RU2480912C2 - Способ цифровой оптической связи - Google Patents

Способ цифровой оптической связи Download PDF

Info

Publication number
RU2480912C2
RU2480912C2 RU2011133410/07A RU2011133410A RU2480912C2 RU 2480912 C2 RU2480912 C2 RU 2480912C2 RU 2011133410/07 A RU2011133410/07 A RU 2011133410/07A RU 2011133410 A RU2011133410 A RU 2011133410A RU 2480912 C2 RU2480912 C2 RU 2480912C2
Authority
RU
Russia
Prior art keywords
signal
digital
modulated optical
optical signal
information
Prior art date
Application number
RU2011133410/07A
Other languages
English (en)
Other versions
RU2011133410A (ru
Inventor
Игорь Акрамович Саитов
Роман Борисович Трегубов
Олег Олегович Басов
Сергей Игоревич Саитов
Original Assignee
Государственное образовательное учреждение высшего профессионального образования Академия Федеральной службы охраны Российской Федерации (Академия ФСО России)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Государственное образовательное учреждение высшего профессионального образования Академия Федеральной службы охраны Российской Федерации (Академия ФСО России) filed Critical Государственное образовательное учреждение высшего профессионального образования Академия Федеральной службы охраны Российской Федерации (Академия ФСО России)
Priority to RU2011133410/07A priority Critical patent/RU2480912C2/ru
Publication of RU2011133410A publication Critical patent/RU2011133410A/ru
Application granted granted Critical
Publication of RU2480912C2 publication Critical patent/RU2480912C2/ru

Links

Images

Landscapes

  • Optical Communication System (AREA)

Abstract

Изобретение относится к области цифровых оптических систем связи и может быть использовано при создании и совершенствовании таких систем. Техническим результатом является снижение задержки передачи данных при цифровой оптической связи. Результат достигается реализацией «разгоняющего» принципа построения маршрута передачи блока данных. Данный принцип заключается в таком распределении частот следования циклов цифровых электрических сигналов при их оптоэлектрических преобразованиях во второй фазе обслуживания, чтобы их значение возрастало по мере приближения к узлу-получателю. 1 з.п. ф-лы, 4 ил.

Description

Изобретение относится к цифровым оптическим системам связи и может быть использовано при создании и совершенствовании таких систем.
Известны способы передачи цифровой информации по волоконно-оптическим линиям связи (Теоретические основы построения средств связи оптического диапазона: учебное пособие / И.А.Саитов, В.М.Щекотихин. - Орел: Академия ФСО России, 2008. - 491 с. - С.397-454; Волоконно-оптические системы передачи: учебник для вузов / М.М.Бутусов, С.М.Верник, С.Л.Галкин и др.; под ред. В.Н.Гомзина. - М.: Радио и связь. - 1992. - 416 с.: ил. - С.10-20, 30-38). Согласно данным способам каждая пара терминалов волоконно-оптического тракта (передающий и приемный) использует постоянную скорость (частоту следования) для передачи одного цифрового потока.
Общим недостатком аналогов является значительная задержка передачи блоков данных, связанная с использованием гипотезы о их независимости при поступлении на обслуживание.
Наиболее близким по технической сущности к заявляемому способу и выбранным в качестве прототипа является способ цифровой оптической связи (патент HU 9600785 (А2) от 28.01.1997), заключающийся в том, что принимают первый электрический сигнал, несущий порцию информации на оптическом пункте передачи, кодируют порцию информации первого электрического сигнала в последовательность элементарных единиц информации, однозначно связанных с порцией информации, где единицы следуют одна за другой в соответствии с первой заранее установленной частотой исследования циклов, вырабатывают цифровой модулированный оптический сигнал на заранее установленной длине волны, соответствующий последовательности элементарных единиц информации, однозначно связанных с порцией информации, подают модулированный оптический сигнал в волоконно-оптическую линию, имеющую заранее установленное значение унитарного ослабления на упомянутой длине волны, принимают модулированный оптический сигнал, передаваемый из волоконно-оптической линии до данного уровня оптической мощности на оптическом пункте приема, преобразуют модулированный оптический сигнал в электрическую форму, обнаруживают в преобразованном сигнале второй цифровой электрический сигнал, имеющий вторую частоту следования циклов выше первой частоты следования циклов, распознают в обнаруженном сигнале фазу электрического сигнала на первой частоте следования посредством сравнивания принятой последовательности элементарных информационных единиц по меньшей мере с одной эталонной последовательностью и проверки соответствия результата сравнивания при данном условии.
Способ-прототип предусматривает распределение пропускной способности входящих и исходящих каналов связи пропорционально квадратному корню интенсивности блоков данных и не учитывает коррелированность процессов обработки блоков данных в смежных фазах обслуживания на узлах связи. Поэтому недостатком способа-прототипа является значительная среднесетевая задержка передачи блоков данных.
Задачей изобретения является разработка способа цифровой оптической связи, позволяющего снизить среднесетевую задержку передачи блоков данных. Заявленный способ расширяет арсенал средств данного назначения и повышает своевременность связи.
В заявленном способе эта задача решается тем, что в известном способе цифровой оптической связи, в котором кодируют порцию информации первого электрического сигнала в последовательность элементарных единиц информации, однозначно связанных с порцией информации, где единицы следуют одна за другой в соответствии с первой заранее установленной частотой следования циклов, вырабатывают цифровой модулированный оптический сигнал на заранее установленной длине волны, соответствующий последовательности элементарных единиц информации, однозначно связанных с порцией информации, подают модулированный оптический сигнал в волоконно-оптическую линию, имеющую заранее установленное значение унитарного ослабления на упомянутой длине волны, преобразуют модулированный оптический сигнал в электрическую форму, обнаруживают в преобразованном сигнале второй цифровой электрический сигнал, имеющий вторую частоту следования циклов выше первой частоты следования циклов, распознают в обнаруженном сигнале фазу электрического сигнала на первой частоте следования посредством сравнивания принятой последовательности элементарных информационных единиц по меньшей мере с одной эталонной последовательностью и проверки соответствия результата сравнивания при данном условии, дополнительно принимают первый электрический сигнал, несущий порцию информации, на узле-отправителе, а затем кодируют порцию информации первого электрического сигнала в последовательность элементарных единиц информации. После того как подают модулированный оптический сигнал в волоконно-оптическую линию, принимают модулированный оптический сигнал, передаваемый по волоконно-оптической линии до данного уровня оптической мощности, на промежуточном узле, а затем преобразуют модулированный оптический сигнал в электрическую форму. После того как распознают в обнаруженном сигнале фазу электрического сигнала, вырабатывают второй цифровой модулированный оптический сигнал на заранее установленной длине волны, соответствующий второму цифровому электрическому сигналу, и подают модулированный оптический сигнал в волоконно-оптическую линию, имеющую заранее установленное значение унитарного ослабления на упомянутой длине волны, принимают модулированный оптический сигнал, передаваемый по волоконно-оптической линии до данного уровня оптической мощности, на узле-получателе, преобразуют модулированный оптический сигнал в электрическую форму, обнаруживают в преобразованном сигнале третий цифровой электрический сигнал, имеющий третью частоту следования циклов выше второй частоты следования циклов, распознают в обнаруженном сигнале фазу электрического сигнала на второй частоте следования посредством сравнивания принятой последовательности элементарных информационных единиц по меньшей мере с одной эталонной последовательностью и проверки соответствия результата сравнивания при данном условии.
Кроме того, согласно заявленному изобретению число промежуточных узлов может быть больше одного, при этом в каждом последующем промежуточном узле принимают модулированный оптический сигнал, преобразуют его в электрическую форму и обнаруживают в преобразованном сигнале цифровой электрический сигнал, имеющий частоту следования циклов выше частоты следования циклов цифрового электрического сигнала, которому соответствует принимаемый модулированный оптический сигнал.
Новая совокупность существенных признаков позволяет достичь указанного технического результата за счет того, что в каждом последующем узле (промежуточном или узле-получателе) возрастает скорость считывания цифрового электрического сигнала, передаваемого посредством волоконно-оптической системы передачи.
Проведенный анализ уровня техники позволил установить, что аналоги, характеризующиеся совокупностью признаков, тождественных всем признакам заявленного способа цифровой оптической связи, отсутствуют. Следовательно, заявленное изобретение соответствует условию патентоспособности «новизна».
Результаты поиска известных решений в данной и смежных областях техники с целью выявления признаков, совпадающих с отличительными от прототипа признаками заявленного объекта, показали, что они не следуют явным образом из уровня техники. Из уровня техники также не выявлена известность влияния предусматриваемых существенными признаками заявленного изобретения преобразований на достижение указанного технического результата. Следовательно, заявленное изобретение соответствует условию патентоспособности «изобретательский уровень».
Заявленное изобретение поясняется следующими фигурами:
на фиг.1 - структурная схема волоконно-оптической системы передачи, реализующей предлагаемый способ цифровой оптической связи;
на фиг.2а - зависимость оптимального значения пропускной способности входящего канала связи от допустимой суммы пропускных способностей каналов двухфазной двухполюсной системы передачи;
на фиг.2б - зависимость оптимального значения пропускной способности исходящего канала связи от допустимой суммы пропускных способностей каналов двухфазной двухполюсной системы передачи;
на фиг.3 - зависимость допустимой среднесетевой задержки блока данных от допустимой суммы пропускных способностей каналов двухфазной двухполюсной системы передачи.
Реализация заявленного способа заключается в следующем (фиг.1).
Принимают первый электрический сигнал ЭС 1, несущий порцию информации, на узле-отправителе, в кодере 1 кодируют порцию информации первого электрического сигнала ЭС 1 в последовательность элементарных единиц информации, однозначно связанных с порцией информации, где единицы следуют одна за другой в соответствии с первой заранее установленной частотой следования циклов fСЦ1, в передающем оптическом модуле 2 вырабатывают цифровой модулированный оптический сигнал ЦМОС 1 на заранее установленной длине волны, соответствующий последовательности элементарных единиц информации, однозначно связанных с порцией информации, подают цифровой модулированный оптический сигнал ЦМОС 1 в волоконно-оптическую линию, имеющую заранее установленное значение унитарного ослабления на упомянутой длине волны, принимают цифровой модулированный оптический сигнал ЦМОС 1, передаваемый по волоконно-оптической линии до данного уровня оптической мощности, на промежуточном узле, в приемном оптическом модуле 3 преобразуют цифровой модулированный оптический сигнал ЦМОС 1 в электрическую форму, в электрическом регенераторе 4 обнаруживают в преобразованном сигнале второй цифровой электрический сигнал ЦЭС 2, имеющий вторую частоту следования циклов fСЦ2 выше первой частоты следования циклов fСЦ1, распознают в обнаруженном сигнале фазу электрического сигнала на первой частоте следования посредством сравнивания принятой последовательности элементарных информационных единиц по меньшей мере с одной эталонной последовательностью и проверки соответствия результата сравнивания при данном условии, в передающем оптическом модуле 5 вырабатывают второй цифровой модулированный оптический сигнал ЦМОС 2 на заранее установленной длине волны, соответствующий второму цифровому электрическому сигналу ЦЭС 2, и подают второй цифровой модулированный оптический сигнал ЦМОС 2 в волоконно-оптическую линию, имеющую заранее установленное значение унитарного ослабления на упомянутой длине волны, принимают второй цифровой модулированный оптический сигнал ЦМОС 2, передаваемый по волоконно-оптической линии до данного уровня оптической мощности, на узле-получателе, в приемном оптическом модуле 6 преобразуют второй цифровой модулированный оптический сигнал ЦМОС 2 в электрическую форму, в электрическом регенераторе 7 обнаруживают в преобразованном сигнале третий цифровой электрический сигнал ЦЭС 3, имеющий третью частоту следования циклов fСЦ3 выше второй частоты следования циклов fСЦ2, распознают в обнаруженном сигнале фазу электрического сигнала на второй частоте следования посредством сравнивания принятой последовательности элементарных информационных единиц по меньшей мере с одной эталонной последовательностью и проверки соответствия результата сравнивания при данном условии.
Кроме того, согласно настоящему изобретению число промежуточных узлов может быть больше одного, при этом в каждом последующем промежуточном узле принимают модулированный оптический сигнал, преобразуют его в электрическую форму и обнаруживают в преобразованном сигнале цифровой электрический сигнал, имеющий частоту следования циклов выше частоты следования циклов цифрового электрического сигнала, которому соответствует принимаемый модулированный оптический сигнал.
Заявленный способ цифровой оптической связи обеспечивает повышение частоты следования циклов цифровых электрических сигналов при их оптоэлектрическом преобразовании (скорости считывания блоков данных).
Для доказательства достижения заявленного технического результата приведем следующие рассуждения.
Пусть в ходе предпроектных исследований топологическая структура волоконно-оптической системы передачи декомпозирована на узлы с рангом 2 и узлы с рангом 3 и более, то есть выделены двухфазные двухполюсные СПД. При этом, согласно заявленному способу, в первой фазе обслуживания на промежуточном узле принимают модулированный оптический сигнал, соответствующий первому цифровому электрическому сигналу, имеющему первую частоту следования циклов. Во второй фазе обслуживания на промежуточном узле преобразуют модулированный оптический сигнал в электрическую форму, обнаруживают в преобразованном сигнале второй цифровой электрический сигнал, имеющий вторую частоту следования циклов выше первой частоты следования циклов. Ресурсом двухфазных двухполюсных сетей являются пропускные способности входящих и исходящих каналов связи.
Введем следующие обозначения:
Figure 00000001
- допустимая сумма пропускных способностей каналов двухфазной двухполюсной системы передачи;
Figure 00000002
- допустимая среднесетевая задержка блока данных в двухфазной двухполюсной системе передачи.
Необходимо найти минимум нелинейной целевой функции
Figure 00000003
при наличии линейного ограничения в виде равенства
Figure 00000004
,
где ρвх - интенсивность обслуживания блока данных в исходящем канале связи; σисх - параметр экспоненциального распределения.
Решив уравнение
Figure 00000005
относительно Сисх (пропускной способности исходящего канала связи), можно найти
Figure 00000006
- оптимальное значение пропускной способности исходящего канала связи двухфазной системы передачи. Такое решение представлено в [Саитов И.А., Трегубов Р.Б., Королев А.В. Методика оптимизации характеристик сетей передачи данных малой и средней связности. - Телекоммуникации, №11, 2006. - С.14-19]. Значение
Figure 00000007
, обеспечивающее минимум среднесетевой задержки блока данных в зависимости от исходных данных, оказывается на 5-11% больше, чем
Figure 00000008
(оптимальное значение пропускной способности входящего канала связи двухфазной системы передачи), во всем практически значимом диапазоне интенсивности поступления блоков данных в первую фазу.
Таким образом, скорости передачи первой и второй фаз обслуживания будут не одинаковы
Figure 00000009
, что свидетельствует о необходимости повышения частоты следования циклов цифровых электрических сигналов при их оптоэлектрическом преобразовании.
Правомерность теоретических предпосылок проверялась с помощью имитационной модели двухфазной двухполюсной волоконно-оптической системы передачи при следующих исходных данных:
- число генерируемых заявок NБД=1000000;
- интенсивность поступления γ*=0,5 блоков данных в секунду;
- средний размер блоков данных L=128 байт;
- допустимое значение суммы пропускных способностей каналов двухфазной системы передачи лежит в следующем интервале
Figure 00000010
.
На фиг.2а представлены следующие зависимости:
- решение прямой задачи выбора пропускной способности двухфазной двухполюсной системы передачи для входящего канала связи согласно способу-прототипу;
- решение прямой задачи выбора пропускной способности двухфазной двухполюсной системы передачи для входящего канала связи согласно настоящему изобретению.
На фиг.2б представлены следующие зависимости:
- решение прямой задачи выбора пропускной способности двухфазной двухполюсной системы передачи для исходящего канала связи согласно способу-прототипу;
- решение прямой задачи выбора пропускной способности двухфазной двухполюсной системы передачи для исходящего канала связи согласно настоящему изобретению.
На фиг.3 представлены следующие зависимости:
- минимально возможная среднесетевая задержка блока данных в двухфазной двухполюсной системе передачи, найденная согласно способу-прототипу;
- минимально возможная среднесетевая задержка блока данных в двухфазной двухполюсной системе передачи, найденная согласно настоящему изобретению.
Анализ представленных результатов имитационного моделирования позволяет сделать следующие выводы:
а) имеющийся ресурс пропускной способности двухфазной двухполюсной СПД следует распределять неравномерно, большую его часть необходимо выделить для второй фазы обслуживания, а меньшую - для первой;
б) имеется возможность в среднем на 10% снизить задержку передачи блоков данных, осуществив распределение скоростей их считывания из второй фазы обслуживания (частоты следования циклов цифровых электрических сигналов при их оптоэлектрическом преобразовании) в порядке возрастания по мере приближения к узлу-получателю.
Полученные выводы указывают на возможность решения поставленной задачи изобретения.

Claims (2)

1. Способ цифровой оптической связи, в котором кодируют порцию информации первого электрического сигнала в последовательность элементарных единиц информации, однозначно связанных с порцией информации, где единицы следуют одна за другой в соответствии с первой заранее установленной частотой следования циклов, вырабатывают цифровой модулированный оптический сигнал на заранее установленной длине волны, соответствующий последовательности элементарных единиц информации, однозначно связанных с порцией информации, подают цифровой модулированный оптический сигнал в волоконно-оптическую линию, имеющую заранее установленное значение унитарного ослабления на упомянутой длине волны, преобразуют цифровой модулированный оптический сигнал в электрическую форму, обнаруживают в преобразованном сигнале второй цифровой электрический сигнал, имеющий вторую частоту следования циклов выше первой частоты следования циклов, распознают в обнаруженном сигнале фазу электрического сигнала на первой частоте следования посредством сравнивания принятой последовательности элементарных информационных единиц по меньшей мере с одной эталонной последовательностью и проверки соответствия результата сравнивания при данном условии, отличающийся тем, что принимают первый электрический сигнал, несущий порцию информации, на узле-отправителе, а затем кодируют порцию информации первого электрического сигнала в последовательность элементарных единиц информации, после того как подают цифровой модулированный оптический сигнал в волоконно-оптическую линию, принимают цифровой модулированный оптический сигнал, передаваемый по волоконно-оптической линии до данного уровня оптической мощности, на промежуточном узле, а затем преобразуют цифровой модулированный оптический сигнал в электрическую форму, после того как распознают в обнаруженном сигнале фазу электрического сигнала, вырабатывают второй цифровой модулированный оптический сигнал на заранее установленной длине волны, соответствующий второму цифровому электрическому сигналу, и подают второй цифровой модулированный оптический сигнал в волоконно-оптическую линию, имеющую заранее установленное значение унитарного ослабления на упомянутой длине волны, принимают второй цифровой модулированный оптический сигнал, передаваемый по волоконно-оптической линии до данного уровня оптической мощности, на узле-получателе, преобразуют второй цифровой модулированный оптический сигнал в электрическую форму, обнаруживают в преобразованном сигнале третий цифровой электрический сигнал, имеющий третью частоту следования циклов выше второй частоты следования циклов, распознают в обнаруженном сигнале фазу электрического сигнала на второй частоте следования посредством сравнивания принятой последовательности элементарных информационных единиц по меньшей мере с одной эталонной последовательностью и проверки соответствия результата сравнивания при данном условии.
2. Способ цифровой оптической связи по п.1, отличающийся тем, что число промежуточных узлов больше одного, при этом в каждом последующем промежуточном узле принимают модулированный оптический сигнал, преобразуют его в электрическую форму и обнаруживают в преобразованном сигнале цифровой электрический сигнал, имеющий частоту следования циклов выше частоты следования циклов цифрового электрического сигнала, которому соответствует принимаемый модулированный оптический сигнал.
RU2011133410/07A 2011-08-09 2011-08-09 Способ цифровой оптической связи RU2480912C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2011133410/07A RU2480912C2 (ru) 2011-08-09 2011-08-09 Способ цифровой оптической связи

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2011133410/07A RU2480912C2 (ru) 2011-08-09 2011-08-09 Способ цифровой оптической связи

Publications (2)

Publication Number Publication Date
RU2011133410A RU2011133410A (ru) 2013-02-20
RU2480912C2 true RU2480912C2 (ru) 2013-04-27

Family

ID=49119726

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011133410/07A RU2480912C2 (ru) 2011-08-09 2011-08-09 Способ цифровой оптической связи

Country Status (1)

Country Link
RU (1) RU2480912C2 (ru)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6178023B1 (en) * 1995-03-28 2001-01-23 Pirelli Cavi S.P.A. Optical telecommunication method providing a transmitting and receiving service channel
US6407843B1 (en) * 1998-03-05 2002-06-18 Kestrel Solutions, Inc. System and method for spectrally efficient transmission of digital data over optical fiber
RU2247473C1 (ru) * 2003-10-29 2005-02-27 Военный университет связи Линия передачи высокоскоростного цифрового оптического сигнала
CN101488795A (zh) * 2009-01-08 2009-07-22 福建邮科通信技术有限公司 一种应用于直放站的光纤数字化传输方法
RU2384955C1 (ru) * 2009-04-08 2010-03-20 Закрытое акционерное общество "Центральный научно-исследовательский технологический институт "Техномаш-ВОС" (ЗАО "ЦНИТИ "Техномаш-ВОС") Волоконно-оптическая система передачи информации
US7769305B1 (en) * 2005-10-21 2010-08-03 Nortel Networks Limited High-speed digital signal processing in a coherent optical receiver

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6178023B1 (en) * 1995-03-28 2001-01-23 Pirelli Cavi S.P.A. Optical telecommunication method providing a transmitting and receiving service channel
US6407843B1 (en) * 1998-03-05 2002-06-18 Kestrel Solutions, Inc. System and method for spectrally efficient transmission of digital data over optical fiber
RU2247473C1 (ru) * 2003-10-29 2005-02-27 Военный университет связи Линия передачи высокоскоростного цифрового оптического сигнала
US7769305B1 (en) * 2005-10-21 2010-08-03 Nortel Networks Limited High-speed digital signal processing in a coherent optical receiver
CN101488795A (zh) * 2009-01-08 2009-07-22 福建邮科通信技术有限公司 一种应用于直放站的光纤数字化传输方法
RU2384955C1 (ru) * 2009-04-08 2010-03-20 Закрытое акционерное общество "Центральный научно-исследовательский технологический институт "Техномаш-ВОС" (ЗАО "ЦНИТИ "Техномаш-ВОС") Волоконно-оптическая система передачи информации

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Иванов А.Б. Волоконная оптика. - М.: SYRUS, 1999, с.196-200. *

Also Published As

Publication number Publication date
RU2011133410A (ru) 2013-02-20

Similar Documents

Publication Publication Date Title
US8913888B2 (en) In-band optical frequency division reflectometry
CN101882968B (zh) 基于oofdm的无源光网络接入系统的时间同步方法
CN102624479A (zh) 波长标签传输方法及装置
CN102231864B (zh) 基于光码字标签的光分组组播发送、接收方法及其装置
CN107743050A (zh) 采用四阶脉幅调制和解调技术实现高速光信号全双工收发的系统
CN104868969A (zh) 一种基于斯托克斯分析的非正交偏振复用信号传输方案
CN108933626B (zh) 一种信号处理方法和装置
Revathi et al. Performance analysis of wave length division and sub carrier multiplexing using different modulation techniques
RU2480912C2 (ru) Способ цифровой оптической связи
CN103402148A (zh) 基于光码分复用实现三网融合的发送接收方法及其装置
CN105049124A (zh) 适用于ddo-ofdm的双发同收传输系统及其发射端
CN104301039A (zh) 基于光码分多址的局端光收发装置
EP3219033B1 (en) Communications network
CN208924260U (zh) 一种mdi-qkd网络通信系统
CN109861758A (zh) 一种新型低成本低延时的5g前传系统及设备
CN203492164U (zh) 基于光码分复用实现三网融合的发送装置和接收装置
RU2496239C1 (ru) Способ стеганографической передачи информации через главный оптический тракт и устройство для его осуществления
Ibrahimov et al. Research of the quality of functioning of fiber-optical transmission systems on the basis of modern technologies
CN204046614U (zh) 基于光码分多址复用的局端光收发装置
CN101068136B (zh) 基于色散匹配的光通信多路复用方法及系统
US7869455B2 (en) Code division multiplex transmitting and receiving apparatus and method
CN107222441A (zh) 一种新的差分混沌键控通信方法
CN110456453B (zh) 光通信设备、光通信方法和计算机可读介质
CN103402146B (zh) 正交频分复用无源光网络的下行节能的传输系统
RU2421793C1 (ru) Способ передачи мультипротокольных информационных потоков и устройство для его осуществления

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20130810