the detection electrode is 0.1V or less, that is, the third
If the value is below point A in the figure, the determination unit 21 derives a dilution rate switching signal that reduces the dilution rate. Further, if the value is within the measurement range, no switching signal is derived from the determining section 21.

以上のように酸化還元電位が測定範囲内で求め
られると、該逆滴定で使用した過マンガン酸カリ
ウム溶液の規定度および使用量等より検水の
COD値が自動的に計算され、表示される。
When the redox potential is determined within the measurement range as described above, the normality of the potassium permanganate solution used in the back titration and the amount used, etc.
COD value is automatically calculated and displayed.

尚、JISにより測定値として採用できる範囲A
点〜B点(第3図)は検体の種類によつて異なる
が、判定部21ではこの範囲を任意に設定できる
のは勿論である。
In addition, range A that can be adopted as a measurement value according to JIS
Although the range from point to point B (FIG. 3) differs depending on the type of specimen, it goes without saying that the determining section 21 can set this range arbitrarily.

〈考案の効果〉 以上の様に本考案に係るCOD自動測定装置に
よれば、測定時に酸化還元電位にもとずいて、検
水の希釈量を変項して最終的に測定値として採用
できるCOD値を算出できる。したがつて常に正
確なCOD値を自動的に得ることができる。
<Effects of the invention> As described above, according to the automatic COD measuring device according to the present invention, COD can be measured by varying the amount of dilution of the sample water based on the oxidation-reduction potential at the time of measurement and finally adopting it as the measured value. Values can be calculated. Therefore, accurate COD values can always be obtained automatically.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案に係るCOD自動測定装置のフ
ローシート図、第2図は同要部詳細図、第3図は
同測定値出力と過マンガン酸カリウムの滴定量と
の関係図を示す。 1,4,8はピンチバルブ、3は秤量槽、5は
希釈水槽、10は測定槽、11は検出電極、12
は検出部、13は演算部、20は指示増幅器、2
1は希釈率判定部、22はバルブ動作制御部。
FIG. 1 is a flow sheet diagram of the automatic COD measuring device according to the present invention, FIG. 2 is a detailed view of the main parts, and FIG. 3 is a diagram showing the relationship between the measured value output and the titration amount of potassium permanganate. 1, 4, 8 are pinch valves, 3 is a weighing tank, 5 is a dilution tank, 10 is a measurement tank, 11 is a detection electrode, 12
1 is a detection unit, 13 is an arithmetic unit, 20 is an indicating amplifier, 2
1 is a dilution rate determination section, and 22 is a valve operation control section.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 検水を導く検水供給管と、該検水を希釈するた
めの希釈水を導く希釈水供給管と、秤量した検水
或いは希釈水を測定槽に導く導管とをそれぞれ開
閉弁を介して接続して成り且つ供給した検水或い
は希釈水の容量を秤量する秤量槽と、上記測定槽
内における酸化還元電位を検出する検出部と、予
め測定値として採用できる範囲に対応した酸化還
元電位の幅データを記憶保持し、該幅データと前
記検出部からの信号情報を比較判定してその判定
結果に基づいて希釈率の切替信号を導出する希釈
率判定部と、上記各開閉弁について複数通りの動
作制御プログラムを記憶すると共に、上記判定部
からの信号情報に対応する動作制御プログラムに
基づいて上記各開閉弁の動作制御信号を導出する
開閉弁動作制御部とを備え、上記検出部からの酸
化還元電位が判定部に保持された範囲以下の場合
は前記開閉弁動作制御部をして希釈率を下げるよ
う各開閉弁を制御し、範囲以上の場合は前記開閉
弁動作制御部をして希釈率を上げるよう各開閉弁
を制御して、再度測定を繰り返し、最終的に測定
値として採用できる範囲内で検水のCOD値が求
められることを特徴とするCOD自動測定装置。
The test water supply pipe that leads the test water, the dilution water supply pipe that leads the dilution water to dilute the test water, and the conduit that leads the weighed test water or dilution water to the measurement tank are connected via on-off valves. A weighing tank for weighing the volume of supplied sample water or dilution water, a detection unit for detecting the redox potential in the measuring tank, and a width of the redox potential corresponding to a range that can be adopted as a measured value in advance. a dilution rate determination unit that stores and holds data, compares and determines the width data and signal information from the detection unit, and derives a dilution rate switching signal based on the determination result; an on-off valve operation control section that stores an operation control program and derives an operation control signal for each of the on-off valves based on the operation control program corresponding to the signal information from the determination section; If the reduction potential is below the range held in the determination section, the on-off valve operation control section controls each on-off valve to reduce the dilution rate, and if it is above the range, the on-off valve operation control section controls the on-off valve operation control section to reduce the dilution rate. This automatic COD measurement device is characterized in that it controls each on-off valve to increase the rate, repeats the measurement, and finally obtains the COD value of the sampled water within a range that can be adopted as the final measurement value.
JP3025786U 1986-02-27 1986-02-27 Expired JPS6234297Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3025786U JPS6234297Y2 (en) 1986-02-27 1986-02-27

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3025786U JPS6234297Y2 (en) 1986-02-27 1986-02-27

Publications (2)

Publication Number Publication Date
JPS61146761U JPS61146761U (en) 1986-09-10
JPS6234297Y2 true JPS6234297Y2 (en) 1987-09-01

Family

ID=30529797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3025786U Expired JPS6234297Y2 (en) 1986-02-27 1986-02-27

Country Status (1)

Country Link
JP (1) JPS6234297Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2587282Y2 (en) * 1992-05-16 1998-12-16 株式会社堀場製作所 COD measuring device

Also Published As

Publication number Publication date
JPS61146761U (en) 1986-09-10

Similar Documents

Publication Publication Date Title
Bakker et al. Potentiometry at trace levels
KR20150051873A (en) Automatic apparatus for measuring chemical oxygen demand(cod)
CN210166315U (en) Full-automatic COD analytical equipment
JP3495994B2 (en) Method and apparatus for measuring chemical oxygen demand
Sulistyarti et al. On-line determination of cyanide in the presence of sulfide by flow injection with pervaporation
JPS6234297Y2 (en)
JP3321289B2 (en) Mixed acid analysis method and pickling solution management method
US4278507A (en) Method for amperometric measurement of the free-chlorine content in a solution
KR100798053B1 (en) Cod analyzer
US20230152266A1 (en) Inorganic carbon (ic) excluded conductivity measurement of aqueous samples
JP3533573B1 (en) Automatic chlorine concentration measuring device and chlorine concentration measuring method
JPS552959A (en) Automatic cod measuring device
JPS6124933Y2 (en)
EP3472597B1 (en) A method for measuring the concentration of a chemical species using a reagent baseline
CN109521143A (en) Organic wastewater COD online test method
CN219348719U (en) Water quality multiparameter heavy metal detection flow path with expansion function
CN213398377U (en) Online monitoring system for chloride ion content in industrial circulating cooling water
KR20030003849A (en) Copper electrode-based electrochemical sensor for measurement of COD and the method of measuring of COD and the automatic analyzer thereof
JPS588744B2 (en) Ammonia nitrogen analysis method in water
JPS63179248A (en) Method for measuring concentration of chorine ion
JP2814109B2 (en) How to measure hydrazine
JP3469289B2 (en) Method for measuring potassium concentration in flour
Olah et al. A new rapid method for determining sludge activity
CN112326873A (en) Online monitoring system for chloride ion content in industrial circulating cooling water
JPS61290353A (en) Standard solution for ion sensor