JP3495994B2 - Method and apparatus for measuring chemical oxygen demand - Google Patents

Method and apparatus for measuring chemical oxygen demand

Info

Publication number
JP3495994B2
JP3495994B2 JP2001026873A JP2001026873A JP3495994B2 JP 3495994 B2 JP3495994 B2 JP 3495994B2 JP 2001026873 A JP2001026873 A JP 2001026873A JP 2001026873 A JP2001026873 A JP 2001026873A JP 3495994 B2 JP3495994 B2 JP 3495994B2
Authority
JP
Japan
Prior art keywords
sample
amount
reagent
oxygen demand
chemical oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001026873A
Other languages
Japanese (ja)
Other versions
JP2002228630A (en
Inventor
茂定 飯嶋
慎哉 北河
康雄 福嶋
Original Assignee
飯島電子工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 飯島電子工業株式会社 filed Critical 飯島電子工業株式会社
Priority to JP2001026873A priority Critical patent/JP3495994B2/en
Priority to KR1020020002659A priority patent/KR20020064658A/en
Priority to CN02102575A priority patent/CN1374520A/en
Publication of JP2002228630A publication Critical patent/JP2002228630A/en
Application granted granted Critical
Publication of JP3495994B2 publication Critical patent/JP3495994B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/42Measuring deposition or liberation of materials from an electrolyte; Coulometry, i.e. measuring coulomb-equivalent of material in an electrolyte
    • G01N27/423Coulometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/42Measuring deposition or liberation of materials from an electrolyte; Coulometry, i.e. measuring coulomb-equivalent of material in an electrolyte
    • G01N27/44Measuring deposition or liberation of materials from an electrolyte; Coulometry, i.e. measuring coulomb-equivalent of material in an electrolyte using electrolysis to generate a reagent, e.g. for titration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • G01N33/1806Biological oxygen demand [BOD] or chemical oxygen demand [COD]

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Emergency Medicine (AREA)
  • Biomedical Technology (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、化学的酸素要求量
(COD)の測定方法の改良であって、特に試料中に存
在するハロゲンイオンの影響を低減した化学的酸素要求
量の測定方法およびその装置に関する。
TECHNICAL FIELD The present invention relates to an improved method for measuring chemical oxygen demand (COD), and more particularly to a method for measuring chemical oxygen demand in which the influence of halogen ions present in a sample is reduced. Regarding the device.

【0002】[0002]

【従来の技術】従来、化学的酸素要求量の測定方法は過
マンガン酸カリウム、ニクロム酸カリウムなどの酸化剤
を用いて検出試料中の被酸化性物質の検出を行ってい
る。この場合、検体試料中にハロゲン元素、特に塩素イ
オンが含まれているとこの塩素イオンも酸化されて、化
学的酸素要求量の測定値が高くなる。このためCODの
定量前に試料内に存在するハロゲンイオンと反応して可
溶性錯体を形成する物質を添加してハロゲンイオンの酸
化を抑制している。
2. Description of the Related Art Conventionally, a method for measuring a chemical oxygen demand has been to detect an oxidizable substance in a detection sample using an oxidizing agent such as potassium permanganate or potassium dichromate. In this case, when the sample element contains halogen elements, especially chlorine ions, the chlorine ions are also oxidized and the measured value of the chemical oxygen demand increases. Therefore, before the quantitative determination of COD, a substance that reacts with a halogen ion present in the sample to form a soluble complex is added to suppress the oxidation of the halogen ion.

【0003】この可溶性錯体を形成する物質は、酸化剤
が二クロム酸カリウムの場合は、硫酸水銀を用いている
が水銀は無機・有機にかかわらず、人体に影響のある有
毒物質であるため、測定後の廃液処理には特に注意が必
要である。また、酸化剤に過マンガン酸カリウムを用い
る場合には可溶性錯体を形成する物質として硝酸銀が用
いられているが、この物質も高価であり、他の簡便で毒
性の低い塩素イオン抑制方法が求められている。
As the substance that forms this soluble complex, when the oxidizing agent is potassium dichromate, mercury sulfate is used. However, mercury is a toxic substance which affects the human body regardless of whether it is inorganic or organic. Special care must be taken when treating the waste liquid after the measurement. Further, when potassium permanganate is used as an oxidant, silver nitrate is used as a substance that forms a soluble complex, but this substance is also expensive, and another simple and less toxic chloride ion suppression method is required. ing.

【0004】[0004]

【発明が解決しようとする課題】本発明は上記の事情に
鑑みてなされたもので、化学的酸素要求量の測定方法に
おいて硫酸水銀や硝酸銀などを使用せず、より簡便で処
理の容易なハロゲンイオンの影響による測定誤差の無い
化学的酸素要求量の測定装置およびその方法を提案する
ことを課題とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and it is simpler and easier to treat halogen without using mercury sulfate or silver nitrate in the method for measuring the chemical oxygen demand. It is an object of the present invention to propose an apparatus and method for measuring a chemical oxygen demand that does not cause a measurement error due to the influence of ions.

【0005】[0005]

【課題を解決するための手段】本発明の化学的酸素要求
量の測定方法は、化学的酸素要求量を測定する試料を一
定量採取し、前記試料に所定量の硫酸を加えて不活性雰
囲気下で加熱して試料に存在する溶解塩素イオンを塩化
水素として除去し、次いで前記試料を酸化する酸化試薬
を一定量加えて加熱し試料中の被酸化物を酸化し、残存
する前記酸化試薬を還元用試薬溶液を用いた電量滴定を
おこなって残存する前記酸化試薬の量を測定し、あらか
じめ一定量加えた前記酸化試薬の量との差から被酸化物
を酸化するのに消費された酸化試薬量を測定し、前記試
料の容量と試料の被酸化物を酸化するのに消費された酸
化試薬量の測定値と、から化学的酸素要求量を算出する
ことを特徴とする。
The method for measuring chemical oxygen demand according to the present invention comprises: collecting a fixed amount of a sample for measuring the chemical oxygen demand; adding a predetermined amount of sulfuric acid to the sample; The solution is heated under to remove dissolved chlorine ions present in the sample as hydrogen chloride, and then a certain amount of an oxidizing reagent that oxidizes the sample is added and heated to oxidize an oxide in the sample, and the remaining oxidizing reagent is removed. The amount of the remaining oxidizing reagent was measured by performing coulometric titration using a reducing reagent solution, and the oxidizing reagent consumed to oxidize the oxidant from the difference from the amount of the oxidizing reagent added in a fixed amount in advance. The amount of chemical oxygen is measured and the chemical oxygen demand is calculated from the volume of the sample and the measured value of the amount of the oxidizing reagent consumed to oxidize the material to be oxidized in the sample.

【0006】前記酸化試薬は二クロム酸カリウム溶液で
あり、前記還元用試薬は硫酸第二鉄であることが好まし
い。
Preferably, the oxidizing reagent is a potassium dichromate solution and the reducing reagent is ferric sulfate.

【0007】前記酸化試薬は過マンガン酸カリウム溶液
であり、前記還元用試薬は硫酸第二鉄溶液であることが
好ましい。
It is preferable that the oxidizing reagent is a potassium permanganate solution and the reducing reagent is a ferric sulfate solution.

【0008】本発明の化学的酸素要求量の測定装置は、
被測定試料を収容する容器と、該容器に収納された試料
に硫酸を加えて不活性雰囲気下で加熱する手段と、該容
器に所定量の酸化試薬を添加して不活性雰囲気下で加熱
する手段と、前記酸化試薬の残存量を還元用試薬で電量
滴定する滴定手段と、前記被測定試料の容量と添加され
た前記一定量の酸化試薬の量から前記還元用試薬による
電量滴定値から算出される残存する酸化試薬の量とから
化学的酸素要求量を算出する手段と有することを特徴と
する。
The chemical oxygen demand measuring device of the present invention comprises:
A container for containing the sample to be measured, a means for adding sulfuric acid to the sample contained in the container and heating the sample in an inert atmosphere, and a predetermined amount of an oxidizing reagent added to the container and heating in an inert atmosphere Means, titration means for coulometrically titrating the remaining amount of the oxidizing reagent with a reducing reagent, and calculation from the coulometric titration value by the reducing reagent from the volume of the sample to be measured and the amount of the fixed amount of oxidizing reagent added And a means for calculating the chemical oxygen demand amount from the amount of the remaining oxidizing reagent.

【0009】[0009]

【発明の実施の形態】本発明の化学的酸素要求量の測定
方法は、被試料水が例えば海水のようにハロゲンイオン
を含む場合、従来のハロゲンイオンを可溶性錯体を形成
させる有害物質や高価な薬品を使用しないで、ハロゲン
イオンの影響を排除してより精度を高めたがCODの測
定をするものである。すなわち、化学的酸素要求量を測
定する試料水に予め硫酸を添加して加熱して、下記の反
応式に示すような反応を起こさせ試料水中に存在するハ
ロゲンイオンをハロゲン化水素として試料水の外に排出
させた後、化学的酸素要求量の測定をおこなう。そし
て、測定後の廃液は有害物質を含まないので処理も簡単
になり、CODの測定が簡便にすることができる。
BEST MODE FOR CARRYING OUT THE INVENTION In the method for measuring the chemical oxygen demand of the present invention, when the sample water contains halogen ions such as seawater, conventional halogen ions which form a soluble complex and expensive substances are used. COD is measured without using any chemicals to improve the accuracy by eliminating the influence of halogen ions. That is, sulfuric acid is previously added to sample water for measuring the chemical oxygen demand and heated to cause a reaction as shown in the following reaction formula to cause halogen ions present in the sample water as hydrogen halide to be converted into sample water. After discharging it outside, the chemical oxygen demand is measured. Further, since the waste liquid after the measurement does not contain a harmful substance, the treatment is also simplified, and the COD measurement can be simplified.

【0010】2NaCl+H2SO4→Na2SO4+2H
Cl↑ 本発明の化学的酸素要求量の測定方法を順を追って説明
する。
2NaCl + H 2 SO 4 → Na 2 SO 4 + 2H
Cl ↑ The method for measuring the chemical oxygen demand of the present invention will be described step by step.

【0011】化学的酸素要求量(以下CODと略称す
る)を測定する試料を一定量採取する。採取量は推測さ
れるCODの量が多い場合は採取量は少なく、COD量
が少ない場合は多くすることが測定の精度を高めること
および試験に用いる薬品の節約のために好ましい。通常
1mlから5mlの範囲が好ましい。
A certain amount of a sample for measuring the chemical oxygen demand (hereinafter abbreviated as COD) is taken. When the estimated amount of COD is large, the collected amount is small, and when the amount of COD is small, it is preferable that the collected amount is large in order to improve the accuracy of the measurement and save the chemicals used in the test. Usually, the range of 1 ml to 5 ml is preferable.

【0012】以下、加熱処理は試料が酸化剤以外で酸化
されることのない様に、不活性雰囲気でおこなうことが
望ましい。たとえば、不活性ガスの窒素気流下でおこな
うことが好ましい。
In the following, it is desirable that the heat treatment is carried out in an inert atmosphere so that the sample is not oxidized by means other than the oxidizing agent. For example, it is preferably performed under a nitrogen stream of an inert gas.

【0013】前記採取した試料に所定量(例えば試料
の10倍量)の硫酸(市販試薬の濃硫酸)を加えて不活
性雰囲気下で加熱(例えば100℃前後で10分程度)
して、試料中に存在する溶解ハロゲンイオンをハロゲン
化水素として試料液から除去する。この硫酸中での加熱
処理により試料液に含まれているハロゲンイオン、例え
ばイオンとして溶解している塩化ナトリウムが熱により
上記の反応式に示すように塩化水素となり、試料液が酸
性となっているので塩化水素は気化して試料液から除去
される。
A predetermined amount (for example, 10 times the amount of the sample) of sulfuric acid (concentrated sulfuric acid as a commercially available reagent) is added to the collected sample and heated in an inert atmosphere (for example, about 100 ° C. for about 10 minutes).
Then, the dissolved halogen ions present in the sample are removed from the sample solution as hydrogen halide. By this heat treatment in sulfuric acid, halogen ions contained in the sample solution, for example, sodium chloride dissolved as ions, become hydrogen chloride as shown in the above reaction formula due to heat, and the sample solution becomes acidic. Therefore, hydrogen chloride is vaporized and removed from the sample solution.

【0014】次いでハロゲンイオンを除去した前記試
料水に、濃度が既知の酸化試薬を一定量加えて不活性雰
囲気下で所定時間(公定法(JIS)では120分)加
熱し試料中の被酸化物を酸化させる。
Then, a certain amount of an oxidizing reagent having a known concentration is added to the sample water from which the halogen ions have been removed, and the sample water is heated in an inert atmosphere for a predetermined time (120 minutes in the official method (JIS)) to oxidize the sample. Oxidize.

【0015】酸化試薬としては所定濃度の二クロム酸カ
リウム、または過マンガン酸カリウム溶液が使用でき
る。加熱温度は二クロム酸カリウムの場合は、例えば公
定法(JIS)では120℃で120分程度が好まし
い。通常、上記の酸化剤での酸化は硫酸酸性の条件でお
こなわれるが、本発明の場合にはハロゲンイオンの除去
の目的で既に硫酸が添加されて酸性となっているので、
新たに硫酸を添加する必要はない。
As the oxidizing reagent, potassium dichromate or potassium permanganate solution having a predetermined concentration can be used. In the case of potassium dichromate, the heating temperature is preferably 120 ° C. for about 120 minutes in the official method (JIS), for example. Usually, the oxidation with the above-mentioned oxidizing agent is carried out under the condition of sulfuric acid acidity, but in the case of the present invention, since sulfuric acid has already been added to make it acidic for the purpose of removing halogen ions,
There is no need to add fresh sulfuric acid.

【0016】酸化剤に過マンガン酸カリウムを使用する
場合の加熱温度は、例えば公定法(JIS)では100
℃で30分とニクロム酸カリウムの場合よりは低温でお
こなうのが好ましい。
The heating temperature when potassium permanganate is used as the oxidant is, for example, 100 in the official method (JIS).
It is preferable to carry out at 30 ° C. for 30 minutes at a lower temperature than in the case of potassium dichromate.

【0017】酸化反応終了後、残存する前記酸化試薬
の量を所定量の還元用試薬溶液を添加して不活性雰囲気
下で電量滴定をおこない、残存する前記酸化試薬の量を
求める。この際試料液を蒸留水で希釈しておこなうこと
が操作性および電量滴定の精度を確保するために好まし
い。酸化剤が二クロム酸カリウムの場合には還元用試薬
として硫酸第二鉄溶液が一定量添加される。
After the completion of the oxidation reaction, a predetermined amount of the reducing reagent solution is added to the remaining amount of the oxidizing reagent and coulometric titration is performed in an inert atmosphere to determine the amount of the remaining oxidizing reagent. At this time, it is preferable to dilute the sample solution with distilled water in order to ensure operability and accuracy of coulometric titration. When the oxidizing agent is potassium dichromate, a fixed amount of ferric sulfate solution is added as a reducing reagent.

【0018】電量滴定では添加された硫酸第二鉄の3価
鉄イオンが電解して2価の鉄イオンとして酸化剤に供さ
れ、その間、流れた電流を積分することにより、再現性
良く残存する酸化剤の量が求められる。
In the coulometric titration, the added trivalent iron ions of ferric sulfate are electrolyzed to be provided as an divalent iron ion in the oxidizing agent, and during that period, the current flowing is integrated to remain with good reproducibility. The amount of oxidant is required.

【0019】酸化剤が過マンガン酸カリウムの場合も同
様になり、電量滴定により残存する酸化剤が定量でき
る。
The same applies when the oxidizing agent is potassium permanganate, and the remaining oxidizing agent can be quantified by coulometric titration.

【0020】上記の電量滴定により求められた残存す
る酸化試薬の量を使用した酸化剤の量から差し引くこと
で被酸化物を酸化した酸化試薬の量が算出できる。
By subtracting the amount of the remaining oxidizing reagent obtained by the above-mentioned coulometric titration from the amount of the oxidizing agent used, the amount of the oxidizing reagent that has oxidized the oxide can be calculated.

【0021】前記試料の容量と、試料の被酸化物の酸
化に消費された酸化試薬量の測定値とから試料1リット
ル中に含まれる化学的酸素要求量(mg/L)に換算して得ら
れる。
Obtained by converting the capacity of the sample and the measured value of the amount of the oxidizing reagent consumed for the oxidation of the sample to be oxidized into the chemical oxygen demand (mg / L) contained in 1 liter of the sample. To be

【0022】本発明の化学的酸素要求量の測定装置は、
被測定試料を収容する容器と、該容器に収納された試料
に硫酸を加えて不活性雰囲気下で加熱する手段と、該容
器に所定量の酸化試薬を添加して不活性雰囲気下で加熱
する手段と、前記酸化試薬の残存量を還元用試薬を添加
して電量滴定する滴定手段と、前記被測定試料の容量と
添加された前記一定量の酸化試薬の量から前記還元用試
薬による電量滴定値から算出される被酸化物の量とから
化学的酸素要求量を算出する手段とからなる。
The chemical oxygen demand measuring device of the present invention comprises:
A container for containing the sample to be measured, a means for adding sulfuric acid to the sample contained in the container and heating the sample in an inert atmosphere, and a predetermined amount of an oxidizing reagent added to the container and heating in an inert atmosphere Means, titration means for coulometrically titrating the remaining amount of the oxidizing reagent by adding a reducing reagent, and coulometric titration with the reducing reagent from the volume of the sample to be measured and the amount of the fixed amount of oxidizing reagent added. And a means for calculating the chemical oxygen demand from the amount of the oxide to be calculated from the value.

【0023】本発明の化学的酸素要求量の測定装置は、
ひとつの容器内に各手段を予め配備して一ユニットとす
ることができる。たとえば、容器と容器を加熱する手段
と、不活性ガスの導入排出口、試料や各試薬の導入口お
よび電量滴定用の電極対を配備し、更に廃液を排出部を
設けて一体化することができる。
The chemical oxygen demand measuring device of the present invention comprises:
Each means can be pre-deployed in one container to form one unit. For example, a container and a means for heating the container, an inlet / outlet port for an inert gas, an inlet port for a sample or each reagent, and an electrode pair for coulometric titration may be provided, and a waste liquid may further be provided with an outlet part for integration. it can.

【0024】被測定試料水を収容する容器は、特に特定
されず加熱、電量滴定の電極が挿入でき溶液が攪拌でき
且つ密封でき蓋を有するものであればいずれも使用でき
る。通常の化学実験に使用されるビーカー、フラスコな
どの円筒状の耐食性の容器が使用できる。容器の外側の
下方には加熱ヒーターを配備される。容器内を不活性雰
囲気とするために窒素導入口と出口を配備し発生する塩
化水素と窒素ガスの排出口とすることが好ましい。
The container for containing the sample water to be measured is not particularly specified, and any container can be used as long as it can be inserted with an electrode for heating and coulometric titration, can stir the solution, can be sealed and has a lid. Cylindrical corrosion-resistant containers such as beakers and flasks used in ordinary chemical experiments can be used. A heater is provided below the outside of the container. In order to create an inert atmosphere in the container, it is preferable to provide a nitrogen inlet and an outlet to serve as outlets for hydrogen chloride and nitrogen gas generated.

【0025】容器に収納された試料に硫酸を加えて不活
性雰囲気下で加熱する手段は、前記の容器に被試料と所
定量の硫酸を加えて窒素ガス気流下で容器を外部から加
熱する。加熱により試料中に存在するハロゲンイオンが
ハロゲン化ガスとなって窒素ガスと共に容器外に排出さ
れる。このハロゲン化ガスは、例えば、水酸化ナトリウ
ム、等の固体アルカリまたは水溶液中を通過させること
で外部への飛散を防ぐことができる。
The means for adding sulfuric acid to the sample contained in the container and heating it under an inert atmosphere is to add the sample and a predetermined amount of sulfuric acid to the container and heat the container from the outside under a nitrogen gas stream. By heating, the halogen ions present in the sample become a halogenated gas and are discharged out of the container together with the nitrogen gas. This halogenated gas can be prevented from scattering to the outside by passing it through a solid alkali such as sodium hydroxide or an aqueous solution.

【0026】該容器に所定量の酸化試薬を添加して不活
性雰囲気下で加熱する手段は、前記の容器内に通常のC
ODを測定する所定量の酸化剤が添加される。加熱雰囲
気は、窒素気流下の不活性雰囲気で加熱される。
Means for adding a predetermined amount of an oxidizing reagent to the container and heating it under an inert atmosphere is a conventional C in the container.
A predetermined amount of oxidant for measuring OD is added. The heating atmosphere is heated in an inert atmosphere under a nitrogen stream.

【0027】前記酸化試薬の残存量を還元用試薬を添加
して電量滴定する滴定手段では、前記容器内に残存する
酸化剤を測定する所定量の還元用試薬を加えて、予め容
器内に配備した電量滴定用の一対の電極を液面内に挿入
して試料液を不活性ガスを流して攪拌して鉄イオンの電
解による還元の電気量の変化で滴定の終点を検知して
する酸化剤量を計量する。
In the titration means for coulometrically titrating the remaining amount of the oxidizing reagent by adding the reducing reagent, a predetermined amount of the reducing reagent for measuring the oxidizing agent remaining in the container is added and preliminarily provided in the container. A pair of electrodes for coulometric titration were inserted into the liquid surface, the sample solution was flowed with an inert gas and stirred, and the end point of the titration was detected and left by detecting the change in the amount of electricity due to the electrolysis of iron ions.
Metering the oxidant amount in existence.

【0028】前記被測定試料の容量と添加された前記一
定量の酸化試薬の量から前記還元用試薬による電量滴定
値から算出される被酸化物の量とから化学的酸素要求量
を算出する手段では、滴定により定量された酸化で消費
された酸化剤の量から存在した被酸化量と、使用した試
料の量とから1リットル中に含まれる被酸化物の量(mg
/L)として換算されたCODが算出され表示される。
Means for calculating the chemical oxygen demand from the volume of the sample to be measured and the amount of the oxide to be calculated from the coulometric titration value of the reducing reagent from the amount of the fixed amount of the oxidizing reagent added Then, based on the amount of oxidant that was present from the amount of oxidant consumed by oxidation determined by titration and the amount of sample used, the amount of oxidizable substance contained in 1 liter (mg
COD converted as / L) is calculated and displayed.

【0029】酸化剤が二クロム酸を使用する場合は、所
定量の酸化剤溶液を添加して所定時間加熱した後、蒸留
水を加えて反応液を希釈して還元用試薬溶液に硫酸第二
鉄溶液を用いて電量滴定をおこなう。残存する酸化剤量
を測定する。電量滴定では添加された硫酸第二鉄の3価
鉄イオンが電解して2価の鉄イオンとして酸化剤に供さ
れる。その間、流れた電流を積分することにより、再現
性良くCODが求められる。
When dichromic acid is used as the oxidant, a predetermined amount of the oxidant solution is added and heated for a predetermined time, and then distilled water is added to dilute the reaction solution to form a sulfuric acid solution in the reducing reagent solution. Coulometric titration with iron solution. The amount of remaining oxidant is measured. In the coulometric titration, the added trivalent iron ions of ferric sulfate are electrolyzed and provided as divalent iron ions to the oxidizing agent. Meanwhile, the COD is obtained with good reproducibility by integrating the flowing current.

【0030】[0030]

【実施例】以下、実施例により具体的に説明する。EXAMPLES The present invention will be specifically described below with reference to examples.

【0031】(実施例1)本実施例で用いた測定装置の
構成フローを図1に示す。円柱状の反応容器1には外周
に加熱用ヒーター2が配備され、上部蓋部3には、試料
及び薬液の導入管4、洗浄水および窒素ガス導入管5、
窒素ガス導入及び排水管9,排気管10および電量滴定
用の一対の電極6が装着されている。
(Embodiment 1) FIG. 1 shows the configuration flow of the measuring apparatus used in this embodiment. A heating heater 2 is provided on the outer periphery of the cylindrical reaction vessel 1, and a sample / chemical solution introduction pipe 4, a wash water and nitrogen gas introduction pipe 5 are provided on the upper lid 3.
A nitrogen gas introduction and drain pipe 9, an exhaust pipe 10 and a pair of electrodes 6 for coulometric titration are attached.

【0032】試料導入管4の途中には定量シリンダ7と
その先に薬液切り替えコック8を介して試料、蒸留水、
硫酸、標準濃度の酸化剤液、還元用試薬溶液が接続され
ている。そして必要な所定量を計量して反応容器に注入
される。窒素ガスは、洗浄及び窒素ガス導入管5または
窒素導入及び排水管9を介して反応容器1に導入され、
塩素イオン除去の加熱及び電量滴定の際にこの窒素ガス
で溶液を攪拌している。洗浄及び窒素ガス導入管5より
入る窒素ガスは、反応容器1内の圧力を上げ、測定後の
液を窒素ガス導入及び排出管9より排出する。
In the middle of the sample introducing pipe 4, a sample, distilled water,
Sulfuric acid, a standard concentration oxidant solution, and a reducing reagent solution are connected. Then, a required predetermined amount is measured and injected into the reaction container. Nitrogen gas is introduced into the reaction vessel 1 through the cleaning and nitrogen gas introduction pipe 5 or the nitrogen introduction and drain pipe 9.
The solution was agitated with this nitrogen gas during heating for removing chlorine ions and coulometric titration. The nitrogen gas introduced from the cleaning and nitrogen gas introduction pipe 5 raises the pressure in the reaction vessel 1 and the measured liquid is discharged from the nitrogen gas introduction and discharge pipe 9.

【0033】反応容器1に所定量の試料を薬液切り替え
コック8を作動して定量シリンダで計量して反応容器1
に注入する。その後、薬液切り替えコック8を作動して
定量シリンダで定量した硫酸を容器1に加えて窒素ガス
を窒素ガス導入及び排水管9を介して反応容器1に導入
して反応容器1内を不活性雰囲気とした後、試料液を1
00℃程度におよそ10分加熱する。この加熱により試
料に含まれるハロゲンイオンがハロゲン化水素となり窒
素ガスと共に排気管10から外部に排出され除かれる。
ハロゲン化水素を除去した後、所定濃度の二クロム酸カ
リウム液を定量シリンダ7で計量して容器1内に加えて
所定の温度(160℃)で10分加熱する。次いで希釈
用の蒸留水と硫酸第二鉄溶液をそれぞれ定量シリンダ7
で計量して加えて、電量滴定用の電極6を試料混合液中
に挿入させ、窒素ガスで液を攪拌させながら電極6が出
力する電位の変化を表示部(図示せず)で読み取り試料
中の被酸化物を酸化した残りの酸化剤量が定量される。
この定量値から被酸化物を酸化するに使用された酸化剤
の量が算出される。使用した試料の容積と消費された酸
化剤の量とから1リットル中の被酸化物量(mg/L)を示
すCOD値が算出される。
A predetermined amount of the sample in the reaction container 1 is operated by the chemical liquid switching cock 8 and measured by the metering cylinder to measure the reaction container 1.
Inject. After that, the chemical solution switching cock 8 is operated to add sulfuric acid quantified by the quantification cylinder to the container 1, nitrogen gas is introduced into the reaction container 1 through the nitrogen gas introduction and drain pipe 9, and the reaction container 1 is placed in an inert atmosphere. And then add 1
Heat to about 00 ° C. for about 10 minutes. By this heating, the halogen ions contained in the sample become hydrogen halide and are discharged to the outside from the exhaust pipe 10 together with the nitrogen gas and removed.
After removing the hydrogen halide, a potassium dichromate solution having a predetermined concentration is weighed by the metering cylinder 7 and added into the container 1 and heated at a predetermined temperature (160 ° C.) for 10 minutes. Next, add distilled water for dilution and ferric sulfate solution to the metering cylinder 7 respectively.
Then, the electrode 6 for coulometric titration is inserted into the sample mixture, and the change in the potential output by the electrode 6 is read on the display unit (not shown) while stirring the solution with nitrogen gas. The amount of the remaining oxidant that oxidizes the oxide to be quantified is quantified.
From this quantitative value, the amount of oxidizing agent used to oxidize the oxide is calculated. From the volume of the sample used and the amount of the oxidant consumed, the COD value indicating the amount of oxidizable substance (mg / L) in 1 liter is calculated.

【0034】試料中のハロゲンイオンの除去効果を説明
する。
The effect of removing halogen ions in the sample will be described.

【0035】No1は、塩素イオン、被酸化物を含まな
い蒸留水にて塩素除去処理をしない場合、No2は、被
酸化物を含まない蒸留水に塩素イオンを海水とほぼ同じ
20000mg/Lに調整し塩素除去処理をしない場合、No3
は、被酸化物を含まない蒸留水に塩素イオンを海水とほ
ぼ同じ20000mg/Lに調整し塩素除去処理として加熱(1
00℃)を10分のみ行った場合、No4は、被酸化物
を含まない蒸留水に塩素イオンを海水とほぼ同じ20000m
g/Lに調整し塩素除去処理として加熱(100℃)を1
0分及び窒素ガスによる攪拌を行った場合、No5は、
被酸化物を含まない蒸留水に塩素イオンを海水とほぼ同
じ20000mg/Lに調整し塩素除去処理として加熱(100
℃)を5分及び窒素ガスによる攪拌を行った場合、No
6は、被酸化物を含まない蒸留水に塩素イオンを海水と
ほぼ同じ20000mg/Lに調整し塩素除去処理として加熱
(100℃)を15分及び窒素ガスによる攪拌を行った
場合、No7は、被酸化物に標準液220mg/Lを調整
し、塩素イオンを含まない溶液に塩素除去処理として加
熱(100℃)を10分及び窒素ガスによる攪拌を行っ
た場合、No8は、被酸化物に標準液220mg/Lを調整
し、塩素イオンを海水とほぼ同じ20000mg/Lに調整し塩
素除去処理として加熱(100℃)を10分及び窒素ガ
スによる攪拌を行った場合、No9は、被酸化物に標準
液220mg/Lを調整し、塩素イオンを海水とほぼ同じ20
000mg/Lに調整し塩素除去処理として加熱(120℃)
を10分及び窒素ガスによる攪拌を行った場合、No1
0は、被酸化物に標準液220mg/Lを調整し、塩素イオ
ンを海水とほぼ同じ20000mg/Lに調整し、塩素除去処理
として加熱(140℃)を10分及び窒素ガスによる攪
拌を行った場合、の条件で各3試料のCODの測定を行
った。その結果および平均値を表1に示した。なお、そ
の他の条件:試料2ml、濃硫酸20ml、標準液の成分は
フタル酸カリウムである。
No. 1 is a case where chlorine removal treatment is not performed with distilled water containing no chlorine ions and oxides, and No. 2 is chlorine water in distilled water containing no oxides, which is almost the same as seawater.
When it is adjusted to 20000mg / L and chlorine is not removed, No3
Is to adjust the chlorine ion in distilled water that does not contain oxides to 20000 mg / L, which is almost the same as seawater, and heat it as chlorine removal treatment (1
(00 ° C) for 10 minutes, No. 4 has chlorine ions in distilled water that does not contain oxides, which is almost the same as seawater, 20,000 m.
Adjust to g / L and heat (100 ° C) as chlorine removal treatment to 1
When stirring was performed for 0 minutes and nitrogen gas, No5 was
Chloride ion was adjusted to 20000mg / L, which is almost the same as seawater, in distilled water that did not contain oxides and heated as chlorine removal treatment (100
(° C) for 5 minutes and stirring with nitrogen gas, No
No. 7 is 6 when chlorine ion is adjusted to 20000 mg / L which is almost the same as seawater in distilled water that does not contain oxides and heating (100 ° C.) is carried out for 15 minutes as a chlorine removal treatment and stirring is performed with nitrogen gas. When the standard solution 220 mg / L was prepared for the oxide, and the solution containing no chlorine ions was heated (100 ° C.) for 10 minutes as a chlorine removal treatment and stirred with nitrogen gas, No. 8 was the standard for the oxide. When liquid 220mg / L was adjusted, chlorine ion was adjusted to 20000mg / L, which is almost the same as seawater, and heating (100 ° C) was performed for 10 minutes as chlorine removal treatment, and stirring was performed with nitrogen gas, No9 was oxidized. Adjust 220mg / L of standard solution to make chlorine ion almost the same as seawater 20
Adjusted to 000mg / L and heated for chlorine removal (120 ℃)
No. 1 when stirring for 10 minutes and nitrogen gas
For 0, the standard solution was adjusted to 220 mg / L for the oxide, chlorine ions were adjusted to about 20000 mg / L, which is almost the same as seawater, and heating (140 ° C.) for 10 minutes and stirring with nitrogen gas were performed as chlorine removal treatment. In this case, the COD of each of the three samples was measured under the conditions of. The results and average values are shown in Table 1. Other conditions: 2 ml of sample, 20 ml of concentrated sulfuric acid, and the standard solution is potassium phthalate.

【0036】[0036]

【表1】 表1に示すようにNo1は、いわゆるブランクテスト
で、計器のもつゼロ点になる。このブランク値との比較
で塩素除去処理の効果を説明する。
[Table 1] As shown in Table 1, No. 1 is a so-called blank test and becomes the zero point of the instrument. The effect of chlorine removal treatment will be explained by comparison with this blank value.

【0037】No2に含む塩素の影響は、塩素除去の処
理が無い場合、測定不可能にまでおよぼしている。No
3は攪拌をしない場合で、No4は攪拌をした場合であ
り攪拌による塩素除去の効果を示している。No4、N
O5、No6は塩素除去の加熱時間の影響を示したもの
である。
The effect of chlorine contained in No. 2 extends to unmeasurable without chlorine removal treatment. No
No. 3 is the case without stirring, No. 4 is the case with stirring, and shows the effect of chlorine removal by stirring. No4, N
O5 and No6 show the influence of the heating time for chlorine removal.

【0038】したがって、No1からNo6までの実験
により、海水レベルの塩素イオン濃度を含む試料は、塩
素除去処理として加熱温度100℃、加熱時間10分以
上、窒素ガスによる攪拌を行うことで完全に処理できる
こと分かる。
Therefore, according to the experiments from No. 1 to No. 6, samples containing chlorine ion concentration at seawater level were completely treated by stirring with nitrogen gas at a heating temperature of 100 ° C. for a heating time of 10 minutes or more as chlorine removal treatment. I know what I can do.

【0039】被酸化物量が同じで塩素イオンを含まない
No7とNo8の塩素イオンを含む場合を比較してもC
ODの値は、規定量の値となり本発明の塩素除去処理が
試料に含まれる被酸化物に影響を及ぼしていないことが
分かる。No9、No10の加熱温度を140℃に上げ
ると試料に含まれる被酸化物への若干の影響が現れる。
Even if the amounts of oxides are the same and no chlorine ion is contained in No. 7 and No. 8 chlorine ion are compared,
It can be seen that the value of OD is a specified value and that the chlorine removal treatment of the present invention does not affect the oxides contained in the sample. When the heating temperature of No. 9 and No. 10 is raised to 140 ° C., a slight effect appears on the oxides contained in the sample.

【0040】[0040]

【発明の効果】本発明の化学的酸素要求量の測定方法で
は、試料水にハロゲンイオンが存在する場合でも、従来
の有害物質や高価な薬品を使用することなく、ハロゲン
イオンが存在しない場合と同様な精度測定できる。
According to the method for measuring the chemical oxygen demand of the present invention, even when halogen ions are present in the sample water, there is no need to use conventional harmful substances or expensive chemicals, Similar accuracy can be measured.

【0041】したがって、測定後の廃液に有害物質など
を含まないので簡便に廃液を処理することができる。
Therefore, since the waste liquid after the measurement does not contain harmful substances, the waste liquid can be easily treated.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の装置の構成を説明すフローシートであ
る。
FIG. 1 is a flow sheet illustrating the configuration of the device of the present invention.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平9−21794(JP,A) 特開 平5−322830(JP,A) 特開 平8−101188(JP,A) 特開 平11−132997(JP,A) 特開 昭56−111465(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01N 27/26 - 27/49 G01N 1/00 - 1/34 G01N 33/18 ─────────────────────────────────────────────────── --Continued from the front page (56) References JP-A-9-21794 (JP, A) JP-A-5-322830 (JP, A) JP-A-8-101188 (JP, A) JP-A-11- 132997 (JP, A) JP-A-56-111465 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) G01N 27/26-27/49 G01N 1/00-1/34 G01N 33/18

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】化学的酸素要求量を測定する試料を一定量
採取し、 前記試料に所定量の硫酸を加えて不活性雰囲気下で加熱
して試料に存在する溶解塩素イオンを塩化水素として除
去し、 次いで前記試料を酸化する酸化試薬を一定量加えて加熱
し試料中の被酸化物を酸化し、 残存する前記酸化試薬を還元用試薬溶液で電量滴定して
残存する前記酸化試薬の量を測定し、 あらかじめ一定量加えた前記酸化試薬の量から試料の被
酸化物を酸化するのに消費された酸化試薬量を測定し、 前記試料の容量と試料の被酸化物を酸化するのに消費さ
れた酸化試薬量の測定値と、 から化学的酸素要求量を算出することを特徴とする化学
的酸素要求量の測定方法。
1. A fixed amount of a sample for measuring the chemical oxygen demand is sampled, and a predetermined amount of sulfuric acid is added to the sample and heated under an inert atmosphere to remove dissolved chlorine ions present in the sample as hydrogen chloride. Then, a certain amount of an oxidizing reagent that oxidizes the sample is added and heated to oxidize the oxidant in the sample, and the remaining oxidizing reagent is subjected to coulometric titration with a reducing reagent solution to determine the amount of the remaining oxidizing reagent. Measure and measure the amount of oxidizing reagent consumed to oxidize the oxidant of the sample from the amount of the oxidizing reagent added in advance in a predetermined amount, and to consume the volume of the sample and oxidize the oxidant of the sample A method for measuring a chemical oxygen demand, comprising: calculating a chemical oxygen demand from the measured oxidation reagent amount.
【請求項2】前記酸化試薬は二クロム酸カリウム溶液で
あり、前記還元用試薬は硫酸第二鉄(III)である請求
に記載の化学的酸素要求量の測定方法。
2. The method for measuring a chemical oxygen demand according to claim 1 , wherein the oxidizing reagent is a potassium dichromate solution, and the reducing reagent is ferric (III) sulfate.
【請求項3】前記酸化試薬は過マンガン酸カリウム溶液
であり、前記還元用試薬は硫酸第二鉄(III)溶液であ
る請求項に記載の化学的酸素要求量の測定方法。
3. The method for measuring chemical oxygen demand according to claim 1 , wherein the oxidizing reagent is a potassium permanganate solution and the reducing reagent is a ferric sulfate (III) solution.
【請求項4】被測定試料を収容する容器と、該容器に収
納された試料に硫酸を加えて不活性雰囲気下で加熱する
手段と、該容器に所定量の酸化試薬を添加して不活性雰
囲気下で加熱する手段と、前記酸化試薬の残存量を還元
用試薬で電量滴定する滴定手段と、前記被測定試料の容
量と前記電量滴定値とから化学的酸素要求量を算出する
手段と有する化学的酸素要求量の測定装置。
4. A container for containing a sample to be measured, a means for adding sulfuric acid to the sample contained in the container and heating the sample in an inert atmosphere, and an inert gas by adding a predetermined amount of an oxidizing reagent to the container. It has means for heating in an atmosphere, titration means for coulometric titration of the residual amount of the oxidizing reagent with a reducing reagent, and means for calculating the chemical oxygen demand from the capacity of the sample to be measured and the coulometric titration value. Measuring device for chemical oxygen demand.
JP2001026873A 2001-02-02 2001-02-02 Method and apparatus for measuring chemical oxygen demand Expired - Fee Related JP3495994B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2001026873A JP3495994B2 (en) 2001-02-02 2001-02-02 Method and apparatus for measuring chemical oxygen demand
KR1020020002659A KR20020064658A (en) 2001-02-02 2002-01-17 Method for measuring chemical oxygen demand and apparatus thereof
CN02102575A CN1374520A (en) 2001-02-02 2002-01-30 Method for measuring chemical oxygen requirement and its apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001026873A JP3495994B2 (en) 2001-02-02 2001-02-02 Method and apparatus for measuring chemical oxygen demand

Publications (2)

Publication Number Publication Date
JP2002228630A JP2002228630A (en) 2002-08-14
JP3495994B2 true JP3495994B2 (en) 2004-02-09

Family

ID=18891618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001026873A Expired - Fee Related JP3495994B2 (en) 2001-02-02 2001-02-02 Method and apparatus for measuring chemical oxygen demand

Country Status (3)

Country Link
JP (1) JP3495994B2 (en)
KR (1) KR20020064658A (en)
CN (1) CN1374520A (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030003849A (en) * 2001-07-04 2003-01-14 주식회사 에코아이티이십일 Copper electrode-based electrochemical sensor for measurement of COD and the method of measuring of COD and the automatic analyzer thereof
KR100623933B1 (en) * 2002-09-11 2006-09-13 한국바이오시스템(주) Composite electrode for COD measurement
CN101105472B (en) * 2007-06-11 2010-05-19 大连理工大学 Water body chemical oxygen demand electrochemical measuring method
DE102009028165B4 (en) * 2009-07-31 2017-03-30 Endress+Hauser Conducta Gmbh+Co. Kg Method and apparatus for the automated determination of the chemical oxygen demand of a liquid sample
DE102009043227A1 (en) * 2009-09-28 2011-03-31 Siemens Aktiengesellschaft Method for automated preparation of samples for a biosensor system and apparatus for carrying it out
CN102323376B (en) * 2011-08-24 2013-09-18 厦门隆力德环境技术开发有限公司 Metering parameter correction method of permanganate index water quality analyzer
CN103616276A (en) * 2013-10-23 2014-03-05 洛阳高新开发区双阳仪器有限公司 Digestion determination method of chemical oxygen demand
CN103616277A (en) * 2013-10-23 2014-03-05 洛阳高新开发区双阳仪器有限公司 Chemical oxygen demand determination method free from using mercury salts and silver salts
CN103616273A (en) * 2013-10-23 2014-03-05 洛阳高新开发区双阳仪器有限公司 Chemical oxygen demand determination method
CN105174524B (en) * 2014-06-09 2017-08-11 鞍钢股份有限公司 Pretreatment unit and method before a kind of coking chemical waste water chemical oxygen demand detection
CN106053746A (en) * 2016-06-30 2016-10-26 浙江大学苏州工业技术研究院 Method for determining chemical oxygen demand of electrolyzed high chlorine waste water
CN112119304B (en) * 2018-07-24 2024-04-09 哈希公司 Water sample measurement by oxidation of metals to higher valencies
CN108732118A (en) * 2018-08-30 2018-11-02 上海应用技术大学 A kind of method of the Rapid Determination of COD content of high-chloride wastewater
CN110161176A (en) * 2019-06-20 2019-08-23 宜昌桑德环保科技有限公司 A kind of COD rapid detection method of production waste water with high salt
CN113176375A (en) * 2021-04-29 2021-07-27 安徽机电职业技术学院 Special intelligent test system for ferrous oxide determination
CN113848244A (en) * 2021-09-17 2021-12-28 浙江环境监测工程有限公司 Microcoulomb method for measuring adsorbable organic halogen in seawater
CN115753311B (en) * 2022-10-31 2023-09-01 上海博取仪器有限公司 Chlorine removal installation and contain its chemical oxygen demand detecting system

Also Published As

Publication number Publication date
CN1374520A (en) 2002-10-16
KR20020064658A (en) 2002-08-09
JP2002228630A (en) 2002-08-14

Similar Documents

Publication Publication Date Title
JP3495994B2 (en) Method and apparatus for measuring chemical oxygen demand
US9207204B2 (en) Method and apparatus for determining information concerning presence of constituents of a liquid sample with oxygen demand
Pawlak et al. Modification of iodometric determination of total and reactive sulfide in environmental samples
Ma et al. Accurate determination of low-level chemical oxygen demand using a multistep chemical oxidation digestion process for treating drinking water samples
Hoppstock et al. Voltammetric determination of trace platinum in gasoline after Wickbold combustion
Jin et al. A miniaturized FIA system for the determination of residual chlorine in environmental water samples
US20210270794A1 (en) Method of determining chemical oxygen demand (cod) for high chloride samples
CN112513624A (en) Component concentration measuring device of mixed acid solution for metal pickling
JPH0612999B2 (en) Chloride ion determination reagent
CN110161176A (en) A kind of COD rapid detection method of production waste water with high salt
Somer Determination of mercury in the presence of iron (III) by iodide ion selective electrode
JP3330068B2 (en) Electrolytic COD sensor and method for measuring COD using the sensor
JP3172745B2 (en) Method for measuring peroxodisulfuric acid in wastewater
Brainina et al. Determination of the oxidant activity of chlorinated water by chronoamperometry
East et al. Determination of mercury in hair by square-wave anodic stripping voltammetry at a rotating gold disk electrode after microwave digestion
Smart et al. Measuring chlorine dioxide with a rotating voltammetric membrane electrode
JP2019519797A (en) Method for measuring the concentration of chemical species using a reagent baseline
JPS6234297Y2 (en)
Reddy et al. Titrimetric determination of dissolved oxygen in waste water
Rigdon et al. Determination of vanadium by controlled-potential coulometry
JPS646694B2 (en)
KR20030003849A (en) Copper electrode-based electrochemical sensor for measurement of COD and the method of measuring of COD and the automatic analyzer thereof
Stokely et al. Controlled-potential coulometric determination of plutonium in the presence of iron
JP2000088840A (en) Simplified measuring method for cod, and spectrophotometer used therefor
FI98764B (en) Method for determining a sample's chemical oxygen consumption

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081121

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091121

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101121

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees