JP2002321969A - Dense cordierite-based ceramic and method of manufacturing the same - Google Patents

Dense cordierite-based ceramic and method of manufacturing the same

Info

Publication number
JP2002321969A
JP2002321969A JP2001125543A JP2001125543A JP2002321969A JP 2002321969 A JP2002321969 A JP 2002321969A JP 2001125543 A JP2001125543 A JP 2001125543A JP 2001125543 A JP2001125543 A JP 2001125543A JP 2002321969 A JP2002321969 A JP 2002321969A
Authority
JP
Japan
Prior art keywords
cordierite
thermal expansion
dense
porosity
silicon nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001125543A
Other languages
Japanese (ja)
Other versions
JP5011609B2 (en
Inventor
Yoshiaki Kurihara
祥晃 栗原
Kiyoshi Kawai
潔 川合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2001125543A priority Critical patent/JP5011609B2/en
Publication of JP2002321969A publication Critical patent/JP2002321969A/en
Application granted granted Critical
Publication of JP5011609B2 publication Critical patent/JP5011609B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide dense cordierite-based ceramic having a higher rigidity than metal, a small thermal expansion coefficient, and the porosity of <=5%, and to provide a method of manufacturing the same. SOLUTION: The method is a manufacturing method for the following ceramics: dense cordierite-based ceramic which contains 93-99.99 wt.% of cordierite expressed by the formula of 2MgO.2Al2 O3 .5SiO2 and 0.01-7 wt.% of silicon nitride and which has the porosity of <=5%; dense cordierite-based ceramic which is made by mixing and molding 93-99.99 wt.% of cordierite powder expressed by the formula of 2MgO.2Al2 O3 .5SiO2 and 0.01-7 wt.% of silicon nitride powder and then sintering the mold at 1,270-1,440 deg.C and which has the porosity of <=5%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、露光装置に代表さ
れるような半導体製造装置などに使用されるステージ、
ウェハ吸着チャック及びこれらの構成部品に適した、比
較的剛性が高くかつ熱膨張係数の絶対値が小さな緻密コ
ーディエライト質セラミックス及びその製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a stage used in a semiconductor manufacturing apparatus represented by an exposure apparatus,
The present invention relates to a dense cordierite ceramic having a relatively high rigidity and a small absolute value of a thermal expansion coefficient suitable for a wafer suction chuck and these components, and a method for producing the same.

【0002】[0002]

【従来の技術】従来、半導体製造装置の部品には、価格
や化学的安定性の面からアルミナセラミックス、SiC
セラミックス等が多く使用されてきた。
2. Description of the Related Art Conventionally, parts of a semiconductor manufacturing apparatus include alumina ceramics and SiC in terms of cost and chemical stability.
Ceramics and the like have been frequently used.

【0003】しかし、近年、電子回路の高集積化が進む
につれて、これらの部材により高い位置決め精度が要求
されるようなり、特に製造装置の温度変化に対する精度
の低下が問題となってきている。即ち、加工精度及び歩
留まり向上のためには、室温付近(20〜30℃)での
熱膨張係数が小さく、かつ剛性の高い材料が要求されて
きている。
However, in recent years, as the degree of integration of electronic circuits has increased, higher positioning accuracy has been required for these members, and in particular, the accuracy of the manufacturing apparatus with respect to temperature changes has been reduced. That is, in order to improve the processing accuracy and the yield, a material having a small coefficient of thermal expansion near room temperature (20 to 30 ° C.) and a high rigidity has been required.

【0004】また、ウェハチャックやスライダーに代表
されるような可動部材では、その軽量性も重視される。
即ち、比重が大きくなると高い剛性を有していても始動
及び静止に大きな駆動力と時間が必要となるため、生産
スピード及び歩留まりの低下をもたらすことになる。
In a movable member represented by a wafer chuck or a slider, its weight is also important.
In other words, when the specific gravity increases, a large driving force and a long time are required for starting and stopping even if the rigidity is high, so that the production speed and the yield are reduced.

【0005】近年、半導体製造装置の部品に使用される
低熱膨張セラミックスとして、窒化珪素セラミックス、
コーディエライト系セラミックス、リチウムアルミノシ
リケート系セラミックス等が提案されている。
In recent years, silicon nitride ceramics and low thermal expansion ceramics used for parts of semiconductor manufacturing equipment have been used.
Cordierite ceramics, lithium aluminosilicate ceramics, and the like have been proposed.

【0006】例えば、特公平6−97675号公報に
は、真空中でSiウェハを保持及び搬送する静電チャッ
ク用基板材料としてコーディエライト系セラミックスを
使用することが記載されている。
For example, Japanese Patent Publication No. 6-97675 describes the use of cordierite ceramics as a substrate material for an electrostatic chuck for holding and transporting a Si wafer in a vacuum.

【0007】しかし、コーディエライト系セラミックス
は融点と焼結開始温度が非常に近く、焼結温度範囲が約
10℃程度に限定される。この温度より低い場合は緻密
な焼結体が得られず、逆に高ければ焼成による変形が生
じたり溶融してしまうという問題点がある。即ち、緻密
なコーディエライト系セラミックスを得ることは非常に
困難であった。
However, cordierite ceramics have very close melting points and sintering start temperatures, and the sintering temperature range is limited to about 10 ° C. If the temperature is lower than this, a dense sintered body cannot be obtained, while if it is higher, there is a problem that deformation due to firing occurs or the material is melted. That is, it was very difficult to obtain dense cordierite ceramics.

【0008】この問題点を改善するために、特公昭62
−34205公報には、コーディエライトにY
分を0.3〜8重量%含有させることにより、コーディ
エライトの特質を損なうことなく緻密化でき、1.6〜
2.8ppm・K−1の熱膨張係数が得られることが記
載されている。
In order to solve this problem, Japanese Patent Publication No. Sho 62
The -34205 Publication, by containing 0.3 to 8% by weight of Y 2 O 3 component in the cordierite, can densification without impairing the characteristics of cordierite, 1.6
It is described that a thermal expansion coefficient of 2.8 ppm · K −1 is obtained.

【0009】また、特開2001−39764公報に
は、コーディエライトを80〜92重量%及び希土類元
素の酸化物を2〜20重量%の割合で含有することによ
り、ヤング率が120GPa以上で且つ熱膨張係数が±
0.25ppm・K−1であるコーディエライト質セラ
ミックスが記載されている。
Japanese Patent Application Laid-Open No. 2001-39764 discloses that the cordierite contains 80 to 92% by weight and the oxide of a rare earth element at 2 to 20% by weight, so that the Young's modulus is 120 GPa or more and Thermal expansion coefficient ±
A cordierite ceramic having 0.25 ppm · K −1 is described.

【0010】同じく低熱膨張セラミックスとして知られ
ているリチウムアルミノシリケート(一般式LiO・
Al・nSiO)系セラミックス、特にβ−ス
ポデューメンについては、天然材料を使用して作製され
ることが特開昭56−164070号公報に示されてい
る。また、β−ユークリプタイトについては、MgOを
含むことにより緻密化できることが特開2000−21
9572号公報に示されている。
A lithium aluminosilicate (also represented by the general formula Li 2 O.
Japanese Patent Application Laid-Open No. 56-164070 discloses that natural ceramics are used for Al 2 O 3 .nSiO 2 ) -based ceramics, particularly β-spodumene. Japanese Patent Application Laid-Open No. 2000-21 discloses that β-eucryptite can be densified by containing MgO.
No. 9572.

【0011】さらに、特開2000−281454号公
報には、露光装置の部品などに適した低熱膨張高剛性セ
ラミックスとして、負の熱膨張特性を有するLiAlS
iO と、正の熱膨張特性及び高剛性特性を有するSi
又はSiCと、MgOの3成分で構成されるセラ
ミックスが記載されている。
Further, Japanese Patent Application Laid-Open No. 2000-281454
The report includes a low thermal expansion and high rigidity
LiAlS with negative thermal expansion characteristics as Lamix
iO 4And Si having positive thermal expansion characteristics and high rigidity characteristics
3N4Or a sera composed of three components, SiC and MgO
The mix is listed.

【0012】ところが最近は、コンピュータに搭載され
ている記憶チップに代表されるような半導体LSI、V
LSI等の高集積化がさらに進み、それに伴いサブミク
ロンオーダの超微細な回路形成が必須となってきてい
る。従って、超微細回路をSiウェハ上に形成する露光
装置には高い精度、例えば位置決めでは0.05μm以
下の精度が要求されている。
Recently, however, semiconductor LSIs such as storage chips mounted on computers and V
Higher integration of LSIs and the like has been further advanced, and accordingly, it has become essential to form ultra-fine circuits on the order of submicrons. Therefore, an exposure apparatus that forms an ultrafine circuit on a Si wafer is required to have high accuracy, for example, an accuracy of 0.05 μm or less in positioning.

【0013】しかしながら従来の窒化珪素セラミックス
は、剛性はヤング率が約300GPa(=×10
a)と高いが、20〜30℃のときの熱膨張係数が1.
31ppm・K−1(=×10−6/K)であり、この
ことは長さ1mの露光装置部材の温度が0.05℃変化
するだけで0.06μm(=×10−6m)程度の寸法
変化が生じることを意味しており、精密回路を形成する
上での品質及び歩留まりの低下をもたらしている。
However, conventional silicon nitride ceramics have a rigidity of a Young's modulus of about 300 GPa (= × 10 6 P
a) is high, but the coefficient of thermal expansion at 20 to 30 ° C. is 1.
31 ppm · K −1 (= × 10 −6 / K), which is about 0.06 μm (= × 10 −6 m) only by changing the temperature of the exposure apparatus member having a length of 1 m by 0.05 ° C. This means that the dimensional change occurs, and the quality and yield in forming a precision circuit are reduced.

【0014】これに対し、コーディエライト系セラミッ
クスは、20〜30℃のときの熱膨張係数は0.2pp
m・K−1程度と小さく、温度変化に対する寸法変化を
低減させることができている。しかし剛性の点ではヤン
グ率が約100〜120GPaと低く、外部応力に対し
て寸法変化が生じ易いという欠点がある。
On the other hand, cordierite ceramics have a coefficient of thermal expansion of 0.2 pp at 20 to 30 ° C.
As small as about m · K −1 , a dimensional change with respect to a temperature change can be reduced. However, in terms of rigidity, the Young's modulus is as low as about 100 to 120 GPa, and there is a disadvantage that dimensional changes easily occur due to external stress.

【0015】また、リチウムアルミノシリケート系セラ
ミックスは、その組成により、20〜30℃のときの熱
膨張係数が−8〜−2ppm・K−1程度のものが得ら
れているが、やはり剛性が低く、ヤング率は60〜90
GPa程度であり、コーディエライト系セラミックスと
同じく外部応力に対して寸法変化が生じ易いという欠点
がある。
The lithium aluminosilicate ceramics have a thermal expansion coefficient at -20 to 30 ° C. of about −8 to −2 ppm · K −1 depending on the composition, but still have low rigidity. , Young's modulus is 60-90
GPa, which is disadvantageous in that dimensional changes are likely to occur with respect to external stress as in cordierite ceramics.

【0016】[0016]

【発明が解決しようとする課題】請求項1及び2記載の
発明は、金属に比べ剛性が高く、かつ熱膨張係数が小さ
く、気孔率が5%以下の緻密コーディエライト質セラミ
ックスを提供するものである。請求項3及び4記載の発
明は、金属に比べ剛性が高く、かつ熱膨張係数が小さ
く、気孔率が5%以下の緻密コーディエライト質セラミ
ックスの製造方法を提供するものである。
The first and second aspects of the present invention provide a dense cordierite ceramic having a higher rigidity, a lower coefficient of thermal expansion, and a porosity of 5% or less as compared with metal. It is. The third and fourth aspects of the present invention provide a method for producing a dense cordierite ceramic having a higher rigidity, a lower coefficient of thermal expansion, and a porosity of 5% or less as compared with a metal.

【0017】[0017]

【課題を解決するための手段】本発明は、一般式2Mg
O・2Al・5SiOで表されるコーディエラ
イト93〜99.99重量%及び窒化珪素0.01〜7
重量%を含有し、かつ気孔率が5%以下である緻密コー
ディエライト質セラミックスに関する。また、本発明
は、20〜30℃のときの熱膨張係数が−0.5〜+
0.5ppm・K−1で、かつヤング率が130GPa
以上である緻密コーディエライト質セラミックスに関す
る。
According to the present invention, there is provided a compound of the general formula 2Mg
Cordierite 93 to 99.99 wt% and silicon nitride represented by O · 2Al 2 O 3 · 5SiO 2 0.01~7
The present invention relates to dense cordierite-based ceramics containing 5% by weight and having a porosity of 5% or less. In addition, the present invention has a thermal expansion coefficient at −20 to 30 ° C. of −0.5 to +
In 0.5 ppm · K -1, and Young's modulus of 130GPa
The present invention relates to dense cordierite ceramics.

【0018】また、本発明は、一般式2MgO・2Al
・5SiOで表されるコーディエライト粉末9
3〜99.99重量%及び窒化珪素粉末0.01〜7重
量%を混合、成形した後、1270〜1440℃の温度
で焼成することを特徴とする気孔率が5%以下の緻密コ
ーディエライト質セラミックスの製造方法に関する。さ
らに、本発明は、20〜30℃のときの熱膨張係数が−
0.5〜+0.5ppm・K−1で、かつヤング率が1
30GPa以上である請求項3記載の緻密コーディエラ
イト質セラミックスの製造方法に関する。
Further, the present invention relates to a compound of the general formula 2MgO.2Al
2 O 3 · 5SiO cordierite powder 9 represented by 2
3 to 99.99% by weight and 0.01 to 7% by weight of silicon nitride powder are mixed and molded, and then calcined at a temperature of 1270 to 1440 ° C. The present invention relates to a method for producing porous ceramics. Furthermore, the present invention has a coefficient of thermal expansion at 20 to 30 ° C.
0.5 to +0.5 ppm · K -1 and a Young's modulus of 1
4. The method for producing a dense cordierite ceramic according to claim 3, which is at least 30 GPa.

【0019】[0019]

【発明の実施の形態】本発明に用いられるコーディエラ
イト粉末は、一般式として2MgO・2Al ・5
SiOで表される複合酸化物であるが、このMgOと
AlとSiOの比は本発明における特性の範囲
を脱しなければ、正確にモル比で2:2:5とする必要
はない。ただし、焼結助剤などを添加せずにその粉末の
みを成形、焼成して得られる焼結体の20〜30℃にお
ける熱膨張係数が−2.0〜+1.0ppm・K−1
度のコーディエライト粉末を用いることが好ましい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Cordiera used in the present invention
The powder is 2MgO.2Al as a general formula. 2O3・ 5
SiO2Is a composite oxide represented by
Al2O3And SiO2Is the range of characteristics in the present invention.
Must be exactly 2: 2: 5 in molar ratio if not removed
There is no. However, without adding sintering aids,
The sintered body obtained by molding and firing
-2.0 to +1.0 ppm · K-1About
It is preferred to use cordierite powder of different degrees.

【0020】このコーディエライト粉末は、例えば純度
が99%以上のMgO、Al及びSiOの粉末
を、モル比で約2:2:5となるように秤量し、ボール
ミルなどを用いて湿式混合、乾燥、造粒後、大気中で1
000〜1400℃の温度で10時間程度仮焼きし、そ
の後平均粒径を0.5〜30μm程度に粉砕して用いる
ことができる。また、天然に産出するコーディエライト
鉱石を粉砕して用いることもできる。
For the cordierite powder, for example, powders of MgO, Al 2 O 3 and SiO 2 having a purity of 99% or more are weighed so as to have a molar ratio of about 2: 2: 5, and are used with a ball mill. After wet mixing, drying and granulation, 1
It can be calcined at a temperature of 000 to 1400 ° C. for about 10 hours and then pulverized to an average particle size of about 0.5 to 30 μm for use. Further, cordierite ore produced naturally can be used after being crushed.

【0021】一方、窒化珪素粉末(Ni)は、一
般に市販されている粉末を用いることができる。窒化珪
素粉末の粒径は、価格の点で平均粒径が0.1μm以上
が好ましく、0.5μm以上がより好ましく、0.6〜
10μmの範囲がさらに好ましい。
On the other hand, a commercially available powder can be used as the silicon nitride powder (Ni 3 O 4 ). The average particle diameter of the silicon nitride powder is preferably 0.1 μm or more, more preferably 0.5 μm or more, and 0.6 to 0.6 μm.
A range of 10 μm is more preferable.

【0022】コーディエライト粉末及び窒化珪素粉末の
平均粒径は、レーザー式粒度分布測定器(MALVER
N社製のマスターサイザー)で測定して求めることがで
きる。
The average particle size of the cordierite powder and the silicon nitride powder can be determined by using a laser type particle size distribution analyzer (MALVER).
(Master Sizer manufactured by N Company).

【0023】なお、窒化珪素粉末は、20〜30℃のと
きの熱膨張係数が0.5〜1.5ppm・K−1で、ヤ
ング率が200GPa以上である窒化珪素の粉末を用い
ることが好ましく、20〜30℃のときの熱膨張係数が
0.8〜1.3ppm・K で、ヤング率が250〜
300GPaの範囲の窒化珪素の粉末を用いることがさ
らに好ましい。
The silicon nitride powder preferably has a coefficient of thermal expansion at 20 to 30 ° C. of 0.5 to 1.5 ppm · K −1 and a Young's modulus of 200 GPa or more. The coefficient of thermal expansion at 20 to 30 ° C is 0.8 to 1.3 ppm · K - 1 , and the Young's modulus is 250 to
More preferably, silicon nitride powder in the range of 300 GPa is used.

【0024】本発明において、コーディエライト粉末と
窒化珪素粉末との配合割合は、コーディエライト粉末9
3〜99.99重量%に対して窒化珪素粉末が0.01
〜7重量%の範囲が好ましく、コーディエライト粉末9
6〜99.9重量%に対して窒化珪素粉末が0.1〜4
重量%の範囲がさらに好ましい。コーディエライト粉末
が93重量%未満で窒化珪素粉末が7重量%を超える
と、焼成時に試料内部から発泡が起こり、緻密コーディ
エライト質セラミックスが得られない。一方、コーディ
エライト粉末が99.99重量%を超え窒化珪素粉末が
0.01体積%未満であると、130GPa以上のヤン
グ率を有する緻密コーディエライト質セラミックスが得
られず、外部応力に対して寸法変化が生じ易くなる。
In the present invention, the mixing ratio of cordierite powder and silicon nitride powder is
Silicon nitride powder is 0.01 to 3 to 99.99% by weight.
To 7% by weight, cordierite powder 9
0.1 to 4 silicon nitride powder for 6 to 99.9% by weight
A range of weight% is more preferred. If the cordierite powder is less than 93% by weight and the silicon nitride powder exceeds 7% by weight, foaming occurs from the inside of the sample during firing, and a dense cordierite ceramic cannot be obtained. On the other hand, when the cordierite powder exceeds 99.99% by weight and the silicon nitride powder is less than 0.01% by volume, a dense cordierite ceramic having a Young's modulus of 130 GPa or more cannot be obtained, and the Dimensional changes are likely to occur.

【0025】本発明によって得られる緻密コーディエラ
イト質セラミックスの気孔率は、5%以下、好ましくは
4%以下、さらに好ましくは3%以下で、0であること
がもっとも好ましい。気孔率が5%を超えると、経時変
化及び遊離ガスの発生を抑制することができず、さらに
は気孔率の増加に伴いヤング率が低下する。気孔率は、
アルキメデス法で測定して求めることができる。
The porosity of the dense cordierite ceramic obtained by the present invention is 5% or less, preferably 4% or less, more preferably 3% or less, and most preferably 0. If the porosity exceeds 5%, the change with time and the generation of free gas cannot be suppressed, and the Young's modulus decreases as the porosity increases. The porosity is
It can be determined by measuring by the Archimedes method.

【0026】また、本発明によって得られる緻密コーデ
ィエライト質セラミックスの20〜30℃のときの熱膨
張係数は、−0.5〜+0.5ppm・K−1の範囲が
好ましく、−0.4〜+0.3ppm・K−1の範囲が
より好ましく、−0.2〜+0.2ppm・K−1の範
囲がさらに好ましい。−0.5〜+0.5ppm・K
−1の範囲から外れると少しの温度変化に対して寸法変
化が生じる傾向がある。熱膨張係数は、全膨張型熱膨張
計で測定して求めることができる。
The dense cord obtained by the present invention
Thermal expansion of yeritic ceramics at 20-30 ° C
The tension coefficient is -0.5 to +0.5 ppm · K-1Range of
Preferably, -0.4 to +0.3 ppm · K-1Range of
More preferably, -0.2 to +0.2 ppm · K-1Range of
Enclosures are more preferred. -0.5 to +0.5 ppm · K
-1Out of the range, the dimensional change for a slight temperature change
Tend to occur. The thermal expansion coefficient is the total expansion type thermal expansion
It can be determined by measuring with a meter.

【0027】さらに、本発明によって得られる緻密コー
ディエライト質セラミックスのヤング率は、130GP
a以上が好ましく、135GPa以上がより好ましく、
140GPa以上がさらに好ましく、上限については特
に制限はない。130GPa未満であると外部応力に対
して寸法変化が生じる傾向がある。ヤング率は、超音波
パルス法で測定して求めることができる。
The dense cordierite ceramic obtained by the present invention has a Young's modulus of 130 GP.
a or more is preferable, and 135 GPa or more is more preferable,
It is more preferably 140 GPa or more, and there is no particular upper limit. If it is less than 130 GPa, dimensional change tends to occur due to external stress. The Young's modulus can be determined by measuring using an ultrasonic pulse method.

【0028】コーディエライト粉末と窒化珪素粉末との
混合法については特に制限はなく、例えばボールミル、
乳鉢等を用いて粉砕、混合することができる。成形法に
ついても制限はなく、金型プレス成形、射出成形、等方
加圧成形等の方法で成形することができる。なお成形圧
力は、各々成形方法により異なるため特に制限はない。
The method of mixing the cordierite powder with the silicon nitride powder is not particularly limited.
It can be ground and mixed using a mortar or the like. There is no limitation on the molding method, and molding can be performed by a method such as die press molding, injection molding, or isostatic pressing. The molding pressure is not particularly limited because it differs depending on the molding method.

【0029】また、焼成は、高いヤング率を得る点で窒
素(N2)ガス、アルゴン(Ar)ガス等の不活性ガス
雰囲気中又は真空中で焼成することが好ましい。焼成温
度は、1270〜1440℃、好ましくは1280〜1
430℃、さらに好ましくは1300〜1400℃の範
囲とされ、1270℃未満であると得られるセラミック
スが緻密化せず、1440℃を超えると成形体が溶融す
るという問題点が生じる。
The firing is preferably performed in an atmosphere of an inert gas such as a nitrogen (N2) gas or an argon (Ar) gas or in a vacuum in order to obtain a high Young's modulus. The firing temperature is 1270-1440 ° C., preferably 1280-1.
The temperature is set to 430 ° C, more preferably 1300 to 1400 ° C. If the temperature is lower than 1270 ° C, the obtained ceramics will not be densified.

【0030】以下、本発明を実施例により説明する。Hereinafter, the present invention will be described with reference to examples.

【実施例】純度99%以上の水酸化マグネシウムを10
00℃で1時間仮焼きして得た酸化マグネシウム原料
と、それぞれ純度99%以上のAl及びSiO
の粉末をモル比で2:2:5となるように配合し、ボー
ルミルで24時間湿式混合した後、乾燥、造粒し、次い
で大気中で1400℃の温度で10時間仮焼きしてコー
ディエライト粉末を得た。得られたコーディエライト粉
末をX線回折装置で測定した結果、ほぼ単相のコーディ
エライト粉末が得られていた。
Example: Magnesium hydroxide having a purity of 99% or more was
Magnesium oxide raw material obtained by calcining at 00 ° C. for 1 hour, and Al 2 O 3 and SiO 2 each having a purity of 99% or more.
Was mixed in a molar ratio of 2: 2: 5, wet-mixed in a ball mill for 24 hours, dried and granulated, and then calcined at 1400 ° C. for 10 hours in air to obtain a cordier. Light powder was obtained. As a result of measuring the obtained cordierite powder with an X-ray diffractometer, almost single-phase cordierite powder was obtained.

【0031】このコーディエライト粉末を乳鉢にて粉砕
後、等方加圧成形し、窒素雰囲気中で1350℃の温度
で焼成した試料の特性を表1の試料No.1に示す。そ
の結果、気孔率は3%及び20〜30℃のときの熱膨張
係数は−0.2ppm・K であったが、ヤング率は
118GPaと低い値であった。
This cordierite powder was pulverized in a mortar, then subjected to isotropic pressure molding, and fired at a temperature of 1350 ° C. in a nitrogen atmosphere. It is shown in FIG. As a result, the porosity was 3% and the coefficient of thermal expansion at 20 to 30 ° C. was −0.2 ppm · K 1 , but the Young's modulus was as low as 118 GPa.

【0032】次に、上記コーディエライト粉末に対し
て、焼結助剤として20〜30℃のときの熱膨張係数が
1.1ppm・K−1及びヤング率が350GPaで平
均粒径が0.6μmの窒化珪素粉末を表1に示す割合で
添加し、ボールミルで24時間粉砕、混合し、乾燥後6
0メッシュの篩いを通して造粒した。その後20MPa
の圧力で一軸加圧成形し、直径が25mm及び厚さが約
10mmのペレット状に成形した後、120MPaの圧
力で等方加圧成形して成形体を得た。次いで得られた成
形体を表1に示す条件で焼成して焼結体(緻密コーディ
エライト質セラミックス)を得た。なお試料No.18
のみ混合及び粉砕は全て乳鉢を用いて行った。
Next, the above cordierite powder has a coefficient of thermal expansion of 1.1 ppm · K −1, a Young's modulus of 350 GPa and an average particle diameter of 0.2 at 20 to 30 ° C. as a sintering aid. 6 μm of silicon nitride powder was added at the ratio shown in Table 1, and the mixture was pulverized and mixed in a ball mill for 24 hours.
Granulated through a 0 mesh sieve. Then 20MPa
And then formed into a pellet having a diameter of 25 mm and a thickness of about 10 mm, and then isostatically pressed at a pressure of 120 MPa to obtain a molded body. Next, the obtained molded body was fired under the conditions shown in Table 1 to obtain a sintered body (a dense cordierite ceramic). The sample No. 18
Only mixing and grinding were performed using a mortar.

【0033】得られた焼結体について、気孔率、ヤング
率及び熱膨張係数を求めた。その結果を表1に示す。な
お気孔率はアルキメデス法で測定して求め、ヤング率は
超音波パルス法で測定して求め、また熱膨張係数は全膨
張型熱膨張計で測定して求めた。なお熱膨張係数は20
〜30℃での値を示した。
The porosity, Young's modulus and coefficient of thermal expansion of the obtained sintered body were determined. Table 1 shows the results. The porosity was determined by Archimedes' method, the Young's modulus was measured by an ultrasonic pulse method, and the coefficient of thermal expansion was measured by a total expansion type thermal dilatometer. The coefficient of thermal expansion is 20
The value at 3030 ° C. was shown.

【0034】[0034]

【表1】 [Table 1]

【0035】表1に示されるように、本発明になる焼結
体(緻密コーディエライト質セラミックス)は、気孔率
が5%以下、ヤング率が130GPa以上及び20〜3
0℃のときの熱膨張係数が−0.5〜0.5ppm・K
−1の範囲で全ての特性に優れていることが明らかであ
る。
As shown in Table 1, the sintered body (dense cordierite ceramics) according to the present invention has a porosity of 5% or less, a Young's modulus of 130 GPa or more and 20 to 3
The coefficient of thermal expansion at 0 ° C. is -0.5 to 0.5 ppm · K
It is clear that all characteristics are excellent in the range of -1 .

【0036】これに対し、本発明に含まれない試料N
o.6の焼結体は、焼成温度が低いため気孔率が16%
と高く、緻密な焼結体を得ることができず、ヤング率も
130MPaに達しておらず、熱膨張係数も本発明の範
囲から外れていた。また、試料No.11の焼結体は焼
成温度が高いため、試料が溶融してしまった。さらに、
試料NO.14及び17の試料は、焼成中に試料内部か
ら発泡が起こり、緻密な焼結体を得ることはできなかっ
た。
On the other hand, the sample N not included in the present invention
o. The sintered body of No. 6 has a porosity of 16% due to a low firing temperature.
As a result, a dense sintered body could not be obtained, the Young's modulus did not reach 130 MPa, and the coefficient of thermal expansion was out of the range of the present invention. In addition, the sample No. Since the sintered body of the sintered body of No. 11 had a high firing temperature, the sample was melted. further,
Sample No. In samples 14 and 17, foaming occurred from inside the sample during firing, and a dense sintered body could not be obtained.

【0037】[0037]

【発明の効果】請求項1及び2記載の緻密コーディエラ
イト質セラミックスは、金属に比べ剛性が高く、かつ熱
膨張係数が小さく、気孔率が5%以下の緻密コーディエ
ライト質セラミックスである。請求項3及び4記載の方
法により得られる緻密コーディエライト質セラミックス
は、金属に比べ剛性が高く、かつ熱膨張係数が小さく、
気孔率が5%以下の緻密コーディエライト質セラミック
スである。
The dense cordierite ceramic according to the first and second aspects is a dense cordierite ceramic having a higher rigidity, a lower coefficient of thermal expansion and a porosity of 5% or less as compared with metal. The dense cordierite ceramic obtained by the method according to claims 3 and 4 has higher rigidity and a smaller thermal expansion coefficient than metal,
It is a dense cordierite ceramic having a porosity of 5% or less.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G030 AA07 AA36 AA37 AA52 BA24 GA24 GA27 HA18 5F046 CC08 CC11 DA05  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4G030 AA07 AA36 AA37 AA52 BA24 GA24 GA27 HA18 5F046 CC08 CC11 DA05

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】一般式2MgO・2Al・5SiO
で表されるコーディエライト93〜99.99重量%
及び窒化珪素0.01〜7重量%を含有し、かつ気孔率
が5%以下である緻密コーディエライト質セラミック
ス。
1. A compound of the general formula 2MgO.2Al 2 O 3 .5SiO
93 to 99.99% by weight of cordierite represented by 2
And a dense cordierite ceramic containing 0.01 to 7% by weight of silicon nitride and having a porosity of 5% or less.
【請求項2】20〜30℃のときの熱膨張係数が−0.
5〜+0.5ppm・K−1で、かつヤング率が130
GPa以上である請求項1記載の緻密コーディエライト
質セラミックス。
2. The thermal expansion coefficient at 20 to 30 ° C. is -0.0.
5 to +0.5 ppm · K -1 and a Young's modulus of 130
The dense cordierite ceramic according to claim 1, which has a GPa or more.
【請求項3】一般式2MgO・2Al・5SiO
で表されるコーディエライト粉末93〜99.99重
量%及び窒化珪素粉末0.01〜7重量%を混合、成形
した後、1270〜1440℃の温度で焼成することを
特徴とする気孔率が5%以下の緻密コーディエライト質
セラミックスの製造方法。
3. A general formula 2MgO · 2Al 2 O 3 · 5SiO
3. Porosity characterized by mixing and molding 93 to 99.99% by weight of cordierite powder represented by 2 and 0.01 to 7% by weight of silicon nitride powder, followed by firing at a temperature of 1270 to 1440C. Of a dense cordierite ceramic having a content of 5% or less.
【請求項4】20〜30℃のときの熱膨張係数が−0.
5〜+0.5ppm・K−1で、かつヤング率が130
GPa以上である請求項3記載の緻密コーディエライト
質セラミックスの製造方法。
4. The thermal expansion coefficient at a temperature of 20 to 30.degree.
5 + at 0.5 ppm · K -1, and Young's modulus of 130
4. The method for producing a dense cordierite ceramic according to claim 3, which has a GPa or more.
JP2001125543A 2001-04-24 2001-04-24 Dense cordierite ceramics and method for producing the same Expired - Lifetime JP5011609B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001125543A JP5011609B2 (en) 2001-04-24 2001-04-24 Dense cordierite ceramics and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001125543A JP5011609B2 (en) 2001-04-24 2001-04-24 Dense cordierite ceramics and method for producing the same

Publications (2)

Publication Number Publication Date
JP2002321969A true JP2002321969A (en) 2002-11-08
JP5011609B2 JP5011609B2 (en) 2012-08-29

Family

ID=18974746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001125543A Expired - Lifetime JP5011609B2 (en) 2001-04-24 2001-04-24 Dense cordierite ceramics and method for producing the same

Country Status (1)

Country Link
JP (1) JP5011609B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7229940B2 (en) 2004-03-29 2007-06-12 Ngk Insulators, Ltd. Dense cordierite based sintered body and method of manufacturing the same
TWI561491B (en) * 2014-06-06 2016-12-11 Ngk Insulators Ltd

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59174572A (en) * 1983-03-23 1984-10-03 工業技術院長 Manufacture of minute cordierite-silicon nitride sintered body

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59174572A (en) * 1983-03-23 1984-10-03 工業技術院長 Manufacture of minute cordierite-silicon nitride sintered body

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7229940B2 (en) 2004-03-29 2007-06-12 Ngk Insulators, Ltd. Dense cordierite based sintered body and method of manufacturing the same
EP1582509A3 (en) * 2004-03-29 2008-04-02 Ngk Insulators, Ltd. Dense cordierite based sintered body and method of manufacturing the same
TWI561491B (en) * 2014-06-06 2016-12-11 Ngk Insulators Ltd
US9771303B2 (en) 2014-06-06 2017-09-26 Ngk Insulators, Ltd. Cordierite sintered body, method for manufacturing the same, composite substrate, and electronic device

Also Published As

Publication number Publication date
JP5011609B2 (en) 2012-08-29

Similar Documents

Publication Publication Date Title
JP2005314215A (en) Dense cordierite sintered body and method of manufacturing the same
JPH1179830A (en) Low-thermal expansion ceramics, their production and part for producing semiconductor
US20080096758A1 (en) Low-thermal expansion ceramics bonding body and manufacturing method of the same
JPH11343168A (en) Low thermal expansion black ceramics, its production and member for semiconductor producing apparatus
JP2013100216A (en) Oxide ceramic sintered compact and method of manufacturing the same
JP4261631B2 (en) Manufacturing method of ceramic sintered body
JPH11209171A (en) Dense low thermal expansion ceramics, its production and member for semiconductor producing device
JP5011609B2 (en) Dense cordierite ceramics and method for producing the same
JP3676552B2 (en) Low thermal expansion ceramics and method for producing the same
JP2006347802A (en) Low-thermal expansion/high-specific rigidity ceramic, its production method, and electrostatic chuck
JP4912544B2 (en) Low thermal conductivity high rigidity ceramics
JP2002160972A (en) High rigidity and low thermal expansion ceramic and its manufacturing method
JP2003321271A (en) Composite ceramic and method for producing the same
JP3260340B2 (en) Composite ceramic and method for producing the same
JPH11236262A (en) Low thermal expansion ceramic structural member and member for semiconductor device producing apparatus using the same
JPH09157030A (en) Production of silicon nitride sintered compact
JPH11100275A (en) Low thermal expansion ceramic and its preparation
JP2003292372A (en) Ceramic sintered compact and production method therefor
JP2000044351A (en) Silicon nitride-based heat radiating member and its production
JP3677360B2 (en) Method for producing silicon nitride sintered body
JP2011195429A (en) β-EUCRYPTITE CERAMIC HAVING ZERO EXPANSION COEFFICIENT, HIGH STRENGTH AND LOW DIELECTRIC CONSTANT
JP2000247732A (en) Low-resistance ceramic, its production and member for semiconductor producing apparatus
JP2002179458A (en) Low thermal expansion high rigidity ceramic material and method for manufacturing the same
JP4907791B2 (en) Low thermal expansion ceramics and method for producing the same
JP4540239B2 (en) Aluminosilicate sintered body and stress relieving member using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120521

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5011609

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term