JP2002506323A - 光ファイバでのデジタル・データのスペクトル的に効率的な伝送のためのシステムおよび方法 - Google Patents

光ファイバでのデジタル・データのスペクトル的に効率的な伝送のためのシステムおよび方法

Info

Publication number
JP2002506323A
JP2002506323A JP2000535125A JP2000535125A JP2002506323A JP 2002506323 A JP2002506323 A JP 2002506323A JP 2000535125 A JP2000535125 A JP 2000535125A JP 2000535125 A JP2000535125 A JP 2000535125A JP 2002506323 A JP2002506323 A JP 2002506323A
Authority
JP
Japan
Prior art keywords
digital data
signal
frequency
qam
qam modulated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000535125A
Other languages
English (en)
Other versions
JP4070406B2 (ja
JP2002506323A5 (ja
Inventor
ローワン,マイケル・ダブリュー
チャン,ピーター
カワード,ジェームズ・エフ
トーァ,ロジャー・アール
ウィルソン,スチュアート
イー,ティン・ケイ
Original Assignee
ケストレル・ソルーションズ・インコーポレーテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ケストレル・ソルーションズ・インコーポレーテッド filed Critical ケストレル・ソルーションズ・インコーポレーテッド
Publication of JP2002506323A publication Critical patent/JP2002506323A/ja
Publication of JP2002506323A5 publication Critical patent/JP2002506323A5/ja
Application granted granted Critical
Publication of JP4070406B2 publication Critical patent/JP4070406B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0298Wavelength-division multiplex systems with sub-carrier multiplexing [SCM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0057Block codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0059Convolutional codes
    • H04L1/006Trellis-coded modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0071Use of interleaving
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/36Modulator circuits; Transmitter circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/38Demodulator circuits; Receiver circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/02Channels characterised by the type of signal
    • H04L5/06Channels characterised by the type of signal the signals being represented by different frequencies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0064Concatenated codes
    • H04L1/0065Serial concatenated codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L2001/0092Error control systems characterised by the topology of the transmission link
    • H04L2001/0096Channel splitting in point-to-point links

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Optical Communication System (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Time-Division Multiplex Systems (AREA)

Abstract

(57)【要約】 システムは、光ファイバでデジタル・データを高い総合データ・レートでかつ高い帯域幅効率で伝送する。本システムは、変調ステージと、周波数分割マルチプレクサと、光変調器とを備える。変調ステージは、複数の入来したデジタル・データ・チャンネルをQAM変調する。周波数分割マルチプレクサは、このQAM変調した信号を、これらを周波数分割多重化することによって組み合わせてRF信号にする。光変調器は、このRF信号を使用して、光ファイバで伝送のため光キャリアを変調する。

Description

【発明の詳細な説明】
【0001】 発明の背景 1.発明の分野 本発明は、一般的には、光ファイバでのデジタル・データの伝送に関し、詳細
には、直交振幅変調(QAM:quadrature amplitude modulation)および周波 数分割多重化に基づく伝送に関するものである。 2.関連技術の説明 技術、特にインターネット、電気通信を含むネットワーキング領域、並びにネ
ットワーキングまたは電気通信に依存するアプリケーション領域における技術の
継続的な進歩の結果として、デジタル・データの伝送のための容量に対する要求
が増加しつつある。例えば、(電話会社のまたはインターネットのトランク・ラ
インのような)ネットワークのトランク・ラインでのデジタル・データの伝送、
インターネットでのイメージまたはビデオの伝送、ソフトウェアの配信、トラン
ザクション処理において必要となるような大量のデータの転送、あるいは公衆電
話回線を介して実施するビデオ会議は、通常、大量のデジタル・データの高速伝
送を必要としている。このような伝送をサポートするのに向けた代表的なプロト
コルには、OC,STMおよびSTSプロトコルが含まれている。上記したもの
のようなアプリケーションがより普及するにつれ、これらのプロトコル並びにこ
れらと同様なプロトコルの使用、並びに伝送容量に対するそれに対応する要求の
みが増すことになる。
【0002】 光ファイバは、デジタル・データの高速伝送に対しうまく適した伝送媒体であ
る。光ファイバは、ある固有の帯域幅を有していて、これは、撚り線対あるいは
同軸ケーブルのような金属ベースの導体よりもはるかに大きく、そしてOCプロ
トコルのようなプロトコルが光ファイバでのデジタル・データの伝送のために開
発されている。しかし、光ファイバのデータ・スループットの増大を、単に、そ
れらプロトコルのクロック速度を、例えば155ミリオン・ビット/秒(Mbp
s)OC−3から625Mbps OC−12のように増大させることによって 行うことは、確実なことではない。
【0003】 例えば、既存の光ファイバ通信システムは、代表的には、単純な変調技法を使
用しており、これは、およそ1ビット/秒/Hz(bps/Hz)の低い帯域幅
効率という結果となる。1例として、OCプロトコルは、オン−オフ・キーイン
グ(OOK)に基づき、これは、帯域幅非効率の変調技法であり、そして光ファ
イバを通してのOC信号の伝送は、およそ1bps/Hzの帯域幅効率の結果と
なる。現在の光ファイバの使用可能な帯域幅は、部分的には分散と、そして帯域
幅と伴に増大する非線形性とにより制限されている。この低い帯域幅効率の意味
するところは、ある所与のデジタル・データ・レートに対し、伝送する信号がよ
り大きな帯域幅を占有するということである。この結果として、分散と非線形効
果とがより大きくなり、これが、システムの有益な伝送レンジを制限することに
なる。
【0004】 加えて、光ファイバがより高いデータ・レートをサポートしている場合でも、
その対応する電子回路部分および電子−光回路部分は、おそらくその能力を備え
ていない。例えば、OC3からOC12に移行することは、そのビット・レート
を4倍にするだけでなく、関連する電子回路がおよそ4倍高速で動作することも
要求する。これら速度での電子回路は、単に、おそらく利用可能でなく、また利
用可能としても、電力消費が大きかったり、扱いにくいサイズになるとか、コス
トが高くなるとか、もしくは受け入れられない程壊れやすい、というような他の
大きな欠点をおそらく有することになる。
【0005】 理論的には、この帯域幅効率問題は、部分的には、直交振幅変調(QAM)の
ような、より帯域幅効率の良い変調技法を使用することにより対処することがで
きる。これら変調技法は、以前、無線システムおよび同軸システムにおいて使用
されてきたものである。しかし、光ファイバ・システムは、これとは全く異なっ
た技術ベースに基づくものであり、より発展した変調技法を無線システムおよび
同軸システムにおいて実施するために開発された技法、技術、設計のトレードオ
フの多くは、光ファイバ・システムにはほんのわずかしか応用されていない。加
えて、光ファイバ・システムは、望ましくない干渉を生じるファイバの分散およ
び非線形性のようなそれ自体の困難さを呈するものである。帯域幅効率の良い変
調技法が容易に光ファイバ・システムに適用できたとしても、その使用は、上記
の高速電子回路問題に十分に対処することにならない。例えば、OCデータ・ス
トリームがOOK変調ではなくQAM変調されたものであったとしても、依然と
して、OC−3からOC−12への移行は、対応する電子回路部の速度の4倍の
上昇を必要とすることになる。
【0006】 結果として、洗練された変調技法を光ファイバ・システムに応用することは、
制限されてきた。例えば、QAMは、最近、ケーブルTV産業に対して圧縮ビデ
オの伝送のため光ファイバ・システムに応用されてきている。しかし、これら通
信システムは、1ビリオン・ビット/秒(Gbps)未満の総合データ・レート
の低い速度でランするものである。このため、高速の光ファイバ・ネットワーク
動作には適していない。
【0007】 波長分割多重化(WDM)は、光ファイバ・システムのデータ・スループット
を増大させる代替のアプローチである。しかし、このアプローチは、利用する帯
域幅全体を単に増加させることにより、総合ビット・レートを大きくするもので
ある。これは、依然として、帯域幅非効率に悩まされている。例えば、WDMの
代表的な実施は、4つのOC−3データ・ストリーム(各々異なった波長)光学
的に結合することにより、単一のOC−12データ・ストリームと同じ容量を有
する光信号を形成することである。これの受信器は、これに対して、その4つの
OC−3データ・ストリームを、それらの波長に基づいて光学的に分離すること
になる。しかし、このアプローチにおいては、各OC−3は、依然として、およ
そ1bps/Hzの帯域幅効率を有し、このため、波長分割多重化した信号もま
た、1bps/Hzを超える帯域幅効率を有しないことになる。
【0008】 したがって、光ファイバで、高い総合データ・レートで、かつ高い帯域幅効率
でデジタル・データを伝送でき、しかも、対応する電子回路部に対する速度要求
を不必要な程増大させないようなシステムおよび方法に対するニーズがある。
【0009】 発明の摘要 本発明に従い、光ファイバでデジタル・データを送信するシステムは、変調ス
テージと、周波数分割マルチプレクサと、光変調器とを備える。前記変調ステー
ジは、複数のデジタル・データ・チャンネルを受け、そしてQAM変調を適用し
て複数のQAM変調信号を発生する。前記周波数分割マルチプレクサは、これら
QAM変調した信号を、これらを周波数分割多重化することによって組み合わせ
てRF信号にする。このRF信号は光変調器に入力し、そして光変調器は、光フ
ァイバでの伝送のため、このRF信号により変調した光信号を生成する。
【0010】 好ましい実施形態においては、前記変調ステージは、個々に、64の入来する
OC−3デジタル・データ・チャンネルの各々を、スクランブルし、フォワード
・エラー・エンコードし、次に64QAM変調を使用してQAM変調して、64
QAM変調信号を発生する。前記周波数分割マルチプレクサは、この64のその
結果生じたQAM変調信号を2つのステップで組み合わせる、すなわちQAM変
調信号を8個の信号を一時に周波数分割多重化して全部で8個の信号を中間周波
数で発生し、次にこれら8個の中間信号を周波数分割多重化して前記RF信号を
発生する。前記光変調器は、光ソースと外部変調器とを備える。前記RF信号は
、前記外部変調器に印加することにより、前記光ソースが発生した光キャリアを
変調する。この結果生じた光信号は、光ファイバでの伝送に適したものとなる。
【0011】 本発明の別の形態によれば、光ファイバでデジタル・データを受信するシステ
ムは、検出器と、周波数分割デマルチプレクサと、復調ステージとを備える。前
記検出器は、上記の前記送信器システムが発生した前記光信号を検出して、RF
信号を発生する。前記周波数分割デマルチプレクサは、周波数分割多重化解除に
より、前記RF信号を分離して、それを構成したQAM変調信号にする。前記復
調ステージは、前記QAM変調信号をその元のデジタル・データ・チャンネルに
変換する。
【0012】 本発明は、QAM変調と周波数分割多重化の組み合わせが、低い速度の電子回
路部を使用しながら、光ファイバでのデジタル・データの高い総合データ・レー
トでかつ高い帯域幅効率で可能にするため、特に有利である。例えば、上記の好
ましい実施形態は、ほぼ10Gbpsの総合データ・レートと、ほぼ4bps/
Hzの帯域幅効率を有するが、これに関連の電子回路部は、10Gbpsの総合
レートではなく155MbpsのOC−3データ・レートをサポートするだけで
よい。
【0013】 本発明は、他の利点および特徴を有し、これらについては、本発明の以下の詳
細な説明および添付の特許請求の範囲の記載から、添付の図面と伴に読めば、容
易に明かとなる。
【0014】 好ましい実施形態の詳細な説明 図1は、本発明によるシステム100の図である。システム100は、送信器
102と、光ファイバ104と、受信器106とを備えている。送信器102は
、受信器106に対し光ファイバ104で結合している。
【0015】 システム100は、以下の通り動作する。すなわち、送信器102は、N個の
デジタル・データ・チャンネル110A−N(集合的にデジタル・データ・チャ
ンネル110)を受け、そしてファイバ104での伝送のため、これらを組み合
わせて単一の光信号にする。送信器102は、これを、直交振幅変調(QAM)
と周波数分割多重化(FDM)との組み合わせを使って行う。送信器102が作
成したこの光信号は、ファイバ104で受信器106に伝送する。受信器106
は、次に、送信器102の機能を逆転させ、この光信号をN個のデジタル・デー
タ・チャンネル120A−Nに変換する。
【0016】 “N=64”または“K=64”の実施形態と呼ぶ好ましい実施形態において
は、デジタル・データ・チャンネル110は、64のSTS3チャンネルを含み
、その各々が、およそ10ビリオン・ビット/秒(Gbps)の総合レートに対
し、各々が155ミリオン・ビット/秒(Mbps)のレートでデジタル・デー
タを提供する。加えて、QAM変調の使用は、通常、2−5bps/Hzのレン
ジの帯域幅効率をもたらし、これは、在来の光ファイバ・システムに対する代表
的な1bps/Hzに対しかなりの増大であるが、FDMの使用は、対応する電
子回路部が155Mbps速度で動作できるようにし、これは、10Gbpsの
総合データ・レートよりもかなり低い。代替の実施形態においては、デジタル・
データ・チャンネル110は、高速のチャンネルとすることができ、これは、1
00ミリオン・ビット/秒(Mbps)よりも高い所定の固定のレートでデジタ
ル・データを提供する。例えば、デジタル・データ・チャンネル110は、OC
3または STM1のチャンネルとすることができる。他のプロトコルもまた、
サポートすることができ、それには、例えば、OC12,OC48等のより高い
データ・レート・チャンネルが含まれる。デジタル・データ・チャンネル110
の数Nもまた、変化させることができる。例えば、N=64の実施形態の変更例
では、およそ20Gbpsの総合ビット・レートに対しN=128のデジタル・
データ・チャンネル110がある。OC3のような光形態にあるデジタル・デー
タ・チャンネル110は、変調ステージ200に結合したO/Eコンバータ・ス
テージにより、電気形態に変換することができる。
【0017】 図2は、図1の送信器102の1実施形態のブロック図である。送信器102
は、変調ステージ200、周波数分割マルチプレクサ202,そして光変調器2
04を備えている。これらコンポーネントは、デジタル・データ・チャンネル1
10から光ファイバ104までのデータ・パイプラインを形成する。詳細には、
変調ステージ200は、デジタル・データ・チャンネル110を受ける。変調ス
テージ200は、周波数分割マルチプレクサ202に結合し、そしてこれは、光
変調器204に結合している。光変調器204は、光信号を光ファイバ104に
送信する。
【0018】 送信器102は、以下の通り動作する。変調ステージ200は、N個のデジタ
ル・データ・チャンネル110を受け、そしてこれらをK個のQAM変調した信
号210A−Kに変換する。周波数分割マルチプレクサ202は、このQAM変
調信号210を受け、そしてこれら信号を周波数分割多重化して1つのRF信号
212にし、そしてこれは、次に光変調器204に送る。光変調器204は、こ
のRF信号により変調した光信号を発生し、そしてこの結果生じた光信号を光フ
ァイバ104に送信する。
【0019】 送信器102の特定の実施形態の設計においては、特定のアプリケーションに
おける使用のため、種々の設計トレードオフが本来ある。例えば、QAMにおい
ては、信号格子は、複素信号空間において等しく離間させるが、QAM符号点配
置(QAM constellation)における状態の総数は、変更することできる設計パラ メータである。QAM変調信号210に対するキャリア周波数もまた、変更する
ことができる設計パラメータである。状態数、キャリア周波数および変調ステー
ジ200のその他の設計パラメータの最適な選択は、その特定のアプリケーショ
ンに依存することになる。変調ステージ200のいくつかの例については、以下
にさらに詳細に説明する。また、周波数分割マルチプレクサ202も、中間周波
数の選択、コンポーネントをデジタル・ドメインあるいはアナログ・ドメインで
実現するかどうか、また多重化を行うため多数のステージを使用するかどうか、
のような多くの設計トレードオフが関係する。別の例として、より良好な線形性
をもつ光変調器206は、望ましくない高調波および干渉を低減させ、これによ
り送信器102の伝送レンジを増大させる。しかし、より良好な線形性をもつ光
変調器はまた、設計並びに生産が困難である。このため、最適な線形性は、特定
のアプリケーションに依存することになる。システム・レベルのトレードオフの
1つの例は、種々のコンポーネント間の信号電力およびゲインの割り当てである
。したがって、本発明の多くの面について、先に述べたN=64実施形態のコン
テキストで説明することにする。しかし、理解されるべきであるが、本発明は、
この特定の実施形態に限定されるものではない。
【0020】 図3は、図2の変調ステージ200の好ましい実施形態のブロック図である。
変調ステージ200は、K個の変調サブステージ300A−Kを備えている。各
変調サブステージ300は、デジタル・データ・チャンネル110の内のM個を
受け(ここで、M=N/K)、そしてこれらを単一のQAM変調信号210に変
換する。この実施形態においては、各変調サブステージ300は、同一のもので
ある。簡単のため、図3は、1つの変調サブステージ300Aの詳細を示してい
る。
【0021】 変調サブステージ300Aは、M個のエンコーダ302A−Mと、1つの結合
器303と、そして1つの変調器304とを備えている。エンコーダ302の各
々は、デジタル・データ・チャンネル110の内の1つを受けるように結合して
いる。QAM変調器304は、エンコーダ302の出力に対し結合器303を介
して結合している。
【0022】 変調サブステージ300Aは、以下の通り動作する。エンコーダ302の各々
は、デジタル・データ・チャンネル110の内の1つを受け、そしてこのデジタ
ル・データをエンコードする。エンコーダ302からのこのエンコードしたデジ
タル・データ・チャンネルは、結合器303が受け、そしてこれは、M個のデー
タ・ストリームを、QAM変調器304に対する単一の入力に組み合わせる。Q
AM変調器304は、この受けたデータ・ストリームをQAM変調信号210に
変換する。エンコーディングおよびQAM変調技法には、種々のタイプのものが
可能であり、その1つを図4で説明する。
【0023】 好ましい実施形態においては、エンコーダ302は、フォワード・エラー訂正
(FEC)エンコーダを含む。これは、後続の処理ステージおよび伝送の間に起
きるエラーが、受信器により訂正できるようにする。このことは、光ファイバ・
システムに対しては特に関連があり、その理由は、これらが一般に、低ビット・
エラー・レート(BER)を必要とするからであり、したがって干渉またはノイ
ズのレベルのわずかの上昇でも、このBERにそのしきい値を超えさせてしまう
からである。FECコーディングは、これら望ましくない影響を補償することが
できる。FEC技術として、多様な任意のものを、システム・マージン要求に依
存して使用することができる。短い伝送距離に対しては、FECコーディングは
、格別の効果をもたらさないであろう。
【0024】 図4は、N=64実施形態において使用する変調サブステージ300Aのブロ
ック図である。この実施形態では、K=N=64であり、かつM=1である。言
い換えれば、入来する各デジタル・データ・チャンネル110に対し1つの変調
サブステージ300があり、そして各個々のデジタル・データ・チャンネル11
0が別々のQAM変調信号210を生じることである。
【0025】 変調サブステージ300Aは、スクランブラ400と、リード−ソロモン・エ
ンコーダ402と、インターリーバ404と、トレリス・エンコーダ406と、
そしてQAM変調器304とを備えている。スクランブラ400、リード−ソロ
モン・エンコーダ402、インターリーバ404およびトレリス・エンコーダ4
06は、エンコーダ302の一部分である。図3の結合器303は、M=1であ
るため必要でない。これらコンポーネントは、結合することによって1つのパイ
プラインを形成し、これにおいて、デジタル・データがスクランブラ400から
リード−ソロモン・エンコーダ402へ、インターリーバ404へ、トレリス・
エンコーダ406へそしてQAM変調器304へと流れ、これによりデジタル・
データ・チャンネル110からQAM変調信号210へ変換される。
【0026】 変調サブステージ300Aは、以下の通り動作する。デジタル・データ・チャ
ンネル110は、スクランブラ400が受け、そしてこれは、この入来したデジ
タル・データをスクランブルし、これによってデータ・ストリングをランダム化
する。
【0027】 リード−ソロモン・エンコーダ402は、このスクランブルしたデジタル・デ
ータ・チャンネルをリード・ソロモン・コードにしたがってエンコードする。プ
ログラマブルなリード・ソロモン・コードは、非常に低いBER(通常、10-1 2 )を低いオーバーヘッド(通常、20%未満)で維持するためには好ましい。 例えば、(204,188)のリード・ソロモン・コードは、各188データ・
ビット当たりの8エラー・ビットのエラー訂正能力のため適用することができる
【0028】 インターリーバ404は、リード−ソロモン・エンコーダ402が出力したデ
ジタル・データ・ストリングをインターリーブする。このインターリーブの結果
、トレリス・エンコーダ406の性質に因り、より一層ロバストなエラー回復を
もたらす。詳細には、FECコードは、ある所与のデータ・ブロックにおけるあ
る限られた数の間違いしか訂正できないが、トレリス・エンコーダ406のよう
なコンボリューション式エンコーダは、エラーを互いにクラスタさせる傾向があ
る。このため、インターリーブなしでは、大きなクラスタのエラーを含んだ1つ
のデータ・ブロックは、回復が困難となる。しかし、インターリーブを行えば、
エラーのクラスタは、いくつかのデータ・ブロックに分散し、その各ブロックを
FECコードによって復元することができることになる。好ましいのは、深さ(
depth)10のコンボリューション・インターリーブである。
【0029】 トレリス・エンコーダ406は、QAM変調、好ましくは64状態QAM変調
を、インターリーバ404が出力したデジタル・データ・ストリームに対し適用
する。この結果は通常、複素ベースバンド信号であり、これは、結果として生じ
るQAM変調信号210の同相(I)コンポーネントおよび直交(Q)コンポー
ネントを表す。64QAMの使用は、6bps/Hzの変調帯域幅効率を生じ、
これにより、伝送容量全体を、従来のOOKシステムと比べ有意なファクタだけ
増大させることになる。異なった状態数をもつQAMも使用でき、そして状態数
を16から1024に変更すると、概して、変調帯域幅効率が4から10のファ
クタだけ向上する。
【0030】 QAM変調器304は、代表的には、IコンポーネントとQコンポーネントと
を使用してキャリアを変調し、これにより、キャリア周波数で特徴付けたQAM
変調信号210を生じる。好ましい実施形態においては、QAM変調器304は
、このQAM変調をデジタルで実現し、したがってサンプルしたQAM変調信号
210は次に、後続の処理のため、A/Dコンバータによってアナログ・ドメイ
ンに変換する。代替の実施形態においては、このQAM変調は、アナログ技術を
使って実現することもできる。
【0031】 図5は、図2の周波数分割マルチプレクサ202の1実施形態のブロック図で
ある。周波数分割202は、K個の周波数シフタ500A−Kと、1つの結合器
502とを備えている。周波数シフタ500として種々のデバイスが使用でき、
これには、アナログ設計のものとデジタル設計のものが含まれる。ある一般的な
設計は、入来信号をローカル発振器と混合し、そして次に周波数フィルタによっ
て所望の周波数のコンポーネントを選択することに基づいたものである。周波数
シフタ500の各々は、QAM変調信号210の内の1つを受けるように結合し
ている。結合器502は、周波数シフタ500からの出力を受けるように結合し
ている。
【0032】 周波数分割マルチプレクサ202は、以下の通り動作する。各周波数シフタ5
00は、その入来QAM変調信号210を、その他の全ての周波数シフタ500
が使用するキャリア周波数とは異なったあるキャリア周波数に周波数シフトする
。このため、周波数シフタ500の出力は、QAM変調信号210であるが、そ
の各々は、互いに異なったキャリア周波数にある。次に、結合器502は、これ
ら信号を組み合わせてRF信号212にする。言い換えれば、各QAM変調信号
210は、RF信号212内の互いに異なったトーンである。
【0033】 図5の周波数分割マルチプレクサ202の変更例では、変調ステージ200は
、RF信号212への直接の組み合わせに適したキャリア周波数で、QAM変調
信号210を発生することもできる。この場合、周波数分割マルチプレクサ20
2は、周波数シフタ500を必要とせず、結合器502がそれらQAM変調信号
210を直接組み合わせてRF信号212にする。
【0034】 図6Aと図6Bとは、図2の周波数分割マルチプレクサ202の第2の実施形
態のブロック図である。このアプローチでは、周波数分割多重化は、2つのステ
ージ、すなわち、図6Aに示した第1のステージ622と、図6Bに示した第2
のステージ624とで生起する。説明の都合上、この周波数分割マルチプレクサ
202は、K=64実施形態を参照して説明する。
【0035】 図6Aのステージ622において、ステージ622は、J個のサブステージ6
20A−Jに細分している(この実施形態では、J=8である)。64QAM変
調信号210もまた、各々H個の信号から成るJ個のグループに細分する(この
実施形態では、J=H=8である)。各サブステージ620は、8個の信号から
成る1つのグループを周波数分割多重化して、単一の信号607A−Jを形成し
、そしてこれは、次にステージ624に供給する。8個の信号の単一のグループ
のこの処理は、図6Aに示している。JとHの他の組み合わせも、代替の実施形
態において使用することができる。
【0036】 サブステージ620Aは、8個の周波数シフタ604A−Hと、1つの結合器
606とを備えている。これらコンポーネントは互いに結合することにより、各
入来QAM変調信号210が周波数シフタ604から結合器606へ流れるよう
にしている。
【0037】 サブステージ620Aは、以下の通りに動作する。この実施形態においては、
QAM変調信号210は、周波数シフタ604が第1のキャリア周波数に周波数
シフトする。ここで、サブステージ620内の8個の信号の各々に対するこの第
1のキャリア周波数は、互いに異なっているが、ただし、各サブステージ620
は、同じ8個のキャリア周波数の組を使用する。例えば、好ましい実施形態にお
いては、QAM変調信号210は、1.0−1.6GHzレンジ内の8個の互い
に異なったキャリア周波数に周波数シフトする。結合器606は、これら8個の
信号(全て異なった第1キャリア周波数にある)を互いに組み合わせて単一の中
間信号607Aにし、そしてこれを、図6Bのステージ624に入力する。この
ため、このデバイス全体に対するステージ622の出力においては、全部で8個
の中間信号607があり、各1つが各サブステージ620に関するものである。
さらに、各中間信号607は、8個のトーンを含み、各1つがサブステージ62
0内の入来QAM変調信号210の各々に対するものである。
【0038】 次に、図6Bのステージ624は、ステージ622の機能を繰り返すことによ
って、RF信号212を形成する。詳細には、ステージ624は、8個の周波数
シフタ608A−Jと、1個の結合器610とを備えており、これらは、ステー
ジ622の周波数シフタ604および結合器606と同じように結合している。
各周波数シフタ608は、前のステージ622からの中間信号607の内の1つ
を受け、そしてこれを第2のキャリア周波数に周波数シフトする。各周波数シフ
タ608は、互いに異なった第2のキャリア周波数を使用することにより、種々
の信号間にオーバーラップが生じないようにしている。例えば、前の例で続ける
と、中間信号607は、1.0−1.6GHzレンジであった。周波数シフタ6
08Aは、中間信号607Aを0.4−1.0GHzレンジに周波数シフトし、
そして、周波数シフタ608Bは1.0−1.6GHzレンジに、周波数シフタ
608Cは1.6−2.2GHzレンジに等に周波数シフトするようにすること
ができる。ここで、本例では、シフタ608Aは、ダウン・シフトし、シフタ6
08Bは、シフトが必要でないため不要であり、そしてその他のシフタ608C
−Jはアップ・シフトを行う。次に、結合器610は、これら出力を組み合わせ
てRF信号212にし、そしてこれは、本例では、0.4−5.2GHzのスペ
クトル・バンドを占有する。
【0039】 再度図2を参照すると、光変調器204は、このRF信号212を受け、そし
てこのRF信号212により変調された光ビームを発生する。この機能を実現す
るため、種々の技術を使用することができる。好ましい実施形態においては、変
調器204は、光ソースと、外部光変調器とを備える。光ソースの例には、固体
レーザ、半導体レーザが含まれる。外部光変調器の例には、マッハ・ゼンダー変
調器(Mach Zehnder modulator)、電気光学変調器(electrooptic modulator)
、電界吸収変調器(electroabsorptive modulator)が含まれる。光ソースは、 光キャリアを発生し、そしてこれを、このキャリアが外部光変調器を通過すると
きにRF信号212が変調する。このRF信号は、予め歪ませて本システム全体
の線形性を向上させるようにすることができる。
【0040】 代替的には、変調器204は、内部変調式レーザ(internally modulated las
er)とすることもできる。この場合、RF信号212は、このレーザを駆動し、
そしてこれの出力が、RF信号により変調された光ビームとなる。
【0041】 現在の光ファイバは、通信に普通使用される2つのスペクトル領域、すなわち
、1.3ミクロンおよび1.55ミクロンの領域を有している。1.3ミクロン
の波長では、光信号の伝送は、主として、ファイバ104における減衰により制
限され、分散のファクタは小さい。逆に、1.55ミクロンの波長では、光信号
はより一層の分散を受けるが、減衰は少ない。このため、光信号は、1.3ミク
ロン領域または1.55ミクロン領域内の波長を有するのが好ましく、そして長
距離通信システムに対しては、1.55ミクロン領域が一般に好ましい。
【0042】 図7は、図1の受信器106の1実施形態のブロック図であり、この大部分は
、送信器102を逆転したものである。受信器106は、アバランシェ・ホトダ
イオードまたはPINダイオードのような検出器700と、周波数分割デマルチ
プレクサ702と、そして復調ステージ704とを備えている。これらエレメン
トは、データ・パイプラインを形成するように結合し、そしてこのパイプライン
は、光ファイバ104からの光信号をデジタル・データ・チャンネル120に変
換する。より詳細には、検出器700は、光ファイバ104に結合し、周波数分
割デマルチプレクサ702は、検出器700に結合し、復調ステージ704は、
周波数分割デマルチプレクサ702に結合している。復調ステージ704は、デ
ジタル・データ・チャンネル120を出力する。
【0043】 受信器106は、以下の通り動作する。検出器700は、光ファイバ104を
通して伝送された光信号を検出することによって、RF信号710を発生し、こ
の信号は、K個のQAM変調信号712A−Kを含み、この各々は、互いに異な
ったキャリア周波数で特徴付けている。周波数分割デマルチプレクサ702は、
RF信号710を多重化解除して、K個のQAM変調信号712にする。次に、
復調ステージ704は、これらQAM変調信号712をN個のデジタル・データ
・チャンネル120に変換する。これは、本質的には、図2に示した送信器10
2の逆転させたものである。RF信号710と、QAM変調信号712と、デジ
タル・データ・チャンネル120とは、RF信号212と、QAM変調信号21
0と、デジタル・データ・チャンネル110とに対応したものである。
【0044】 図8は、図7の周波数分割デマルチプレクサ702の1実施形態のブロック図
である。この実施形態は、スプリッタ800と、K個の周波数シフタ802A−
Kと、そしてK個のバンドパス・フィルタ804A−Kとを備えている。スプリ
ッタ800は、RF信号710を受けるように結合し、そして各周波数シフタ8
02は、スプリッタ800の出力を受けるように結合している。各周波数シフタ
802の出力は、バンドパス・フィルタ804の入力に結合している。
【0045】 周波数シフタ802は、以下の通り動作する。スプリッタ800は、RF信号
710をK個の信号にスプリットし、そしてその各々を、周波数シフタ802と
バンドパス・フィルタ804の組に入力する。例えば、スプリットされたRF信
号の内の1つは、周波数シフタ802Aに入力する。上述のように、RF信号は
、各々互いに異なったキャリア周波数にある、K個の異なったQAM変調信号を
含んでいる。周波数シフタ802Aは、この入来RF信号をある量だけシフトさ
せることによって、これらQAM変調信号の内の1つがフィルタ804Aのパス
バンドへとシフトさせるようにする。この信号は、バンドパス・フィルタ804
Aによってその他の信号からフィルタされ、これによりQAM変調信号712A
を発生する。周波数シフタ802の各々は、互いに異なった量だけシフトするこ
とにより、各バンドパス・フィルタ804がRF信号710に含まれたK個のQ
AM変調信号の内の互いに異なった1つを選択するようにする。好ましい実施形
態においては、フィルタ804A−Kのパスバンドは、互いに同じとして、QA
M変調信号712が同じキャリア周波数によって特徴付けられるようにしている
【0046】 図9Aと図9Bとは、図7の周波数分割デマルチプレクサ702の第2の実施
形態のブロック図である。この実施形態は、多数のステージで周波数分割多重化
解除を行う。図9Aは、第1のステージ920を示し、一方、図9Bは、第2の
ステージ922を示している。このマルチ・ステージの周波数分割デマルチプレ
クサ702は、K=64実施形態のコンテキストで説明する。
【0047】 この実施形態では、図9Aの第1ステージ920は、スプリッタ900と、8
個のバンドパス・フィルタ902A−Jと、そして8個の周波数シフタ904A
−Jとを備えている。スプリッタ900は、入来するRF信号710をスプリッ
トして8個の信号にし、そしてこの各々をバンドパス・フィルタ902と周波数
シフタ904の組に供給する。図6Aと図6Bで説明したように、この特定の実
施形態におけるRF信号は、各々8個の信号から成る8個のグループを含んでい
る。ステージ920の目的は、RF信号710を周波数分割多重化解除して8個
のグループにすることである。
【0048】 ステージ920は、以下の通り動作する。バンドパス・フィルタ902の各々
は、互いに異なったパスバンドを有し、したがってRF信号710に含まれた8
個のグループの内の互いに異なった1つのグループを選択する。図6Aおよび図
6Bの例で続けると、これら種々のパスバンドは、0.4−1.0GHz、1.
0−1.6GHz、等となる。周波数シフタ904は、これらグループの各々を
、同じキャリア周波数(本例では、1.0−1.6GHzバンド)に周波数シフ
トする。各グループは元々、互いに異なったキャリア周波数で特徴付けられてい
たものであるため、周波数シフタ904の各々は、異なった量だけ周波数シフト
を行わなければならない。ステージ920の出力は、8個の信号905A−Jで
あり、その各々は、同じキャリア周波数にあり、そして各々、8個のQAM変調
信号から成る1つのグループを含んでいる。これら信号の各々は、次に、図9B
のステージ922に入力する。
【0049】 簡単にするため、図9Bは、ステージ920からの8個の信号905の内の信
号905Aの処理のみ示している。図9Bのステージ922は、スプリッタ91
0と、8個の周波数シフタ912A−Hと、8個のバンドパス・フィルタ914
A−Hと、8個の周波数シフタ916A−Hと、そして8個のA/Dコンバータ
918A−Hとを備えている。入来信号905Aは、8個のQAM変調信号を含
み、その各々は、互いに異なった周波数にある。スプリッタ910は、この入来
信号をスプリットして8個の異なった信号にし、そしてこの各々は、デジタルの
QAM変調信号712A−Hに変換されることになる。
【0050】 これは、以下の通りに行う。すなわち、周波数シフタ912の各々は、入来信
号内のQAM変調信号の内の1つを、共通のキャリア周波数に周波数シフトする
。バンドパス・フィルタ914は、共通キャリア周波数にあるこの信号をフィル
タする。図9Aの場合と同じように、入来信号の各々は、互いに異なったキャリ
ア周波数で特徴付けられているため、周波数シフタ912の各々は、所望のQA
M変調信号を適切なバンドパス領域にシフトするには、互いに異なった量だけ周
波数シフトをしなければならない。周波数シフタ916は次に、これら信号を、
より低い共通キャリア周波数に周波数シフトする。これには利点があるが、それ
は、バンドパス・フィルタ914が、より高い周波数で動作することができるた
めであり、これによりより良好な特性のフィルタの使用が可能となる。A/Dコ
ンバータ918は、周波数シフタ916の出力をサンプルし、そしてデジタルQ
AM復調の準備のため、このQAM変調信号をアナログからデジタル形態に変換
する。
【0051】 図10は、図7の復調ステージ704の好ましい実施形態のブロック図である
。復調ステージ704は、K個の復調サブステージ1000A−Kを備えている
。図10は、これら復調サブステージの内の1つのもの1000Aの詳細を示し
ている。各復調サブステージ1000は、QAM変調信号712の内の1つをM
個のデジタル・データ・チャンネル120A−Mに変換する(ここで、M=N/
Kである)。復調サブステージ1000Aは、QAM復調器1002を備え、こ
れは、スプリッタ1003を介してM個のデコーダ1004A−Mに結合してい
る。復調サブステージ1000Aは、概して、変調サブステージ300Aの逆の
機能を実行する。詳細には、QAM復調器1002は、入来するQAM変調信号
712からQAM変調を取り除く。スプリッタ1003は、この復調した信号を
分離してそれを構成したM個のデータ・ストリームにし、そしてこれらは次に、
デコーダ1004でデコードしてデジタル・データ・チャンネル120を形成す
る。
【0052】 図11は、N=64実施形態において使用する図10の復調サブステージ10
00Aのブロック図である。この場合、M=1であるため、スプリッタ1003
は必要でない。デコーダ1004は、トレリス・デコーダ1100と、デインタ
ーリーバ(deinterleaver)1102と、リード−ソロモン・デコーダ1104 と、そしてデスクランブラ1106とを備えている。これらコンポーネントは、
図4に示したこれらに対応するものの逆の順序で結合している。詳細には、デー
タ・フローに従い、QAM復調器1002は、トレリス・デコーダ1100へ、
デインターリーバ1102へ、リード−ソロモン・デコーダ1104へそしてデ
スクランブラ1106へと結合している。
【0053】 復調サブステージ1000Aは、図11が示唆しているように動作する。すな
わち、QAM復調器1002は、入来するQAM変調信号712Aを復調し、代
表的には、その変調されたキャリアからベースバンドのI信号とQ信号を抽出す
る。トレリス・デコーダ1100は、このIとQの信号をデータ・ストリームに
変換する。デインターリーバ1102は、インターリーブ・プロセスを逆転させ
る。リード−ソロモン・デコーダ1104は、リード−ソロモン・エンコーディ
ングを逆転させて、発生したどのようなエラーも訂正する。デスクランブラ11
06は、この結果生じたデコード済みの信号をデスクランブルして、デジタル・
データ・チャンネル120を発生する。この結果生じたデジタル・データ・チャ
ンネルは、後続のE/O変換ステージによって、電気から光の形態へ変換するこ
ともできる。
【0054】 以上、本発明について、一定の好ましい実施形態を参照してかなり詳細に説明
したが、他の実施形態も可能である。したがって、添付の請求の範囲の記載の範
囲は、本文に含むこの好ましい実施形態の記述に限定されるべきものではない。
【図面の簡単な説明】
【図1】 図1は、本発明によるシステム100の図。
【図2】 図2は、図1の送信器102の1実施形態のブロック図。
【図3】 図3は、図2の変調ステージ200の好ましい実施形態のブロック図。
【図4】 図4は、図3の変調サブステージ300Aの好ましい実施形態のブロック図。
【図5】 図5は、図2の周波数分割マルチプレクサ202の1実施形態のブロック図。
【図6】 図6Aは、図2の周波数分割マルチプレクサ202の第2の実施形態のブロッ
ク図の一部分である。 図6Bは、図2の周波数分割マルチプレクサ202の第2の実施形態のブロッ
ク図の残りの部分である。
【図7】 図7は、図1の受信器106の1実施形態のブロック図。
【図8】 図8は、図7の周波数分割デマルチプレクサ702の1実施形態のブロック図
【図9】 図9Aは、図7の周波数分割デマルチプレクサ702の第2の実施形態のブロ
ック図の一部分である。 図9Bは、図7の周波数分割デマルチプレクサ702の第2の実施形態のブロ
ック図の残りの部分である。
【図10】 図10は、図7の復調ステージ704の好ましい実施形態のブロック図。
【図11】 図11は、図10の復調サブステージ1000Aの好ましい実施形態のブロッ
ク図。
【手続補正書】
【提出日】平成13年3月22日(2001.3.22)
【手続補正1】
【補正対象書類名】図面
【補正対象項目名】全図
【補正方法】変更
【補正内容】
───────────────────────────────────────────────────── フロントページの続き (81)指定国 EP(AT,BE,CH,CY, DE,DK,ES,FI,FR,GB,GR,IE,I T,LU,MC,NL,PT,SE),OA(BF,BJ ,CF,CG,CI,CM,GA,GN,GW,ML, MR,NE,SN,TD,TG),AP(GH,GM,K E,LS,MW,SD,SZ,UG,ZW),EA(AM ,AZ,BY,KG,KZ,MD,RU,TJ,TM) ,AL,AM,AT,AU,AZ,BA,BB,BG, BR,BY,CA,CH,CN,CU,CZ,DE,D K,EE,ES,FI,GB,GD,GE,GH,GM ,HR,HU,ID,IL,IS,JP,KE,KG, KP,KR,KZ,LC,LK,LR,LS,LT,L U,LV,MD,MG,MK,MN,MW,MX,NO ,NZ,PL,PT,RO,RU,SD,SE,SG, SI,SK,SL,TJ,TM,TR,TT,UA,U G,UZ,VN,YU,ZW (72)発明者 チャン,ピーター アメリカ合衆国カリフォルニア州95129, サン・ホセ,ドニングトン・ドライブ, 1232 (72)発明者 カワード,ジェームズ・エフ アメリカ合衆国カリフォルニア州94129, サンフランシスコ,ポートラ・ストリート 760エイ (72)発明者 トーァ,ロジャー・アール アメリカ合衆国ハワイ州96814,ホノルル, アラ・モアナ・ブールバード 1350,ナン バー 3107 (72)発明者 ウィルソン,スチュアート アメリカ合衆国カリフォルニア州94025, メンロ・パーク,ユニバーシティ・ドライ ブ 336 (72)発明者 イー,ティン・ケイ アメリカ合衆国カリフォルニア州94404, フォスター・シティ,ドルフィン・アイル 348 Fターム(参考) 5K002 AA01 AA03 BA13 BA15 CA14 DA02 DA05 FA01 5K004 AA08 JE03 JG01 5K022 AA13 AA24

Claims (63)

    【特許請求の範囲】
  1. 【請求項1】 光ファイバでデジタル・データを送信する送信システムであって、 複数のN個のデジタル・データ・チャンネルを複数のK個のQAM変調された
    信号に変換する変調ステージであって、該デジタル・データ・チャンネルの少な
    くとも1つは、デジタル・データを100ミリオン・ビット/秒よりも高いレー
    トで伝送する能力がある、前記の変調ステージと、 該変調ステージに結合しており、前記QAM変調信号をRF信号に周波数分割
    多重化する周波数分割マルチプレクサと、 該周波数分割マルチプレクサに結合しており、前記RF信号により変調された
    光信号を発生する光変調器であって、該光信号は、光ファイバでの送信に適した
    、前記の光変調器と、 から成る送信システム。
  2. 【請求項2】 請求項1記載のシステムにおいて、 前記デジタル・データ・チャンネルの少なくとも1つは、100ミリオン・ビ
    ット/秒よりも高い所定の固定のレートでデジタル・データを伝送する能力があ
    ること、 を特徴とする送信システム。
  3. 【請求項3】 請求項2記載のシステムにおいて、 少なくとも1つのデジタル・データ・チャンネルは、OCプロトコルに基づい
    たものであること、 を特徴とする送信システム。
  4. 【請求項4】 請求項2記載のシステムにおいて、 少なくとも1つのデジタル・データ・チャンネルは、STMプロトコルに基づ
    いたものであること、 を特徴とする送信システム。
  5. 【請求項5】 請求項2記載のシステムにおいて、 少なくとも1つのデジタル・データ・チャンネルは、STSプロトコルに基づ
    いたものであること、 を特徴とする送信システム。
  6. 【請求項6】 請求項1記載のシステムにおいて、 前記複数のデジタル・データ・チャンネルは、2.5ビリオン・ビット/秒よ
    りも高い総合レートでデジタル・データを伝送する能力があること、 を特徴とする送信システム。
  7. 【請求項7】 請求項1記載のシステムにおいて、前記変調ステージは、 複数のK個の変調サブステージであって、各変調サブステージが、前記複数の
    デジタル・データ・チャンネルの内のM個を前記複数のQAM変調信号の内の1
    つに変換する、前記の複数の変調サブステージ、 を含み、ここで、M=N/Kであること、 を特徴とする送信システム。
  8. 【請求項8】 請求項7記載のシステムにおいて、各変調サブステージは、さらに、 M個のエンコーダであって、各エンコーダが、前記M個のデジタル・データ・
    チャンネルの内の1つをエンコードして1つのエンコードしたデジタル・データ
    ・チャンネルを形成する、前記のM個のエンコーダと、 前記M個のエンコーダに結合しており、前記M個のエンコードしたデジタル・
    データ・チャンネルを前記QAM変調信号に変換するQAM変調器と、 を含むこと、を特徴とする送信システム。
  9. 【請求項9】 請求項8記載のシステムにおいて、各エンコーダは、さらに、 前記M個のデジタル・データ・チャンネルの内の1つを、フォワード・エラー
    訂正コードにしたがってエンコードするフォワード・エラー訂正エンコーダ、 を含むこと、を特徴とする送信システム。
  10. 【請求項10】 請求項8記載のシステムにおいて、 K=N、M=1であり、 各エンコーダは、 前記複数のデジタル・データ・チャンネルの内の1つをスクランブルするスク
    ランブラと、 該スクランブラに結合しており、前記スクランブルしたデジタル・データ・チ
    ャンネルを、リード・ソロモン・コードにしたがってエンコードするリード−ソ
    ロモン・エンコーダと、 該リード−ソロモン・エンコーダに結合しており、前記エンコードしたデジタ
    ル・データ・チャンネルをインターリーブするインターリーバと、 該インターリーバに結合しており、前記インターリーブしたデジタル・データ
    ・チャンネルをQAM符号点配置に変換するトレリス・エンコーダと、 を含むこと、を特徴とする送信システム。
  11. 【請求項11】 請求項1記載のシステムにおいて、 各QAM変調信号は、第1のキャリア周波数で特徴付け、該第1キャリア周波
    数の各々は、その他の該第1キャリア周波数とは異なっており、 前記周波数分割マルチプレクサは、 前記複数のQAM変調信号を組み合わせて前記RF信号にする結合器、 を含むこと、を特徴とする送信システム。
  12. 【請求項12】 請求項1記載のシステムにおいて、 各QAM変調信号は、第1のキャリア周波数で特徴付けられ、該第1キャリア
    周波数は全て同一であり、 前記周波数分割マルチプレクサは、 前記QAM変調信号を前記第1キャリア周波数から第2のキャリア周波数へ周
    波数シフトするための複数の周波数シフタであって、前記第2キャリア周波数の
    各々が、他の前記第2キャリア周波数とは異なっている、前記の複数の周波数シ
    フタと、 前記第2キャリア周波数で特徴付けられた前記複数のQAM変調信号を組み合
    わせて前記RF信号にする結合器と、 を含むこと、 を特徴とする送信システム。
  13. 【請求項13】 請求項1記載のシステムにおいて、前記周波数分割マルチプレクサは、 マルチ・ステージの周波数分割マルチプレクサ、 から成ること、を特徴とする送信システム。
  14. 【請求項14】 請求項1記載のシステムにおいて、前記光変調器は、 前記RF信号により変調した出力光ビームを発生するための内部変調式のレー
    ザ、 から成ること、を特徴とする送信システム。
  15. 【請求項15】 請求項1記載のシステムにおいて、前記光変調器は、 光キャリアを発生するための光ソースと、 該光ソースと前記周波数分割マルチプレクサとに結合しており、前記光キャリ
    アを前記RF信号で変調するための外部光変調器と、 から成ること、を特徴とする送信システム。
  16. 【請求項16】 請求項1記載のシステムにおいて 前記光信号は、1.3ミクロン領域内の波長により特徴付けられていること、
    を特徴とする送信システム。
  17. 【請求項17】 請求項1記載のシステムにおいて 前記光信号は、1.55ミクロン領域内の波長により特徴付けられていること
    、 を特徴とする送信システム。
  18. 【請求項18】 請求項1記載のシステムであって、さらに、 前記変調ステージに結合しており、前記デジタル・データ・チャンネルを光形
    態から電気形態に変換するためのO/E変換器ステージ、 を含むこと、を特徴とする送信システム。
  19. 【請求項19】 光ファイバでデジタル・データを受信する受信システムであって、 光ファイバで伝送された光信号を検出してRF信号を発生する検出器と、 該検出器に結合しており、前記RF信号を周波数分割多重化解除して複数のK
    個のQAM変調信号にするための周波数分割デマルチプレクサと、 前記複数のK個のQAM変調信号を複数のN個の高速デジタル・データ・チャ
    ンネルに変換する復調ステージであって、該デジタル・データ・チャンネルの内
    の少なくとも1つが、100ミリオン・ビット/秒よりも高いレートで伝送する
    能力がある、前記の復調ステージと、 から成る受信システム。
  20. 【請求項20】 請求項19記載のシステムにおいて、 前記デジタル・データ・チャンネルの少なくとも1つは、100ミリオン・ビ
    ット/秒よりも高い所定の固定のレートでデジタル・データを伝送する能力があ
    ること、 を特徴とする受信システム。
  21. 【請求項21】 請求項20記載のシステムにおいて、 少なくとも1つのデジタル・データ・チャンネルは、OCプロトコルに基づい
    たものであること、 を特徴とする受信システム。
  22. 【請求項22】 請求項20記載のシステムにおいて、 少なくとも1つのデジタル・データ・チャンネルは、STMプロトコルに基づ
    いたものであること、 を特徴とする受信システム。
  23. 【請求項23】 請求項20記載のシステムにおいて、 少なくとも1つのデジタル・データ・チャンネルは、STSプロトコルに基づ
    いたものであること、 を特徴とする受信システム。
  24. 【請求項24】 請求項19記載のシステムにおいて、 前記複数のデジタル・データ・チャンネルは、2.5ビリオン・ビット/秒よ
    りも高い総合レートでデジタル・データを伝送する能力があること、 を特徴とする受信システム。
  25. 【請求項25】 請求項19記載のシステムにおいて 前記RF信号は、前記複数のQAM変調信号を含み、各々のQAM変調信号が
    、第1のキャリア周波数で特徴付けられており、該第1キャリア周波数の各々が
    、他の前記第1キャリア周波数とは異なっており、 前記周波数分割マルチプレクサは、 前記RF信号をスプリットして複数のRF信号にするスプリッタと、 該スプリッタに結合した複数の周波数シフタであって、各周波数シフタが、前
    記スプリットしたRF信号の内の1つを前記第1キャリア周波数の内の1つから
    第2のキャリア周波数に周波数シフトし、該第2キャリア周波数の全てが同一で
    ある、前記の複数の周波数シフタと、 該複数の周波数シフタに結合しており、前記第2キャリア周波数に周波数シフ
    トされた前記スプリットしたRF信号をフィルタするための複数のバンドパス・
    フィルタと、 から成ること、を特徴とする受信システム。
  26. 【請求項26】 請求項19記載のシステムにおいて、前記周波数分割デマルチプレクサは、 マルチ・ステージの周波数分割デマルチプレクサ、 から成ること、を特徴とする受信システム。
  27. 【請求項27】 請求項19記載のシステムにおいて、前記復調ステージは、 複数のK個の復調サブステージであって、各復調サブステージが、前記複数の
    QAM変調信号の内の1つを前記複数のデジタル・データ・チャンネルの内のM
    個に変換する、前記の復調サブステージ、 を含み、ここでM=N/Kであること、 を特徴とする受信システム。
  28. 【請求項28】 請求項27記載のシステムにおいて、各復調サブステージは、さらに、 前記QAM変調信号をM個の復調した信号に変換するQAM復調器と、 該QAM復調器に結合したM個のデコーダであって、各デコーダが前記M個の
    復調信号の内の1つをデコードして1つのデジタル・データ・チャンネルを形成
    する、前記のM個のデコーダと、 から成ること、を特徴とする受信システム。
  29. 【請求項29】 請求項28記載のシステムにおいて、 前記RF信号は、前記複数のQAM変調信号を含み、各QAM変調信号が第1
    のキャリア周波数で特徴付けられ、前記第1キャリア周波数の各々が他の前記第
    1キャリア周波数とは異なっており、 各QAM復調器は、さらに、前記第1キャリア周波数で特徴付けられた前記Q
    AM変調信号を前記M個の復調信号に変換すること、 を特徴とする受信システム。
  30. 【請求項30】 請求項28記載のシステムにおいて、各デコーダは、さらに、 前記M個の復調信号の内の1つを、フォワード・エラー訂正コードにしたがっ
    てデコードするフォワード・エラー訂正デコーダ、 を含むこと、を特徴とする受信システム。
  31. 【請求項31】 請求項28記載のシステムにおいて、 K=N、M=1であり、 各デコーダは、 前記QAM復調器に結合しており、前記復調信号をQAM符号点配置にしたが
    ってデコードするためのトレリス・デコーダと、 該トレリス・デコーダに結合しており、前記デコードした信号をデインターリ
    ーブするデインターリーバと、 該デインターリーバに結合しており、前記デインターリーブした信号をリード
    ・ソロモン・コードにしたがってデコードするためのリード−ソロモン・デコー
    ダと、 該リード−ソロモン・デコーダに結合しており、前記デコードした信号をデス
    クランブルするデスクランブラと、 を含むこと、を特徴とする受信システム。
  32. 【請求項32】 請求項19記載のシステムにおいて、さらに、 前記復調ステージに結合しており、前記デジタル・データ・チャンネルを電気
    形態から光形態に変換するためのE/O変換ステージ、 を含むこと、を特徴とする受信システム。
  33. 【請求項33】 光ファイバでデジタル・データを送信する送信方法であって、 複数のN個の高速デジタル・データ・チャンネルを受けるステップであって、
    該デジタル・データ・チャンネルの少なくとも1つは、デジタル・データを10
    0ミリオン・ビット/秒よりも高いレートで伝送する能力がある、前記のステッ
    プと、 前記複数のデジタル・データ・チャンネルを複数のK個のQAM変調した信号
    に変換するステップと、 前記QAM変調信号をRF信号に周波数分割多重化するステップと、 前記RF信号により変調した光信号を発生するステップであって、該光信号は
    、光ファイバでの送信に適した、前記のステップと、 から成る送信方法。
  34. 【請求項34】 請求項33記載の方法において、 前記の複数のデジタル・データ・チャンネルを受けるステップは、所定の固定
    のレートで前記デジタル・データ・チャンネルを受けること、 を特徴とする送信方法。
  35. 【請求項35】 請求項34記載の方法において、 少なくとも1つのデジタル・データ・チャンネルは、OCプロトコルに基づい
    たものであること、 を特徴とする送信方法。
  36. 【請求項36】 請求項34記載の方法において、 少なくとも1つのデジタル・データ・チャンネルは、STMプロトコルに基づ
    いたものであること、 を特徴とする送信方法。
  37. 【請求項37】 請求項34記載の方法において、 少なくとも1つのデジタル・データ・チャンネルは、STSプロトコルに基づ
    いたものであること、 を特徴とする送信方法。
  38. 【請求項38】 請求項33記載の方法において、 前記の複数のデジタル・データ・チャンネルを受けるステップは、2.5ビリ
    オン・ビット/秒よりも高い総合レートで前記複数のデジタル・データ・チャン
    ネルを受けること、 を特徴とする送信方法。
  39. 【請求項39】 請求項33記載の方法において、前記複数のN個のデジタル・データ・チャン
    ネルを前記複数のK個のQAM変調信号に変換するステップは、 並列でK倍、前記複数のデジタル・データ・チャンネルの内のM個を、前記複
    数のQAM変調信号の内の1つに変換するステップ、 を含み、ここでM=N/Kであること、 を特徴とする送信方法。
  40. 【請求項40】 請求項39記載の方法において、前記複数のデジタル・データ・チャンネルの
    内のM個を前記複数のQAM変調信号の内の1つに変換するステップは、 並列で、前記M個のデジタル・データ・チャンネルの各々をエンコードして、
    エンコードしたデジタル・データ・チャンネルを形成するステップと、 前記M個のエンコードしたデジタル・データ・チャンネルを前記QAM変調信
    号に変換するステップと、 を含むこと、を特徴とする送信方法。
  41. 【請求項41】 請求項40記載の方法において、前記M個のデジタル・データ・チャンネルの
    各々を変換するステップは、 前記M個のデジタル・データ・チャンネルの各々をフォワード・エラー訂正コ
    ードにしたがってエンコードするステップ、 を含むこと、を特徴とする送信方法。
  42. 【請求項42】 請求項40記載の方法において、 K=N、M=1であり、 前記M個のデジタル・データ・チャンネルの各々をエンコードしてエンコード
    したデジタル・データ・チャンネルを形成するステップは、 前記デジタル・データ・チャンネルをスクランブルするステップと、 該スクランブルしたデジタル・データ・チャンネルをリード・ソロモン・コー
    ドにしたがってエンコードするステップと、 該エンコードしたデジタル・データ・チャンネルをインターリーブするステッ
    プと、 該インターリーブしたデジタル・データ・チャンネルにQAM変調を適用する
    ステップと、 を含むこと、を特徴とする送信方法。
  43. 【請求項43】 請求項33記載の方法において、 各QAM変調信号は、第1のキャリア周波数で特徴付け、該第1キャリア周波
    数の各々は、その他の該第1キャリア周波数とは異なっており、 前記QAM変調信号を周波数分割多重化して前記RF信号にするステップは、 前記複数のQAM変調信号を組み合わせて前記RF信号にするステップ、 を含むこと、を特徴とする送信方法。
  44. 【請求項44】 請求項33記載の方法において、 各QAM変調信号は、第1のキャリア周波数で特徴付けられ、該第1キャリア
    周波数は全て同一であり、 前記QAM変調信号を周波数分割多重化して前記RF信号にするステップは、 前記QAM変調信号を前記第1キャリア周波数から第2のキャリア周波数へ周
    波数シフトするステップであって、前記第2キャリア周波数の各々が、他の前記
    第2キャリア周波数とは異なっている、前記のステップと、 前記第2キャリア周波数で特徴付けられた前記複数のQAM変調信号を組み合
    わせて前記RF信号にするステップと、 を含むこと、 を特徴とする送信方法。
  45. 【請求項45】 請求項33記載の方法において、前記QAM変調信号を周波数分割多重化して
    RF信号にするステップは、 前記QAM変調信号を少なくとも2つのステージで周波数分割多重化するステ
    ップ、 から成ること、を特徴とする送信方法。
  46. 【請求項46】 請求項33記載の方法において、前記RF信号で変調された前記光信号を発生
    するステップは、 光キャリアを発生するステップと、 前記光キャリアを前記RF信号で変調するステップと、 から成ること、を特徴とする送信方法。
  47. 【請求項47】 請求項33記載の方法において 前記光信号は、1.3ミクロン領域内の波長により特徴付けられていること、
    を特徴とする送信方法。
  48. 【請求項48】 請求項33記載の方法において 前記光信号は、1.55ミクロン領域内の波長により特徴付けられていること
    、 を特徴とする送信方法。
  49. 【請求項49】 請求項33記載の方法であって、さらに、 前記デジタル・データ・チャンネルを光形態から電気形態に変換するステップ
    、 を含むこと、を特徴とする送信方法。
  50. 【請求項50】 光ファイバでデジタル・データを受信する受信方法であって、 光ファイバで伝送された光信号を検出してRF信号を発生するステップと、 前記RF信号を周波数分割多重化解除して複数のK個のQAM変調信号にする
    ステップと、 前記複数のK個のQAM変調信号を複数のN個のデジタル・データ・チャンネ
    ルに変換するステップであって、該デジタル・データ・チャンネルの内の少なく
    とも1つが、100ミリオン・ビット/秒よりも高いレートで伝送する能力があ
    る、前記のステップと、 から成る受信方法。
  51. 【請求項51】 請求項50記載の方法において、 前記デジタル・データ・チャンネルは、所定の固定のレートでデジタル・デー
    タを伝送すること、 を特徴とする受信方法。
  52. 【請求項52】 請求項51記載の方法において、 少なくとも1つのデジタル・データ・チャンネルは、OCプロトコルに基づい
    たものであること、 を特徴とする受信方法。
  53. 【請求項53】 請求項51記載の方法において、 少なくとも1つのデジタル・データ・チャンネルは、STMプロトコルに基づ
    いたものであること、 を特徴とする受信方法。
  54. 【請求項54】 請求項51記載の方法において、 少なくとも1つのデジタル・データ・チャンネルは、STSプロトコルに基づ
    いたものであること、 を特徴とする受信方法。
  55. 【請求項55】 請求項50記載の方法において、 前記複数のデジタル・データ・チャンネルは、2.5ビリオン・ビット/秒よ
    りも高い総合レートでデジタル・データを伝送すること、 を特徴とする受信方法。
  56. 【請求項56】 請求項50記載の方法において 前記RF信号は、前記複数のQAM変調信号を含み、各々のQAM変調信号が
    、第1のキャリア周波数で特徴付けられており、該第1キャリア周波数の各々が
    、他の前記第1キャリア周波数とは異なっており、 前記RF信号を周波数分割多重化解除するステップは、 前記RF信号をスプリットして複数のRF信号にするステップと、 前記スプリットしたRF信号を前記第1キャリア周波数から第2のキャリア周
    波数に周波数シフトするステップであって、該第2キャリア周波数の全てが同一
    である、前記のステップと、 前記第2キャリア周波数に周波数シフトされた前記スプリットしたRF信号を
    バンドパス・フィルタするステップと、 から成ること、を特徴とする受信方法。
  57. 【請求項57】 請求項50記載の方法において、前記RF信号を周波数分割多重化解除するス
    テップは、 前記RF信号をマルチ・ステージで周波数分割多重化解除するステップ、 から成ること、を特徴とする受信方法。
  58. 【請求項58】 請求項50記載の方法において、前記複数のK個のQAM変調信号を複数のN
    個のデジタル・データ・チャンネルに変換するステップは、 並列でK倍、前記複数のQAM変調信号の内の1つを前記複数のデジタル・デ
    ータ・チャンネルの内のM個に変換するステップ、 を含み、ここでM=N/Kであること、 を特徴とする受信方法。
  59. 【請求項59】 請求項58記載の方法において、前記複数のQAM変調信号の内の1つを前記
    複数のデジタル・データ・チャンネルの内のM個に変換するステップは、さらに
    、 前記QAM変調信号をM個の復調した信号に変換するステップと、 前記M個の復調信号の内の各々をデコードして前記デジタル・データ・チャン
    ネルを形成するステップと、 を含むこと、を特徴とする受信方法。
  60. 【請求項60】 請求項59記載の方法において、 前記RF信号は、前記複数のQAM変調信号を含み、各QAM変調信号が第1
    のキャリア周波数で特徴付けられ、前記第1キャリア周波数の各々が他の前記第
    1キャリア周波数とは異なっており、 前記QAM変調信号をM個の復調信号に変換するステップは、前記第1キャリ
    ア周波数で特徴付けられた前記QAM変調信号を前記M個の復調信号に変換する
    ステップ、を含むこと、 を特徴とする受信方法。
  61. 【請求項61】 請求項59記載の方法において、前記M個の復調信号の各々をデコードするス
    テップは、 前記復調信号をフォワード・エラー訂正コードにしたがってデコードするステ
    ップ、 を含むこと、を特徴とする受信方法。
  62. 【請求項62】 請求項59記載の方法において、 K=N、M=1であり、 前記M個の復調信号の各々をデコードするステップは、 前記復調信号をQAM符号点配置にしたがってデコードするステップと、 該デコードした信号をデインターリーブするステップと、 該デインターリーブした信号をリード・ソロモン・コードにしたがってデコー
    ドするステップと、 該デコードした信号をデスクランブルするステップと、 を含むこと、を特徴とする受信方法。
  63. 【請求項63】 請求項50記載の方法において、さらに、 前記デジタル・データ・チャンネルを電気形態から光形態に変換するステップ
    、 を含むこと、を特徴とする受信方法。
JP2000535125A 1998-03-05 1999-02-02 光ファイバでのデジタル・データのスペクトル的に効率的な伝送のためのシステムおよび方法 Expired - Lifetime JP4070406B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US3563098A 1998-03-05 1998-03-05
US09/035,630 1998-03-05
PCT/US1999/002243 WO1999045683A1 (en) 1998-03-05 1999-02-02 System and method for spectrally efficient transmission of digital data over optical fiber

Publications (3)

Publication Number Publication Date
JP2002506323A true JP2002506323A (ja) 2002-02-26
JP2002506323A5 JP2002506323A5 (ja) 2006-01-05
JP4070406B2 JP4070406B2 (ja) 2008-04-02

Family

ID=21883858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000535125A Expired - Lifetime JP4070406B2 (ja) 1998-03-05 1999-02-02 光ファイバでのデジタル・データのスペクトル的に効率的な伝送のためのシステムおよび方法

Country Status (7)

Country Link
US (2) US6452945B1 (ja)
EP (2) EP1689142B1 (ja)
JP (1) JP4070406B2 (ja)
AU (1) AU2576199A (ja)
CA (1) CA2320762A1 (ja)
DE (2) DE69940037D1 (ja)
WO (1) WO1999045683A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002535876A (ja) * 1999-01-13 2002-10-22 ケストレル・ソルーションズ・インコーポレーテッド 周波数分割マルチプレキシングを使用する光通信ネットワーク

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010005908A1 (en) * 1998-09-28 2001-06-28 Hodge Winston W. Method for buffering video, data and voice signals using a common shared bus
US6985503B1 (en) * 1999-08-09 2006-01-10 Zarlink Semiconductor Inc. Inverse multiplexer
US20020039211A1 (en) * 1999-09-24 2002-04-04 Tian Shen Variable rate high-speed input and output in optical communication networks
US6879640B1 (en) * 1999-10-20 2005-04-12 Broadcom Corporation Method, apparatus and system for high-speed transmission on fiber optic channel
US6614849B1 (en) * 1999-10-25 2003-09-02 Free Systems Pte. Ltd. Wireless infrared digital audio receiving system
US6510182B1 (en) * 1999-10-25 2003-01-21 Freesystems Pte. Ltd. Wireless infrared digital audio system
US6741659B1 (en) * 1999-10-25 2004-05-25 Freesystems Pte. Ltd. Wireless infrared digital audio transmitting system
US6735734B1 (en) * 2000-04-28 2004-05-11 John M. Liebetreu Multipoint TDM data distribution system
US7228077B2 (en) * 2000-05-12 2007-06-05 Forster Energy Llc Channel gain control for an optical communications system utilizing frequency division multiplexing
US6822975B1 (en) * 2000-09-08 2004-11-23 Lucent Technologies Circuitry for mixed-rate optical communication networks
US7748023B2 (en) * 2001-02-27 2010-06-29 Xtend Networks Ltd. Device, system and method for connecting a subscriber device to a wideband distribution network
US6658494B2 (en) * 2001-04-20 2003-12-02 Nvision, Inc. Router topology having N on 1 redundancy
US7236757B2 (en) 2001-07-11 2007-06-26 Vativ Technologies, Inc. High-speed multi-channel communications transceiver with inter-channel interference filter
US7295623B2 (en) 2001-07-11 2007-11-13 Vativ Technologies, Inc. High-speed communications transceiver
US20030112896A1 (en) * 2001-07-11 2003-06-19 Raghavan Sreen A. Multi-channel communications transceiver
US6847787B2 (en) * 2001-09-07 2005-01-25 Redfern Broadband Networks Inc. WDM network node module
US20030079233A1 (en) * 2001-10-10 2003-04-24 Matthews Paul J. Method for consolidation of services, equipment, and content using spectrally efficient transport
US20030128718A1 (en) * 2001-10-10 2003-07-10 Matthews Paul J. Method for switching and routing large bandwidth continuous data streams from a centralized location
US20030161634A1 (en) * 2001-12-17 2003-08-28 Costabile James J. Efficient and scalable data transport system for DWDM cable TV networks
US7437082B1 (en) * 2002-07-12 2008-10-14 Broadwing Corporation Private optical communications systems, devices, and methods
AU2003256569A1 (en) 2002-07-15 2004-02-02 Quellan, Inc. Adaptive noise filtering and equalization
US20040028411A1 (en) * 2002-08-07 2004-02-12 Ses-Americom, Incorporated System and method for transmitting high-bandwidth signals over a satellite communications system
US7388904B2 (en) 2003-06-03 2008-06-17 Vativ Technologies, Inc. Near-end, far-end and echo cancellers in a multi-channel transceiver system
US7804760B2 (en) 2003-08-07 2010-09-28 Quellan, Inc. Method and system for signal emulation
US7050388B2 (en) 2003-08-07 2006-05-23 Quellan, Inc. Method and system for crosstalk cancellation
EP1687929B1 (en) 2003-11-17 2010-11-10 Quellan, Inc. Method and system for antenna interference cancellation
KR100516152B1 (ko) * 2003-12-15 2005-09-21 한국전자통신연구원 부반송파다중화 방식이 적용된 파장 분할 다중 방식수동형 광가입자망 및 그것에서의 비대칭 패킷 데이터통신을 위한 매체접속 제어 방법
US7616700B2 (en) 2003-12-22 2009-11-10 Quellan, Inc. Method and system for slicing a communication signal
US20050204258A1 (en) * 2004-02-13 2005-09-15 Broadcom Corporation Encoding system and method for a transmitter in wireless communications
US7725079B2 (en) 2004-12-14 2010-05-25 Quellan, Inc. Method and system for automatic control in an interference cancellation device
US7522883B2 (en) 2004-12-14 2009-04-21 Quellan, Inc. Method and system for reducing signal interference
US7826752B1 (en) * 2005-06-02 2010-11-02 Level 3 Communications, Llc Optical transmission apparatuses, methods, and systems
JP5078991B2 (ja) 2006-04-26 2012-11-21 ケラン エルエルシー 通信チャネルからの放射性放出を削減する方法とシステム
KR101133588B1 (ko) * 2006-06-01 2012-04-04 (주)인프라액세스코리아 유선망에 할당된 주파수 대역에 대한 멀티 채널 형성방법
KR100658775B1 (ko) * 2006-06-01 2006-12-15 한넷텔레콤(주) 멀티 채널을 형성하는 광 네트워크 장치
KR100684208B1 (ko) * 2006-06-01 2007-02-22 한넷텔레콤(주) 유선망에 대한 멀티 채널 제공 시스템
JP2009177641A (ja) 2008-01-25 2009-08-06 Fujitsu Ltd 光信号処理装置、光受信装置および光中継装置
US8849108B2 (en) * 2009-02-18 2014-09-30 Aurora Networks Inc Self-correcting wavelength collision avoidance system
US8401399B2 (en) 2009-05-28 2013-03-19 Freedom Photonics, Llc. Chip-based advanced modulation format transmitter
US9344196B1 (en) 2009-05-28 2016-05-17 Freedom Photonics, Llc. Integrated interferometric optical transmitter
EP2495612B1 (en) * 2009-10-30 2019-11-27 Fujitsu Limited Optical signal processing device, receiver, and optical network system
JP5598168B2 (ja) * 2010-08-30 2014-10-01 富士通株式会社 光ネットワークシステムおよび光多重装置
US8805204B2 (en) * 2011-02-23 2014-08-12 Tyco Electronics Subsea Communications Llc Generating higher-level quadrature amplitude modulation (QAM) using a delay line interferometer and systems and methods incorporating same
US8818209B1 (en) * 2011-06-14 2014-08-26 Ciena Corporation System and apparatus for distributing a signal to the front end of a multipath analog to digital converter
RU2480912C2 (ru) * 2011-08-09 2013-04-27 Государственное образовательное учреждение высшего профессионального образования Академия Федеральной службы охраны Российской Федерации (Академия ФСО России) Способ цифровой оптической связи
US9577767B2 (en) 2013-05-14 2017-02-21 Aurora Networks, Inc. Dynamic wavelength management using bi-directional communication for the prevention of optical beat interference
US10320152B2 (en) 2017-03-28 2019-06-11 Freedom Photonics Llc Tunable laser

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4061577A (en) 1976-08-18 1977-12-06 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Fiber optic multiplex optical transmission system
CA1256606A (en) * 1984-06-25 1989-06-27 Taro Shibagaki Information communication system
US4701904A (en) 1985-10-18 1987-10-20 American Telephone And Telegraph Company, At&T Bell Laboratories Optical local area network employing microwave modulation techniques
JPS62206996A (ja) * 1986-03-07 1987-09-11 Hitachi Ltd 光交換方法およびその装置
CA1311524C (en) * 1988-08-26 1992-12-15 Masakazu Mori Drop/insert channel selecting system
US4953156A (en) 1988-09-08 1990-08-28 Gte Laboratories, Incorporated Wideband subcarrier multiplexed optical communication system operating over more than one octave
JP2564375B2 (ja) * 1988-09-28 1996-12-18 株式会社日立製作所 分岐挿入型多重変換装置
US5311501A (en) * 1991-03-15 1994-05-10 Fujitsu Limited Routing system for linear add-drop multiplexer
US5576874A (en) 1991-07-31 1996-11-19 Alcatel Network Systems, Inc. Optical distribution shelf for a remote terminal of an optical fiber telecommunications network
US5430568A (en) 1992-12-01 1995-07-04 Scientific-Atlanta, Inc. Optical communications system for transmitting information signals having different wavelengths over a same optical fiber
JPH06224852A (ja) 1993-01-25 1994-08-12 Matsushita Electric Ind Co Ltd 光伝送方式
US5387927A (en) 1993-09-17 1995-02-07 Mpr Teltech Ltd. Method and apparatus for broadband transmission from a central office to a number of subscribers
DE4337135C1 (de) 1993-10-30 1994-09-01 Ant Nachrichtentech Drop-and-Add-Multiplexer zur Umsetzung und Aufbereitung eines Frequenzmultiplexsignals
DE59509361D1 (de) * 1994-06-24 2001-08-02 Rolic Ag Zug Optisches Bauelement
US5559561A (en) 1994-07-15 1996-09-24 Lucent Technologies Inc. Coded modulation with shaping gain and tomlinson precoding
JP2888272B2 (ja) 1994-12-15 1999-05-10 日本電気株式会社 光ネットワークおよび中継ノード
JP3413304B2 (ja) 1995-01-31 2003-06-03 富士通株式会社 ハイブリッドscm光伝送装置
JPH0998155A (ja) 1995-10-03 1997-04-08 Matsushita Electric Ind Co Ltd 光送信装置およびそれを用いた光伝送システム
US5930231A (en) 1995-06-30 1999-07-27 Scientific-Atlanta, Inc. Block spectrum receiver for a broadband communications system
US5596436A (en) 1995-07-14 1997-01-21 The Regents Of The University Of California Subcarrier multiplexing with dispersion reduction and direct detection
FR2737365B1 (fr) 1995-07-26 1997-08-22 Thomson Broadcast Systems Procede et dispositif de transmission de service multimedia sur reseau prive large bande
JPH09214456A (ja) * 1996-01-30 1997-08-15 Hitachi Ltd 多重変換装置の構成方法および多重変換装置
JP3549716B2 (ja) * 1997-11-28 2004-08-04 日本電気株式会社 光adm装置
US6234427B1 (en) * 1997-12-10 2001-05-22 Trw Inc. Solar array regulation and spacecraft pointing using flywheel energy storage with programmable voltage control
KR100237838B1 (ko) * 1997-12-15 2000-01-15 이계철 대용량 광비동기전송 모드스위치
US6111676A (en) * 1998-02-26 2000-08-29 Nortel Networks Corporation Wavelength specific optical reflection meter/locator in signatured wavelength division multiplexed systems
US6144786A (en) * 1999-03-11 2000-11-07 Lockheed Martin Corporation High bandwidth-time product continuously variable controlled delay system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002535876A (ja) * 1999-01-13 2002-10-22 ケストレル・ソルーションズ・インコーポレーテッド 周波数分割マルチプレキシングを使用する光通信ネットワーク

Also Published As

Publication number Publication date
EP1689142A2 (en) 2006-08-09
DE69940037D1 (de) 2009-01-15
EP1689142B1 (en) 2008-12-03
AU2576199A (en) 1999-09-20
CA2320762A1 (en) 1999-09-10
JP4070406B2 (ja) 2008-04-02
US6452945B1 (en) 2002-09-17
EP1060603A1 (en) 2000-12-20
EP1689142A3 (en) 2007-01-31
DE69931351T2 (de) 2007-02-08
DE69931351D1 (de) 2006-06-22
US6407843B1 (en) 2002-06-18
EP1060603B1 (en) 2006-05-17
WO1999045683A1 (en) 1999-09-10
EP1060603B9 (en) 2006-09-06

Similar Documents

Publication Publication Date Title
JP4070406B2 (ja) 光ファイバでのデジタル・データのスペクトル的に効率的な伝送のためのシステムおよび方法
US11750356B2 (en) System and methods for mapping and demapping digitized signals for optical transmission
US6529303B1 (en) Optical communications networks utilizing frequency division multiplexing
US11165437B2 (en) System and methods for virtualizing delta sigma digitization
JP2002506323A5 (ja)
EP3471300B1 (en) Transport of multiple asynchronous data streams using higher order modulation
US20110222854A1 (en) Coherent optical hubbing
US20020012493A1 (en) Channel gain control for an optical communications system utilizing frequency division multiplexing
CA3050283C (en) System and methods for mapping and demapping digitized signals for optical transmission
US11469826B2 (en) System and methods for cable fiber node splitting using coherent optics
WO2005076561A1 (en) The transport of modulation symbols in a communications system
JP3128602B2 (ja) ディジタル伝送装置
CN1659808A (zh) 用于发送和接收激光信号的方法以及实施所述方法的发送器和接收器
WO2001026263A9 (en) Through-timing of data transmitted across an optical communications system utilizing frequency division multiplexing

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051018

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080115

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140125

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term