JPS6213432B2 - - Google Patents

Info

Publication number
JPS6213432B2
JPS6213432B2 JP20374383A JP20374383A JPS6213432B2 JP S6213432 B2 JPS6213432 B2 JP S6213432B2 JP 20374383 A JP20374383 A JP 20374383A JP 20374383 A JP20374383 A JP 20374383A JP S6213432 B2 JPS6213432 B2 JP S6213432B2
Authority
JP
Japan
Prior art keywords
nitrite
nitrite ion
phosphate treatment
treatment solution
ion concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP20374383A
Other languages
Japanese (ja)
Other versions
JPS6096771A (en
Inventor
Yokichi Sato
Yoshio Morya
Takashi Kojima
Myuki Maeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Parkerizing Co Ltd
Original Assignee
Nihon Parkerizing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Parkerizing Co Ltd filed Critical Nihon Parkerizing Co Ltd
Priority to JP20374383A priority Critical patent/JPS6096771A/en
Publication of JPS6096771A publication Critical patent/JPS6096771A/en
Publication of JPS6213432B2 publication Critical patent/JPS6213432B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/73Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process
    • C23C22/77Controlling or regulating of the coating process

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Treatment Of Metals (AREA)

Description

【発明の詳細な説明】 本発明は、金属のリン酸塩処理工程で使用され
るリン酸塩処理液中の亜硝酸イオン濃度を測定し
制御する亜硝酸イオン濃度の制御方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for controlling nitrite ion concentration, which measures and controls the nitrite ion concentration in a phosphate treatment solution used in a metal phosphate treatment process.

従来、金属のリン酸塩処理工程は、脱脂→水洗
→リン酸塩処理→水洗→乾燥からなる工程で行わ
れ、そのリン酸塩処理液は処理液成分の消費に応
じて薬剤の補給を行い、処理液の濃度を常に一定
に保つように管理している。リン酸塩処理液の一
成分として亜硝酸イオンが促進剤として含有され
ているが、この亜硝酸イオンは亜硝酸ナトリウム
や亜硝酸カリウムの如き可溶性亜硝酸塩の形でリ
ン酸塩処理液に供給されている。金属の表面に最
良のリン酸塩皮膜を生成させるには、リン酸塩処
理液中の亜硝酸イオン濃度を常に最適濃度に維持
することが望ましい。従つてこの制御を行うに
は、リン酸塩処理液中の亜硝酸イオン濃度を絶え
まなく測定し、その測定値に基づいて亜硝酸塩を
補給し、その亜硝酸イオン濃度を望ましい範囲に
保つ必要がある。
Conventionally, the phosphate treatment process for metals is carried out in a process consisting of degreasing → water washing → phosphate treatment → water washing → drying, and the phosphate treatment solution is replenished with chemicals according to the consumption of the treatment solution components. The concentration of the processing liquid is always kept constant. As a component of the phosphating solution, nitrite ions are included as accelerators, and the nitrite ions are supplied to the phosphating solution in the form of soluble nitrites such as sodium nitrite and potassium nitrite. There is. In order to produce the best phosphate film on the metal surface, it is desirable to maintain the nitrite ion concentration in the phosphating solution at an optimum level at all times. Therefore, in order to perform this control, it is necessary to constantly measure the nitrite ion concentration in the phosphate treatment solution, replenish nitrite based on the measured value, and maintain the nitrite ion concentration within the desired range. There is.

リン酸塩処理液中の亜硝酸イオン濃度を測定す
る方法には、例えば容量分析法として酸化還元法
及びサツカロメーターを用いたガス容量法、蒸留
法としてキルダール法、比色法としてn―ナフチ
ルエチレンジアミン法及びイオンクロマトグラフ
イーによる分析法等がある。しかしこれらの測定
方法は、亜硝酸イオン濃度を測定する迄に試薬類
の添加、液の調整及び複雑な分析操作が必要であ
り、ある程度の時間と面倒な操作を要する。現在
リン酸塩処理を連続して行つている工業的なリン
酸塩処理液中の亜硝酸イオン測定法には、サツカ
ロメーター内に化成処理液を入れ、スルフアミン
酸を過剰添加して発生したガス量からリン酸塩処
理液中の亜硝酸イオン濃度を知るガス容量法及び
酸化還元電極を用いて硫酸セリウムによる容量分
析法(反応式NO2 -+2Ce4++H2O→NO3 -+2Ce3+
+2H+)が一般的である。
Methods for measuring the nitrite ion concentration in the phosphate treatment solution include, for example, the oxidation-reduction method and the gas volumetric method using a satsucalometer as a volumetric analysis method, the Kirdahl method as a distillation method, and the n-naphthyl method as a colorimetric method. Analysis methods include the ethylenediamine method and ion chromatography. However, these measurement methods require the addition of reagents, liquid preparation, and complicated analysis operations before measuring the nitrite ion concentration, and require a certain amount of time and troublesome operations. Currently, the industrial method for measuring nitrite ions in phosphate treatment solutions that continuously performs phosphate treatment involves placing the chemical conversion treatment solution in a satsucalometer and adding excess sulfamic acid. Gas volumetric method to determine the nitrite ion concentration in the phosphate treatment solution from the gas volume, and volumetric analysis using cerium sulfate using a redox electrode (reaction formula NO 2 - +2Ce 4+ +H 2 O→NO 3 - +2Ce 3 +
+2H + ) is common.

連続的に一定して均一なリン酸塩皮膜を得るに
は測定頻度を高める必要があり、通常10分に1回
程度の測定が必要である。しかしガス容量法は間
欠的な測定法であり、リン酸塩処理液中の亜硝酸
イオン濃度の変化を連続して測定し、亜硝酸イオ
ンを常に一定にリン酸塩処理液中に存在させるこ
とが困難である。酸化還元電極を用いた硫酸セリ
ウム等の酸化剤による滴定法では、連続して化成
処理液中の亜硝酸イオン濃度を測定出来、定常に
濃度を制御することが出来るが、それには濃度を
正しく調整した滴定液を必要とし、又自動的に滴
定を行う場合には高精度の定量吐出機構をもつ滴
定装置が必要であり工業的に適さない。
In order to obtain a continuous and uniform phosphate film, it is necessary to increase the frequency of measurement, which is usually about once every 10 minutes. However, the gas capacitance method is an intermittent measurement method that continuously measures changes in the nitrite ion concentration in the phosphate treatment solution, ensuring that nitrite ions are always present in the phosphate treatment solution at a constant level. is difficult. In the titration method using an oxidizing agent such as cerium sulfate using a redox electrode, the nitrite ion concentration in the chemical conversion treatment solution can be continuously measured and the concentration can be constantly controlled, but it is necessary to adjust the concentration correctly. In addition, in the case of automatic titration, a titration device with a highly accurate fixed-quantity dispensing mechanism is required, which is not suitable for industrial use.

本発明の目的は、これらの欠陥を補いリン酸塩
処理液中の亜硝酸イオン濃度を連続して自動的に
測定し、その測定値に基づいて自動的に亜硝酸イ
オンの補給を行い、リン酸塩処理液中の亜硝酸イ
オン濃度を常に適切な範囲に保つことが可能な方
法を提供することにある。
The purpose of the present invention is to correct these deficiencies by continuously and automatically measuring the nitrite ion concentration in the phosphate treatment solution, and automatically replenishing nitrite ions based on the measured values. The object of the present invention is to provide a method that can always maintain the nitrite ion concentration in an acid salt treatment solution within an appropriate range.

本発明による亜硝酸イオン濃度の制御方法は、
先端部に疎水性気体透過膜が設けられた容器に内
部液が入れられリン酸塩処理液中の亜硝酸イオン
が水素イオンと反応して変化するN2O3が前記疎
水性気体透過膜を透過し前記内部液中の水と反応
して生ずる水素イオンの電位から前記リン酸塩処
理液中の亜硝酸イオンの電位を選択的に検出可能
とする亜硝酸イオン選択性電極を用いてリン酸塩
処理液中の亜硝酸イオン濃度を連続的に測定し、
前記亜硝酸イオン濃度が予め定めた範囲の設定値
になるように亜硝酸イオンを前記リン酸塩処理液
に自動的に供給させるようにしたことを特徴とす
るものである。
The method for controlling nitrite ion concentration according to the present invention is as follows:
The internal solution is put into a container equipped with a hydrophobic gas permeable membrane at the tip, and the nitrite ions in the phosphate treatment liquid react with hydrogen ions and change into N2O3 , which passes through the hydrophobic gas permeable membrane. A nitrite ion selective electrode is used to selectively detect the potential of nitrite ions in the phosphate treatment solution from the potential of hydrogen ions generated by permeation and reaction with water in the internal solution. Continuously measures the nitrite ion concentration in the salt treatment solution,
The present invention is characterized in that nitrite ions are automatically supplied to the phosphate treatment solution so that the nitrite ion concentration becomes a set value within a predetermined range.

本発明に用いる亜硝酸イオン選択性電極を第1
図にて説明すると、1が亜硝酸イオン選択性電
極、2がPHガラス電極、3が内部液、4が疎水性
気体透過膜である。
The nitrite ion selective electrode used in the present invention is
To explain with the drawing, 1 is a nitrite ion selective electrode, 2 is a PH glass electrode, 3 is an internal liquid, and 4 is a hydrophobic gas permeable membrane.

亜硝酸イオンは、リン酸塩処理液中で以下に示
すような経路で水素イオンと反応しN2O3に変化
する。
Nitrite ions react with hydrogen ions in the phosphate treatment solution through the following route and change to N 2 O 3 .

H++O2 -HONO H++HONOH2ONOH2O+NO+ NO+NO2 -N2O3 亜硝酸イオン選択性電極1をリン酸塩処理液に
浸漬すると、このN2O3は亜硝酸イオン選択性電
極1の先端部に設けられた疎水性気体透過膜4を
透過して内部液3中の水と可逆反応を起こす。
H + +O 2 - HONO H + +HONOH 2 ONOH 2 O+NO + NO + NO 2 - N 2 O 3 When the nitrite ion selective electrode 1 is immersed in the phosphating solution, this N 2 O 3 is selective for nitrite ions. The gas permeates through the hydrophobic gas permeable membrane 4 provided at the tip of the sexual electrode 1 and causes a reversible reaction with water in the internal liquid 3.

1/2N2O3+H2OH++NO2 - 疎水性気体透過膜4を透過し拡散したN2O3
ス量は、N2O3の分圧に依存し化成処理液中の
N2O3濃度に比例する。内部液3の水素イオン濃
度はリン酸塩処理液中の亜硝酸イオン濃度に比例
するので、これから電極電位を検出してリン酸塩
処理液中の亜硝酸イオン濃度を測定する。
1/2N 2 O 3 +H 2 OH + +NO 2 -The amount of N 2 O 3 gas that permeates and diffuses through the hydrophobic gas permeable membrane 4 depends on the partial pressure of N 2 O 3 in the chemical conversion treatment liquid.
Proportional to N2O3 concentration. Since the hydrogen ion concentration of the internal solution 3 is proportional to the nitrite ion concentration in the phosphate treatment solution, the electrode potential is detected from this to measure the nitrite ion concentration in the phosphate treatment solution.

この亜硝酸イオン選択性電極1をリン酸塩処理
液に適用する方法について説明すると、第2図は
リン酸塩処理液中に含まれる亜硝酸イオン濃度を
連続して測定するためのセル5であつて、第3図
は亜硝酸イオンを自動的に連続して補給する操作
説明図である。セル5はセル本体6を含み、その
セル本体6は塩化ビニル、アクリル、フツ素樹脂
等の合成樹脂で作られ、その内部に亜硝酸イオン
の電位を選択測定するための亜硝酸イオン選択性
電極1及びそれに比較電位を与える比較電極7、
更に温度補償電極8が設置されている。
To explain how this nitrite ion selective electrode 1 is applied to a phosphate treatment solution, Fig. 2 shows a cell 5 for continuously measuring the nitrite ion concentration contained in a phosphate treatment solution. FIG. 3 is an explanatory diagram of an operation for automatically and continuously replenishing nitrite ions. The cell 5 includes a cell body 6, which is made of synthetic resin such as vinyl chloride, acrylic, or fluororesin, and has a nitrite ion selective electrode therein for selectively measuring the potential of nitrite ions. 1 and a comparison electrode 7 that provides a comparison potential thereto,
Furthermore, a temperature compensation electrode 8 is installed.

亜硝酸イオン選択性電極1及び比較電極7はリ
ード線9,10によつて電位差検出回路12に接
続されるとともに温度補償電極8はリード線11
によつて温度検出回路13に接続されている。電
位差検出回路12で検出された両電極1―7間の
電位差信号と温度検出回路13からの温度信号と
は補正回路14に入力されてその電位差が基準温
度における電位差値に補正される。補正回路14
からの電位差値と設定器15による設定値とが比
較器16において比較されてその差信号がポンプ
駆動回路17に入力され、それに応じて亜硝酸イ
オンをリン酸塩処理槽18に補給するためのサー
ボポンプ19が駆動されるようになつている。
The nitrite ion selective electrode 1 and the comparison electrode 7 are connected to a potential difference detection circuit 12 by lead wires 9 and 10, and the temperature compensation electrode 8 is connected to a lead wire 11.
It is connected to the temperature detection circuit 13 by. The potential difference signal between the electrodes 1-7 detected by the potential difference detection circuit 12 and the temperature signal from the temperature detection circuit 13 are input to a correction circuit 14, where the potential difference is corrected to a potential difference value at a reference temperature. Correction circuit 14
The potential difference value from and the set value by the setting device 15 are compared in the comparator 16, and the difference signal is inputted to the pump drive circuit 17, which is used to supply nitrite ions to the phosphate treatment tank 18 accordingly. A servo pump 19 is driven.

一方、亜硝酸イオン濃度を測定するための亜硝
酸イオンを含むリン酸塩処理液、即ち検液は循環
ポンプ20によつてセル本体6の下部入口Aから
その反対側のセル本体上部出口Bに流れ、リン酸
塩処理を行つている間は常にこの状態にある。セ
ル本体上部出口Bから出たリン酸塩処理液は再び
リン酸塩処理槽18に戻り、再びリン酸塩処理の
ための処理液として用いられる。
On the other hand, the phosphate treatment solution containing nitrite ions for measuring the nitrite ion concentration, that is, the test solution, is passed from the lower inlet A of the cell body 6 to the upper outlet B of the cell body on the opposite side by the circulation pump 20. It remains in this state all the time during flow and phosphate treatment. The phosphate treatment solution discharged from the outlet B at the top of the cell body returns to the phosphate treatment tank 18 again and is used again as a treatment solution for phosphate treatment.

リン酸塩処理液中の亜硝酸イオン濃度は前述の
ように亜硝酸イオン選択性電極1と比較電極7の
間の電位差によつて検知され、予め定めた所望の
範囲の適正設定値と比較して亜硝酸イオン補給液
21のサーボポンプ19を作動させる。即ち、第
4図に示すように、例えば前記の電位差が222mv
(亜硝酸イオン下限濃度0.115g/)になるとサ
ーボポンプ19が作動して亜硝酸イオン補給液2
1がリン酸塩処理槽18に補給され、228mv(亜
硝酸イオン上限濃度0.136g/)になるとサー
ボポンプ19が停止して亜硝酸イオン補給液21
の補給が止まる。
As described above, the nitrite ion concentration in the phosphate treatment solution is detected by the potential difference between the nitrite ion selective electrode 1 and the reference electrode 7, and is compared with an appropriate setting value in a predetermined desired range. The servo pump 19 for the nitrite ion replenishment liquid 21 is operated. That is, as shown in FIG. 4, for example, if the potential difference is 222mv
(When the nitrite ion lower limit concentration reaches 0.115 g/), the servo pump 19 is activated and the nitrite ion replenishment liquid 2 is activated.
1 is replenished into the phosphate treatment tank 18, and when it reaches 228mv (nitrite ion upper limit concentration 0.136g/), the servo pump 19 stops and the nitrite ion replenishment liquid 21
supply will stop.

以上の如く、本発明を実施することにより、リ
ン酸塩処理液中の亜硝酸イオン濃度を連続して自
動的に測定し、その測定値に基づいて自動的に亜
硝酸イオンの補給を行い、リン酸塩処理液中の亜
硝酸イオン濃度を常に適切な範囲に保つことが出
来る。
As described above, by carrying out the present invention, the nitrite ion concentration in the phosphate treatment solution is continuously and automatically measured, and nitrite ions are automatically replenished based on the measured value. The nitrite ion concentration in the phosphate treatment solution can always be kept within an appropriate range.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は亜硝酸イオン選択性電極の説明図、第
2図はセルの説明図、第3図は亜硝酸イオンを自
動的に連続して補給する操作説明図、第4図は亜
硝酸イオン選択性電極で検知された電位差、即ち
亜硝酸イオン濃度と時間の関係グラフである。 1…亜硝酸イオン選択性電極、5…セル、7…
比較電極、8…温度補償電極、12…電位差検出
回路、13…温度検出回路、14…補正回路、1
5…設定器、16…比較器、17…ポンプ駆動回
路、18…リン酸塩処理槽、19…サーボポン
プ、20…循環ポンプ、21…亜硝酸イオン補給
液。
Figure 1 is an explanatory diagram of the nitrite ion selective electrode, Figure 2 is an explanatory diagram of the cell, Figure 3 is an explanatory diagram of the operation for automatically and continuously replenishing nitrite ions, and Figure 4 is an explanatory diagram of the nitrite ion selective electrode. It is a graph showing the relationship between the potential difference detected by the selective electrode, that is, the nitrite ion concentration, and time. 1... Nitrite ion selective electrode, 5... Cell, 7...
Comparison electrode, 8... Temperature compensation electrode, 12... Potential difference detection circuit, 13... Temperature detection circuit, 14... Correction circuit, 1
5... Setting device, 16... Comparator, 17... Pump drive circuit, 18... Phosphate treatment tank, 19... Servo pump, 20... Circulation pump, 21... Nitrite ion replenishment liquid.

Claims (1)

【特許請求の範囲】[Claims] 1 先端部に疎水性気体透過膜が設けられた容器
に内部液が入れられリン酸塩処理液中の亜硝酸イ
オンが水素イオンと反応して変化するN2O3が前
記疎水性気体透過膜を透過し前記内部液中の水と
反応して生ずる水素イオンの電位から前記リン酸
塩処理液中の亜硝酸イオンの電位を選択的に検出
可能とする亜硝酸イオン選択性電極を用いてリン
酸塩処理液中の亜硝酸イオン濃度を連続的に測定
し、前記亜硝酸イオン濃度が予め定めた範囲の設
定値になるように亜硝酸イオンを前記リン酸塩処
理液に自動的に供給させるようにしたことを特徴
とする亜硝酸イオン濃度の制御方法。
1. The internal liquid is put into a container with a hydrophobic gas permeable membrane at the tip, and the nitrite ions in the phosphate treatment liquid react with hydrogen ions and change N 2 O 3 through the hydrophobic gas permeable membrane. A nitrite ion-selective electrode is used to selectively detect the potential of nitrite ions in the phosphate treatment solution from the potential of hydrogen ions generated by passing through the water and reacting with water in the internal solution. Continuously measuring the nitrite ion concentration in the salt treatment solution, and automatically supplying nitrite ions to the phosphate treatment solution so that the nitrite ion concentration becomes a set value within a predetermined range. A method for controlling nitrite ion concentration, characterized in that:
JP20374383A 1983-11-01 1983-11-01 Controlling method of nitrite ion concentration Granted JPS6096771A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20374383A JPS6096771A (en) 1983-11-01 1983-11-01 Controlling method of nitrite ion concentration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20374383A JPS6096771A (en) 1983-11-01 1983-11-01 Controlling method of nitrite ion concentration

Publications (2)

Publication Number Publication Date
JPS6096771A JPS6096771A (en) 1985-05-30
JPS6213432B2 true JPS6213432B2 (en) 1987-03-26

Family

ID=16479112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20374383A Granted JPS6096771A (en) 1983-11-01 1983-11-01 Controlling method of nitrite ion concentration

Country Status (1)

Country Link
JP (1) JPS6096771A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110205621B (en) * 2019-06-18 2021-03-30 武汉钢铁有限公司 Method, device and storage medium for controlling phosphating solution replenishment amount in zinc plating phosphating

Also Published As

Publication number Publication date
JPS6096771A (en) 1985-05-30

Similar Documents

Publication Publication Date Title
JP3177338B2 (en) Method and apparatus for holding an electroless plating solution
JP2680075B2 (en) Method and device for selectively measuring content of substances dissolved in solution
US4379848A (en) Method of analyzing an aqueous liquid for hexacyanoferrates
US5061631A (en) Method, apparatus and solution for calibration of partial pressure value
JPH0528490B2 (en)
JPS628040A (en) Washing apparatus
JPS6213432B2 (en)
CN112881587B (en) Combined determination method and device for concentration of free acid and stannous in electrotinning solution
FI100365B (en) redox
GB2153854A (en) Automatically controlling the phosphate coating of metals
CN207248817U (en) For measuring the automatic Titration potentiometer of chemical plating fluid stability
US3214301A (en) Automatic ph control of chemical treating baths
JPS591679A (en) Controlling and administering method of etching solution
US4897128A (en) Process of determining the zinc content of phosphating baths
JP2002531700A (en) Apparatus and method for controlling the pickling process of steel
JP2521215Y2 (en) COD automatic measuring device
JPH0365489B2 (en)
JPH0235809Y2 (en)
JPS563677A (en) Method and apparatus for controlling chemical treating fluid
JP3333237B2 (en) Galvanic cell type oxygen analyzer and method of controlling this analyzer
JP3388325B2 (en) Automatic titration analyzer
Westbroek et al. Development of an amperometric sensor for the continuous and in-line measurement of hydrogen peroxide concentration in textile bleaching baths
JP2000054167A (en) Method for controlling ferric chloride etching solution and apparatus therefor
US3494838A (en) Method for the instantaneous quantitative analysis of ozone
JPS6329218B2 (en)