JPS6124933Y2 - - Google Patents

Info

Publication number
JPS6124933Y2
JPS6124933Y2 JP1978067523U JP6752378U JPS6124933Y2 JP S6124933 Y2 JPS6124933 Y2 JP S6124933Y2 JP 1978067523 U JP1978067523 U JP 1978067523U JP 6752378 U JP6752378 U JP 6752378U JP S6124933 Y2 JPS6124933 Y2 JP S6124933Y2
Authority
JP
Japan
Prior art keywords
tank
water
weighing
dilution water
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1978067523U
Other languages
Japanese (ja)
Other versions
JPS54168898U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1978067523U priority Critical patent/JPS6124933Y2/ja
Publication of JPS54168898U publication Critical patent/JPS54168898U/ja
Application granted granted Critical
Publication of JPS6124933Y2 publication Critical patent/JPS6124933Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)

Description

【考案の詳細な説明】 本考案は検水に硫酸銀を注入して塩素イオンを
塩化銀として除き、次に過マンガン酸カリウムと
硫酸を注入し、沸騰水溶液中にて約30分間加熱す
ると共に然る後、修酸ナトリウムを加え、過マン
ガン酸カリウムにて逆滴定する所謂COD(化学
的酸素消費量)自動測定装置に関し、特にCOD
値の測定範囲を簡単な構成で而も容易に変更でき
るようにしたものである。
[Detailed explanation of the invention] This invention involves injecting silver sulfate into the sample water to remove chloride ions as silver chloride, then injecting potassium permanganate and sulfuric acid, heating it in a boiling aqueous solution for about 30 minutes, and After that, we developed a so-called automatic COD (chemical oxygen consumption) measuring device that added sodium oxalate and back-titrated with potassium permanganate.
The value measurement range has a simple configuration and can be easily changed.

COD分析法に関しては例えばJIS−K−0102等
に定められている。この分析法によれば試薬の酸
化力の関係により検水の量が100mlの場合は
10ppm(COD値)まで測定可能となつている。
したがつてそれ以上のCOD値を測定する場合は
検水量を少なく、たとえば検水量を50mlにするこ
とで20ppmまで測定可能になる。
The COD analysis method is defined in, for example, JIS-K-0102. According to this analysis method, due to the oxidizing power of the reagent, if the amount of sample water is 100ml,
It is now possible to measure up to 10ppm (COD value).
Therefore, when measuring a COD value higher than this, the amount of water to be tested is reduced, for example, by reducing the amount of water to 50 ml, it is possible to measure up to 20 ppm.

従来のCOD自動測定装置は上記COD分析法に
準拠して設計されている。特に従来装置では検水
専用の秤量槽を設け、而も該量槽によつて秤量で
きる容量が一定量、たとえば100mlに固定されて
いる。これは分析に必要な試料の量を100mlとし
た場合に一番安定した分析値を得ることができる
ことに関連している。
Conventional COD automatic measuring devices are designed in accordance with the above COD analysis method. Particularly, in conventional devices, a measuring tank is provided exclusively for water testing, and the capacity that can be measured by the measuring tank is fixed at a fixed amount, for example, 100 ml. This is related to the fact that the most stable analytical values can be obtained when the amount of sample required for analysis is 100 ml.

然しながら、上記従来のように検水専用の秤量
槽を設け、更に該槽によつて秤量できる容量を
100mlに固定した場合COD値は上述の如く0〜
10ppmの範囲内でしか測定できないという欠点
がある。したがつて従来はこの欠点を解消するた
めに容量の異なる秤量槽を複数個備え、必要に応
じて該秤量槽を取り替え使用することによつて
COD値の測定範囲を変更できるようにしてい
る。
However, as in the conventional method described above, a weighing tank exclusively for water testing is provided, and the capacity that can be weighed by the tank is increased.
When fixed at 100ml, the COD value is 0~ as mentioned above.
The drawback is that it can only be measured within a range of 10 ppm. Therefore, conventional methods have been used to overcome this drawback by providing a plurality of weighing tanks with different capacities and replacing the weighing tanks as necessary.
The COD value measurement range can be changed.

然るに上記したようにCOD分析法においては
一般に試料の量を100mlとしているので、従来の
装置ではたとえば50mlの検水用秤量槽に対しては
50mlの希釈水用秤量槽を、又20mlの検水用秤量槽
に対しては80mlの希釈水用秤量槽をというように
幾通りもの検水並びに希釈水専用の秤量槽を備え
なければならない。この為配管、制御等が複雑に
なるばかりでなく、装置本体も大型になり安価に
製造できないという欠点があつた。
However, as mentioned above, in the COD analysis method, the sample volume is generally 100ml, so conventional equipment cannot handle, for example, a 50ml weighing tank.
It is necessary to have a 50 ml weighing tank for dilution water, and for a 20 ml test water weighing tank, an 80 ml weighing tank for dilution water, and so on. This not only complicates piping, control, etc., but also increases the size of the device itself, which has the drawback of not being able to be manufactured at low cost.

本考案は上記従来の欠点に鑑み、1個の秤量槽
で検水用と希釈水用とを兼ね、該秤量槽による秤
量回数により所望の検水量或いは希釈水量を得る
ように構成したCOD自動測定装置を提供するも
のである。
In view of the above-mentioned conventional drawbacks, the present invention is an automatic COD measurement system in which a single weighing tank is used for both test water and dilution water, and a desired amount of test water or dilution water is obtained by the number of times the weighing tank is weighed. It provides equipment.

以下本考案を図に基づいて詳細に説明する。図
は本考案によるCOD自動測定装置のフローシー
ト図を示す。図において、検水はピンチバルブ1
の開成により検水供給管2を介して秤量槽3に導
入される。一方検水を希釈する希釈水はピンチバ
ルブ4の開成により希釈水槽5から希釈水供給管
6を介して秤量槽3に導入される。今、秤量槽3
にて秤量できる容量は20mlに設定されており、そ
れ以上導入されると余剰分はオーバフロー管7を
介して外部へ排水される。一方秤量槽3に導入さ
れた検水或いは希釈水はピンチバルブ8の開成に
より導管9を介して測定槽10に導入され、更に
該測定槽10には所定の試薬の導入によつて検水
のCOD値が測定される。なお、11〜14は
COD分析に必要な各試薬を貯液する貯液槽を示
し、貯液槽11,12の試薬はポンプP1,P2にて
それぞれ試薬秤量槽15,16に送られ秤量され
たのち補助秤量槽17を介して測定槽10に送ら
れる。補助秤量槽17には必要に応じてピンチバ
ルブの開成により希釈水槽5から、希釈水が供給
される。一方貯液槽13,14の試薬はポンプ
P3,P4にて直接測定槽10に送られる。
The present invention will be explained in detail below based on the drawings. The figure shows a flow sheet diagram of the automatic COD measuring device according to the present invention. In the figure, the water test is performed using pinch valve 1.
When the test water is opened, the sample water is introduced into the weighing tank 3 via the test water supply pipe 2. On the other hand, dilution water for diluting the test water is introduced from the dilution water tank 5 into the weighing tank 3 via the dilution water supply pipe 6 by opening the pinch valve 4 . Now, weighing tank 3
The capacity that can be weighed is set to 20 ml, and if more is introduced, the excess will be drained to the outside via the overflow pipe 7. On the other hand, the test water or dilution water introduced into the weighing tank 3 is introduced into the measurement tank 10 via the conduit 9 by opening the pinch valve 8, and further into the measurement tank 10 by introducing a predetermined reagent. COD value is measured. In addition, 11 to 14 are
It shows a liquid storage tank that stores each reagent required for COD analysis.The reagents in liquid storage tanks 11 and 12 are sent to reagent weighing tanks 15 and 16 by pumps P 1 and P 2 , respectively, and weighed. It is sent to the measurement tank 10 via the tank 17. Dilution water is supplied to the auxiliary weighing tank 17 from the dilution water tank 5 by opening a pinch valve as needed. On the other hand, the reagents in the liquid storage tanks 13 and 14 are pumped
It is sent directly to the measurement tank 10 at P 3 and P 4 .

以上の構成において、今秤量槽3の1回の秤量
操作によつて得られる容量は20mlなので、該秤量
槽3にて検水の秤量操作を5回行ない測定槽10
に順次導入すれば検水量は計100mlとなるから
COD測定範囲は0〜10ppmとなる。また、まず
秤量槽3にて検水の秤量操作を2回(40ml)行
い、次に該秤量槽3にて希釈水の秤量操作を3回
(60ml)行ない検水、希釈水共に測定槽10に導
入すればCOD測定範囲は0〜25ppmとなる。更
に検水秤量操作を1回(20ml)希釈水秤量操作を
4回(80ml)行ないそれぞれ測定槽10に導入す
ればCOD測定範囲は0〜50ppmとなる。
In the above configuration, the capacity obtained by one weighing operation of the weighing tank 3 is 20 ml, so the weighing operation of the test water is performed five times in the weighing tank 3, and the measuring tank 10
If you introduce them one after another, the total amount of water tested will be 100ml.
The COD measurement range is 0 to 10 ppm. First, the test water was weighed twice (40ml) in the weighing tank 3, and then the dilution water was weighed three times (60ml) in the weighing tank 3, and both the test water and the dilution water were weighed in the measuring tank 10. If it is introduced into the system, the COD measurement range will be 0 to 25 ppm. Furthermore, if the test water weighing operation is carried out once (20 ml) and the dilution water weighing operation is carried out four times (80 ml) and each sample is introduced into the measurement tank 10, the COD measurement range becomes 0 to 50 ppm.

この様に1個の秤量槽3にて行なう検水並びに
希釈水の秤量操作回数を考慮することによつて極
めて容易にCODの測定範囲を変更することがで
きるわけである。
In this way, by considering the number of times of water testing and dilution water weighing operations performed in one weighing tank 3, the COD measurement range can be changed very easily.

尚、上記実施例では秤量槽3の1回の秤量操作
によつて得られる容量が20mlになつているが、20
mlに限らないのはもちろんである。また上記各ピ
ンチバルブの開閉制御は周知の制御技術により自
動的に行なわれる。
In the above embodiment, the capacity obtained by one weighing operation of the weighing tank 3 is 20 ml, but
Of course, it is not limited to ml. Furthermore, the opening and closing control of each of the pinch valves is automatically performed using well-known control techniques.

以上の様に本考案のCOD自動測定装置によれ
ば、極めて簡単な構成にてCODの測定範囲を容
易に変更することができるので配管、制御等が簡
素化し、よつて装置本体も小型になり安価に製造
し得るという大きな効果がある。さらに又本考案
によれば、COD値測定のため正確に秤量した試
薬を補助秤量槽にて希釈水とともに測定槽へ送る
ため、試薬を測定槽へ導く導管壁面に試薬を含有
する液滴が付着し残存することがなくなり、上記
の正確に秤量した試薬を全て測定槽へ導くことが
できるから、COD値を精度高く測定することが
できる。
As described above, according to the automatic COD measurement device of the present invention, the COD measurement range can be easily changed with an extremely simple configuration, which simplifies piping, control, etc., and the device itself can also be made smaller. It has the great effect of being able to be manufactured at low cost. Furthermore, according to the present invention, in order to send accurately weighed reagents for COD value measurement to the measurement tank together with dilution water in the auxiliary weighing tank, droplets containing the reagents adhere to the wall of the conduit leading the reagent to the measurement tank. Since there is no remaining residue and all of the accurately weighed reagents mentioned above can be guided to the measurement tank, the COD value can be measured with high precision.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本考案によるCOD自動測定装置のフロー
シート図を示す。 1,4,8はピンチバルブ、2は検水供給管、
3は秤量槽、5は希釈水槽、6は希釈水供給管、
7はオーバフロー管、9は導管、10は測定槽。
The figure shows a flow sheet diagram of the automatic COD measuring device according to the present invention. 1, 4, 8 are pinch valves, 2 is a test water supply pipe,
3 is a weighing tank, 5 is a dilution water tank, 6 is a dilution water supply pipe,
7 is an overflow pipe, 9 is a conduit, and 10 is a measurement tank.

Claims (1)

【実用新案登録請求の範囲】 検水,試薬等を導入すると共に温度調節を行う
測定槽を設けたCOD自動測定装置において、 一定の容量を秤量する秤量槽を設けると共に該
秤量槽に検水を導く検水供給管と、該検水を希釈
するための希釈水を導く希釈水供給管と、秤量し
た検水或いは希釈水を上記測定槽に導く導管とを
それぞれ開閉弁を介して接続し、上記試薬のうち
特定の試薬の溶液を秤量する試薬秤量槽と、前記
試薬秤量槽と上記測定槽の間に希釈水を導く希釈
水供給管と接続された補助秤量槽を設け、上記秤
量槽による秤量回数により所望量の検水或いは希
釈水,及び上記補助秤量槽による特定の試薬の溶
液の希釈水を上記測定槽に供給するようにしたこ
とを特徴とするCOD自動測定装置。
[Scope of Claim for Utility Model Registration] In an automatic COD measurement device that is equipped with a measuring tank for introducing sample water, reagents, etc. and controlling the temperature, a measuring tank for weighing a certain volume is provided, and the sample water is placed in the weighing tank. A test water supply pipe for introducing the test water, a dilution water supply pipe for introducing dilution water for diluting the test water, and a conduit for introducing the weighed test water or dilution water to the measurement tank are connected through on-off valves, respectively, A reagent weighing tank for weighing a solution of a specific reagent among the reagents, and an auxiliary weighing tank connected to a dilution water supply pipe that leads dilution water between the reagent weighing tank and the measurement tank, 1. An automatic COD measuring device, characterized in that a desired amount of test water or dilution water, and water for diluting a solution of a specific reagent from the auxiliary weighing tank are supplied to the measurement tank depending on the number of measurements.
JP1978067523U 1978-05-18 1978-05-18 Expired JPS6124933Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1978067523U JPS6124933Y2 (en) 1978-05-18 1978-05-18

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1978067523U JPS6124933Y2 (en) 1978-05-18 1978-05-18

Publications (2)

Publication Number Publication Date
JPS54168898U JPS54168898U (en) 1979-11-28
JPS6124933Y2 true JPS6124933Y2 (en) 1986-07-26

Family

ID=28974550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1978067523U Expired JPS6124933Y2 (en) 1978-05-18 1978-05-18

Country Status (1)

Country Link
JP (1) JPS6124933Y2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS525583B2 (en) * 1974-04-08 1977-02-15

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS525583U (en) * 1975-06-27 1977-01-14

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS525583B2 (en) * 1974-04-08 1977-02-15

Also Published As

Publication number Publication date
JPS54168898U (en) 1979-11-28

Similar Documents

Publication Publication Date Title
US4749552A (en) Automatic titration analysis apparatus
CN108680551A (en) Optical dissolved oxygen sensor original position self-calibrating device and method
KR20150051873A (en) Automatic apparatus for measuring chemical oxygen demand(cod)
Gieskes et al. Water chemistry procedures aboard JOIDES Resolution—some comments
CN109444244A (en) Seawater permanganate index analysis system and method
CN108896629B (en) Three-point flow type calibration device and method for sodium ion concentration meter
JPS6124933Y2 (en)
US4263104A (en) Electrochemical monitoring
JPS628040A (en) Washing apparatus
CN210166315U (en) Full-automatic COD analytical equipment
CN209372750U (en) Seawater permanganate index analysis system
Green A redetermination of the solubility of oxygen in sea water and some thermodynamic implications of the solubility relations.
Howe et al. Acid‐base reactions in gas transfer: a mathematical approach
JPS6234297Y2 (en)
CN210051719U (en) Automatic on-line detection device for crude oil hydrogen sulfide
Thompson et al. Apparatus for the Micro-Determination of Dissolved Oxygen1
Holub et al. Automated direct method for measurement of serum cholesterol, with use of primary standards and a stable reagent
Stamer et al. Determination of ultimate carbonaceous BOD and the specific rate constant (K1)
JPS60114579A (en) Method for controlling etching solution
CN115349087A (en) Inorganic Carbon (IC) exclusion conductivity measurements of aqueous samples
RU2626297C1 (en) Device for determination of components concentration of strong electrolytes mixture
JPS552959A (en) Automatic cod measuring device
US5364594A (en) Method and apparatus for the coulometric detection of dissolved gases particularly TCO2 in seawater
CN217586872U (en) Seawater silicate on-line measuring device
US2934408A (en) Process and apparatus for acetylene analysis