JPH0137690B2 - - Google Patents

Info

Publication number
JPH0137690B2
JPH0137690B2 JP1412080A JP1412080A JPH0137690B2 JP H0137690 B2 JPH0137690 B2 JP H0137690B2 JP 1412080 A JP1412080 A JP 1412080A JP 1412080 A JP1412080 A JP 1412080A JP H0137690 B2 JPH0137690 B2 JP H0137690B2
Authority
JP
Japan
Prior art keywords
potassium permanganate
silver salt
water
amount
test water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1412080A
Other languages
Japanese (ja)
Other versions
JPS56111465A (en
Inventor
Hiroshi Hirata
Masanao Arai
Takashi Kimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kimoto Electric Co Ltd
Panasonic Holdings Corp
Original Assignee
Kimoto Electric Co Ltd
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kimoto Electric Co Ltd, Matsushita Electric Industrial Co Ltd filed Critical Kimoto Electric Co Ltd
Priority to JP1412080A priority Critical patent/JPS56111465A/en
Publication of JPS56111465A publication Critical patent/JPS56111465A/en
Publication of JPH0137690B2 publication Critical patent/JPH0137690B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • G01N33/1806Biological oxygen demand [BOD] or chemical oxygen demand [COD]

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Emergency Medicine (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、検水中に含まれるCOD値を銀塩無
添加で求め、公定分析法によるCOD値に補正す
る測定法に関するものであり、高価な銀塩(硝酸
銀、硫酸銀)を多量に使用する公定分析法に対し
て銀塩の使用量を大巾に削減して、COD値の測
定に要する費用を大巾に低減するとともに、その
正確な値を容易に得ることのできる方法を提供し
ようとするものである。 従来は公定分析法による測定および自動測定装
置による測定を行なつていたが、昨今のように銀
が高騰すれば、この公定分析法に準じてCOD値
を求めた場合、試薬コストが大きく、COD管理
コストが膨大となり、総量規制に対応する測定実
施が困難となる問題が生じている。 本発明は、公定分析法により銀塩の添加を実質
的に取りのぞき、銀塩の働きに対応した補正法を
実験から求めたことにもとづくものである。 公定分析法では、塩素イオンの妨害と酸化触媒
効果に、銀塩を添加がかならず必要である。発明
者らは、特に銀塩の無添加の時における塩素イオ
ンの妨害について究明した。すなわち、公定分析
法から銀塩の添加をなくした条件で手分析操作に
より次のような実験を行なつた。その結果を第1
図、第2図および第3図に示す。 第1図は、蒸留水に塩化ナトリウムを段階的に
添加し、塩素イオンと過マンガン酸カリウムの反
応を10分間、20分間、30分間行なわせた結果を示
す。この結果から明らかなように、沸騰水浴中の
放置時間により、過マンガン酸カリウム消費量が
異なり、10分程度の反応では、ほとんど酸化反応
が進んでいない。また10分、20分、30分いずれを
見ても塩素イオン濃度に比例して、過マンガン酸
カリウム消費量が直線的に増加している。 第2図は、河川水について実施したもので、塩
化ナトリウムを段階的に添加し、COD値を求め
た。各河川のCOD値は異なるが、塩化ナトリウ
ム単独の空試験値とよく平行した直線が得られ
た。この結果から、塩素イオン濃度に応じて空試
験値を差引くことで正確なCOD値が求められる
ことが判明した。 第3図は、下水処理場の流入水を過した検水
について実施したもので、河川水同様の結果を得
た。以上の結果から、過マンガン酸カリウムに対
するCOD対象物質と塩素イオンの酸化反応は併
発反応であることが判明した。これにより、塩素
イオン濃度による過マンガン酸カリウム消費量
は、実検水による銀塩無添加値と塩化ナトリウム
などの標準塩素イオンの標準添加同一検水による
銀塩無添加値から実測して求める必要がある。ゆ
えに、別法(イオン電極法)で検水中の塩素イオ
ン濃度を測定し、塩素イオン含有量に比例した過
マンガン酸カリウム消費量を、検水による滴定量
から差引き、計算するという方法で塩素イオンの
妨害を完全に除去することができる。また、河川
水、下水処理場の流入水について、銀塩無添加に
おけるCOD値と公定分析法(銀塩添加法)とを
銀塩の触媒作用の立場から比較検討した。
The present invention relates to a measurement method that determines the COD value contained in sample water without the addition of silver salts and corrects it to the COD value determined by the official analytical method, and uses a large amount of expensive silver salts (silver nitrate, silver sulfate). We aim to significantly reduce the amount of silver salt used compared to the official analytical method, thereby significantly reducing the cost required to measure COD values, and to provide a method that can easily obtain accurate values. It is something to do. In the past, measurements were carried out using official analytical methods and automatic measuring devices, but as the price of silver has soared recently, reagent costs are high and COD Problems have arisen in which management costs are enormous and it is difficult to carry out measurements that comply with total volume regulations. The present invention is based on the fact that the addition of silver salts has been substantially eliminated using the official analytical method, and that a correction method corresponding to the function of silver salts has been found through experiments. In the official analytical method, it is absolutely necessary to add silver salt to interfere with chlorine ions and to have an oxidation catalytic effect. The inventors have investigated the interference of chlorine ions, especially when no silver salt is added. That is, the following experiment was carried out by manual analysis under conditions in which the addition of silver salt was omitted from the official analytical method. The result is the first
2 and 3. Figure 1 shows the results of adding sodium chloride to distilled water in stages and allowing the reaction between chlorine ions and potassium permanganate to occur for 10, 20, and 30 minutes. As is clear from these results, the amount of potassium permanganate consumed varies depending on the time the product is left in the boiling water bath, and the oxidation reaction hardly progresses after a reaction time of about 10 minutes. Furthermore, whether looking at 10 minutes, 20 minutes, or 30 minutes, the amount of potassium permanganate consumed increases linearly in proportion to the chloride ion concentration. Figure 2 shows a study conducted on river water, in which sodium chloride was added in stages and the COD value was determined. Although the COD values for each river were different, a straight line was obtained that was well parallel to the blank test value for sodium chloride alone. These results revealed that an accurate COD value can be determined by subtracting the blank test value according to the chloride ion concentration. Figure 3 shows a test conducted on inflow water from a sewage treatment plant, and the results were similar to those for river water. From the above results, it was found that the oxidation reaction of the COD target substance and chlorine ion with respect to potassium permanganate was a simultaneous reaction. As a result, potassium permanganate consumption due to chlorine ion concentration needs to be determined by actual measurement from the value of actual test water without the addition of silver salts and the value without the addition of silver salts in the same test water with standard addition of standard chlorine ions such as sodium chloride. There is. Therefore, the chlorine ion concentration in the sample water is measured using another method (ion electrode method), and the amount of potassium permanganate consumed, which is proportional to the chlorine ion content, is subtracted from the titration amount obtained in the sample water. Ion interference can be completely removed. In addition, for river water and inflow water from sewage treatment plants, we compared the COD values without the addition of silver salts and the official analysis method (silver salt addition method) from the standpoint of the catalytic action of silver salts.

【表】 上表から明らかなように、検水中の内容物、測
定場所、対象検水により固有の酸化率(河川:平
均1・1、処理場:1・2)を示し、銀塩の無添
加時におけるCOD値に酸化率係数を乗じること
で、公定分析法によるCOD値とよく一致する値
を得ることができる。 本発明の方法は、上述した実験の結果にもとづ
くものであり、検水中の塩素イオン濃度を測定
し、この検水中の塩素イオンによつて消費される
過マンガン酸カリウムの量を求め、さらに銀塩無
添加にて検水に過マンガン酸カリウムを添加して
その全消費量を求めて、この全消費量より塩素イ
オンによる過マンガン酸カリウム消費量を減算し
て、銀塩無添加時の実測結果を得、この実測結果
で公定分析法(JISK0102)による測定結果を除
して酸化率係数を求め、この係数を以後の検水に
ついての銀塩無添加における実測結果に乗じて
COD値を得ることを特徴とする。 この方法によれば、銀塩の添加を必要とする公
定分析法による測定の実施回数を大巾に削減する
ことができるので、測定に要する費用を著しく低
減することができる。そして、前述からも明らか
なように、銀塩無添加で求めた実測結果に酸化率
係数を乗じることにより、正確なCOD値を得る
ことができる。 以下、本発明の方法の一実施例について、第4
図に示すブロツク図を用いて説明する。この実施
例は、まず同一検水について予備測定をし、つい
で本測定をする。そして、ある一定周期毎に、あ
るいは必要に応じて、JISK0102に定められた公
定分析法にもとづく測定を行なつて、酸化率係数
を求め、上記本測定の結果を補正するものであ
る。ここで用いられる試薬はJISK0102にもとづ
くものである。 (1) 予備測定について、 まず、河川水や排水等の検水1をポプ2で適
量(たとえば300ml)検水槽3に送り、ここに
貯めておく。検水槽3には、塩素イオン濃度を
測定するための塩素イオン電極またはナトリウ
ムイオン電極(以下イオン電極という)4が内
蔵されており、このイオン電極4より検水1′
中の塩素イオン濃度に対応する出力電圧が得ら
れる。イオン電極4の出力電圧は電圧計5に印
加されるとともに、その結果がコンピユータ6
に伝送され、記憶される。塩素イオン濃度の測
定後、コンピユータ6は、バルブ7を開いて検
水1′を秤量器8に送つて秤量し、それがたと
えば10mlに達したときにバルブ7を閉じ、かつ
秤量した検水を反応槽9に送るという操作を2
回繰返して、検水20mlを反応槽9に供給する。
同様にして、希釈水槽10のバルブ11を開い
て希釈水12を秤量器8に送り、20ml秤量し
て、バルブ11を閉じるとともに、それを反応
槽9に供給する。それから、硫酸槽13に取付
けられているポンプ14を一定時間作動させ、
硫酸15を反応槽9に直接供給する。この流路
中に酸化還元電位法の比較電極が挿入してあ
り、液絡に使用する。引続いてバルブを開いて
ポンプ16を作動させ、過マンガン酸カリウム
溶液槽17より過マンガン酸カリウム溶液18
を10ml反応槽9に供給する。以上の操作が終了
してから、反応槽9内の混合溶液60mlを加熱し
て、所定の温度上昇曲線に従つて温度上昇させ
る。一定時間経過した時点で、コンピユータ6
によりシユウ酸ナトリウム槽19に接続されて
いるポンプ20を作動させ、シユウ酸ナトリウ
ム溶液21を秤量器8に送つて秤量し、その10
mlを反応槽9に供給して前記混合溶液の反応を
停止させる。反応の停止後、コンピユータ6に
よりバルブ22を開くとともにポンプ16を作
動させ、過マンガン酸カリウム溶液18を一定
の流量で反応槽9に供給して、反応させる。過
マンガン酸カリウム溶液の滴定による反応終点
はたとえば酸化還元電位法により検出する。コ
ンピユータ6はこの反応終点を検出したとき、
ただちにポンプ16を停止させるとともに、バ
ルブ22を閉じる。そして、ポンプ16による
滴定に要した時間から、コンピユータ6は
COD値を算出し、かつ先に測定し記憶してい
る塩素イオン濃度の値に応じて、検水の希釈量
を決定する。 (2) 本測定について 上述の予備測定の結果にもとづいて、コンピ
ユータ6は、検水1′の希釈量を、過マンガン
酸カリウムの滴定量が4〜6mlとなるよう、決
定する。具体的には、検水1′の反応槽9への
供給量を10〜100mlの範囲で、また希釈水12
の供給量を90〜0mlの範囲で、かつ両者の合計
量が100mlになるよう、それぞれの供給量を決
定する。 この決定にもとづいて、コンピユータ6はバ
ルブ7,11を順次開閉制御して、反応槽9に
検水1′、そして希釈水12を上述と同じ手順
で供給する。以下、硫酸15と過マンガン酸カ
リウム溶液18を同じ手順で反応槽9にそれぞ
れ10mlづつ送り、混合溶液を所定の温度上昇曲
線に従つて加熱し、温度上昇させる。30分経過
後、シユウ酸ナトリウム溶液21を10ml反応槽
9内の混合溶液に加えて反応を停止させる。そ
れから、バルブ22を開いて、ポンプ16によ
り過マンガン酸カリウム溶液18を一定の流量
で反応槽9に供給し、その滴定をする。 コンピユータ6は、本測定時に含まれた塩素
イオン濃度に応じた過マンガン酸カリウム量を
演算し、その演算結果を本測定時における過マ
ンガン酸カリウムの滴定量より差引いて、銀塩
無添加時におけるCOD値を求め、さらにそれ
に銀塩による酸化率係数を乗じて、公定分析法
によるCOD値を指示する。 このような方法を実施するにあたつて、ある周
期で銀塩を添加した公定分析法にもとづくCOD
値を求め、その結果をコンピユータ6に記憶させ
て、銀塩の酸化率係数を自動的に修正すること
で、常に正しいCOD値を求めることができる。 銀塩の添加時におけるCOD値の測定において
も、その操作は上述の無添加時における操作とほ
ぼ同じである。もつとも異なる点は、上述の測定
操作において、反応槽9内の混合溶液に、たとえ
ば硝酸銀を添加してから、所定の温度上昇曲線に
従つて加熱することである。 この公定分析法は、実際の測定においては、適
当な間隔で実施すればよい。たとえば、1日に1
回なり、2回、コンピユータ6により、硝酸銀溶
液槽24に設けられているポンプ25を作動さ
せ、検水、硫酸、過マンガン酸カリウム溶液、さ
らに必要に応じて加えられる希釈水の混合溶液
に、硝酸銀溶液26をたとえば5ml添加し、反応
槽9内で反応させる。そして、上述と同じ手順で
過マンガン酸カリウムの滴定を行なつてCOD値
を求める。この公定分析法によつて得られた
COD値と同一組成の検水について、銀塩無添加
により測定したCOD値を求め、銀塩添加COD値
を銀塩無添加COD値で除した値が銀塩触媒によ
る酸化率係数であり、この係数をコンピユータ6
が演算記憶し、以後次の公定分析法の実施までそ
の値を記憶し保持して、繰返し得られる銀塩無添
加での測定結果に乗じて、COD値とする。 以上の説明から明らかなように、本発明の方法
によれば、検水の組成(過マンガン酸カリウムと
の反応速度の異なる物質の割合や銀塩の触媒によ
る酸化率の異なる物質の混合比)が変化しない場
合には、最低1日あたり1回の銀塩添加ですみ、
試薬コストが1/24となる。また、検水の組成が変
化しないことを確認する手段としては、本発明の
方法に係る装置のチエツク機能モードを使用す
る。このモードでは連続かつ自動的に同一組成の
検水について、銀塩無添加と銀塩添加をして測定
できる機能がある。このチエツク機能を使用して
検水を測定し、得られた銀塩無添加COD値に銀
塩触媒酸化率係数を乗じて補正したCOD値と銀
塩添加COD値を比較検討して差異が生じていな
いことから検水の組成に変化のないことを確認す
る。 また差異が生じた場合には、塩素イオンによる
過マンガン酸カリウム消費量や酸化係数をあらた
めて実験により求め、コンピユータにインプツト
して対応する。なお、公定分析法においても、有
機物の浮遊物が混入した場合には、COD値のば
らつきが大きくなることが判明しているので、こ
の実験に使用した検水についても浮遊物を除去し
たものを使用した。
[Table] As is clear from the above table, the specific oxidation rate (river: average 1.1, treatment plant: 1.2) is shown depending on the contents of the sample water, the measurement location, and the target sample water. By multiplying the COD value at the time of addition by the oxidation rate coefficient, a value that closely matches the COD value determined by the official analytical method can be obtained. The method of the present invention is based on the results of the experiments described above, and involves measuring the chloride ion concentration in the sample water, determining the amount of potassium permanganate consumed by the chloride ions in the sample water, and then determining the amount of potassium permanganate consumed by the chlorine ions in the sample water. Add potassium permanganate to the sample water without adding salt and find the total consumption. Subtract the potassium permanganate consumption due to chlorine ions from this total consumption to obtain the actual measurement without adding silver salt. Obtain the results, divide the measurement results by the official analysis method (JISK0102) by this actual measurement result to find the oxidation rate coefficient, and multiply this coefficient by the actual measurement results for subsequent water tests without the addition of silver salts.
It is characterized by obtaining COD values. According to this method, the number of measurements performed using the official analytical method that requires the addition of a silver salt can be greatly reduced, and therefore the cost required for measurements can be significantly reduced. As is clear from the above, an accurate COD value can be obtained by multiplying the actual measurement result obtained without the addition of silver salt by the oxidation rate coefficient. Hereinafter, the fourth embodiment of the method of the present invention will be explained.
This will be explained using the block diagram shown in the figure. In this example, a preliminary measurement is first performed on the same sample water, and then the actual measurement is performed. Then, at certain regular intervals or as necessary, measurements are performed based on the official analysis method specified in JISK0102 to determine the oxidation rate coefficient and correct the results of the above-mentioned main measurements. The reagents used here are based on JISK0102. (1) Regarding preliminary measurements, first send an appropriate amount (for example, 300 ml) of test water 1, such as river water or wastewater, to test tank 3 using pop-up 2 and store it there. The water test tank 3 has a built-in chlorine ion electrode or sodium ion electrode (hereinafter referred to as ion electrode) 4 for measuring the chloride ion concentration, and the sample water 1'
An output voltage corresponding to the chloride ion concentration in the sample is obtained. The output voltage of the ion electrode 4 is applied to a voltmeter 5, and the result is sent to a computer 6.
transmitted to and stored. After measuring the chloride ion concentration, the computer 6 opens the valve 7 and sends the sample water 1' to the scale 8 for weighing, and when it reaches, for example, 10 ml, closes the valve 7 and sends the sample water 1' to the scale 8 for weighing. The operation of sending it to reaction tank 9 is performed in step 2.
Repeat several times to supply 20 ml of test water to the reaction tank 9.
Similarly, the valve 11 of the dilution water tank 10 is opened to send the dilution water 12 to the weigher 8, 20 ml is weighed out, the valve 11 is closed, and it is supplied to the reaction tank 9. Then, the pump 14 attached to the sulfuric acid tank 13 is operated for a certain period of time,
Sulfuric acid 15 is directly supplied to reaction tank 9. A reference electrode for the redox potential method is inserted into this channel and is used as a liquid junction. Subsequently, the valve is opened to operate the pump 16, and the potassium permanganate solution 18 is pumped from the potassium permanganate solution tank 17.
is supplied to a 10 ml reaction tank 9. After the above operations are completed, 60 ml of the mixed solution in the reaction tank 9 is heated to raise the temperature according to a predetermined temperature rise curve. After a certain period of time has elapsed, the computer 6
The pump 20 connected to the sodium oxalate tank 19 is operated, and the sodium oxalate solution 21 is sent to the weigher 8 and weighed.
ml is supplied to the reaction tank 9 to stop the reaction of the mixed solution. After the reaction has stopped, the computer 6 opens the valve 22 and operates the pump 16 to supply the potassium permanganate solution 18 at a constant flow rate to the reaction tank 9 for reaction. The end point of the reaction by titration of the potassium permanganate solution is detected, for example, by the redox potential method. When the computer 6 detects this reaction end point,
Immediately stop the pump 16 and close the valve 22. Then, from the time required for titration using the pump 16, the computer 6 calculates
The COD value is calculated, and the dilution amount of the test water is determined according to the previously measured and stored chloride ion concentration value. (2) Regarding the main measurement Based on the results of the preliminary measurement described above, the computer 6 determines the amount of dilution of the test water 1' so that the titration amount of potassium permanganate is 4 to 6 ml. Specifically, the amount of test water 1' supplied to the reaction tank 9 was set in the range of 10 to 100 ml, and the amount of dilution water 12
The supply amount of each is determined so that it is in the range of 90 to 0 ml and the total amount of both is 100 ml. Based on this determination, the computer 6 sequentially controls the opening and closing of the valves 7 and 11 to supply test water 1' and dilution water 12 to the reaction tank 9 in the same manner as described above. Thereafter, 10 ml each of sulfuric acid 15 and potassium permanganate solution 18 are sent to the reaction tank 9 in the same procedure, and the mixed solution is heated and raised in temperature according to a predetermined temperature rise curve. After 30 minutes, sodium oxalate solution 21 is added to the mixed solution in the 10 ml reaction tank 9 to stop the reaction. Then, the valve 22 is opened, and the pump 16 supplies the potassium permanganate solution 18 at a constant flow rate to the reaction tank 9 for titration. The computer 6 calculates the amount of potassium permanganate according to the chlorine ion concentration contained in the main measurement, subtracts the calculation result from the titration amount of potassium permanganate in the main measurement, and calculates the amount of potassium permanganate when no silver salt is added. Determine the COD value and then multiply it by the oxidation rate coefficient due to silver salt to indicate the COD value according to the official analytical method. When implementing such a method, COD based on the official analytical method in which silver salt is added at a certain period.
By calculating the value, storing the result in the computer 6, and automatically correcting the oxidation rate coefficient of the silver salt, it is possible to always obtain the correct COD value. The operation for measuring the COD value when silver salt is added is almost the same as the operation when no silver salt is added. The most different point is that in the above measurement operation, for example, silver nitrate is added to the mixed solution in the reaction tank 9, and then it is heated according to a predetermined temperature increase curve. This official analytical method may be carried out at appropriate intervals in actual measurements. For example, 1 day
Once again, the computer 6 operates the pump 25 provided in the silver nitrate solution tank 24 twice, and the sample water, sulfuric acid, potassium permanganate solution, and a mixed solution of dilution water added as necessary are mixed. For example, 5 ml of silver nitrate solution 26 is added and reacted in reaction tank 9. Then, titrate potassium permanganate using the same procedure as above to determine the COD value. Obtained by this official analytical method
For sample water with the same composition as the COD value, the COD value measured without the addition of silver salt is calculated, and the value obtained by dividing the COD value with silver salt by the COD value without addition of silver salt is the oxidation rate coefficient by the silver salt catalyst. Coefficient computer 6
The value is stored and stored until the next official analysis method is carried out, and then multiplied by the repeatedly obtained measurement results without the addition of silver salts to obtain the COD value. As is clear from the above explanation, according to the method of the present invention, the composition of the sample water (the ratio of substances with different reaction rates with potassium permanganate and the mixing ratio of substances with different oxidation rates by the silver salt catalyst) If there is no change, it is sufficient to add silver salt at least once a day.
Reagent cost is 1/24th. Further, as a means for confirming that the composition of the sample water does not change, the check function mode of the apparatus according to the method of the present invention is used. This mode has a function that allows continuous and automatic measurement of sample water of the same composition with and without silver salt added. Use this check function to measure sample water, and compare and examine the corrected COD value by multiplying the obtained COD value without silver salts by the silver salt catalyst oxidation rate coefficient and the COD value with silver salts to determine if there is a difference. Confirm that there is no change in the composition of the sample water. In addition, if a difference occurs, the amount of potassium permanganate consumed by chlorine ions and the oxidation coefficient are determined again through experiments, and the results are input into the computer and dealt with accordingly. In addition, even in the official analysis method, it has been found that the variation in COD values increases when suspended organic matter is mixed in, so the sample water used in this experiment was also made from water with suspended matter removed. used.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図および第3図は本発明のCOD
値の測定法の原理について説明するための図、第
4図は本発明の方法の一実施例を実施するための
装置のブロツク図である。 1,1′……検水、2……ポンプ、3……検水
槽、4……イオン電極、5……電圧計、6……コ
ンピユータ、7……バルブ、8……秤量計、9…
…反応槽、10……希釈水槽、11……バルブ、
13……硫酸槽、14……バルブ、15……硫
酸、16……ポンプ、17……過マンガン酸カリ
ウム溶液槽、19……シユウ酸ナトリウム溶液
槽、20……ポンプ、24……硝酸銀溶液槽、2
5……ポンプ。
Figures 1, 2 and 3 are the COD of the present invention.
FIG. 4 is a diagram for explaining the principle of the value measurement method, and is a block diagram of an apparatus for carrying out an embodiment of the method of the present invention. 1, 1'...Water test, 2...Pump, 3...Water test tank, 4...Ion electrode, 5...Voltmeter, 6...Computer, 7...Valve, 8...Weighing meter, 9...
... Reaction tank, 10 ... Dilution tank, 11 ... Valve,
13... Sulfuric acid tank, 14... Valve, 15... Sulfuric acid, 16... Pump, 17... Potassium permanganate solution tank, 19... Sodium oxalate solution tank, 20... Pump, 24... Silver nitrate solution Tank, 2
5...Pump.

Claims (1)

【特許請求の範囲】[Claims] 1 検水中の塩素イオン濃度を測定して、前記検
水中の塩素イオンによつて消費される過マンガン
酸カリウムの量を求め、さらに銀塩無添加にて前
記検水に過マンガン酸カリウムを添加してその全
消費量を求め、前記過マンガン酸カリウムの全消
費量より前記塩素イオンによる過マンガン酸カリ
ウムの消費量を減算して、銀塩無添加時の実測結
果を得、この実測結果で前記検水と同一の検水に
ついての銀塩添加時における測定結果を除算して
酸化率係数を求め、この酸化率係数を以後の検水
についての銀塩無添加における実測結果に乗じて
COD値を得ることを特徴とするCOD値の測定法。
1. Measure the chlorine ion concentration in the test water to determine the amount of potassium permanganate consumed by the chlorine ions in the test water, and then add potassium permanganate to the test water without adding silver salt. The amount of potassium permanganate consumed by the chlorine ions is subtracted from the total amount of potassium permanganate consumed to obtain the actual measurement result when no silver salt is added. The oxidation rate coefficient is obtained by dividing the measurement result when silver salt is added for the same test water as the above test water, and this oxidation rate coefficient is multiplied by the actual measurement result for the subsequent test water without the addition of silver salt.
A COD value measurement method characterized by obtaining a COD value.
JP1412080A 1980-02-06 1980-02-06 Measuring method for cod value Granted JPS56111465A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1412080A JPS56111465A (en) 1980-02-06 1980-02-06 Measuring method for cod value

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1412080A JPS56111465A (en) 1980-02-06 1980-02-06 Measuring method for cod value

Publications (2)

Publication Number Publication Date
JPS56111465A JPS56111465A (en) 1981-09-03
JPH0137690B2 true JPH0137690B2 (en) 1989-08-09

Family

ID=11852254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1412080A Granted JPS56111465A (en) 1980-02-06 1980-02-06 Measuring method for cod value

Country Status (1)

Country Link
JP (1) JPS56111465A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5860265U (en) * 1981-10-20 1983-04-23 株式会社明電舎 COD measuring device
CN108680716B (en) * 2018-02-13 2021-10-08 华测检测认证集团股份有限公司 Chlorine-containing wastewater chemical oxygen demand primary screening method
CN112816614B (en) * 2020-12-30 2022-08-02 杭州谱育科技发展有限公司 Self-adaptive titration method for potassium permanganate index

Also Published As

Publication number Publication date
JPS56111465A (en) 1981-09-03

Similar Documents

Publication Publication Date Title
US6537822B1 (en) Method for analyzing free fluorine in solutions containing hydrofluoric acid solution, and apparatus for practicing the method
EP0485000B1 (en) Method of analysis
US5175502A (en) Method and apparatus for determining acid concentration
JPH0137690B2 (en)
Essington Formation of calcium and magnesium molybdate complexes in dilute aqueous solutions
US4278507A (en) Method for amperometric measurement of the free-chlorine content in a solution
US4002428A (en) Deductive method for measuring ion concentration electrically
US5065417A (en) Method and apparatus for monitoring the partial density of metal and acid in pickling baths
US3923608A (en) Method of detecting low levels of cyanide
Maccà pH-stat techniques in titrimetric analysis: Part 3. The principles of pH-stat chelatometric titrations
JP2002531700A (en) Apparatus and method for controlling the pickling process of steel
JPS63138268A (en) Automatic analyzing device
RU2626297C1 (en) Device for determination of components concentration of strong electrolytes mixture
Lindroos Determination of free hydrofluoric and nitric acids in pickling bath liquors using a fluoride-selective electrode and alkalimetric titration
JPH0427856A (en) Method and apparatus for measuring concentration of ion
JPS6234297Y2 (en)
US11549884B2 (en) Zinc and copper measurement
CN113702445B (en) PH value detection method and water quality analysis method
CN213398377U (en) Online monitoring system for chloride ion content in industrial circulating cooling water
US10677717B2 (en) Colorimetric analyzer with reagent diagnostics
JPH04168286A (en) Control method for etching bath
Beronius Electrochemical Precision Measurements of the Rate of Halogen Exchange Between Organic and Inorganic Iodides
JPH05317893A (en) Method for monitoring sludge digestion tank
JP3069951B2 (en) Concentration control method of hydrogen peroxide solution containing ferric ion
EP0328275A1 (en) Assaying aluminium in drinking water