JPS6096771A - Controlling method of nitrite ion concentration - Google Patents

Controlling method of nitrite ion concentration

Info

Publication number
JPS6096771A
JPS6096771A JP20374383A JP20374383A JPS6096771A JP S6096771 A JPS6096771 A JP S6096771A JP 20374383 A JP20374383 A JP 20374383A JP 20374383 A JP20374383 A JP 20374383A JP S6096771 A JPS6096771 A JP S6096771A
Authority
JP
Japan
Prior art keywords
nitrite ion
phosphate
nitrite
potential difference
phosphate treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20374383A
Other languages
Japanese (ja)
Other versions
JPS6213432B2 (en
Inventor
Yokichi Sato
佐藤 与吉
Yoshio Moriya
盛屋 喜夫
Takashi Kojima
隆司 小島
Miyuki Maeda
前田 実由紀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Parkerizing Co Ltd
Original Assignee
Nihon Parkerizing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Parkerizing Co Ltd filed Critical Nihon Parkerizing Co Ltd
Priority to JP20374383A priority Critical patent/JPS6096771A/en
Publication of JPS6096771A publication Critical patent/JPS6096771A/en
Publication of JPS6213432B2 publication Critical patent/JPS6213432B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/73Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process
    • C23C22/77Controlling or regulating of the coating process

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Treatment Of Metals (AREA)

Abstract

PURPOSE:To stably form the most excellent phosphate film to the surface of a metal, by automatically and continuously measuring the nitrite ion concn. in the phosphate treating solution on the surface of a metal and automatically replenishing a nitrite ion on the basis of the measured value. CONSTITUTION:A steel plate is immersed in the aqueous phosphate solution in a phosphate treating tank 18 to form a phosphate film to the surface of said steel plate. During this operation, a phosphate treating solution is recirculated to a cell 5 equipped with a nitrite ion selective electrode 1, a comparison electrode 7 and a temp. compensating electrode 8 by a pump 20. The potential difference signal between the electrodes 1, 7 detected by a potential difference detecting circuit 12 and the temp. signal from a temp. detecting circuit 13 are inputted to a correction circuit 14 to correct potential difference to the potential difference value at a reference temp. This value is compared with the set value of a setting device 15 by a comparator 16 and the drive circuit 17 of a nitrite ion replenishing pump 19 is driven by the difference signal and a nitrite ion replenishing solution 21 is automatically replenished into a treating tank 18 so as to keep a proper concn.

Description

【発明の詳細な説明】 本発明は、金属のリン酸塩処理工程で使用されるリン酸
塩処理液中の亜硝酸イオン濃度を測定し制御する亜硝酸
イオン濃度の制御方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for controlling nitrite ion concentration, which measures and controls the nitrite ion concentration in a phosphate treatment solution used in a metal phosphate treatment process.

従来、金属のリン酸塩処理工程は、脱脂→水洗→リン酸
塩処理→水洗→乾燥からなる工程で行われ、そのリン酸
塩処理液は処理液成分の消費に応じて薬剤の補給を行い
、処理液の濃度を常に一定に保つように管理している。
Conventionally, the phosphate treatment process for metals is carried out in a process consisting of degreasing → water washing → phosphate treatment → water washing → drying, and the phosphate treatment solution is replenished with chemicals according to the consumption of the treatment solution components. The concentration of the processing liquid is always kept constant.

リン酸塩処理液の一成分として亜硝酸イオンが促進剤と
して含有されているが、この亜硝酸イオンは亜硝酸ナト
リウムや亜硝酸カリウムの如き町浴性亜硝酸塩の形でリ
ン酸塩処理液に供給されている。金属の表面に最良のリ
ン酸塩皮膜を生成させるには、リン酸塩処理液中の亜硝
酸イオン濃度を常に最適濃度に維持することが望ましい
。従ってこの制御を行うには、リン酸塩処理液中の亜硝
酸イオン濃度を絶えまなく測定し、その測定値に基づい
て亜硝酸塩を補給し、その亜硝酸イオン濃度を望ましい
範囲に保つ必要がおる。
Nitrite ions are contained as accelerators as a component of the phosphate treatment solution, and these nitrite ions are supplied to the phosphate treatment solution in the form of town bath nitrites such as sodium nitrite and potassium nitrite. has been done. In order to produce the best phosphate film on the metal surface, it is desirable to maintain the nitrite ion concentration in the phosphating solution at an optimum level at all times. Therefore, in order to perform this control, it is necessary to constantly measure the nitrite ion concentration in the phosphate treatment solution, replenish nitrite based on the measured value, and maintain the nitrite ion concentration within the desired range. is.

リン酸塩処理液中の亜硝酸イオン酸度を測定する方法に
は、例えば容量分析法として酸化還元法及びサツカロメ
ーターを用いたガス容量法、蒸留法としてキルプール法
、比色法としてn−す7チルエチレンジアミン法及びイ
オンクロマトグラフィーによる分析法等がある。しかし
これらの測定方法は・亜硝酸イオン濃度を測定する迄に
試薬類の添加、液の調整及び複雑な分析操作が必要であ
シ、ある程度の時間と面倒な操作を要する。現在リン酸
塩処理を連続して行っている工業的なリン酸塩処理液中
の亜硝酸イオン測定法には、サツカロメーター内に化成
処理液を入れ、スルファミン酸を過剰添加して発生した
ガス量からリン酸塩処理液中の亜硝酸イオン濃度を知る
ガス容量法及び酸化還元電極を用いて硫酸セリウムによ
る容量分析法(反応式NO2+ 2 Ce ” +Ht
O−NOs +2Ce +2H)が一般的である。
Methods for measuring nitrite ion acidity in a phosphate treatment solution include, for example, the oxidation-reduction method and the gas volumetric method using a satsucalometer as a volumetric analysis method, the kill pool method as a distillation method, and the n-scan method as a colorimetric method. Examples include the 7-tylethylenediamine method and the analytical method using ion chromatography. However, these measurement methods require the addition of reagents, liquid preparation, and complicated analysis operations before measuring the nitrite ion concentration, and require a certain amount of time and troublesome operations. Currently, the industrial method for measuring nitrite ions in phosphate treatment solutions that continuously performs phosphate treatment involves placing the chemical conversion treatment solution in a satsucalometer and adding excessive sulfamic acid. Gas capacitance method to determine the nitrite ion concentration in the phosphate treatment solution from the gas amount and capacitive analysis method using cerium sulfate using a redox electrode (reaction formula NO2+ 2 Ce ” + Ht
O-NOs +2Ce +2H) is common.

連続的に一定して均一なリン酸塩皮膜を得るには測定頻
度を高める必要があり、通常1o分に1同根度の測定が
必要である。しかしガス容量法は間欠的な測定法であシ
、リン酸塩処理液中の亜硝酸イオン濃度の変化を連続し
て測定し、亜硝酸イオンを常に一定にリン酸塩処理液中
に存在させることが困難である。酸化還元電極を用いた
硫酸セリウム等の酸化剤による滴定法では、連続して化
成処理液中の亜硝酸イオン濃度を測定出来、定常に濃度
を制御することが出来るが、それには濃度を正しく調整
した滴定液を必要とし、又自動的に滴定を行う場合には
高精度の定量吐出機構をもっ滴定装置が必要であシ工業
的に適さない。
In order to obtain a continuous and uniform phosphate film, it is necessary to increase the frequency of measurement, and it is usually necessary to measure at the same rate every 10 minutes. However, the gas capacitance method is an intermittent measurement method that continuously measures changes in the nitrite ion concentration in the phosphate treatment solution, ensuring that nitrite ions are always present in the phosphate treatment solution at a constant level. It is difficult to do so. In the titration method using an oxidizing agent such as cerium sulfate using a redox electrode, the nitrite ion concentration in the chemical conversion treatment solution can be continuously measured and the concentration can be constantly controlled, but it is necessary to adjust the concentration correctly. In addition, if the titration is to be carried out automatically, a titration apparatus having a highly accurate quantitative discharge mechanism is required, which is not suitable for industrial use.

本発明の目的は、これらの欠陥を補いリン酸塩処理液中
の亜硝酸イオン製産を連続して自動的に測定し、その測
定値に基づいて自動的に亜硝酸イオンの補給を行い、リ
ン酸塩処理液中の亜硝酸イオン濃度を常に適切な範囲に
保つことが可能な方法を提供することにある。
The purpose of the present invention is to compensate for these deficiencies by continuously and automatically measuring the production of nitrite ions in the phosphate treatment solution, and automatically replenishing nitrite ions based on the measured values. An object of the present invention is to provide a method that can always maintain the nitrite ion concentration in a phosphate treatment solution within an appropriate range.

本発明による亜硝酸イオン濃度の制御方法は、リン酸塩
処理液中の亜硝酸イオン濃度を亜硝酸イオン選択性電極
を用いて連続的に測定し、前記亜硝酸イオン濃度が予め
定めた範囲の設定値になるように亜硝酸イオンを前記リ
ン酸塩処理液に自動的に供給させるようにしたことを特
徴とするものである。
The method for controlling nitrite ion concentration according to the present invention includes continuously measuring the nitrite ion concentration in the phosphate treatment solution using a nitrite ion selective electrode, and controlling the nitrite ion concentration within a predetermined range. The present invention is characterized in that nitrite ions are automatically supplied to the phosphate treatment liquid so as to reach a set value.

本発明に用いる亜硝酸イオン選択性電極を第1図にて説
明すると、1が亜硝酸イオン選択性電極、2が一ガラス
電極、3が内部液、4が疎水性気体透過膜である。
The nitrite ion selective electrode used in the present invention will be explained with reference to FIG. 1, where 1 is a nitrite ion selective electrode, 2 is a glass electrode, 3 is an internal liquid, and 4 is a hydrophobic gas permeable membrane.

亜硝酸イオンは、リン酸塩処理液中で以下に示すような
経路で水素イオンと反応しN、 0.に変化する。
Nitrite ions react with hydrogen ions in the phosphate treatment solution through the following route, resulting in N, 0. Changes to

H十NOt ’:’KONO H+HONOイH2No : H20+No +NO+
 NCh =Nt Os 亜硝酸イオン選択性電極1をリン酸塩処理液に浸漬する
と、とのNeon は亜硝酸イオン選択性電極lの先端
部に設けられた疎水性気体透過膜4を透過して内部液3
中の水と可逆反応を起こす。
H1NOt':'KONO H+HONOi H2No: H20+No +NO+
NCh = Nt Os When the nitrite ion selective electrode 1 is immersed in a phosphate treatment solution, Neon passes through the hydrophobic gas permeable membrane 4 provided at the tip of the nitrite ion selective electrode 1 and enters the interior. liquid 3
Causes a reversible reaction with the water inside.

”/!NtOa + H,Od H” + NO。”/!NtOa + H, Od H” + NO.

疎水性気体透過膜4を透過し拡散したNtOsガス量は
、N20.の分圧に依存し化成処理液中のN、O,濃度
に比例する。内部液3の水素イオン濃度はリン酸塩処理
液中の亜硝酸イオン製産に比例するので、これから電極
電位を検出してリン酸塩処理液中の亜硝酸イオン濃度を
測定する。
The amount of NtOs gas that permeated and diffused through the hydrophobic gas permeable membrane 4 was N20. It depends on the partial pressure of and is proportional to the N, O, concentration in the chemical conversion treatment solution. Since the hydrogen ion concentration of the internal solution 3 is proportional to the production of nitrite ions in the phosphate treatment solution, the electrode potential is detected from this to measure the nitrite ion concentration in the phosphate treatment solution.

この亜硝酸イオン選択性電極1をリン酸塩処理液に適用
する方法について説明すると、第2図はリン酸塩処理液
中に含まれる亜硝酸イオン濃度を連続して測定するため
のセル5であって、第3図は亜硝酸イオンを自動的に連
続して補給する操作説明図である。セル5はセル本体6
を含み、そのセル本体6は塩化ビニル、アクリル、フッ
素樹脂等の合成樹脂で作られ、その内部に亜硝酸イオン
の電位を選択測定するだめの亜硝酸イオン選択性電極1
及びそれに比較電位を与える比較電極7、更に温度補償
電極8が設置されている。
To explain how this nitrite ion selective electrode 1 is applied to a phosphate treatment solution, Fig. 2 shows a cell 5 for continuously measuring the nitrite ion concentration contained in a phosphate treatment solution. FIG. 3 is an explanatory diagram of an operation for automatically and continuously replenishing nitrite ions. Cell 5 is cell body 6
The cell body 6 is made of synthetic resin such as vinyl chloride, acrylic, fluororesin, etc., and therein is a nitrite ion selective electrode 1 for selectively measuring the potential of nitrite ions.
A comparison electrode 7 that provides a comparison potential thereto, and a temperature compensation electrode 8 are also installed.

亜硝酸イオン選択性電極1及び比較電極7はリード線9
,10によって電位差検出回路12に接続されるととも
に温度補償電極8はリード線11によって温度検出回路
13に接続されている。電位差検出回路12で検出され
た両電極1−7間の電位差信号と温度検出回路13から
の温度信号とは補正回路14に入力されてその電位差が
基準温度における電位差値に補正される。補正回路14
からの電位差値と設定器15による設定値とが比較器1
6において比較されてその差信号がポンプ駆動回路17
に入力され、それに応じて亜硝酸イオンをリン酸塩処理
槽18に補給するためのサーボポンプ19が駆動される
ようになっている。
Nitrite ion selective electrode 1 and comparison electrode 7 are connected to lead wire 9
, 10 to a potential difference detection circuit 12, and the temperature compensation electrode 8 is connected to a temperature detection circuit 13 by a lead wire 11. The potential difference signal between the electrodes 1-7 detected by the potential difference detection circuit 12 and the temperature signal from the temperature detection circuit 13 are input to the correction circuit 14, and the potential difference is corrected to the potential difference value at the reference temperature. Correction circuit 14
The potential difference value from the comparator 1 and the set value by the setting device 15 are
6 and the difference signal is sent to the pump drive circuit 17.
The servo pump 19 for replenishing the phosphate treatment tank 18 with nitrite ions is driven accordingly.

一方、亜硝酸イオン濃度を測定するための亜硝酸イオン
を含むリン酸塩処理液、即ち検液は循環ポンプ20によ
ってセル本体6の下部入口Aからその反対側のセル本体
上部出口Bに流れ、リン酸塩処理を行っている間は常に
この状態にある。セル本体上部出口Bから出たリン酸塩
処理液は再びリン酸塩処理槽18に戻シ、再びリン酸塩
処理のための処理液として用いられる。
On the other hand, a phosphate treatment solution containing nitrite ions for measuring nitrite ion concentration, that is, a test solution flows from the lower inlet A of the cell body 6 to the upper outlet B of the cell body on the opposite side by the circulation pump 20. This state is always present during phosphate treatment. The phosphate treatment solution discharged from the outlet B at the top of the cell body is returned to the phosphate treatment tank 18 and used again as a treatment solution for phosphate treatment.

リン酸塩処理液中の亜硝酸イオン濃度は前述のように亜
硝酸イオン選択性電極1と比較電極7の間の電位差によ
って検知され、予め定めた所望の範囲の適正設定値と比
較して亜硝酸イオン補給液21のサーボポンプ19を作
動させる。即ち、第4図に示すように、例えば前記の電
位差が222m?(亜硝酸イオン下限濃度0.115 
t/1 )になるとサーボポンプ19が作動して亜硝酸
イオン補給液21がリン酸塩処理槽18に補給され、2
28m?(亜硝酸イオン上限濃度0.136 f/1 
)になるとサーボポンプ19が停止して亜硝酸イオン補
給液21の補給が止まる。
As mentioned above, the nitrite ion concentration in the phosphate treatment solution is detected by the potential difference between the nitrite ion selective electrode 1 and the reference electrode 7, and compared with a predetermined appropriate setting value in a desired range. The servo pump 19 for the nitrate ion replenishment liquid 21 is operated. That is, as shown in FIG. 4, for example, if the potential difference is 222 m? (Nitrite ion lower limit concentration 0.115
t/1), the servo pump 19 operates and the nitrite ion replenishing solution 21 is replenished into the phosphate treatment tank 18.
28m? (Nitrite ion upper limit concentration 0.136 f/1
), the servo pump 19 stops and the supply of the nitrite ion replenishing liquid 21 stops.

以上の如く、本発明を実施することにより、リン酸塩処
理液中の亜硝酸イオン濃度を連続して自動的に測定し、
その測定値に基づいて自動的に亜硝酸イオンの補給を行
い、リン酸塩処理液中の亜硝酸イオン濃度を常に適切な
範囲に保つことが出来る。
As described above, by carrying out the present invention, the nitrite ion concentration in the phosphate treatment solution can be continuously and automatically measured,
Nitrite ions are automatically replenished based on the measured values, and the nitrite ion concentration in the phosphate treatment solution can always be maintained within an appropriate range.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は亜硝酸イオン選択性電極の説明図、第2図はセ
ルの説明図、第3図は亜硝酸イオンを自動的に連続して
補給する操作説明図、第4図は亜硝酸イオン選択性電極
で検知された電位差、即ち亜硝酸イオン濃度と時間の関
係グラフである。 1、・・亜硝酸イオン選択性電極、5・・・セル、7・
・・比較電極、8・・・温度補償電極、12・・・電位
差検出回路、13・・・温度検出回路、14・・・補正
回路、15・・・設定器、16・・・比較器、17・・
・ポンプ駆動回路、18・・・リン酸塩処理槽、19・
・・サーボポンプ、20・・・循環ポンプ、21・・・
亜硝酸イオン補給液。 代理人 岡 部 正 良 第1図 第2図 第3図 第4図 晴 間
Figure 1 is an explanatory diagram of the nitrite ion selective electrode, Figure 2 is an explanatory diagram of the cell, Figure 3 is an explanatory diagram of the operation for automatically and continuously replenishing nitrite ions, and Figure 4 is an explanatory diagram of the nitrite ion selective electrode. It is a graph showing the relationship between the potential difference detected by the selective electrode, that is, the nitrite ion concentration, and time. 1. Nitrite ion selective electrode, 5. Cell, 7.
... Comparison electrode, 8 ... Temperature compensation electrode, 12 ... Potential difference detection circuit, 13 ... Temperature detection circuit, 14 ... Correction circuit, 15 ... Setting device, 16 ... Comparator, 17...
・Pump drive circuit, 18... Phosphate treatment tank, 19・
...Servo pump, 20...Circulation pump, 21...
Nitrite ion replenishment solution. Agent Masayoshi Okabe Figure 1 Figure 2 Figure 3 Figure 4 Haruma

Claims (1)

【特許請求の範囲】[Claims] リン酸塩処理液中の亜硝酸イオン濃度を亜硝酸イオン選
択性電極を用いて連続的に測定し、前記亜硝酸イオン濃
度が予め定めた範囲の設定値になるように亜硝酸イオン
を前記リン酸塩処理液に自動的に供給させるようにした
ことを特徴とする亜硝酸イオン濃度の制御方法。
The nitrite ion concentration in the phosphate treatment solution is continuously measured using a nitrite ion selective electrode, and the nitrite ion is added to the phosphate treatment solution so that the nitrite ion concentration becomes a set value within a predetermined range. A method for controlling nitrite ion concentration, characterized in that the concentration of nitrite ions is automatically supplied to a salt treatment solution.
JP20374383A 1983-11-01 1983-11-01 Controlling method of nitrite ion concentration Granted JPS6096771A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20374383A JPS6096771A (en) 1983-11-01 1983-11-01 Controlling method of nitrite ion concentration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20374383A JPS6096771A (en) 1983-11-01 1983-11-01 Controlling method of nitrite ion concentration

Publications (2)

Publication Number Publication Date
JPS6096771A true JPS6096771A (en) 1985-05-30
JPS6213432B2 JPS6213432B2 (en) 1987-03-26

Family

ID=16479112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20374383A Granted JPS6096771A (en) 1983-11-01 1983-11-01 Controlling method of nitrite ion concentration

Country Status (1)

Country Link
JP (1) JPS6096771A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110205621A (en) * 2019-06-18 2019-09-06 武汉钢铁有限公司 Control the method, apparatus and storage medium of phosphating solution magnitude of recruitment in galvanizing phosphorization

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110205621A (en) * 2019-06-18 2019-09-06 武汉钢铁有限公司 Control the method, apparatus and storage medium of phosphating solution magnitude of recruitment in galvanizing phosphorization

Also Published As

Publication number Publication date
JPS6213432B2 (en) 1987-03-26

Similar Documents

Publication Publication Date Title
JP3177338B2 (en) Method and apparatus for holding an electroless plating solution
US3826741A (en) Method of treating waste solution containing chromate ion or cyanide ion
US2382734A (en) Electrical determination or control of chlorine in liquids
JP3325888B2 (en) Method and apparatus for controlling reactant concentration for precipitation reaction
JPS628040A (en) Washing apparatus
JPS6096771A (en) Controlling method of nitrite ion concentration
FI100365B (en) redox
GB2153854A (en) Automatically controlling the phosphate coating of metals
Trojanowicz Continuous potentiometric determination of sulphate in a differential flow system
US3214301A (en) Automatic ph control of chemical treating baths
JPS591679A (en) Controlling and administering method of etching solution
JP2002531700A (en) Apparatus and method for controlling the pickling process of steel
JPH0235809Y2 (en)
JPH0365489B2 (en)
JPH0427856A (en) Method and apparatus for measuring concentration of ion
JPH02118445A (en) Instrument for measuring concentration of phosphoric acid
IL22522A (en) Automatic determination and/or control of the hydroxide:nitrite ratio in nitrite solutions
JP2521215Y2 (en) COD automatic measuring device
Westbroek et al. Development of an amperometric sensor for the continuous and in-line measurement of hydrogen peroxide concentration in textile bleaching baths
JPS563677A (en) Method and apparatus for controlling chemical treating fluid
JPH04122090A (en) Etching liquid controlling apparatus
JPH06306634A (en) Controller for activity of zinc phosphate treating liquid
JPH03225262A (en) Method and instrument for measuring consumption of oxidizing agent
JPH06228776A (en) Method for controlling etching bath
JPH02254181A (en) Method for managing stabilizer of etching bath