JP2002316896A - Manufacturing apparatus and manufacturing method for silicon single crystal - Google Patents

Manufacturing apparatus and manufacturing method for silicon single crystal

Info

Publication number
JP2002316896A
JP2002316896A JP2001115772A JP2001115772A JP2002316896A JP 2002316896 A JP2002316896 A JP 2002316896A JP 2001115772 A JP2001115772 A JP 2001115772A JP 2001115772 A JP2001115772 A JP 2001115772A JP 2002316896 A JP2002316896 A JP 2002316896A
Authority
JP
Japan
Prior art keywords
gas pipe
exhaust gas
single crystal
extension member
silicon single
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001115772A
Other languages
Japanese (ja)
Other versions
JP4423805B2 (en
Inventor
Atsushi Iwasaki
淳 岩崎
Yukinobu Takeyasu
志信 竹安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2001115772A priority Critical patent/JP4423805B2/en
Publication of JP2002316896A publication Critical patent/JP2002316896A/en
Application granted granted Critical
Publication of JP4423805B2 publication Critical patent/JP4423805B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a single crystal manufacturing apparatus and manufacturing method which prevent the deposition of oxides in an air exit of a growth furnace, assures a stable exhaust capacity and makes crystal growth work possible for a long period of time by surely holding a silicon melt within a growth furnace even when the silicon melt of a high temperature flows out of a crucible, and in addition, by suppressing the deposition of the oxides near on air exit of the growth furnace and preventing the degradation in the exhaust capacity of inert gas. SOLUTION: The manufacturing apparatus for growing the silicon single crystal by a Czochralski method is provided with a waste gas pipe extension member 34 so as to communicate with the air exit 31 disposed in the lower part of the growth furnace to exhaust the inert gas flowing in the growth furnace and is provided with a protective gas pipe 32 so as to enclose this waste gas pipe extension member.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、チョクラルスキー
法(Czochralski Method、以下、CZ法と称する。)
を用いてシリコン半導体単結晶(以下、シリコン単結晶
と称する)を育成するシリコン単結晶の製造装置、及び
その装置を用いたシリコン単結晶の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a Czochralski method (hereinafter referred to as CZ method).
The present invention relates to a silicon single crystal manufacturing apparatus for growing a silicon semiconductor single crystal (hereinafter, referred to as a silicon single crystal) using the method, and a silicon single crystal manufacturing method using the apparatus.

【0002】[0002]

【関連技術】一般的なCZ法を用いてシリコン単結晶を
製造する装置としては、特開平2−225393(特公
平6−43276)号公報に開示されているような構造
の製造装置が知られている。上記公報記載の製造装置を
図5に示した。図5は従来のシリコン単結晶の製造装置
の一例を示す断面説明図である。
2. Related Art As an apparatus for producing a silicon single crystal using a general CZ method, there is known a production apparatus having a structure as disclosed in Japanese Patent Application Laid-Open No. 2-225393 (JP-B-6-43276). ing. FIG. 5 shows a manufacturing apparatus described in the above publication. FIG. 5 is an explanatory sectional view showing an example of a conventional silicon single crystal manufacturing apparatus.

【0003】図5に示されるシリコン単結晶製造装置1
0は育成炉12を有している。育成炉12の内部には、
シリコン融液Mを収容した石英製ルツボ14と、この石
英製ルツボ14を保持し保護するために、黒鉛製ルツボ
16が石英製ルツボ14の外側に配置されている。
A silicon single crystal manufacturing apparatus 1 shown in FIG.
0 has a growth furnace 12. Inside the growth furnace 12,
A quartz crucible 14 containing the silicon melt M and a graphite crucible 16 are arranged outside the quartz crucible 14 for holding and protecting the quartz crucible 14.

【0004】そして、黒鉛製ルツボ16の外周には、石
英製ルツボ14に収容された原料である多結晶シリコン
を加熱し、溶融してシリコン融液Mとするための黒鉛製
の加熱ヒータ18が設置されている。シリコン単結晶の
育成時には、シリコン単結晶製造装置10の下部に備え
られたヒータ電極(図示せず)より加熱ヒータ18に電
力が供給され発熱し、多結晶シリコンを融解した後に、
シリコン融液Mの温度を所望の値に保持してシリコン単
結晶の成長を図るものである。
On the outer periphery of the graphite crucible 16, a graphite heater 18 for heating and melting the polycrystalline silicon as a raw material contained in the quartz crucible 14 to form a silicon melt M is provided. is set up. At the time of growing the silicon single crystal, power is supplied to the heater 18 from a heater electrode (not shown) provided at the lower part of the silicon single crystal manufacturing apparatus 10 to generate heat and melt the polycrystalline silicon.
The purpose is to maintain the temperature of the silicon melt M at a desired value to grow a silicon single crystal.

【0005】また、加熱ヒータ18と育成炉12の炉壁
12aの間には、金属製の炉壁12aを保護し育成炉1
2の内部を効率的に保温するために、黒鉛材で作られた
断熱材22が置かれている。
[0005] Further, between the heater 18 and the furnace wall 12a of the growth furnace 12, the metal furnace wall 12a is protected and the growth furnace 1 is protected.
A heat insulating material 22 made of a graphite material is placed in order to efficiently keep the inside of the device 2 warm.

【0006】一方、育成炉12の略中央に配置された黒
鉛製ルツボ16は、底部を黒鉛製のルツボ支持軸24に
よって支持されており、ルツボ支持軸24の下端部に取
り付けられたルツボ軸駆動機構20によって、上下動、
回転動自在とされているものである。これによって単結
晶育成時にシリコン融液Mの液面を一定位置に保持した
り、ルツボ14,16を所望の方向や速さで回転させる
ことができるようになっている。
On the other hand, a graphite crucible 16 disposed substantially at the center of the growth furnace 12 has a bottom portion supported by a graphite crucible support shaft 24, and a crucible shaft drive attached to a lower end portion of the crucible support shaft 24. Up and down movement by the mechanism 20,
It is designed to be rotatable. This allows the liquid surface of the silicon melt M to be maintained at a fixed position during the growth of the single crystal, and the crucibles 14 and 16 can be rotated in a desired direction and at a desired speed.

【0007】そして、育成炉12の底部にも底部断熱材
26が置かれ、育成炉12の底壁12bが、加熱ヒータ
18の輻射熱等により高温に曝されるのを防止したり、
育成炉12の保温効果を高める役目を担っている。
A bottom insulating material 26 is also placed on the bottom of the growth furnace 12 to prevent the bottom wall 12b of the growth furnace 12 from being exposed to a high temperature due to radiant heat of the heater 18 or the like.
It plays a role of enhancing the heat retaining effect of the breeding furnace 12.

【0008】また、シリコン単結晶の育成時には、シリ
コン融液Mから蒸発する酸化物が、育成炉12の炉壁1
2aや断熱材22等の炉内部材に付着するのを防止する
ため、アルゴン(Ar)ガス等の不活性ガスGを育成炉
12に流通しながら結晶成長を行う必要がある。この
為、育成炉12の底部には、不活性ガスGを炉外へ排気
するための排ガス管28と、育成炉12内部の圧力を調
整するための圧力制御装置30が備えられている。シリ
コン単結晶の育成時には、この圧力制御装置30によっ
て炉内の圧力が所望の値に調整される。
During the growth of the silicon single crystal, oxides evaporating from the silicon melt M are deposited on the furnace wall 1 of the growth furnace 12.
In order to prevent adherence to furnace members such as 2 a and the heat insulating material 22, it is necessary to carry out crystal growth while passing an inert gas G such as argon (Ar) gas through the growth furnace 12. For this purpose, an exhaust gas pipe 28 for exhausting the inert gas G to the outside of the furnace and a pressure control device 30 for adjusting the pressure inside the growth furnace 12 are provided at the bottom of the growth furnace 12. When growing a silicon single crystal, the pressure in the furnace is adjusted to a desired value by the pressure control device 30.

【0009】シリコン単結晶の育成時には溶融原料Mか
ら蒸発するSiO(一酸化珪素)等の不純物を育成炉1
2の外へ排出して、蒸発物が炉壁12aや炉内に配置さ
れている前述の炉内部材等に付着しないよう、育成炉1
2にあるシリコン融液Mの上方からアルゴンガス等の不
活性ガスGを育成炉12に流し操業を行ってる。
When growing a silicon single crystal, impurities such as SiO (silicon monoxide) evaporating from the molten raw material M are removed from the growing furnace 1.
2 so that the evaporant does not adhere to the furnace wall 12a or the above-described furnace members arranged in the furnace, so that the growing furnace 1
2, an inert gas G such as an argon gas is supplied to the growth furnace 12 from above the silicon melt M to operate.

【0010】シリコン融液Mからの蒸発物が炉内の構造
物に付着すると、単結晶育成時に原料融液Mに落下して
結晶にスリップ転位をもたらしたり、育成炉12に設け
られた炉内を監視するためのガラス窓(図示せず)が曇
り、育成炉の内部の観察が出来なくなる等の弊害がもた
らされる。
When the evaporant from the silicon melt M adheres to the structure in the furnace, it falls into the raw material melt M at the time of growing the single crystal to cause slip dislocation in the crystal, or the inside of the furnace provided in the growth furnace 12 A glass window (not shown) for monitoring the fogging is fogged, and it becomes impossible to observe the inside of the growth furnace.

【0011】そこで、シリコン融液(原料融液)Mの上
方から流入した不活性ガスGを、原料融液M面を伝って
融液からの蒸発物と一緒に黒鉛製ルツボ16の外壁と断
熱材22の間から育成炉12の下方に流し、最終的に育
成炉底部に備えられた排ガス管28から、外部へと排出
している。このような不活性ガスGの流れを形成するこ
とにより、育成炉12の上方に酸化物が付着するのを抑
え、効率よく融液からの蒸発物を外部へ排出するもので
ある。
Therefore, the inert gas G flowing from above the silicon melt (raw material melt) M is transferred to the outer wall of the graphite crucible 16 along with the evaporated material from the melt along the surface of the raw material melt M and heat-insulated. It flows under the growth furnace 12 from between the materials 22, and is finally discharged to the outside from an exhaust gas pipe 28 provided at the bottom of the growth furnace. By forming such a flow of the inert gas G, the adhesion of oxides above the growth furnace 12 is suppressed, and the evaporated matter from the melt is efficiently discharged to the outside.

【0012】更には、育成炉12の内部の圧力を50〜
500hPa程度の減圧状態に保って操業を行うことに
より、原料から蒸発したSiO等の酸化物が炉内の壁や
部材により付着し難くしてシリコン単結晶製造を行って
いる。
Further, the pressure inside the growth furnace 12 is set to 50 to
By operating while maintaining a reduced pressure of about 500 hPa, oxides such as SiO evaporated from the raw material are hardly adhered to walls and members in the furnace, and silicon single crystal is manufactured.

【0013】この時、育成炉12の排ガス管28は、ス
テンレススチール等の金属製のパイプで造られているの
が一般的である。そして、育成炉12の下方部、例えば
底壁12bに開口する排気口31には、上部にガス導入
口33を有し底部を開放した円筒状の保護ガス管32が
連通して設けられており、この保護ガス管32は、高温
に曝されるため耐熱性に優れた黒鉛材で作られている。
しかし、この一方で、黒鉛材製の保護ガス管32と金属
製の排ガス管28の接続部付近では、金属の熱伝導率が
高いことから温度差が生じ易く、育成炉12の内部から
流れてきた不活性ガスGは、この接続部付近で急激に冷
やされ、図6に示されるごとく、この接続部付近に多く
析出し析出物Dとして付着堆積する傾向がある。
At this time, the exhaust gas pipe 28 of the growth furnace 12 is generally made of a metal pipe such as stainless steel. A lower part of the growth furnace 12, for example, an exhaust port 31 opening to the bottom wall 12 b, is provided with a cylindrical protective gas pipe 32 having a gas inlet 33 at an upper part and having an open bottom part. The protective gas pipe 32 is made of a graphite material having excellent heat resistance because it is exposed to a high temperature.
However, on the other hand, a temperature difference is apt to occur near the connection between the protective gas pipe 32 made of graphite material and the exhaust gas pipe 28 made of metal because of the high thermal conductivity of the metal, and the gas flows from the inside of the growth furnace 12. The inert gas G is rapidly cooled in the vicinity of the connection, and tends to precipitate in the vicinity of the connection and deposit and deposit as a precipitate D as shown in FIG.

【0014】なお、黒鉛製の保護ガス管32を炉内に立
設するように設けるのは、特公平6−43276号公報
に記載されているように、上記排気口31部分を保護す
るとともに原料融液Mが漏れるという事故が万一発生し
た場合に育成炉12外部へと流出するのを防止するため
である。
The provision of the protective gas pipe 32 made of graphite so as to stand upright in the furnace is performed as described in Japanese Patent Publication No. 6-43276 in order to protect the exhaust port 31 and to provide a raw material. This is to prevent the melt M from leaking out of the growth furnace 12 in the event of an accident such as leakage.

【0015】[0015]

【発明が解決しようとする課題】上記したように排ガス
管28と保護ガス管32の接続部付近に酸化物が付着し
堆積すると、排ガス管28の内部が狭まり不活性ガスG
の排気能力が落ち、育成炉12に流通する不活性ガスG
がスムーズに流れなくなることで、酸化物が炉内の壁や
構造物等に付着し易くなったり、或はシリコン単結晶製
造装置10の排気ポンプ(図示せず)の運転を妨げ余分
な電力を消費する等の問題が出る。
As described above, when the oxide adheres and accumulates near the connecting portion between the exhaust gas pipe 28 and the protective gas pipe 32, the inside of the exhaust gas pipe 28 is narrowed and the inert gas G is reduced.
Of the inert gas G flowing through the growth furnace 12
Does not flow smoothly, so that oxides easily adhere to walls and structures in the furnace, or hinder the operation of an exhaust pump (not shown) of the silicon single crystal manufacturing apparatus 10 and generate extra power. There are problems such as consumption.

【0016】更には、育成炉12内での酸化物の付着が
多くなると、シリコン融液Mに酸化物が落下して結晶育
成を阻害したり、また炉内を観察するための窓が曇り育
成結晶の観察ができなくなり操業の継続が困難となる等
の弊害が出るため、シリコン単結晶の製造においては、
いかにこの酸化物が育成炉12内に付着するのを抑制す
るかが、長時間にわたって安定した操業を行う上で重要
な問題となる。
Further, when the amount of oxides attached in the growth furnace 12 increases, the oxides fall into the silicon melt M to hinder crystal growth, and the window for observing the inside of the furnace becomes cloudy. In the production of silicon single crystals, there are adverse effects such as the inability to observe the crystal and the continuation of operation becomes difficult.
How to prevent this oxide from adhering to the inside of the growth furnace 12 is an important problem in performing a stable operation for a long time.

【0017】また、その他にもシリコン単結晶の育成で
は、前述したように育成炉12内を減圧状態に保ち、炉
内の圧力や不活性ガスの量を調整して結晶に取り込まれ
る不純物(主に石英ルツボ14から溶出した酸素)を所
望の値とする等の制御を行いながら結晶育成を行う必要
があることから、品質の安定した単結晶を得るには、操
業時の排気能力の安定化を図るのも重要な要件である。
In addition, in growing a silicon single crystal, as described above, the inside of the growth furnace 12 is maintained at a reduced pressure, and the pressure and the amount of inert gas in the furnace are adjusted to adjust the impurities (mainly, impurities) taken into the crystal. It is necessary to grow the crystal while controlling the oxygen (eluted from the quartz crucible 14) to a desired value, etc. In order to obtain a single crystal of stable quality, it is necessary to stabilize the exhaust capacity during operation. It is also an important requirement to achieve this.

【0018】本発明は、上記した従来のシリコン単結晶
製造技術における問題点に鑑みなされたもので、高温の
シリコン融液がルツボから流出した場合でも、シリコン
融液を育成炉の内部に確実に保持することに加え、育成
炉の排気口付近における酸化物の析出堆積を抑制し、不
活性ガスの排気能力の低下を防止することによって、育
成炉内での酸化物の付着を防ぐとともに、安定した排気
能力を確保し、長時間におよぶ結晶成長作業を可能にす
るシリコン単結晶製造装置及び製造方法を提供すること
を目的とする。
The present invention has been made in view of the above-mentioned problems in the conventional silicon single crystal manufacturing technique, and ensures that even when a high-temperature silicon melt flows out of a crucible, the silicon melt is reliably introduced into the growth furnace. In addition to holding the oxide, the deposition and accumulation of oxides near the exhaust port of the growth furnace are suppressed, and the reduction of the inert gas exhaustion capacity is prevented, thereby preventing the adhesion of oxides in the growth furnace and ensuring stable operation. It is an object of the present invention to provide a silicon single crystal manufacturing apparatus and a manufacturing method capable of securing a reduced evacuation capacity and enabling a crystal growth operation for a long time.

【0019】[0019]

【課題を解決するための手段】上記課題を解決するため
に、本発明のシリコン単結晶の製造装置は、チョクラル
スキー法によりシリコン単結晶を育成する製造装置にお
いて、育成炉内に流れる不活性ガスを排気する前記育成
炉の下方部に設けられた排気口に連通するように排ガス
管延長部材を設けかつ該排ガス管延長部材を囲繞するよ
うに保護ガス管を設けたものである。上記育成炉の下方
部とは、育成炉内部に設けられたルツボに保持されてい
るシリコン融液面より下側の部分を意味するものであ
る。
In order to solve the above-mentioned problems, an apparatus for producing a silicon single crystal according to the present invention is a production apparatus for growing a silicon single crystal by the Czochralski method. An exhaust gas pipe extension member is provided so as to communicate with an exhaust port provided at a lower portion of the growth furnace for exhausting gas, and a protective gas pipe is provided so as to surround the exhaust gas pipe extension member. The lower part of the growth furnace means a part below the silicon melt surface held in a crucible provided inside the growth furnace.

【0020】本発明装置の第1の特徴は、育成炉の底壁
に形成された排気口に接続された排ガス管を育成炉の内
部まで排ガス管と一体的に又は別体によって延長し、こ
の延長した排ガス管部分、即ち、排ガス管延長部材を設
け、さらに加熱ヒータ等からの輻射熱から守るため、保
護ガス管を被せた二重構造とした点にある。
A first feature of the apparatus of the present invention is that an exhaust gas pipe connected to an exhaust port formed on the bottom wall of the growth furnace is extended to the inside of the growth furnace either integrally with or separately from the exhaust gas pipe. An extended exhaust gas pipe portion, that is, an exhaust gas pipe extension member is provided, and a protective gas pipe is covered to protect the radiant heat from a heater or the like.

【0021】排ガス管を育成炉の内部まで延長して、排
ガス管延長部材を設けることにより、育成炉の排ガス管
の排気口付近での温度変化が緩和され、排気口周辺に酸
化物が析出し堆積することを抑制することができる。こ
れによって、安定した排気能力を確保でき、長時間にお
よぶ結晶成長作業を安定して行えるようになる。また、
酸化物の付着による排ガス管の汚れも少なくなるため、
製造作業終了後の製造装置のメンテナンス作業(育成炉
内に付着した酸化物の除去作業等)の軽減を図ることも
可能となる。
By extending the exhaust gas pipe to the inside of the growth furnace and providing an exhaust gas pipe extension member, a temperature change near the exhaust port of the exhaust gas pipe of the growth furnace is reduced, and oxides are deposited around the exhaust port. Deposition can be suppressed. As a result, a stable pumping capacity can be secured, and a long-term crystal growth operation can be stably performed. Also,
Since the contamination of the exhaust gas pipe due to the adhesion of oxides is also reduced
It is also possible to reduce the maintenance work of the manufacturing equipment after the end of the manufacturing work (eg, the work of removing oxides attached to the inside of the growth furnace).

【0022】前記排ガス管延長部材は前記保護ガス管の
内側に配設されればよいもので、その寸法については特
別の制限はないが、該排ガス管延長部材の高さを、該保
護ガス管の高さの30%〜80%の範囲とするのが好適
である。
The exhaust gas pipe extension member may be disposed inside the protective gas pipe, and its dimensions are not particularly limited, but the height of the exhaust gas pipe extension member is determined by adjusting the height of the protection gas pipe. Is preferably in the range of 30% to 80% of the height.

【0023】該排ガス管延長部材の高さが保護ガス管の
高さの30%以下では、炉内への突出部分が短いため、
排ガス管延長部材を設けない場合よりも酸化物の付着量
はずっと少ないものの、保護ガス管内側にある程度の酸
化物が付着してしまうので、酸化物付着を十分に防止で
きない。一方、80%を超えるまで長くしては、育成炉
内部の高温雰囲気の影響を受け易くなり、排ガス管の延
長部分上端が溶損する可能性が高くなってしまう。この
ような理由から、育成炉内への排ガス管延長部材の長さ
(高さ)は保護ガス管の長さ(高さ)に対し、30〜80%
程度の範囲に収めるのが好ましい。
When the height of the exhaust gas pipe extension member is 30% or less of the height of the protective gas pipe, the protruding portion into the furnace is short.
Although the amount of deposited oxide is much smaller than when the exhaust gas pipe extension member is not provided, a certain amount of oxide adheres to the inside of the protective gas pipe, so that the oxide cannot be sufficiently prevented from adhering. On the other hand, if the length is increased to more than 80%, the temperature is likely to be affected by the high temperature atmosphere inside the growth furnace, and the possibility that the upper end of the extended portion of the exhaust gas pipe is melted increases. For this reason, the length of the exhaust gas pipe extension
(Height) is 30-80% of the length (height) of the protective gas pipe
It is preferable to be within the range.

【0024】前記排ガス管延長部材は、排ガス管と一
体、即ち排ガス管を延長して形成してもよいが、前記排
ガス管とは別体に形成し、該排ガス管の排気口に着脱可
能に連通せしめるように設けるのが好適である。
The exhaust gas pipe extension member may be formed integrally with the exhaust gas pipe, that is, may be formed by extending the exhaust gas pipe. However, it is formed separately from the exhaust gas pipe, and is detachably attached to the exhaust port of the exhaust gas pipe. It is preferable to provide them so that they can communicate with each other.

【0025】単結晶の製造終了後は、育成炉の内部に付
着した酸化物を取り除いたり、炉内の消耗部品を交換す
る等のメンテナンス作業のために、一旦、育成炉の内部
の部材を炉外へ取り出し解体する必要があるが、その際
に、排ガス管延長部材を取り外しができるようにしてお
けば、メンテナンス作業がし易くなり、また排ガス管延
長部材に付着した酸化物やシリコンの蒸着物等も容易に
除去できるようになり、作業性の向上を図ることができ
る。
After the production of the single crystal is completed, the members inside the growth furnace are temporarily removed for maintenance work such as removing oxides adhered to the inside of the growth furnace and replacing consumable parts in the furnace. It is necessary to take it out and disassemble it.At this time, if the exhaust gas pipe extension member can be removed, maintenance work becomes easier, and oxides and silicon deposits adhered to the exhaust gas pipe extension member Etc. can be easily removed, and workability can be improved.

【0026】更には、高温に曝される排ガス管延長部材
は劣化し易いので、排ガス管と別体とすることによって
必要に応じて新しいものに簡単に交換することもでき、
装置の信頼性を高めることに繋がる。
Further, since the exhaust gas pipe extension member exposed to high temperature is easily deteriorated, it can be easily replaced with a new one if necessary by forming it separately from the exhaust gas pipe.
This leads to an increase in the reliability of the device.

【0027】そして、育成炉のメンテナンス作業にあた
り排気口付近のホットゾーン部品の解体を行い易くする
ため、炉内に延出する排ガス管延長部材と、該排ガス管
延長部材を保護する保護ガス管との間には、好ましくは
1mm〜3mm程度の間隙を設けておくのが望ましい。
排ガス管延長部材と保護ガス管の間に間隙を設けること
により、シリコンの蒸着や酸化物が強固に付着して保護
ガス管と排ガス管延長部材を外すことができなくなる、
あるいは熱膨張による保護ガス管の破損等を防止するこ
とができる。
In order to facilitate dismantling of the hot zone parts near the exhaust port during maintenance work of the growth furnace, an exhaust pipe extension member extending into the furnace and a protective gas pipe for protecting the exhaust pipe extension member are provided. Preferably, a gap of about 1 mm to 3 mm is provided between them.
By providing a gap between the exhaust gas pipe extension member and the protective gas pipe, silicon vapor deposition and oxides are firmly attached and the protective gas pipe and the exhaust gas pipe extension member cannot be removed.
Alternatively, it is possible to prevent the protection gas pipe from being damaged due to thermal expansion.

【0028】該排ガス管延長部材の内径については特別
の限定はないが、該排ガス管の内径と同一でもよいし、
排ガス管の排気能力が損なわれない限り、排ガス管の内
径よりも小とすることもできる。
The inner diameter of the exhaust pipe extension member is not particularly limited, but may be the same as the inner diameter of the exhaust pipe.
As long as the exhaust capacity of the exhaust gas pipe is not impaired, it can be smaller than the inner diameter of the exhaust gas pipe.

【0029】上記排ガス管及び該排ガス管延長部材の材
質としては、高強度で耐熱性が高く腐食に強い材料が好
ましく、このような材料としては、モリブデン、タング
ステン、タンタル等の高融点金属、ステンレススチー
ル、あるいは炭素鋼が適している。これらの金属材料
は、熱伝導率も高いため、高温に曝されている部分の熱
が逃げやすく、輻射熱により自らが高温となるのを抑制
する効果もある。コスト等を考えるとステンレススチー
ルを使用するのが最も実用的である。一方、上記保護ガ
ス管の材質としては耐熱性にすぐれ、高温のシリコン融
液にも浸食されにくい黒鉛材が好適である。
As the material of the exhaust gas pipe and the exhaust gas pipe extension member, a material having high strength, high heat resistance, and high corrosion resistance is preferable. Steel or carbon steel is suitable. Since these metal materials have high thermal conductivity, heat in a portion exposed to a high temperature is easily released, and also has an effect of suppressing the temperature of the metal material itself from becoming high due to radiant heat. It is most practical to use stainless steel in view of cost and the like. On the other hand, as a material of the protective gas pipe, a graphite material which has excellent heat resistance and is not easily eroded by a high-temperature silicon melt is preferable.

【0030】本発明のシリコン単結晶の製造方法は、上
記した本発明のシリコン単結晶の製造装置を用いること
により、不活性ガスを流しながらチョクラルスキー法に
よりシリコン単結晶を育成する際に、前記排気口近傍に
おける酸化物の析出堆積を抑制して安定した排気能力を
確保し、長時間に及ぶ結晶成長作業を安定して行えるよ
うにしたものである。
According to the method for producing a silicon single crystal of the present invention, when the silicon single crystal is grown by the Czochralski method while flowing an inert gas by using the above-described apparatus for producing a silicon single crystal of the present invention, A stable exhausting ability is secured by suppressing the deposition and deposition of the oxide in the vicinity of the exhaust port, and a long-term crystal growth operation can be stably performed.

【0031】[0031]

【発明の実施の形態】以下に、本発明のシリコン単結晶
の製造装置の実施の形態を添付図面中、図1〜図4を参
照しながら、CZ法を用いたシリコン単結晶の育成例を
挙げて説明するが、本発明はこれらのみに限定されるも
のではない。例えば、本発明のシリコン単結晶の製造装
置及び製造方法は、シリコン融液に磁場を印加しながら
半導体単結晶を育成するMCZ法(Magnetic Field Appl
ied Czochralski Method、磁界下引上法)を用いたシリ
コン単結晶の製造でも、当然利用することは可能であ
る。なお、図1〜図4において、図5及び図6における
部材と同一又は類似部材は同一符号によって示されてい
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a silicon single crystal manufacturing apparatus according to the present invention will be described below with reference to FIGS. Although described below, the present invention is not limited to these. For example, an apparatus and a method for manufacturing a silicon single crystal according to the present invention employ a MCZ method (Magnetic Field Appl.
Naturally, it can be used even in the production of a silicon single crystal using the ied Czochralski Method (magnetic field pulling method). 1 to 4, the same or similar members as those in FIGS. 5 and 6 are denoted by the same reference numerals.

【0032】図1は本発明のシリコン単結晶の製造装置
の一つの実施の形態の概略断面説明図である。図1に示
した本発明のシリコン単結晶の製造装置10aの基本的
構成は、図5に示した従来のシリコン単結晶の製造装置
10と同じであるので、重複する部分の再度の説明は省
略する。
FIG. 1 is a schematic sectional explanatory view of one embodiment of a silicon single crystal manufacturing apparatus according to the present invention. The basic configuration of the silicon single crystal manufacturing apparatus 10a of the present invention shown in FIG. 1 is the same as that of the conventional silicon single crystal manufacturing apparatus 10 shown in FIG. I do.

【0033】本発明のシリコン単結晶の製造装置10a
では、図5に示した従来のシリコン単結晶の製造装置1
0と同様に、加熱ヒータ18によって溶融されたシリコ
ン融液Mの上方から不図示のガス供給装置によって不活
性ガスGが育成炉12の上部から供給される。そして、
不活性ガスGは、シリコン融液Mの表面を伝って黒鉛製
ルツボ16と加熱ヒータ18の隙間や加熱ヒータ18と
断熱材22の間を下流して、育成炉12の下部に置かれ
ている低部断熱材26から立設するよう設けられた保護
ガス管32のガス導入部33より、排ガス管28を経て
育成炉12の外部へと排出される。
An apparatus 10a for producing a silicon single crystal according to the present invention
Then, the conventional silicon single crystal manufacturing apparatus 1 shown in FIG.
Similarly to 0, an inert gas G is supplied from above the growth furnace 12 by a gas supply device (not shown) from above the silicon melt M melted by the heater 18. And
The inert gas G is placed at the lower part of the growth furnace 12 after flowing along the surface of the silicon melt M, downstream of the gap between the graphite crucible 16 and the heater 18 and between the heater 18 and the heat insulating material 22. The gas is discharged to the outside of the growth furnace 12 through an exhaust gas pipe 28 from a gas introduction part 33 of a protective gas pipe 32 provided to stand upright from the lower heat insulating material 26.

【0034】この時、本発明のシリコン単結晶の製造装
置10aでは、育成炉12の下方部、例えば底壁12b
に形成された排気口31に接続された排ガス管28を育
成炉12の内部まで当該排ガス管28と一体的に又は別
体によって延長し(図1の例では別体とした場合が示さ
れている。)、この延長した排ガス管部分、即ち排ガス
管延長部材34を設け、さらに加熱ヒータ18等からの
輻射熱から守るため、保護ガス管32を被せた二重構造
とした。
At this time, in the silicon single crystal manufacturing apparatus 10a of the present invention, the lower part of the growth furnace 12, for example, the bottom wall 12b
The exhaust gas pipe 28 connected to the exhaust port 31 formed in the furnace is extended to the inside of the growth furnace 12 integrally or separately from the exhaust gas pipe 28 (in the example of FIG. The extended exhaust gas pipe portion, that is, the exhaust gas pipe extension member 34 is provided, and a protective gas pipe 32 is provided to protect the radiant heat from the heater 18 and the like.

【0035】排ガス管28を育成炉12の内部まで延長
することにより、排ガス管28の延長部分が育成炉12
内部での輻射熱により加温され、排ガス管28の排ガス
の排気口31付近での温度変化が緩和し、育成炉12か
ら排ガス管28に流れ込んだ不活性ガスGが急激に冷や
されるのが抑えられるため、排気口31付近に酸化物が
析出し難くなり堆積が起こるのを抑制することができ
る。これによって、酸化物の堆積による排ガス管28の
内径が狭まり、不活性ガスGの排気に支障を来たすのが
軽減されるため安定した排気能力が確保され、長時間に
およぶ結晶成長作業を安定して行えるようになる。
By extending the exhaust gas pipe 28 to the inside of the growth furnace 12, the extended portion of the exhaust gas pipe 28 is
Heated by the radiant heat inside, the temperature change in the vicinity of the exhaust port 31 of the exhaust gas of the exhaust gas pipe 28 is reduced, and the rapid cooling of the inert gas G flowing from the growth furnace 12 into the exhaust gas pipe 28 is suppressed. Therefore, it becomes difficult for the oxide to be deposited near the exhaust port 31, and it is possible to suppress the occurrence of deposition. As a result, the inner diameter of the exhaust gas pipe 28 due to the deposition of oxides is reduced, and the occurrence of an obstacle to the exhaust of the inert gas G is reduced. As a result, a stable exhaust capability is secured, and the crystal growth operation for a long time is stabilized. You can do it.

【0036】また、排ガスの急激な温度変化が緩和され
ることにより、排気口31付近での酸化物の堆積やシリ
コンの蒸着も減り、製造作業終了後の製造装置のメンテ
ナンス作業の負担も軽減される。
Further, since the rapid temperature change of the exhaust gas is reduced, the deposition of oxides and silicon near the exhaust port 31 is reduced, and the burden of maintenance work of the manufacturing equipment after the end of the manufacturing work is also reduced. You.

【0037】この時、保護ガス管32の内部へ延長する
排ガス管の延長部である排ガス管延長部材34の高さh
は、育成炉12内部からの輻射熱による影響と、排ガス
管延長部材34の温度緩和効果を考えれば、保護ガス管
32の高さHに対して30%〜80%の範囲の高さとな
るように配設するのが好ましい。
At this time, the height h of the exhaust gas pipe extension member 34 which is an extension of the exhaust gas pipe extending into the protection gas pipe 32 is set.
Considering the effect of the radiant heat from the inside of the growth furnace 12 and the effect of reducing the temperature of the exhaust gas pipe extension member 34, the height of the protective gas pipe 32 is set to be 30% to 80% of the height H. It is preferable to arrange them.

【0038】この理由としては、排ガス管延長部材34
は保護ガス管32の内側に配設されれば良いものであ
り、保護ガス管32の内部に延伸する長さに長短の特別
の制限はないものであるが、該排ガス管延長部材34の
高さhが保護ガス管32の高さHの30%以下と低い場
合には、育成炉12内へ突出する部分が短いため、温度
緩和の効果が小さく、排気口31付近である程度大きな
温度勾配が形成されることになる。これによって、排ガ
ス管延長部材34がない時に比べ、酸化物の付着量は抑
制できるが、十分な抑制効果を得るためには、排ガス管
延長部材34の高さhを保護ガス管32の高さHに対し
30%以上の長さとして設けるのがよい。
The reason for this is that the exhaust gas pipe extension member 34
May be disposed inside the protective gas pipe 32, and there is no particular limitation on the length extending into the protective gas pipe 32. When the height h is as low as 30% or less of the height H of the protective gas pipe 32, the portion protruding into the growth furnace 12 is short, so that the effect of reducing the temperature is small. Will be formed. Thereby, the amount of the attached oxide can be suppressed as compared with the case where the exhaust gas pipe extension member 34 is not provided. However, in order to obtain a sufficient suppression effect, the height h of the exhaust gas pipe extension member 34 is set to the height of the protective gas pipe 32. It is preferable to provide a length of 30% or more with respect to H.

【0039】一方、排ガス管延長部材34の高さhを必
要以上に高くしても、育成炉12内部の輻射熱による影
響を受け易くなることから、排ガス管延長部材34の高
さhを保護ガス管32の高さHに対し80%以下の長さ
として設けるべきである。
On the other hand, even if the height h of the exhaust gas pipe extension member 34 is increased more than necessary, the height h of the exhaust gas pipe extension member 34 is reduced by the protection gas because the height of the exhaust gas pipe extension member 34 is easily affected by the radiant heat inside the growth furnace 12. It should be less than 80% of the height H of the tube 32.

【0040】排ガス管延長部材34の高さhが保護ガス
管32の高さHに対し80%を超えると、育成炉12内
部の輻射熱により排ガス管延長部材34の先端部が加熱
され、溶損を生ずる可能性がでる。排ガス管延長部材3
4の耐久性や温度緩和効果に配慮しても、排ガス管延長
部材34の高さhを保護ガス管32の高さHに対し80
%以下の高さとなるように配置すれば、十分にその効果
を得ることができる。
When the height h of the exhaust gas pipe extension member 34 exceeds 80% of the height H of the protective gas pipe 32, the tip of the exhaust gas pipe extension member 34 is heated by radiant heat inside the growth furnace 12 and melted. May occur. Exhaust gas pipe extension member 3
4, the height h of the exhaust gas pipe extension member 34 is 80
%, The effect can be sufficiently obtained.

【0041】以上のような理由から、本発明のシリコン
単結晶製造装置では、排ガス管延長部材34の高さhは
保護ガス管32の高さHに対し30%〜80%の範囲で
定めるのが望ましい。
For the above reasons, in the apparatus for manufacturing a silicon single crystal of the present invention, the height h of the exhaust gas pipe extension member 34 is set in the range of 30% to 80% with respect to the height H of the protective gas pipe 32. Is desirable.

【0042】なお、保護ガス管の高さは、ルツボに保持
するシリコン融液の量や製造装置下部の空間により適宜
決めれば好ましいものであり、シリコン融液がルツボよ
り流れ出し育成炉底部に保持された時に、保護ガス管の
ガス導入口から炉外へと流出しない高さとしておけばよ
い。
It is preferable that the height of the protective gas pipe is appropriately determined according to the amount of the silicon melt held in the crucible and the space below the manufacturing apparatus. The silicon melt flows out of the crucible and is held at the bottom of the growth furnace. In this case, the height may be set so that the gas does not flow out of the furnace through the gas inlet of the protective gas pipe.

【0043】そして、前記排ガス管延長部材34は、図
4に示したごとく、排ガス管28と一体、即ち排ガス管
28を育成炉12内部に延長するように形成してもよい
が、図3によく示されるごとく、前記排ガス管28とは
別体に形成し、育成炉12の排気口31に着脱可能に連
通せしめるように設けてもよい。
The exhaust gas pipe extension member 34 may be formed integrally with the exhaust gas pipe 28 as shown in FIG. 4, that is, so as to extend the exhaust gas pipe 28 inside the growth furnace 12. As is often shown, it may be formed separately from the exhaust gas pipe 28 so as to be detachably connected to the exhaust port 31 of the growth furnace 12.

【0044】単結晶を製造した後は、結晶育成時に育成
炉12の炉壁12aや断熱材22、加熱ヒータ18、底
部断熱材26等の炉内部材に付着した酸化物を取り除い
たり、消耗部品を交換する等のメンテナンス作業を行う
ため、育成炉12の内部に配設されている炉内部品を炉
外へ取り出し、酸化物除去を行う必要がある。その際
に、排ガス管延長部材34を取り外しができるようにし
ておけば、育成炉底壁12bからの突出物が無くなりメ
ンテナンス作業がし易くなるし、排ガス管28の育成炉
12への延伸部、即ち排ガス管延長部材34や排ガス管
28の排気口31に付着した酸化物やシリコンの蒸着物
を除去し易くなり、作業性の向上と効率化を図ることが
できる。
After the single crystal is manufactured, oxides adhered to the furnace internal members such as the furnace wall 12a of the growth furnace 12, the heat insulating material 22, the heater 18, the bottom heat insulating material 26 and the like during the crystal growth are removed. In order to perform maintenance work such as replacement of the furnace, it is necessary to take out the in-furnace components provided inside the growth furnace 12 to the outside of the furnace and remove oxides. At this time, if the exhaust gas pipe extension member 34 is made detachable, the protrusions from the growth furnace bottom wall 12b are eliminated, so that the maintenance work becomes easy, and the extension part of the exhaust gas pipe 28 to the growth furnace 12, That is, it becomes easy to remove oxides and silicon deposits adhering to the exhaust gas pipe extension member 34 and the exhaust port 31 of the exhaust gas pipe 28, thereby improving workability and improving efficiency.

【0045】更には、排ガス管延長部材34は常に高温
に曝される位置に配置されていることから劣化し易く、
劣化の度合いに応じて交換する必要が生じることも考え
られるため、容易に交換できる構造にしておくことで製
造装置の信頼性を高めると同時に維持費用も軽減され
る。
Furthermore, since the exhaust gas pipe extension member 34 is always located at a position where it is exposed to high temperatures, it tends to deteriorate.
Since replacement may be required depending on the degree of deterioration, it is possible to increase the reliability of the manufacturing apparatus and reduce maintenance costs by adopting a structure that can be easily replaced.

【0046】また、育成炉12のメンテナンス作業にあ
たり排気口31周辺の炉内部材の取り外しを容易にする
ために、育成炉12の内部へ延伸する排ガス管延長部材
34と保護ガス管32の間には、多少の隙間を設けて排
ガス管延長部材34と保護ガス管32を配設するのもよ
い。この時の隙間は、1mm〜3mm程度の隙間が排ガ
ス管延長部材34と保護ガス管32の間にできるように
すれば好ましいもので、このような隙間を設けることに
よって、例えば熱膨張による損傷や操業時にシリコン溶
液Mから蒸発したシリコンが蒸着することで排ガス管延
長部材34と保護ガス管32が密着するのを防止できる
ようになる。
Further, in order to facilitate the removal of the furnace internal members around the exhaust port 31 during the maintenance operation of the growth furnace 12, the exhaust gas pipe extension member 34 extending into the growth furnace 12 and the protection gas pipe 32 are disposed. Alternatively, the exhaust gas pipe extension member 34 and the protective gas pipe 32 may be provided with some gap. The gap at this time is preferably such that a gap of about 1 mm to 3 mm is formed between the exhaust gas pipe extension member 34 and the protective gas pipe 32. By providing such a gap, for example, damage due to thermal expansion or By depositing the silicon evaporated from the silicon solution M during operation, the exhaust gas pipe extension member 34 and the protective gas pipe 32 can be prevented from being in close contact with each other.

【0047】該排ガス延長部材34の内径については特
に限定されるものではないが、図4に示したごとく、排
ガス管28の内径と同一でもよいし、排ガス管28の排
気能力が損なわれない限り、図1〜3に示すごとく、排
ガス管28の内径よりも小さくすることもできる。排ガ
ス延長部材34の太さや内径は、保護ガス管32の内径
や製造装置の不活性ガス排気能力に合わせて選択すれば
よい。
The inner diameter of the exhaust gas extension member 34 is not particularly limited, but may be the same as the inner diameter of the exhaust gas pipe 28 as shown in FIG. 4 or as long as the exhaust capacity of the exhaust gas pipe 28 is not impaired. As shown in FIGS. 1 to 3, the inner diameter of the exhaust gas pipe 28 can be made smaller. The thickness and the inner diameter of the exhaust gas extension member 34 may be selected according to the inner diameter of the protective gas pipe 32 and the inert gas exhaust capacity of the manufacturing apparatus.

【0048】上記の排ガス管28並びに排ガス管延長部
材34の材質には、高強度であり育成炉12の高温にも
耐え、シリコン融液Mからの蒸発物による浸食にも強い
材料が好適であり、このような材料としては、融点が高
い金属であるモリブデン、タングステン、タンタル、チ
タン等の高融点金属、あるいはこれらを主成分とする合
金や、ステンレススチール等が適している。また、炭素
鋼等を用いても好ましい。
The material of the exhaust gas pipe 28 and the exhaust gas pipe extension member 34 is preferably a material that has high strength, withstands the high temperature of the growth furnace 12, and is resistant to erosion by evaporation from the silicon melt M. As such a material, a high melting point metal such as molybdenum, tungsten, tantalum, or titanium having a high melting point, an alloy containing these as a main component, or stainless steel is suitable. It is also preferable to use carbon steel or the like.

【0049】これらの金属材料は、熱伝導率も高く、育
成炉12内へ延伸した排ガス管延長部材34へもたらさ
れる熱を速やかに下方部の排ガス管28へ伝え、排気口
31付近での急激な温度変化を是正する効果を持つ。そ
して、これらの金属材料により形成された排ガス管延長
部材34は、熱伝導率が良好なことで自らが高温となる
のも抑制できる。特に、排ガス管延長部材34のコスト
や加工性等に配慮すれば、排ガス管延長部材の材料とし
てはステンレススチールを用いるのが実用的である。
These metallic materials have a high thermal conductivity, so that the heat brought to the exhaust gas pipe extension member 34 extending into the growth furnace 12 is quickly transmitted to the lower exhaust gas pipe 28, and abruptly near the exhaust port 31. It has the effect of correcting any temperature changes. The exhaust gas pipe extension member 34 formed of such a metal material can also prevent itself from becoming hot due to its good thermal conductivity. Particularly, considering the cost and workability of the exhaust gas pipe extension member 34, it is practical to use stainless steel as the material of the exhaust gas pipe extension member.

【0050】一方、排ガス管延長部材34の外側に配置
する保護ガス管32の材料には、育成炉12内部に配置
されている炉内部材と同様の黒鉛材を用いるのが好適で
ある。育成炉12に収容されるシリコン融液Mは、その
融点である1420℃以上にも加熱されており、この加
熱で発生する輻射熱にも耐え、シリコン融液Mから出る
蒸発物やシリコン溶液Mそのものの浸食にも強い材料が
望ましく、これらを考え合わせれば保護ガス管32の材
料としては黒鉛が最適である。
On the other hand, as the material of the protective gas pipe 32 disposed outside the exhaust gas pipe extension member 34, it is preferable to use the same graphite material as the in-furnace member disposed inside the growth furnace 12. The silicon melt M accommodated in the growth furnace 12 is heated to a temperature of 1420 ° C. or more, which is the melting point thereof. A material that is also resistant to erosion is desirable. Graphite is the most suitable material for the protective gas pipe 32 in consideration of these factors.

【0051】次に、上記した本発明のシリコン単結晶の
製造装置を用いた本発明のCZ法によるシリコン単結晶
の製造方法について説明する。最初に、シリコン単結晶
製造装置10aの育成炉12内部に設置された石英製ル
ツボ14に多結晶シリコン塊を充填し、シリコン単結晶
製造装置10aの育成炉12をアルゴンガス等の不活性
ガスGで置換し満たした後、黒鉛製ルツボ16の外側に
置かれた加熱ヒータ18を発熱させて、シリコンの融点
である1420℃以上に多結晶シリコンを加熱してシリ
コン融液Mを得る。
Next, a method for producing a silicon single crystal by the CZ method of the present invention using the above-described apparatus for producing a silicon single crystal of the present invention will be described. First, a quartz crucible 14 placed inside a growing furnace 12 of a silicon single crystal manufacturing apparatus 10a is filled with a polycrystalline silicon lump, and the growing furnace 12 of the silicon single crystal manufacturing apparatus 10a is filled with an inert gas G such as an argon gas. Then, the polycrystalline silicon is heated to 1420 ° C. or higher, which is the melting point of silicon, by heating the heater 18 placed outside the graphite crucible 16 to obtain a silicon melt M.

【0052】この時、育成炉12の内部は、シリコン融
液Mから蒸発するSiO等の酸化物が育成炉12内部の
温度の低い部分に析出付着しないよう、常時、不活性ガ
スGを育成炉12に流しながら、シリコン融液Mからの
蒸発物を育成炉12の外へと排出しシリコン単結晶Sを
育成する。
At this time, an inert gas G is constantly supplied to the growth furnace 12 so that oxides such as SiO vaporized from the silicon melt M do not precipitate and adhere to the low-temperature portion inside the growth furnace 12. The evaporant from the silicon melt M is discharged to the outside of the growth furnace 12 while flowing to the growth furnace 12 to grow the silicon single crystal S.

【0053】これは不活性ガスGにより育成炉12内を
常に清浄に保つことによって結晶品質を所望の値に調整
すると同時に、育成炉12内に付着した酸化物等がシリ
コン融液Mに落下して育成中の結晶に転位が発生するの
を防止し、安定した結晶成長が行われるようにするため
である。
This is because the crystal quality is adjusted to a desired value by always keeping the inside of the growth furnace 12 clean with the inert gas G, and at the same time, oxides and the like adhering to the inside of the growth furnace 12 fall into the silicon melt M. This is to prevent the generation of dislocations in the growing crystal so that stable crystal growth can be performed.

【0054】石英製ルツボ14に収容された全ての多結
晶シリコンが溶解したところで、シリコン融液Mの温度
をシリコン単結晶の成長に適した温度に調整し安定さ
せ、引上げワイヤー(図示せず)を静かに巻き出して、
種ホルダーに取り付けられた種結晶(図示せず)の先端
部をシリコン融液Mの表面に着液させる。そして、黒鉛
製ルツボ16と種結晶をそれぞれ反対方向に回転させな
がら、シリコン融液Mに接融させた種結晶を引上げワイ
ヤーにより巻き取り徐々に引上げることによって、種結
晶の下方にシリコン単結晶を成長させるものである。
When all the polycrystalline silicon contained in the quartz crucible 14 has been dissolved, the temperature of the silicon melt M is adjusted to a temperature suitable for the growth of silicon single crystal and stabilized, and a pulling wire (not shown) Gently unwind
The tip of a seed crystal (not shown) attached to the seed holder is brought into contact with the surface of the silicon melt M. Then, while rotating the graphite crucible 16 and the seed crystal in opposite directions, the seed crystal brought into close contact with the silicon melt M is wound up by a pulling wire and gradually pulled up, so that the silicon single crystal is placed below the seed crystal. Is to grow.

【0055】本発明方法の製造においては、上記した本
発明のシリコン単結晶製造装置10aを用いているため
に、不活性ガスGを流しながらチョクラルスキー法によ
りシリコン単結晶を育成するに際して、前記排気口31
近傍における酸化物の析出堆積を抑制することができ、
したがって排ガス管28の安定した排気能力を確保し、
長時間に及ぶ結晶成長作業を安定して行えるものであ
る。
In the production of the method of the present invention, since the silicon single crystal production apparatus 10a of the present invention is used, the silicon single crystal is grown by the Czochralski method while flowing the inert gas G. Exhaust port 31
The deposition and deposition of oxides in the vicinity can be suppressed,
Therefore, a stable exhaust capacity of the exhaust gas pipe 28 is secured,
A long-term crystal growth operation can be stably performed.

【0056】[0056]

【実施例】以下に、実施例を挙げて本発明をより具体的
に説明するが、本発明はこれらに限定して解釈されるも
のではない。
EXAMPLES The present invention will be described in more detail with reference to the following Examples, which should not be construed as limiting the present invention.

【0057】(実施例1)図1及び図2に示した本発明
のシリコン単結晶製造装置と同様の製造装置に、口径4
5cmの石英製ルツボを配置し、この石英製ルツボに原
料である多結晶シリコン60kgを仕込み、加熱ヒータ
を発熱させてシリコン融液とし、融液温度が安定したと
ころで種結晶先端をシリコン融液表面に着液させ、その
後、この種結晶を静かに融液上方に引上げることによっ
て、種結晶の下方に直径が150mmのシリコン単結晶
を引上げた。
Example 1 A manufacturing apparatus similar to the silicon single crystal manufacturing apparatus of the present invention shown in FIGS.
A quartz crucible of 5 cm is placed, 60 kg of polycrystalline silicon as a raw material is charged into the quartz crucible, and a heater is heated to generate a silicon melt. When the melt temperature is stabilized, the tip of the seed crystal is brought to the surface of the silicon melt. Then, the seed crystal was gently pulled up above the melt, thereby pulling a silicon single crystal having a diameter of 150 mm below the seed crystal.

【0058】なお、この製造で使用した図1に示す本発
明のシリコン単結晶の製造装置において、図2に示す排
ガス管延長部材は、高さ(h)が90mmで外形58m
mのものを排気口に連通させて設置して使用した。ま
た、排ガス管延長部材を炉内で囲繞する保護ガス管の高
さ(H)は150mm、保護ガス管の内径は、排ガス管
の内径と同じ60mmのものを使用した。
In the apparatus for producing a silicon single crystal of the present invention shown in FIG. 1 used in this production, the exhaust pipe extension member shown in FIG. 2 has a height (h) of 90 mm and an outer diameter of 58 m.
m were installed and used in communication with the exhaust port. The height (H) of the protective gas pipe surrounding the exhaust gas pipe extension member in the furnace was 150 mm, and the inner diameter of the protective gas pipe was 60 mm, the same as the inner diameter of the exhaust gas pipe.

【0059】そして、上述のシリコン単結晶の育成条件
と略同一条件で単結晶の製造を繰り返し、排ガス管ある
いは保護ガス管に付着した酸化物の量(排ガス管、保護
ガス管、排ガス管延長部材の内部で、最も酸化物の付着
が多い箇所の堆積酸化物の厚み)を測定し、その結果を
表1に示した。表1は100時間前後の間をおいて、単
結晶製造終了時に酸化物の付着量(最大厚)を測定した
ものである。
Then, the production of the single crystal was repeated under substantially the same conditions as the growth conditions of the silicon single crystal described above, and the amount of the oxide adhered to the exhaust gas pipe or the protective gas pipe (exhaust gas pipe, protective gas pipe, exhaust gas pipe extension member) , The thickness of the deposited oxide at the portion where the oxide was most attached) was measured, and the results are shown in Table 1. Table 1 shows the measurement of the amount of attached oxide (maximum thickness) at the end of the production of the single crystal at around 100 hours.

【0060】この結果、排ガス管の構造を排ガス管延長
部材による育成炉内への延長構造としたことにより、排
ガス管の排気口付近や排ガス管延長部材の内部への酸化
物の付着はほとんど観察されず、その代わりに排ガス管
延長部材を覆う保護ガス管に、図1並びに図2に示すよ
うに小量の酸化物が付着するのが観察された。
As a result, the structure of the exhaust gas pipe was extended to the inside of the growth furnace by the exhaust gas pipe extension member, so that the adhesion of oxides near the exhaust port of the exhaust gas pipe and inside the exhaust gas pipe extension member was almost observed. Instead, it was observed that a small amount of oxide adhered to the protective gas pipe covering the exhaust gas pipe extension member as shown in FIGS.

【0061】しかし、全体として酸化物の付着量は極め
て少なく、100〜200hrs程度の使用で堆積量は
1〜2mmであり、またシリコンの蒸着物は殆んど見ら
れず、保護ガス管の堆積物も簡単に除去することができ
た。
However, as a whole, the amount of deposited oxide is extremely small, the amount of deposition is about 1 to 2 mm when used for about 100 to 200 hrs, and almost no silicon deposits are seen. Things could be easily removed.

【0062】従って、本発明の製造装置を用いることに
より、長時間の操業でも酸化物の堆積が少なく抑えら
れ、排気効率を落とすことなく操業を継続することが可
能であることが確認できた。
Therefore, it was confirmed that the use of the manufacturing apparatus of the present invention can suppress the accumulation of oxides even during long-time operation, and can continue the operation without lowering the exhaust efficiency.

【0063】(比較例1)図5及び図6に示す従来のシ
リコン単結晶製造装置に、実施例1と同様に、育成炉内
に口径が45cmの石英製ルツボを入れ、多結晶シリコ
ン60kgを仕込み、加熱融液して直径が150mmの
シリコン単結晶の引上げを行った。この従来のシリコン
単結晶製造装置においては、排ガス管延長部材は使用せ
ず、排ガス管の先端部に高さ(H)が150mm、内径
が60mmの保護ガス管のみを配置している。
Comparative Example 1 A quartz crucible having a diameter of 45 cm was placed in a growth furnace in a conventional silicon single crystal manufacturing apparatus shown in FIGS. It was charged and heated and melted to pull up a silicon single crystal having a diameter of 150 mm. In this conventional silicon single crystal manufacturing apparatus, an exhaust gas pipe extension member is not used, and only a protective gas pipe having a height (H) of 150 mm and an inner diameter of 60 mm is disposed at the tip of the exhaust gas pipe.

【0064】この従来のシリコン単結晶製造装置を用い
て上述のシリコン単結晶の製造を繰り返し、実施例1と
同様に排ガス管あるいは保護ガス管に付着した酸化物の
量を測定した。その結果を、実施例1と同様の表1に示
す。
Using this conventional silicon single crystal manufacturing apparatus, the above-described silicon single crystal was repeatedly manufactured, and the amount of oxides attached to the exhaust gas pipe or the protective gas pipe was measured in the same manner as in Example 1. The results are shown in Table 1 similar to Example 1.

【0065】比較例1による試験においては、従来の構
造の排ガス管では100hrs前後になると排気口付近
の保護ガス管内部に酸化物が最大部分で4mm近くまで
堆積し、200hrsになると8mm前後にまで達して
しまうことが確認できた。また、酸化物以外にもシリコ
ンの蒸着物が多く付着しており、製造装置のメンテナン
ス作業において、これら蒸着物を落とすのに時間がかか
り面倒なものであった。
In the test according to Comparative Example 1, in the exhaust gas pipe having the conventional structure, the oxide was deposited up to about 4 mm at the maximum portion inside the protective gas pipe near the exhaust port at about 100 hrs, and about 8 mm at 200 hrs. It was confirmed that it reached. In addition, a large amount of silicon deposits adhere to the surface in addition to the oxides, and it takes time and trouble to remove these deposits during maintenance work of the manufacturing apparatus.

【0066】このような状態では、安定した排気能力を
確保するために、製造装置を停止する度に排ガス管の掃
除を行う必要が生じる。特に、製造装置を停止すること
なくルツボに原料を再充填しながら、一つのルツボから
複数本の単結晶を引上げる多重引上げ法(Multiple Cz
ochralski Method)を用いた単結晶育成では、100
hrs以上もの長時間に渡って製造装置の運転を続ける
こともあり、更なる長時間運転を可能とするためには、
排ガス管への酸化物付着を軽減する必要があることを確
認した。
In such a state, it is necessary to clean the exhaust gas pipe every time the manufacturing apparatus is stopped in order to secure a stable exhaust capacity. In particular, a multiple pulling method for pulling a plurality of single crystals from one crucible while refilling the crucible with raw materials without stopping the manufacturing apparatus (Multiple Cz method).
In the single crystal growth using the ochralski method), 100
Since the operation of the manufacturing equipment may be continued for a long time of more than hrs, in order to enable a further long-time operation,
It was confirmed that it was necessary to reduce the adhesion of oxides to the exhaust gas pipe.

【0067】[0067]

【表1】 [Table 1]

【0068】[0068]

【発明の効果】上述したごとく、本発明によれば、高温
のシリコン融液が育成炉の外へ流出するのを確実に阻止
するのに加え、育成炉の排気口付近における酸化物の析
出堆積を抑制し、排気管による不活性ガスの排気能力の
低下を防止することによって、育成炉内での酸化物の付
着を防ぐとともに安定した排気能力を確保し、長時間に
およぶ結晶成長作業を安定して行うことができるという
大きな効果が達成される。
As described above, according to the present invention, in addition to reliably preventing the high-temperature silicon melt from flowing out of the growth furnace, the deposition and deposition of oxide near the exhaust port of the growth furnace By preventing the exhaust pipe from lowering the inert gas exhaust capacity by the exhaust pipe, it prevents oxides from adhering in the growth furnace and secures a stable exhaust capacity, stabilizing the crystal growth work over a long time. The great effect that it can be performed is achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明のシリコン単結晶の製造装置の一つの
実施の形態を示す概略断面説明図である。
FIG. 1 is a schematic sectional explanatory view showing one embodiment of an apparatus for producing a silicon single crystal of the present invention.

【図2】 図1の要部拡大断面図である。FIG. 2 is an enlarged sectional view of a main part of FIG.

【図3】 図2に示した排ガス管延長部材を示す摘示拡
大断面図である。
FIG. 3 is an enlarged sectional view showing the exhaust gas pipe extension member shown in FIG. 2;

【図4】 本発明における排ガス管延長部材の他の例を
示す図2と同様の断面図である。
FIG. 4 is a cross-sectional view similar to FIG. 2, showing another example of an exhaust gas pipe extension member according to the present invention.

【図5】 従来のシリコン単結晶の製造装置の1例を
示す概略断面説明図である。
FIG. 5 is a schematic cross-sectional explanatory view showing one example of a conventional silicon single crystal manufacturing apparatus.

【図6】 図5の要部の拡大断面図である。FIG. 6 is an enlarged sectional view of a main part of FIG.

【符号の説明】[Explanation of symbols]

10:従来のシリコン単結晶製造装置、10a:本発明
のシリコン単結晶製造装置、12:育成炉、12a:炉
壁、12b:底壁、14:石英製ルツボ、16:黒鉛製
ルツボ、18:加熱ヒータ、20:ルツボ軸駆動機構、
22:断熱材、24:ルツボ支持軸、26:底部断熱
材、28:排ガス管、30:圧力制御装置、31:排気
口、32:保護ガス管、33:ガス導入口、34:排ガ
ス管延長部材、34b:延長部材接続部、G:不活性ガ
ス、M:シリコン融液。
10: conventional silicon single crystal manufacturing apparatus, 10a: silicon single crystal manufacturing apparatus of the present invention, 12: growing furnace, 12a: furnace wall, 12b: bottom wall, 14: quartz crucible, 16: graphite crucible, 18: Heating heater, 20: crucible shaft drive mechanism,
22: heat insulating material, 24: crucible support shaft, 26: bottom heat insulating material, 28: exhaust gas pipe, 30: pressure control device, 31: exhaust port, 32: protective gas pipe, 33: gas inlet, 34: exhaust gas pipe extension Member, 34b: extension member connection, G: inert gas, M: silicon melt.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 チョクラルスキー法によりシリコン単結
晶を育成する製造装置において、育成炉内に流れる不活
性ガスを排気する前記育成炉の下方部に設けられた排気
口に連通するように排ガス管延長部材を設けかつ該排ガ
ス管延長部材を囲繞するように保護ガス管を設けたこと
を特徴とするシリコン単結晶の製造装置。
In a manufacturing apparatus for growing a silicon single crystal by the Czochralski method, an exhaust gas pipe communicates with an exhaust port provided at a lower portion of the growth furnace for exhausting an inert gas flowing in the growth furnace. An apparatus for producing a silicon single crystal, wherein an extension member is provided and a protective gas pipe is provided so as to surround the exhaust gas pipe extension member.
【請求項2】 前記排ガス管延長部材の高さを、前記保
護ガス管の高さの30%〜80%の範囲としたことを特
徴とする請求項1記載のシリコン単結晶の製造装置。
2. The apparatus for producing a silicon single crystal according to claim 1, wherein the height of the exhaust gas pipe extension member is in the range of 30% to 80% of the height of the protective gas pipe.
【請求項3】 前記排ガス管延長部材を前記排ガス管と
別体に形成し、該排ガス管の排気口に着脱可能に連通せ
しめるようにしたことを特徴とする請求項1又は2記載
のシリコン単結晶の製造装置。
3. The silicon unit according to claim 1, wherein the exhaust gas pipe extension member is formed separately from the exhaust gas pipe, and is detachably connected to an exhaust port of the exhaust gas pipe. Crystal manufacturing equipment.
【請求項4】 前記排ガス管及び前記排ガス管延長部材
をモリブデン、タングステン、タンタル等の高融点金
属、ステンレススチール又は炭素鋼で形成し、一方前記
保護ガス管を黒鉛材で形成したことを特徴とする請求項
1〜3のいずれか1項記載のシリコン単結晶の製造装
置。
4. The exhaust gas pipe and the exhaust gas pipe extension member are formed of a high melting point metal such as molybdenum, tungsten, and tantalum, stainless steel or carbon steel, while the protective gas pipe is formed of a graphite material. The apparatus for producing a silicon single crystal according to claim 1.
【請求項5】 請求項1〜4のいずれか1項記載のシリ
コン単結晶の製造装置を用いることにより、不活性ガス
を流しながらチョクラルスキー法によりシリコン単結晶
を育成する際に、前記排気口近傍における酸化物の析出
堆積を抑制して前記排ガス管の安定した排気能力を確保
し、長時間に及ぶ結晶成長作業を安定して行えるように
したことを特徴とするシリコン単結晶の製造方法。
5. When the silicon single crystal is grown by the Czochralski method while flowing an inert gas by using the silicon single crystal manufacturing apparatus according to claim 1, the exhaust gas is exhausted. A method for producing a silicon single crystal, characterized in that the deposition and deposition of oxides in the vicinity of the mouth are suppressed to ensure a stable exhaust capability of the exhaust gas pipe, and a long-term crystal growth operation can be performed stably. .
JP2001115772A 2001-04-13 2001-04-13 Silicon single crystal manufacturing apparatus and manufacturing method Expired - Fee Related JP4423805B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001115772A JP4423805B2 (en) 2001-04-13 2001-04-13 Silicon single crystal manufacturing apparatus and manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001115772A JP4423805B2 (en) 2001-04-13 2001-04-13 Silicon single crystal manufacturing apparatus and manufacturing method

Publications (2)

Publication Number Publication Date
JP2002316896A true JP2002316896A (en) 2002-10-31
JP4423805B2 JP4423805B2 (en) 2010-03-03

Family

ID=18966617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001115772A Expired - Fee Related JP4423805B2 (en) 2001-04-13 2001-04-13 Silicon single crystal manufacturing apparatus and manufacturing method

Country Status (1)

Country Link
JP (1) JP4423805B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100907908B1 (en) * 2007-11-06 2009-07-16 주식회사 실트론 Silicon Monocrystalline Ingot Production Equipment
JP2010059028A (en) * 2008-09-05 2010-03-18 Sumco Techxiv株式会社 Evacuation member for apparatus for manufacturing semiconductor single crystal
US20130306109A1 (en) * 2011-03-29 2013-11-21 Sumco Corporation Apparatus for cleaning exhaust passage for semiconductor crystal manufacturing device and method for cleaning same
KR20150071850A (en) * 2013-12-19 2015-06-29 주식회사 엘지실트론 Gas discharge pipe and ingot growing apparatus having the same
CN109797426A (en) * 2019-03-11 2019-05-24 上海新昇半导体科技有限公司 A kind of crystal pulling apparatus
CN112144105A (en) * 2020-09-24 2020-12-29 西安奕斯伟硅片技术有限公司 Combined exhaust pipe and single crystal furnace
CN112301413A (en) * 2019-07-29 2021-02-02 内蒙古中环光伏材料有限公司 Exhaust system and exhaust method suitable for large-size single crystal
CN112481693A (en) * 2020-12-01 2021-03-12 西安奕斯伟硅片技术有限公司 Crystal pulling furnace
CN113966415A (en) * 2019-06-21 2022-01-21 胜高股份有限公司 Device and method for removing attached matter
CN114197059A (en) * 2021-12-14 2022-03-18 西安奕斯伟材料科技有限公司 Single crystal furnace
WO2022182534A1 (en) * 2021-02-24 2022-09-01 Globalwafers Co., Ltd. Ingot puller apparatus having a compound exhaust tube and methods for selecting the lengths of lower and upper exhaust tube portions
CN117305972A (en) * 2023-11-28 2023-12-29 内蒙古鼎泰万邦新材料有限公司 Single crystal furnace

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100907908B1 (en) * 2007-11-06 2009-07-16 주식회사 실트론 Silicon Monocrystalline Ingot Production Equipment
JP2010059028A (en) * 2008-09-05 2010-03-18 Sumco Techxiv株式会社 Evacuation member for apparatus for manufacturing semiconductor single crystal
US10458044B2 (en) 2011-03-29 2019-10-29 Sumco Corporation Method for cleaning exhaust passage for semiconductor crystal manufacturing device
US20130306109A1 (en) * 2011-03-29 2013-11-21 Sumco Corporation Apparatus for cleaning exhaust passage for semiconductor crystal manufacturing device and method for cleaning same
JP5644861B2 (en) * 2011-03-29 2014-12-24 株式会社Sumco Cleaning device for exhaust passage for semiconductor crystal manufacturing apparatus and cleaning method therefor
US9738992B2 (en) 2011-03-29 2017-08-22 Sumco Corporation Apparatus for cleaning exhaust passage for semiconductor crystal manufacturing device
KR102137284B1 (en) * 2013-12-19 2020-07-23 에스케이실트론 주식회사 Gas discharge pipe and ingot growing apparatus having the same
KR20150071850A (en) * 2013-12-19 2015-06-29 주식회사 엘지실트론 Gas discharge pipe and ingot growing apparatus having the same
CN109797426A (en) * 2019-03-11 2019-05-24 上海新昇半导体科技有限公司 A kind of crystal pulling apparatus
CN113966415A (en) * 2019-06-21 2022-01-21 胜高股份有限公司 Device and method for removing attached matter
CN113966415B (en) * 2019-06-21 2024-02-23 胜高股份有限公司 Attachment removing device and attachment removing method
CN112301413A (en) * 2019-07-29 2021-02-02 内蒙古中环光伏材料有限公司 Exhaust system and exhaust method suitable for large-size single crystal
CN112301413B (en) * 2019-07-29 2024-02-23 内蒙古中环光伏材料有限公司 Exhaust system and exhaust method suitable for drawing large-size single crystals
CN112144105A (en) * 2020-09-24 2020-12-29 西安奕斯伟硅片技术有限公司 Combined exhaust pipe and single crystal furnace
CN112481693A (en) * 2020-12-01 2021-03-12 西安奕斯伟硅片技术有限公司 Crystal pulling furnace
WO2022182534A1 (en) * 2021-02-24 2022-09-01 Globalwafers Co., Ltd. Ingot puller apparatus having a compound exhaust tube and methods for selecting the lengths of lower and upper exhaust tube portions
CN114197059A (en) * 2021-12-14 2022-03-18 西安奕斯伟材料科技有限公司 Single crystal furnace
CN117305972A (en) * 2023-11-28 2023-12-29 内蒙古鼎泰万邦新材料有限公司 Single crystal furnace
CN117305972B (en) * 2023-11-28 2024-02-13 内蒙古鼎泰万邦新材料有限公司 Single crystal furnace

Also Published As

Publication number Publication date
JP4423805B2 (en) 2010-03-03

Similar Documents

Publication Publication Date Title
US9376763B2 (en) Manufacturing method and manufacturing apparatus of a group III nitride crystal, utilizing a melt containing a group III metal, an alkali metal, and nitrogen
US9217208B2 (en) Apparatus for producing single crystal
JP4736401B2 (en) Method for producing silicon carbide single crystal
US20120304916A1 (en) Method of producing silicon carbide single crystal
JP4423805B2 (en) Silicon single crystal manufacturing apparatus and manufacturing method
WO2001057293A9 (en) Single crystal growing device and production method of single crystal using the device and single crystal
JP2009167101A (en) Method and apparatus for producing silicon ingot
JP4389574B2 (en) SiC single crystal manufacturing method and manufacturing apparatus
JP3838013B2 (en) Method for producing silicon single crystal
JP4184725B2 (en) Single crystal semiconductor manufacturing method and single crystal semiconductor manufacturing apparatus
JPS62138386A (en) Device for pulling single crystal
JP4650520B2 (en) Silicon single crystal manufacturing apparatus and manufacturing method
JP2002530258A (en) Method and apparatus for minimizing white spot defects in quartz glass crucibles
JP2002321997A (en) Apparatuses for making silicon single crystal and method for making silicon single crystal using the same
JP6627737B2 (en) Single crystal pulling device
JP3849639B2 (en) Silicon semiconductor single crystal manufacturing apparatus and manufacturing method
JP5776587B2 (en) Single crystal manufacturing method
JP3979291B2 (en) Semiconductor single crystal manufacturing apparatus and manufacturing method
JP2002201094A (en) Method of manufacturing single silicon crystal
JP2001002491A (en) Device for pulling up single crystal
TWI707992B (en) Method and device for pulling single crystal and silicon semiconductor wafer
JPS6041037B2 (en) Manufacturing equipment for high dissociation pressure compound single crystal for semiconductors
JP2747626B2 (en) Single crystal manufacturing equipment
JP2947152B2 (en) Single crystal manufacturing equipment
JP2009126738A (en) Method for manufacturing silicon single crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091130

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4423805

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131218

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees