JP2001002491A - Device for pulling up single crystal - Google Patents
Device for pulling up single crystalInfo
- Publication number
- JP2001002491A JP2001002491A JP11172797A JP17279799A JP2001002491A JP 2001002491 A JP2001002491 A JP 2001002491A JP 11172797 A JP11172797 A JP 11172797A JP 17279799 A JP17279799 A JP 17279799A JP 2001002491 A JP2001002491 A JP 2001002491A
- Authority
- JP
- Japan
- Prior art keywords
- single crystal
- shield
- pulling
- radiation shield
- pulling apparatus
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は単結晶引上装置に係
わり、特に高速度で単結晶を引上げることができ、かつ
COPの生成量を低減できる単結晶引上装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a single crystal pulling apparatus, and more particularly to a single crystal pulling apparatus capable of pulling a single crystal at a high speed and reducing the amount of generated COP.
【0002】[0002]
【従来の技術】一般に半導体デバイスの基板には主にシ
リコン単結晶が用いられているが、このシリコン単結晶
は、多結晶シリコンからチョクラルスキー法(以下、C
Z法という。)により製造される。2. Description of the Related Art In general, a silicon single crystal is mainly used for a substrate of a semiconductor device. This silicon single crystal is obtained by a Czochralski method (hereinafter, referred to as C) from polycrystalline silicon.
It is called Z method. ).
【0003】図11に示すように、このCZ法は、単結
晶引上装置21のチャンバ22内に設置した石英ガラス
ルツボ23に原料であるポリシリコンを充填し、石英ガ
ラスルツボ23の外周に設けたヒータ24によってポリ
シリコンを加熱溶解した上、シードチャック25に取り
付けた種結晶26を融液Mに浸漬し、シードチャック2
5および石英ガラスルツボ23を同方向または逆方向に
回転させながらシードチャック25を引上げて単結晶I
gを成長させる方法である。As shown in FIG. 11, in the CZ method, a quartz glass crucible 23 installed in a chamber 22 of a single crystal pulling apparatus 21 is filled with polysilicon as a raw material, and is provided on the outer periphery of the quartz glass crucible 23. The polysilicon is heated and melted by the heater 24, and the seed crystal 26 attached to the seed chuck 25 is immersed in the melt M, so that the seed chuck 2 is melted.
5 and the quartz glass crucible 23 are rotated in the same direction or in the opposite direction, while the seed chuck 25 is pulled up to remove the single crystal I.
It is a method of growing g.
【0004】上記単結晶引上装置21において、石英ガ
ラスルツボ23の上方の単結晶引上げ領域の周囲に輻射
シールド27が設置され、この輻射シールド27は、下
部開口部27dの直径が上部開口部27uの直径より小
さい截頭円錐形状の筒体であり、輻射シールド27は同
一材質で一体に形成されており、その材質はTaやMo
などの金属、あるいはC,SiCなどのセラミックスが
用いられている。In the single crystal pulling apparatus 21, a radiation shield 27 is provided around a single crystal pulling region above the quartz glass crucible 23. The radiation shield 27 has a lower opening 27d having a diameter of an upper opening 27u. The radiation shield 27 is integrally formed of the same material, and the material thereof is Ta or Mo.
And ceramics such as C and SiC.
【0005】単結晶引上装置21を用いた単結晶引上げ
工程において、結晶固化の徐冷時に生成するOSF(O
xidation−Induced Stacking
Fault)リングの内側に結晶欠陥であるCOP
(Crystal Originated Parti
cle)が生じることがあるが、このCOPはデバイス
の酸化膜耐圧を劣化させる要因の一つであり、COPの
低減が必要である。In the single crystal pulling process using the single crystal pulling apparatus 21, the OSF (O
xidation-Induced Stacking
Fault) COP which is a crystal defect inside the ring
(Crystal Originated Parti
Cle) may occur, but this COP is one of the factors that deteriorate the oxide film breakdown voltage of the device, and it is necessary to reduce the COP.
【0006】輻射シールド27は、ポリシリコン融液
M、石英ガラスルツボ23などからシリコン単結晶Ig
に加えられる輻射熱を遮断してシリコン単結晶Igの冷
却を促進し、単結晶引上げ速度の高速化を可能にすると
ともに、COPの生成を抑制し、さらに、輻射シールド
27はチャンバの上方から導入されるアルゴンガスをシ
リコン単結晶Igの周囲、石英ガラスルツボ23の中心
部から周縁部を経てチャンバ22の底部29に設けられ
た排気孔30へと導き、シリコン融液Mから発生するS
iO2や黒鉛ルツボ31から発生する金属蒸気など、単
結晶化を阻害するガスを排除することを目的として設置
されている。The radiation shield 27 is formed of a silicon single crystal Ig from a polysilicon melt M, a quartz glass crucible 23 or the like.
The radiant heat applied to the silicon single crystal is cut off to promote cooling of the silicon single crystal Ig, thereby enabling the single crystal pulling speed to be increased and suppressing the generation of COP. Further, the radiation shield 27 is introduced from above the chamber. Argon gas is introduced from the center of the quartz glass crucible 23 through the periphery of the silicon single crystal Ig to the exhaust holes 30 provided in the bottom 29 of the chamber 22 through the peripheral edge, and S generated from the silicon melt M is generated.
It is installed for the purpose of eliminating gases that inhibit single crystallization, such as iO 2 and metal vapor generated from the graphite crucible 31.
【0007】しかしながら、輻射シールド27は全体が
同一材質で形成され熱伝達率が一定であるため、全温度
領域に亘ってシリコン単結晶Igの冷却が促進され、C
OPが成長する1250℃〜1000℃の温度領域を短
時間で通過させることができるが、一方、急冷ではCO
Pが生成し易く徐冷が必要である凝固点〜1300℃の
温度領域でも、輻射シールド17の作用で単結晶が急冷
されるので、COPが多く生成し、酸化膜耐圧の良好な
ウェーハを得ることができない。However, since the radiation shield 27 is entirely made of the same material and has a constant heat transfer coefficient, cooling of the silicon single crystal Ig is promoted over the entire temperature range, and C
The OP can be passed through the temperature range of 1250 ° C. to 1000 ° C. in which the OP grows in a short time, while the CO is rapidly cooled.
Even in a temperature range from the freezing point to 1300 ° C. where P is easily formed and slow cooling is required, the single crystal is rapidly cooled by the action of the radiation shield 17, so that a large amount of COP is generated and a wafer having a good oxide film breakdown voltage is obtained. Can not.
【0008】また、COPを抑制する方法として、単結
晶引上げ速度を遅らせ、OSFリング径を結晶芯内側に
収縮させる方法があるが、この方法では結晶芯部に大き
なCOPが残存して、ウェーハ中央部でのデバイス歩留
が低下し、また、引上げ速度の低減により、単結晶引上
げの生産性を低下、結晶面内の結晶特性の不均一が生じ
る問題点があった。As a method of suppressing the COP, there is a method in which the pulling speed of the single crystal is reduced and the diameter of the OSF ring is shrunk to the inside of the crystal core. However, in this method, a large COP remains in the crystal core and the center of the wafer is reduced. There is a problem that the device yield in the portion is lowered, and the pulling speed is reduced, so that the productivity of pulling a single crystal is lowered and the crystal characteristics in a crystal plane are non-uniform.
【0009】さらに、従来の輻射シールド27は上述の
ように金属あるいはセラミックスが用いられているの
で、シリコン単結晶IgをFe、Cu等の重金属汚染す
るおそれがあった。Further, since the conventional radiation shield 27 is made of metal or ceramics as described above, there is a possibility that the silicon single crystal Ig is contaminated with heavy metals such as Fe and Cu.
【0010】なお、CZ法による単結晶引上装置におい
て、引上げ領域を取り囲む截頭円錐形状の断熱筒体から
なる輻射シールドをシリコン融液の近傍上方に設け、か
つ、この輻射シールドを2分割にし、シールド下部の断
熱性能が、シールド上部の断熱性能に比べて低く設定し
た例がある(特開平7―172971号)。この従来例
においては、下部シールドに包囲される部分が輻射熱を
受けるようになり、高温領域通過時間の延長が可能とな
り、デバイスプロセス後、酸化膜耐圧の良好なウェーハ
を得ることができ、また上部輻射シールドに包囲された
単結晶は従来と同様に冷却されるので、結晶欠陥発生頻
度が高い温度領域は速やかに通過させることができ、結
晶欠陥の発生を従来同様に少なくすることができる。In the single crystal pulling apparatus using the CZ method, a radiation shield comprising a frustoconical heat insulating cylinder surrounding the pulling region is provided above and near the silicon melt, and the radiation shield is divided into two parts. There is an example in which the heat insulation performance of the lower part of the shield is set lower than the heat insulation performance of the upper part of the shield (Japanese Patent Laid-Open No. 7-172971). In this conventional example, the portion surrounded by the lower shield receives radiant heat, the transit time in the high-temperature region can be extended, and after the device process, a wafer having a good oxide film breakdown voltage can be obtained. Since the single crystal surrounded by the radiation shield is cooled in the same manner as in the related art, the temperature region in which the frequency of occurrence of crystal defects is high can be quickly passed, and the occurrence of crystal defects can be reduced as in the conventional case.
【0011】しかしながら、この単結晶引上装置は、C
OPに対する低減には不十分であり、また、輻射シール
ドの上部シールドが、黒鉛と、黒鉛またはセラミックス
の繊維からなる断熱材との3層構造であり、構造が複雑
であり、製造コストが嵩み、また、輻射シールドの構成
部材から発生する重金属などのシリコン単結晶の汚染物
質を十分に除去することができず、さらに除去には多く
の不活性ガスを要して、生産コストが上昇する欠点があ
る。However, this single crystal pulling apparatus has a C
It is not enough to reduce the OP, and the upper shield of the radiation shield has a three-layer structure of graphite and a heat insulating material made of graphite or ceramic fiber, so that the structure is complicated and the manufacturing cost increases. In addition, it is not possible to sufficiently remove contaminants of silicon single crystal such as heavy metals generated from radiation shield components, and furthermore, a large amount of inert gas is required for removal, thereby increasing production costs. There is.
【0012】[0012]
【発明が解決しようとする課題】そこで、高速度で単結
晶を引上げることができ、かつCOPの生成量を低減し
て酸化膜耐圧を向上させ、さらに構造が簡単で安価であ
り、構成部材から重金属などを発生させない輻射シール
ドを有する単結晶引上装置が要望されていた。Therefore, a single crystal can be pulled at a high speed, the amount of COP generated can be reduced, the oxide film breakdown voltage can be improved, and the structure is simple and inexpensive. There has been a demand for a single crystal pulling apparatus having a radiation shield that does not generate heavy metals and the like.
【0013】本発明は上述した事情を考慮してなされた
もので、高速度で単結晶を引上げることができ、かつC
OPの生成量を低減して酸化膜耐圧を向上させ、さらに
構造が簡単で安価であり、構成部材から重金属などを発
生させない輻射シールドを有する単結晶引上装置を提供
することを目的とする。The present invention has been made in view of the above-described circumstances, and is capable of pulling a single crystal at a high speed, and has a C
It is an object of the present invention to provide a single crystal pulling apparatus having a radiation shield that reduces the amount of OP generated, improves the withstand voltage of an oxide film, has a simple structure, is inexpensive, and does not generate heavy metals and the like from constituent members.
【0014】[0014]
【課題を解決するための手段】上記目的を達成するため
になされた本願請求項1の発明は、チャンバ内に設置さ
れたルツボと、このルツボに充填された半導体原料を加
熱して融液にするヒータと、引上げ領域を囲むようにル
ツボの上方に設置された輻射シールドとを有し、種結晶
を融液に浸漬し単結晶を引上げる単結晶引上装置におい
て、前記輻射シールドは熱伝導率の異なる2種類の石英
部材からなるシールド上部とシールド下部で形成され、
シールド上部の熱伝導率はシールド下部の熱伝導率より
も小さいことを特徴とする単結晶引上装置であることを
要旨としている。Means for Solving the Problems According to the first aspect of the present invention, which has been made to achieve the above object, a crucible installed in a chamber and a semiconductor material filled in the crucible are heated to form a melt. And a radiation shield installed above the crucible so as to surround the pulling area. In the single crystal pulling apparatus for pulling a single crystal by immersing a seed crystal in a melt, the radiation shield has heat conduction. It is formed of a shield upper part and a shield lower part made of two kinds of quartz members with different rates,
The gist is to provide a single crystal pulling apparatus characterized in that the thermal conductivity at the upper part of the shield is smaller than the thermal conductivity at the lower part of the shield.
【0015】本願請求項2の発明では、上記輻射シール
ドは、シールド上部が不透明石英部材、シールド下部が
透明石英部材であることを特徴とする請求項1に記載の
単結晶引上装置であることを要旨としている。According to the invention of claim 2 of the present application, the radiation shield is a single crystal pulling apparatus according to claim 1, wherein the shield upper part is an opaque quartz member and the shield lower part is a transparent quartz member. The main point is.
【0016】本願請求項3の発明では、上記輻射シール
ドは、シールド上部とシールド下部とに分割可能に形成
されていることを特徴とする請求項1または2に記載の
単結晶引上装置であることを要旨としている。According to the third aspect of the present invention, the single crystal pulling apparatus according to claim 1 or 2, wherein the radiation shield is formed so as to be divided into a shield upper part and a shield lower part. The gist is that.
【0017】本願請求項4の発明では、上記シールド上
部は中空形状で上部開口部の直径が下部開口部の直径よ
りも大きい截頭円錐体であり、シールド下部は中空形状
の円筒体である請求項1ないし3のいずれか1項に記載
の単結晶引上装置であることを要旨としている。In the invention of claim 4 of the present application, the shield upper part is a truncated cone having a hollow shape and the diameter of the upper opening is larger than the diameter of the lower opening, and the shield lower part is a hollow cylindrical body. The gist is a single crystal pulling apparatus according to any one of Items 1 to 3.
【0018】本願請求項5の発明では、上記シールド下
部は長さが20〜100mmであることを特徴とする請
求項1ないし4のいずれか1項に記載の単結晶引上装置
であることを要旨としている。According to a fifth aspect of the present invention, the single crystal pulling apparatus according to any one of claims 1 to 4, wherein the lower portion of the shield has a length of 20 to 100 mm. It is a gist.
【0019】本願請求項6の発明では、上記単結晶引上
装置は、原料融液に磁場を印加する磁石を具備すること
を特徴とする請求項1ないし5のいずれか1項に記載の
単結晶引上装置であることを要旨としている。According to the invention of claim 6 of the present application, the single crystal pulling apparatus includes a magnet for applying a magnetic field to the raw material melt. The gist is that it is a crystal pulling device.
【0020】[0020]
【発明の実施の形態】以下、本発明に係わる単結晶引上
装置の実施の形態について添付図面に基づき説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an embodiment of a single crystal pulling apparatus according to the present invention will be described with reference to the accompanying drawings.
【0021】図1に示すように、本発明に係わる単結晶
引上装置1には、密閉容器を構成する炉本体2と、この
炉本体2の内部に設置された石英ルツボ3と、この石英
ルツボ3を加熱し石英ルツボ3に供給された原料、例え
ばポリシリコンを溶融してシリコン融液Mにするための
ヒータ4とが設けられている。As shown in FIG. 1, a single crystal pulling apparatus 1 according to the present invention comprises a furnace main body 2 constituting a closed vessel, a quartz crucible 3 installed inside the furnace main body 2, A heater 4 is provided for heating the crucible 3 and melting a raw material supplied to the quartz crucible 3, for example, polysilicon to form a silicon melt M.
【0022】また、石英ルツボ3の上方には引上げ領域
を囲み、シリコン融液Mからの熱輻射を防止し、かつ炉
本体2内を流れる不活性ガス、例えばアルゴンガス(以
下Arという。)の流路を制御する輻射シールド5が設
けられている。Above the quartz crucible 3, a pull-up region is surrounded to prevent heat radiation from the silicon melt M and to supply an inert gas, for example, argon gas (hereinafter referred to as Ar) flowing in the furnace main body 2. A radiation shield 5 for controlling the flow path is provided.
【0023】一方、炉本体2の外部には、2個の常伝導
または超伝導磁石(以下超伝導磁石という。)6が炉本
体2を挟むように直径方向に対向して配設されており、
各超伝導磁石6は各々コイル6aから構成され、コイル
6aの中心を結ぶ直線がシリコン融液Mの液面近傍にな
るように配設されている。On the other hand, outside the furnace body 2, two normal-conducting or superconducting magnets (hereinafter referred to as “superconducting magnets”) 6 are arranged diametrically opposite each other so as to sandwich the furnace body 2. ,
Each superconducting magnet 6 is composed of a coil 6a, and is disposed such that a straight line connecting the center of the coil 6a is near the liquid surface of the silicon melt M.
【0024】単結晶Igに生成するCOPのサイズおよ
び密度は、単結晶引上げ時の熱履歴に大きな影響を受け
るため、単結晶Igの熱的影響を制御する輻射シールド
5に工夫がなされている。Since the size and density of the COP generated in the single crystal Ig are greatly affected by the heat history at the time of pulling the single crystal, the radiation shield 5 for controlling the thermal effect of the single crystal Ig is devised.
【0025】例えば、図2に示すように、輻射シールド
5は、2分割されたシールド上部5uとシールド下部5
dで形成されており、シールド上部5uは下部開口部5
u1の直径が上部開口部5u2の直径より小さい截頭円
錐形状の筒体であり、シールド下部5dは上端に環状の
係合突条5d1を有する中空形状の円筒体である。ま
た、輻射シールド5は同一材質であるが熱伝導率の異な
る2種類の石英部材、例えばシールド上部5uは不透明
石英部材(例えば熱伝導率1.39W/mKを有す
る。)、シールド下部5dは透明石英部材(例えば熱伝
導率1.66W/mKを有する。)で形成されている。
シールド上部5uを形成する不透明石英部材は、多数の
気泡を含む石英ガラスであり、シールド下部5dを構成
し、気泡をほとんど含有しない石英ガラスである透明石
英部材に比べて熱伝導率が小さいので、断熱性能が大き
く、従って、シールド上部5uはシールド下部5dよ
り、断熱性能が大きくなっている。For example, as shown in FIG. 2, the radiation shield 5 has a shield upper part 5u and a shield lower part 5u.
d, and the shield upper part 5u is connected to the lower opening part 5u.
The diameter of u1 is a truncated conical cylindrical body smaller than the diameter of the upper opening 5u2, and the shield lower part 5d is a hollow cylindrical body having an annular engaging ridge 5d1 at the upper end. The radiation shield 5 is made of the same material but has two types of quartz members having different thermal conductivity, for example, an upper shield portion 5u is an opaque quartz member (for example, having a thermal conductivity of 1.39 W / mK), and a lower shield portion 5d is transparent. It is formed of a quartz member (for example, having a thermal conductivity of 1.66 W / mK).
The opaque quartz member forming the shield upper part 5u is a quartz glass containing a large number of bubbles, and constitutes the shield lower part 5d, and has a lower thermal conductivity than a transparent quartz member which is a quartz glass containing almost no bubbles. The heat insulation performance is large, and therefore the heat insulation performance of the shield upper part 5u is larger than that of the shield lower part 5d.
【0026】なお、シールド上部5uとシールド下部5
dは適宜の厚さにすることにより、所望の断熱性能が得
られる。The upper shield 5u and the lower shield 5
By setting d to an appropriate thickness, a desired heat insulating performance can be obtained.
【0027】シールド下部5dは長さが20〜100m
mであるのが好ましく、また、融液Mとシールド下部5
dの下端面の距離を少なくとも30mm以下、好ましく
は10mmにするのが良く、この場合にはCOPのサイ
ズが最も小さく、密度も最低になる。The lower part 5d of the shield has a length of 20 to 100 m.
m, and the melt M and the lower shield 5
The distance between the lower end surfaces of d is preferably at least 30 mm or less, preferably 10 mm. In this case, the size of the COP is the smallest and the density is the lowest.
【0028】なお、輻射シールド5はArガスの流通を
阻害しないような取付部材(図示せず)により仕切板7
に取付けられている。The radiation shield 5 is attached to the partition plate 7 by a mounting member (not shown) which does not hinder the flow of Ar gas.
Mounted on
【0029】また、炉本体2の上方から導入されたAr
が、輻射シールド5に設けられ、種結晶8から成長した
シリコン単結晶Igが貫通する開口部9および石英ルツ
ボ3とヒータ4の間に形成された通気路10を介し炉本
体2外に排出されるように、炉本体2の底部11に複数
個例えば2個の排気口12が設けられている。Ar introduced from above the furnace body 2
Is discharged to the outside of the furnace main body 2 through the opening 9 through which the silicon single crystal Ig grown from the seed crystal 8 penetrates and the air passage 10 formed between the quartz crucible 3 and the heater 4. Thus, a plurality of, for example, two exhaust ports 12 are provided in the bottom portion 11 of the furnace main body 2.
【0030】なお、13はモータ(図示せず)に結合さ
れ石英ルツボ3に回転を与える回転軸であり、14は先
端にシードチャック15が設けられ成長したシリコン単
結晶Igを上方に引上げる引上げワイヤである。Reference numeral 13 denotes a rotary shaft which is coupled to a motor (not shown) and rotates the quartz crucible 3. Reference numeral 14 denotes a pull-up which is provided with a seed chuck 15 at its tip and pulls up the grown silicon single crystal Ig upward. It is a wire.
【0031】次に本発明に係わる単結晶引上装置を用い
た単結晶の引上げ方法について説明する。Next, a method for pulling a single crystal using the single crystal pulling apparatus according to the present invention will be described.
【0032】原料のポリシリコンを石英ルツボ3に入
れ、Arを炉本体2の上方より炉本体2内に流入させ、
ヒータ4の付勢により石英ルツボ3を加熱し、モータの
付勢によりモータに結合された回転軸13を回転させて
石英ルツボ3を回転させる。The raw material polysilicon is placed in a quartz crucible 3, and Ar is allowed to flow into the furnace main body 2 from above the furnace main body 2.
The quartz crucible 3 is heated by the urging of the heater 4, and the rotating shaft 13 connected to the motor is rotated by the urging of the motor to rotate the quartz crucible 3.
【0033】一定時間が経過した後、ワイヤ14を下ろ
し、種結晶8をシリコン融液Mの液面に接触させ、しか
るのち、超伝導磁石6のコイル6aを付勢し、磁界をシ
リコン融液4の液面近傍に集中させる。After a certain period of time, the wire 14 is lowered, and the seed crystal 8 is brought into contact with the liquid surface of the silicon melt M. Thereafter, the coil 6a of the superconducting magnet 6 is energized to apply a magnetic field to the silicon melt. 4 near the liquid level.
【0034】上記のように融液表面Mに接触した種結晶
8から単結晶Igが成長し、この単結晶Igは輻射シー
ルド5に設けられた開口部9を通って高速度で引上げら
れていく。As described above, single crystal Ig grows from seed crystal 8 in contact with melt surface M, and this single crystal Ig is pulled up at high speed through opening 9 provided in radiation shield 5. .
【0035】上述のように単結晶Igに生成するCOP
のサイズおよび密度は、単結晶引上げ時の熱履歴に大き
な影響を受けるため、単結晶Igの熱的影響を制御する
輻射シールド5に工夫がなされており、単結晶引上げ工
程において、シールド下部5dは透明石英部材で形成さ
れており、熱伝導率が大きく断熱性能が小さいので、こ
のシールド下部5dに囲われた単結晶Igはヒータ4、
石英ルツボ3の内壁等からの輻射熱が良く伝達されて、
高温温度領域を広げ、単結晶Igの温度を保持するの
で、単結晶Igは徐冷される。従って、COPが生成さ
れる凝固点〜1300℃の温度領域では、この単結晶I
gは透明石英部材のシールド下部5dによってこの温度
領域を通過する時間を延長させることが可能となる。よ
って、単結晶Igを徐冷でき、COPの生成を抑制でき
る。As described above, COP generated in single crystal Ig
The size and the density of the single crystal are greatly affected by the thermal history at the time of pulling the single crystal. Therefore, the radiation shield 5 for controlling the thermal effect of the single crystal Ig is devised. The single crystal Ig surrounded by the shield lower part 5d is made of a heater 4,
Radiant heat from the inner wall and the like of the quartz crucible 3 is transmitted well,
Since the high temperature region is expanded and the temperature of the single crystal Ig is maintained, the single crystal Ig is gradually cooled. Therefore, in the temperature range from the freezing point at which COP is generated to 1300 ° C., this single crystal I
g can extend the time of passing through this temperature region by the shield lower part 5d of the transparent quartz member. Therefore, the single crystal Ig can be gradually cooled, and the generation of COP can be suppressed.
【0036】さらに、シールド下部5dを通り引上げら
れた単結晶Igは、シールド上部5uを通って引上げら
れていく。シールド上部5uは不透明石英部材で形成さ
れており、熱伝導率が小さく断熱性能が大きいので、こ
のシールド上部5uに囲われた単結晶Igは、ヒータ4
および周囲から熱が遮断され、単結晶Igは急冷され
る。従って、COPが成長する1250℃〜1000℃
までの温度領域では、この単結晶Igは不透明石英部材
のシールド上部5uを用いることによって、この温度領
域を通過する時間を短縮することが可能となる。よっ
て、単結晶Igを急冷して、わずかに含まれるCOPの
成長を抑制して、COPのサイズを小さく抑えることが
できる。Further, the single crystal Ig pulled up through the shield lower part 5d is pulled up through the shield upper part 5u. The upper shield 5u is formed of an opaque quartz member and has a low thermal conductivity and a high heat insulation performance. Therefore, the single crystal Ig surrounded by the upper shield 5u is
Further, heat is shut off from the surroundings, and the single crystal Ig is rapidly cooled. Therefore, 1250 ° C. to 1000 ° C. where the COP grows
By using the shield upper part 5u of the opaque quartz member, the time required for the single crystal Ig to pass through this temperature range can be shortened in the temperature range up to. Therefore, the single crystal Ig is rapidly cooled, the growth of the slightly contained COP can be suppressed, and the size of the COP can be reduced.
【0037】また、輻射シールド5は熱伝導率の大きい
シールド下部5dと熱伝導率の小さいシールド上部5u
で形成されているので、高速度で引上げてもCOPの生
成と成長を抑制することが可能であり、単結晶引上げの
生産性を高めることができる。The radiation shield 5 includes a shield lower part 5d having a large thermal conductivity and a shield upper part 5u having a small thermal conductivity.
Therefore, even if the crystal is pulled at a high speed, the generation and growth of COP can be suppressed, and the productivity of pulling a single crystal can be increased.
【0038】さらに、石英ルツボ3からシリコン融液I
gに溶出する酸素は、シリコン単結晶Igに取込まれ
て、COPの生成に影響を与えていると考えられ、単結
晶Igに取込まれる酸素量を抑制する必要がある。そこ
で、溶融状態において石英ルツボ3内で対流を起こすシ
リコン融液Mに対して、この対流に直角に磁界をかける
ことで、起電力が有効動粘性係数を増加させるため対流
は抑制される。この対流の抑制によって、石英ルツボ3
からシリコン融液Mに溶出する酸素が抑制でき、従って
シリコン単結晶Igに取り込まれる酸素を相当減少させ
ることができるので、輻射シールド5との相乗効果で一
層効果的にCOPの生成を抑制することができる。Further, the silicon melt I was removed from the quartz crucible 3.
It is considered that the oxygen eluted in g is taken into the silicon single crystal Ig and affects the generation of COP, and it is necessary to suppress the amount of oxygen taken into the single crystal Ig. Therefore, by applying a magnetic field to the silicon melt M that causes convection in the quartz crucible 3 in a molten state at right angles to the convection, the electromotive force increases the effective kinematic viscosity coefficient, so that convection is suppressed. By suppressing this convection, the quartz crucible 3
Oxygen eluted from the silicon melt M into the silicon melt M can be suppressed, and the oxygen taken into the silicon single crystal Ig can be considerably reduced. Therefore, the generation of COP can be more effectively suppressed by a synergistic effect with the radiation shield 5. Can be.
【0039】また、単結晶引上げ工程において、輻射シ
ールド5を形成するシールド上部5uとシールド下部5
dは共に石英部材製であるので、高純度であり、重金属
を発生させて単結晶Igを汚染させることもなく、酸化
膜耐圧も向上させることがでる。さらに、従来の輻射シ
ールドのように重金属を発生させることがないので、重
金属による汚染がなく高単結晶化率が得られるばかりで
なく、重金属を排出するために炉本体2内を流すAr流
量を減じることができて、引上げコストを減じることが
できる。In the single crystal pulling step, a shield upper part 5 u and a shield lower part 5 forming the radiation shield 5 are formed.
Since both d are made of a quartz member, they are of high purity, do not generate heavy metals and contaminate the single crystal Ig, and can improve the oxide film breakdown voltage. Furthermore, since heavy metals are not generated unlike the conventional radiation shield, not only is there no contamination by heavy metals and a high single crystallization rate is obtained, but also the Ar flow rate flowing through the furnace body 2 to discharge heavy metals is reduced. Can be reduced, and pulling costs can be reduced.
【0040】また、単結晶引上げ工程において、輻射シ
ールド5にSi融液が付着し、定期的に洗浄をする必要
があるが、従来のSiC製輻射シールドのように重金属
汚染が蓄積され易いものとは異なり、シールド上部5u
は不透明石英製であるので、酸に浸すだけで容易に洗浄
を行なうことができ、トータルの引上げコストを低減す
ることができる。Further, in the single crystal pulling step, the Si melt adheres to the radiation shield 5 and it is necessary to perform periodic cleaning. However, it is difficult to prevent heavy metal contamination from accumulating like the conventional SiC radiation shield. Is different, upper shield 5u
Since is made of opaque quartz, it can be easily washed only by dipping in acid, and the total pulling cost can be reduced.
【0041】また、輻射シールド5はシールド上部5u
とシールド下部5dに2分割されているので、着脱が容
易であり、また、洗浄も容易である。Further, the radiation shield 5 has a shield upper part 5u.
And the shield lower part 5d, it is easy to attach and detach, and easy to clean.
【0042】[0042]
【実施例】試験1:図3に示すような本発明に係わる単
結晶引上装置を用いてシリコン単結晶の各部位の温度を
測定した。測定条件として下部シールド長さを80m
m、下部シールド下端と液面との距離を10mmとし
た。結果を図4に示す。なお、従来例は従来の輻射シー
ルドを用い、実施例同様に引上げ測定した。Test 1: The temperature of each part of a silicon single crystal was measured using a single crystal pulling apparatus according to the present invention as shown in FIG. Lower shield length 80m as measurement condition
m, and the distance between the lower end of the lower shield and the liquid surface was 10 mm. FIG. 4 shows the results. In the conventional example, a conventional radiation shield was used, and pull-up measurement was performed in the same manner as in the example.
【0043】・実施例は凝固点〜約1300℃の温度領
域(液面〜液面から約110mm間)では、緩やかに降
温(徐冷)され、約1300℃〜約1000℃の温度領
域(液面から約110mm〜160mm間)では急速に
降温(急冷)されていることがわかった。In the embodiment, in the temperature range from the freezing point to about 1300 ° C. (between the liquid level and about 110 mm from the liquid level), the temperature is gradually lowered (slowly cooled), and the temperature range (about 1300 ° C. to about 1000 ° C.) From about 110 mm to 160 mm), the temperature was rapidly lowered (rapidly cooled).
【0044】・従来例は各温度領域(単結晶のいずれの
距離間)においても、同一比率で降温していることがわ
かった。In the conventional example, it was found that the temperature dropped at the same rate in each temperature region (at any distance of the single crystal).
【0045】試験2:本発明に係わる単結晶引上装置を
用い、上シールド部(石英チューブ)の長さを変化させ
てシリコン単結晶の引上げを行ない、シリコン単結晶中
のCOPのサイズと個数を測定した。結果を図5に示
す。Test 2: Using a single crystal pulling apparatus according to the present invention, pulling a silicon single crystal by changing the length of the upper shield part (quartz tube), the size and number of COPs in the silicon single crystal Was measured. FIG. 5 shows the results.
【0046】・石英チューブの長さが、20〜100m
mの範囲でCOPのサイズ、個数とも最小値であること
がわかった。The length of the quartz tube is 20 to 100 m
It was found that the size and the number of COPs were the minimum values in the range of m.
【0047】試験3:本発明に係わる単結晶引上装置を
用い、引上げ速度を変化させてシリコン単結晶の引上げ
を行ない、シリコン単結晶中のCOPの個数を測定し
た。結果を図6に示す。なお、従来例は従来の輻射シー
ルドを用い、実施例同様に速度を変化させて引上げ測定
した。Test 3: Using a single crystal pulling apparatus according to the present invention, the silicon single crystal was pulled while changing the pulling speed, and the number of COPs in the silicon single crystal was measured. FIG. 6 shows the results. In the conventional example, a conventional radiation shield was used, and the speed was changed and the pull-up measurement was performed as in the example.
【0048】・実施例は全引上げ速度域に亘って、CO
Pの個数は少なく、特に1.2mm/min以下では少
ない。In the embodiment, CO is drawn over the entire pulling speed range.
The number of P is small, especially at 1.2 mm / min or less.
【0049】・一方、従来例は全引上げ速度域に亘っ
て、COPの個数は多く、特に1.4mm/min以上
では急激に増加する。On the other hand, in the conventional example, the number of COPs is large over the entire pulling speed range, and particularly increases rapidly at 1.4 mm / min or more.
【0050】試験4:本発明に係わる単結晶引上装置を
用い、Arガス流量を変化させてシリコン単結晶の引上
げを行ない、シリコン単結晶中のFe汚染量を測定し
た。結果を図7に示す。なお、従来例は従来の輻射シー
ルドを用いて、実施例同様に引上げ測定した。Test 4: The silicon single crystal was pulled using the single crystal pulling apparatus according to the present invention while changing the Ar gas flow rate, and the amount of Fe contamination in the silicon single crystal was measured. FIG. 7 shows the results. In the conventional example, pull-up measurement was performed using a conventional radiation shield in the same manner as in the example.
【0051】・実施例はArガス流量の全域に亘って、
Fe汚染量が小さいことがわかった。In the embodiment, over the entire range of the Ar gas flow rate,
It was found that the amount of Fe contamination was small.
【0052】・従来例(SiC)は、実施例と同様にA
rガス流量の全域に亘って、Fe汚染量が小さいことが
わかった。In the conventional example (SiC), A
It was found that the amount of Fe contamination was small over the entire range of the flow rate of the r gas.
【0053】・従来例(C)、従来例(Mo)、従来例
(Ta)共にArガス流量の全域に亘って、Fe汚染量
が大きいことがわかった。It was found that the Fe contamination amount was large over the entire range of the Ar gas flow rate in each of the conventional example (C), the conventional example (Mo), and the conventional example (Ta).
【0054】試験5:本発明に係わる単結晶引上装置に
洗浄した後の輻射シールドを用い、シリコン単結晶中の
Fe汚染量を測定した。結果を図8に示す。なお、従来
例はSiC製の輻射シールドを用いて、実施例同様に引
上げ測定した。Test 5: The amount of Fe contamination in the silicon single crystal was measured using the radiation shield after washing in the single crystal pulling apparatus according to the present invention. FIG. 8 shows the results. In the conventional example, a pull-up measurement was performed in the same manner as in the example, using a radiation shield made of SiC.
【0055】・実施例は使用1回目からFe汚染量は小
さく、また使用回数を増やしてもFe汚染量は増加しな
い。In the embodiment, the amount of Fe contamination is small from the first use, and the amount of Fe contamination does not increase even if the number of uses is increased.
【0056】・従来例は使用1回目からFe汚染量は大
きく、十分な洗浄が行なえないことがわかり、また、使
用回数を増加させてもFe汚染量が大きい状態が続くの
がわかった。In the conventional example, it was found that the amount of Fe contamination was large from the first use, and that sufficient cleaning could not be performed. Further, it was found that the state in which the amount of Fe contamination was large continued even if the number of uses was increased.
【0057】試験6:本発明に係わる単結晶引上装置を
用いて10本のシリコン単結晶の引上げを行ない、単結
晶化率を測定した。10本の平均値を結果として図9に
示す。Test 6: Ten silicon single crystals were pulled using the single crystal pulling apparatus according to the present invention, and the single crystallization ratio was measured. FIG. 9 shows the average value of 10 samples.
【0058】なお、従来例はSiC製、C製、Mo製、
Ta製の輻射シールドを用いて、実施例同様に引上げ測
定した。The conventional examples are made of SiC, C, Mo,
Using a radiation shield made of Ta, pull-up measurement was performed in the same manner as in the example.
【0059】・実施例は約95%と高い単結晶化率を示
した。The example showed a high single crystallization ratio of about 95%.
【0060】・従来例ではSiC製輻射シールドが約8
5%と比較的高い値を示したが、C製、Mo製、Ta製
の輻射シールドはいずれも低位の値を示した。In the conventional example, the radiation shield made of SiC is about 8
Although a relatively high value of 5% was shown, the radiation shields made of C, Mo, and Ta all showed low values.
【0061】試験7:本発明に係わる単結晶引上装置を
用いて引上げたシリコン単結晶からシリコンウェーハを
製造し、熱処理して酸化膜を形成し、この酸化膜耐圧を
測定し、基準に合格したものの歩留を調べた。結果を図
10に示す。従来例はSiC製輻射シールドを用い、実
施例同様に酸化膜耐圧を形成したものである。Test 7: A silicon wafer was manufactured from a silicon single crystal pulled using the single crystal pulling apparatus according to the present invention, and an oxide film was formed by heat treatment. The oxide film withstand voltage was measured and passed the standard. The yield of what was done was checked. The results are shown in FIG. The conventional example uses a radiation shield made of SiC and forms an oxide film withstand voltage in the same manner as in the embodiment.
【0062】・実施例は95%と極めて高い歩留を示し
た。The example showed an extremely high yield of 95%.
【0063】・従来例は70%と実施例に比べて著しく
劣ることがわかった。The conventional example was found to be 70%, which is significantly inferior to the embodiment.
【0064】[0064]
【発明の効果】本発明に係わる単結晶引上装置によれ
ば、高速度で単結晶を引上げることができ、COPの生
成量を低減して酸化膜耐圧を向上させ、さらに安価で、
構成部材から重金属など発生させない輻射シールドを有
する単結晶引上装置を提供することができる。According to the apparatus for pulling a single crystal according to the present invention, a single crystal can be pulled at a high speed, the amount of generated COP can be reduced, the withstand voltage of an oxide film can be improved, and the cost can be reduced.
A single crystal pulling apparatus having a radiation shield that does not generate heavy metals or the like from constituent members can be provided.
【0065】即ち、輻射シールドは熱伝導率の異なる2
種類の石英部材からなるシールド上部とシールド下部で
形成され、シールド上部の熱伝導率はシールド下部の熱
伝導率よりも小さいので、COPが生成される凝固点〜
1300℃の温度領域では、単結晶は透明石英部材のシ
ールド下部によってこの温度領域を通過する時間を延長
させることが可能となり、単結晶を徐冷でき、COPの
生成を抑制できる。また、COPの成長する1250℃
〜1000℃℃の温度領域では、単結晶は不透明石英部
材のシールド上部によってこの温度領域を通過する時間
を短縮させることが可能となり、単結晶を急冷でき、C
OPの成長を抑制し、COPのサイズを小さく抑えるこ
とができる。従って、COPの生成量を低減し、わずか
に含まれるCOPのサイズを小さく抑制して酸化膜耐圧
を向上させることができる。また、高速度で引上げても
COPの生成と成長を抑制することが可能であり、単結
晶引上げの生産性を高めることができる。さらに、輻射
シールドは高純度であり、重金属を発生させて単結晶I
gを汚染させることもなく、酸化膜耐圧も向上させるこ
とができ、また、重金属による汚染がなく高単結晶化率
が得られるばかりでなく、重金属を排出するために炉本
体内を流すAr流量を減じることができ、引上げコスト
を減じることができる。さらに、輻射シールドにSi融
液が付着し、定期的に洗浄をする必要があるが、シール
ド上部は不透明石英製であるので、酸に浸すだけで容易
に洗浄を行なうことができ、トータルの引上げコストを
低減することができる。That is, the radiation shield has two different thermal conductivity.
It is formed of the upper and lower shields made of various kinds of quartz members, and the thermal conductivity of the upper shield is lower than the thermal conductivity of the lower shield.
In the temperature range of 1300 ° C., the time required for the single crystal to pass through the temperature range can be extended by the lower portion of the shield of the transparent quartz member, the single crystal can be gradually cooled, and the generation of COP can be suppressed. In addition, 1250 ° C. where COP grows
In the temperature range of 10001000 ° C., the single crystal can be shortened in the time required to pass through the temperature range by the shield upper part of the opaque quartz member, and the single crystal can be rapidly cooled.
The growth of OP can be suppressed, and the size of COP can be reduced. Therefore, the amount of generated COP can be reduced, the size of the slightly contained COP can be reduced, and the oxide film breakdown voltage can be improved. Further, even if the crystal is pulled at a high speed, the generation and growth of COP can be suppressed, and the productivity of pulling a single crystal can be increased. Furthermore, the radiation shield is of high purity and generates heavy metals to produce single crystal I
g, without contaminating the oxide film, improving the withstand voltage of the oxide film. In addition to obtaining a high single crystallization rate without contamination by heavy metals, the flow rate of Ar flowing through the furnace body to discharge the heavy metals is reduced. Can be reduced, and raising costs can be reduced. Furthermore, the Si melt adheres to the radiation shield, and it is necessary to periodically clean it. However, since the upper part of the shield is made of opaque quartz, it can be easily cleaned only by immersion in acid, and the total pulling up Cost can be reduced.
【0066】また、輻射シールドは、シールド上部が不
透明石英部材、シールド下部が透明石英部材であるの
で、容易に熱伝導率が異なり、シールド上部の熱伝導率
をシールド下部の熱伝導率よりも小さくすることができ
る。In the radiation shield, since the upper part of the shield is made of an opaque quartz member and the lower part of the shield is made of a transparent quartz member, the heat conductivity is easily different, and the heat conductivity of the upper part of the shield is smaller than that of the lower part of the shield. can do.
【0067】また、輻射シールドは、シールド上部とシ
ールド下部とに2分割可能に形成されているので、着脱
が容易であり、また、洗浄も容易である。Further, since the radiation shield is formed so as to be divided into an upper part and a lower part of the shield, the radiation shield can be easily attached and detached and can be easily cleaned.
【0068】また、シールド上部は中空形状の截頭円錐
体であり、シールド下部は中空形状の円筒体であるの
で、容易に徐冷と急冷の温度領域を実現することができ
る。Further, since the upper part of the shield is a truncated cone having a hollow shape and the lower part of the shield is a cylindrical body having a hollow shape, a temperature range of slow cooling and rapid cooling can be easily realized.
【0069】また、シールド下部は長さが20〜100
mmであるので、COPのサイズ、個数とも減少させる
ことができる。The length of the lower part of the shield is 20 to 100.
mm, both the size and the number of COPs can be reduced.
【0070】また、単結晶引上装置は、原料融液に磁場
を印加する磁石を具備するので、単結晶に含まれる酸素
量を減じて、輻射シールドとの相乗効果により一層効果
的にCOPを抑制することができる。Further, since the single crystal pulling apparatus is provided with a magnet for applying a magnetic field to the raw material melt, the amount of oxygen contained in the single crystal is reduced, and the COP is more effectively reduced by the synergistic effect with the radiation shield. Can be suppressed.
【図1】本発明に係わる単結晶引上装置の縦断面図。FIG. 1 is a longitudinal sectional view of a single crystal pulling apparatus according to the present invention.
【図2】本発明に係わる単結晶引上装置に用いられる輻
射シールドの縦断面図。FIG. 2 is a longitudinal sectional view of a radiation shield used in the single crystal pulling apparatus according to the present invention.
【図3】実施例に用いられる単結晶引上装置の説明図。FIG. 3 is an explanatory view of a single crystal pulling apparatus used in the embodiment.
【図4】本発明に係わる単結晶引上装置を用いた単結晶
の引上げにおいて、単結晶の融液面からの距離と温度変
化の関係を示す試験結果図。FIG. 4 is a test result diagram showing a relationship between a distance from a melt surface of the single crystal and a temperature change in pulling the single crystal using the single crystal pulling apparatus according to the present invention.
【図5】本発明に係わる単結晶引上装置を用いた単結晶
の引上げにおいて、石英チューブ長変化とCOPサイ
ズ、個数の関係を示す試験結果図。FIG. 5 is a test result diagram showing a relationship between a change in a quartz tube length and a COP size and number in pulling a single crystal using the single crystal pulling apparatus according to the present invention.
【図6】本発明に係わる単結晶引上装置を用いた単結晶
の引上げにおいて、引上げ速度の変化とCOP個数の関
係を示す試験結果図。FIG. 6 is a test result diagram showing a relationship between a change in a pulling speed and the number of COPs in pulling a single crystal using the single crystal pulling apparatus according to the present invention.
【図7】本発明に係わる単結晶引上装置を用いた単結晶
の引上げにおいて、Arガス流量変化とFe汚染量の関
係を示す試験結果図。FIG. 7 is a test result diagram showing a relationship between a change in Ar gas flow rate and an amount of Fe contamination in pulling a single crystal using the single crystal pulling apparatus according to the present invention.
【図8】本発明に係わる単結晶引上装置を用いた単結晶
の引上げにおいて、輻射シールドの洗浄後の使用回数と
Fe汚染量の関係を示す試験結果図。FIG. 8 is a test result diagram showing a relationship between the number of uses of a radiation shield after cleaning and the amount of Fe contamination in pulling a single crystal using the single crystal pulling apparatus according to the present invention.
【図9】本発明に係わる単結晶引上装置を用いた単結晶
の引上げにおいて、シリコン単結晶のDF率を測定した
結果図。FIG. 9 is a view showing a result of measuring a DF ratio of a silicon single crystal in pulling a single crystal using the single crystal pulling apparatus according to the present invention.
【図10】本発明に係わる単結晶引上装置を用いた単結
晶の引上げにおいて、引上げたシリコン単結晶から製造
したシリコンウェーハの酸化膜耐圧の結果図。FIG. 10 is a view showing a result of withstand voltage of an oxide film of a silicon wafer manufactured from a pulled silicon single crystal in pulling a single crystal using the single crystal pulling apparatus according to the present invention.
【図11】従来の単結晶引上装置の縦断面図。FIG. 11 is a longitudinal sectional view of a conventional single crystal pulling apparatus.
1 単結晶引上装置 2 炉本体 3 石英ルツボ 4 ヒータ 5 輻射シールド 5d シールド下部 5d1 係合突条 5u シールド上部 5u1 上部開口部 5u2 下部開口部 6 超伝導磁石 6a コイル 7 仕切板 8 種結晶 9 開口部 10 通気路 11 底部 12 排気口 13 回転軸 14 ワイヤ 15 シードチャック Ar アルゴンガス Ig シリコン単結晶 M シリコン融液 DESCRIPTION OF SYMBOLS 1 Single crystal pulling apparatus 2 Furnace main body 3 Quartz crucible 4 Heater 5 Radiation shield 5d Shield lower part 5d1 Engagement ridge 5u Shield upper part 5u1 Upper opening part 5u2 Lower opening part 6 Superconducting magnet 6a Coil 7 Partition plate 8 Seed crystal 9 Opening Part 10 Ventilation path 11 Bottom part 12 Exhaust port 13 Rotation axis 14 Wire 15 Seed chuck Ar Argon gas Ig Silicon single crystal M Silicon melt
─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───
【手続補正書】[Procedure amendment]
【提出日】平成11年12月8日(1999.12.
8)[Submission date] December 8, 1999 (1999.12.
8)
【手続補正1】[Procedure amendment 1]
【補正対象書類名】図面[Document name to be amended] Drawing
【補正対象項目名】図11[Correction target item name] FIG.
【補正方法】変更[Correction method] Change
【補正内容】[Correction contents]
【図11】 FIG. 11
───────────────────────────────────────────────────── フロントページの続き (72)発明者 児島 正勝 神奈川県秦野市曽屋30番地 東芝セラミッ クス株式会社秦野事業所内 Fターム(参考) 4G077 AA02 BA04 CF10 EG15 EG25 EJ02 GA01 5F053 AA12 AA13 AA14 BB04 BB08 BB13 BB60 DD01 FF04 GG01 HH10 RR03 ────────────────────────────────────────────────── ─── Continuing from the front page (72) Inventor Masakatsu Kojima 30 Soya, Hadano-shi, Kanagawa F-term in Hadano Plant, Toshiba Ceramics Co., Ltd. DD01 FF04 GG01 HH10 RR03
Claims (6)
ルツボに充填された半導体原料を加熱して融液にするヒ
ータと、引上げ領域を囲むようにルツボの上方に設置さ
れた輻射シールとを有し、種結晶を融液に浸漬し単結晶
を引上げる単結晶引上装置において、前記輻射シールド
は熱伝導率の異なる2種類の石英部材からなるシールド
上部とシールド下部で形成され、シールド上部の熱伝導
率はシールド下部の熱伝導率よりも小さいことを特徴と
する単結晶引上装置。1. A crucible installed in a chamber, a heater for heating a semiconductor material filled in the crucible to melt the semiconductor material, and a radiation seal installed above the crucible so as to surround a pulling region. In a single crystal pulling apparatus having a seed crystal immersed in a melt and pulling a single crystal, the radiation shield is formed of a shield upper part and a shield lower part made of two kinds of quartz members having different thermal conductivities. A single crystal pulling device, wherein the thermal conductivity of the single crystal is lower than the thermal conductivity of the lower part of the shield.
透明石英部材、シールド下部が透明石英部材であること
を特徴とする請求項1に記載の単結晶引上装置。2. The single crystal pulling apparatus according to claim 1, wherein the radiation shield has an opaque quartz member at an upper portion of the shield and a transparent quartz member at a lower portion of the shield.
ールド下部とに分割可能に形成されていることを特徴と
する請求項1または2に記載の単結晶引上装置。3. The single crystal pulling apparatus according to claim 1, wherein the radiation shield is formed so as to be divided into a shield upper part and a shield lower part.
部の直径が下部開口部の直径よりも大きい截頭円錐体で
あり、シールド下部は中空形状の円筒体である請求項1
ないし3のいずれか1項に記載の単結晶引上装置。4. The shield upper part is a truncated cone having a hollow shape and a diameter of an upper opening is larger than a diameter of a lower opening, and the shield lower part is a hollow cylindrical body.
4. The single crystal pulling apparatus according to any one of claims 1 to 3.
mmであることを特徴とする請求項1ないし4のいずれ
か1項に記載の単結晶引上装置。5. The shield lower part has a length of 20 to 100.
The single crystal pulling apparatus according to any one of claims 1 to 4, wherein the diameter is mm.
を印加する磁石を具備することを特徴とする請求項1な
いし5のいずれか1項に記載の単結晶引上装置。6. The single crystal pulling apparatus according to claim 1, wherein the single crystal pulling apparatus includes a magnet for applying a magnetic field to the raw material melt.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11172797A JP2001002491A (en) | 1999-06-18 | 1999-06-18 | Device for pulling up single crystal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11172797A JP2001002491A (en) | 1999-06-18 | 1999-06-18 | Device for pulling up single crystal |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001002491A true JP2001002491A (en) | 2001-01-09 |
Family
ID=15948552
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11172797A Pending JP2001002491A (en) | 1999-06-18 | 1999-06-18 | Device for pulling up single crystal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2001002491A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100486877B1 (en) * | 2002-10-15 | 2005-05-03 | 주식회사 실트론 | A silicon single crystal grower with an apparatus for doping the dopants of low melting point and a method for doping the dopants of low melting point |
WO2006040878A1 (en) * | 2004-10-13 | 2006-04-20 | Shin-Etsu Handotai Co., Ltd. | Single-crystal production apparatus |
US7125608B2 (en) | 2003-12-03 | 2006-10-24 | Siltron Inc. | Single-crystal silicon ingot and wafer having homogeneous vacancy defects, and method and apparatus for making same |
JP2011057467A (en) * | 2009-09-07 | 2011-03-24 | Sumco Techxiv株式会社 | Single crystal pulling apparatus |
CN104593863A (en) * | 2015-01-05 | 2015-05-06 | 英利集团有限公司 | Single-crystal furnace |
DE102016001729A1 (en) * | 2016-02-16 | 2017-08-17 | Krasimir Kosev | Einkristallzüchtungsvorrichtung |
-
1999
- 1999-06-18 JP JP11172797A patent/JP2001002491A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100486877B1 (en) * | 2002-10-15 | 2005-05-03 | 주식회사 실트론 | A silicon single crystal grower with an apparatus for doping the dopants of low melting point and a method for doping the dopants of low melting point |
US7125608B2 (en) | 2003-12-03 | 2006-10-24 | Siltron Inc. | Single-crystal silicon ingot and wafer having homogeneous vacancy defects, and method and apparatus for making same |
WO2006040878A1 (en) * | 2004-10-13 | 2006-04-20 | Shin-Etsu Handotai Co., Ltd. | Single-crystal production apparatus |
JP2011057467A (en) * | 2009-09-07 | 2011-03-24 | Sumco Techxiv株式会社 | Single crystal pulling apparatus |
CN104593863A (en) * | 2015-01-05 | 2015-05-06 | 英利集团有限公司 | Single-crystal furnace |
DE102016001729A1 (en) * | 2016-02-16 | 2017-08-17 | Krasimir Kosev | Einkristallzüchtungsvorrichtung |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO1997021853A1 (en) | Single crystal production apparatus and process | |
KR100453850B1 (en) | Silicon single crystal with no crystal defect in peripheral part of wafer | |
JP4650520B2 (en) | Silicon single crystal manufacturing apparatus and manufacturing method | |
JP2001002491A (en) | Device for pulling up single crystal | |
JPH0639351B2 (en) | Apparatus and method for manufacturing single crystal ingot | |
JP7113478B2 (en) | Crucible and Single Crystal Growth Apparatus and Growth Method | |
WO2023051616A1 (en) | Crystal pulling furnace for pulling monocrystalline silicon rod | |
JP2009269799A (en) | Method for growing single crystal and apparatus for pulling single crystal | |
JP3220542B2 (en) | Semiconductor single crystal rod manufacturing equipment | |
JP2937109B2 (en) | Single crystal manufacturing apparatus and manufacturing method | |
JPH06199590A (en) | Device for producing semiconductor single crystal rod | |
JP3564740B2 (en) | Crystal growth equipment | |
JPH10139600A (en) | Silicon single crystal and pulling-up device and method therefor | |
JPH0710682A (en) | Drawing of single crystal and production machine therefor | |
WO2022123957A1 (en) | Monocrystal-manufacturing device | |
JPH01145391A (en) | Device for pulling up single crystal | |
JPH059096A (en) | Production of silicon single crystal | |
JP5077280B2 (en) | Method of pulling silicon single crystal | |
JPH06144987A (en) | Device for growing single crystal | |
JPH10338594A (en) | Apparatus for growing single crystal by pulling up method | |
JP4155085B2 (en) | Method for producing compound semiconductor single crystal | |
JPH07172971A (en) | Apparatus for pulling up semiconductor single crystal | |
JPS62119198A (en) | Device for rotating and pulling up single crystal provided with magnetic field impressing device | |
JPH06247788A (en) | Method for producing silicon single crystal and device therefor | |
JP2735741B2 (en) | Method for producing silicon single crystal |