JPS6041037B2 - Manufacturing equipment for high dissociation pressure compound single crystal for semiconductors - Google Patents

Manufacturing equipment for high dissociation pressure compound single crystal for semiconductors

Info

Publication number
JPS6041037B2
JPS6041037B2 JP56195298A JP19529881A JPS6041037B2 JP S6041037 B2 JPS6041037 B2 JP S6041037B2 JP 56195298 A JP56195298 A JP 56195298A JP 19529881 A JP19529881 A JP 19529881A JP S6041037 B2 JPS6041037 B2 JP S6041037B2
Authority
JP
Japan
Prior art keywords
single crystal
dissociation pressure
high dissociation
melt
pressure compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56195298A
Other languages
Japanese (ja)
Other versions
JPS5899195A (en
Inventor
憲治 富沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP56195298A priority Critical patent/JPS6041037B2/en
Publication of JPS5899195A publication Critical patent/JPS5899195A/en
Publication of JPS6041037B2 publication Critical patent/JPS6041037B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B27/00Single-crystal growth under a protective fluid
    • C30B27/02Single-crystal growth under a protective fluid by pulling from a melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi

Description

【発明の詳細な説明】 この発明は、硯化ガリウム、リン化ガリウム、および枇
化インジウムなどの半導体用高解離圧化合物単結晶の製
造装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for producing single crystals of high dissociation pressure compounds for semiconductors such as gallium silicide, gallium phosphide, and indium phthalide.

従釆、半導体用高解離圧化合物単結晶の製造装贋として
は、第1図に概略縦断面図で例示されるように、メイン
ヒータ7によって加熱されて融液となる高解離圧化合物
としての例えば磁化ガリウム8を収容し、回転軸9の上
端部に固定された黒鉛サセプタ10によって支持された
びん形の石英製回転るつぼ2と、アフターヒータ3によ
って加熱されて雛液となるシール用酸化ほう素5を収容
した状態で前記るつぼ2の上端部に鉄合装着された石英
製隊め込み蓋4を遺して前記るつぼ2内に貴挿され、先
端部にはチャック11を介して枇化ガリウムなどの種結
晶12を取付けた回転引上軸6とを、金属容器1内に密
閉装着し、前記金属容器1内を排気系14から排気して
真空とした後、前記隊め込み蓋4内の酸化ほう素5をア
フターヒータ3によって加熱して葛虫液となすことによ
って前記るつぼ2の上端部をシールし、ついで不活性ガ
ス導入系13よりアルゴンなどの不活用ガスを導入して
前記るつぼ2の外部を不活性ガス雰囲気としつつ、前記
るつぼ2内の磁化ガリウム8をメインヒータ7によって
加熱して融液とすると共に、前記回転引上軸6と前記び
ん形のるつぼ2とを回転させながら前記回転引上軸6の
先端部にチャック11を介して取付けた種結晶12を枇
化ガリウム葛虫液8に接触すべく前記回転引上軸6を降
下させ、引続いてこれを同じく回転させながら引上げる
ことによって単結晶15を成長させる装置(以下従来単
結晶製造装置という)が提案されている。この従来単結
晶製造装置は、成長単結晶15が上記酸化ほう素敵液シ
ール5によって高温下で不活性ガス雰囲気に曝されるこ
とがないため、単結晶15の表面からの枕素の解離が抑
制されるようになることから、単結晶表面近傍の結晶性
が阻害されることがないという利点を有するが、反面、
【a} 枇化ガリウム融液8の表面からの蒸発物がぴん
形の石英製回転るつぼ2の加熱壁内面に王として枇化ガ
リウムとして付着し、ついには外部から視界をさえぎつ
て引上げ中の成長単結晶15の観察を不可能ならしめる
のみならず、ときおり前記付着枇化ガリウムの小片が枇
化ガリウム融液8の表面に直接剥離落下して単給晶成長
条件を乱し、単結晶化を防害すること。
Accordingly, as an example of manufacturing equipment for a single crystal of a high dissociation pressure compound for semiconductors, as illustrated in the schematic longitudinal cross-sectional view in FIG. For example, a bottle-shaped quartz rotary crucible 2 containing magnetized gallium 8 and supported by a graphite susceptor 10 fixed to the upper end of a rotating shaft 9, and an oxidized sealing crucible that is heated by an after-heater 3 to become a brood liquid. The element 5 is inserted into the crucible 2 leaving behind the quartz cover 4 which is fitted with iron on the upper end of the crucible 2. A rotary pulling shaft 6 with a seed crystal 12 attached thereto is hermetically mounted inside the metal container 1, and after the inside of the metal container 1 is evacuated from the exhaust system 14 to create a vacuum, the inside of the trapping lid 4 is closed. The upper end of the crucible 2 is sealed by heating the boron oxide 5 by the after heater 3 to form a kudzu liquid, and then an inert gas such as argon is introduced from the inert gas introduction system 13 to close the crucible. While creating an inert gas atmosphere outside the crucible 2, the magnetized gallium 8 in the crucible 2 is heated to a melt by the main heater 7, and the rotating pulling shaft 6 and the bottle-shaped crucible 2 are rotated. At the same time, the rotary pulling shaft 6 is lowered so that the seed crystal 12 attached to the tip of the rotating pulling shaft 6 via the chuck 11 comes into contact with the gallium sulfide kudzu liquid 8, and then the rotating shaft 6 is also rotated. An apparatus (hereinafter referred to as a conventional single crystal manufacturing apparatus) has been proposed that grows a single crystal 15 by pulling the single crystal 15 while causing the single crystal to grow. In this conventional single crystal manufacturing apparatus, the grown single crystal 15 is not exposed to an inert gas atmosphere at high temperatures due to the boron oxide liquid seal 5, so that dissociation of the pilasters from the surface of the single crystal 15 is suppressed. This has the advantage that the crystallinity near the single crystal surface is not inhibited, but on the other hand,
[a} Evaporated matter from the surface of the gallium oxide melt 8 adheres to the inner surface of the heated wall of the pin-shaped quartz rotary crucible 2 as gallium oxide, and eventually blocks the view from the outside and prevents the growth during pulling. Not only does this make it impossible to observe the single crystal 15, but small pieces of the adhering gallium phosphide sometimes peel off and fall directly onto the surface of the gallium phosphide melt 8, disturbing the monocrystalline growth conditions and preventing single crystallization. To prevent damage.

‘bー シール用酸化ほう素融液5の回転引上軸6を伝
う流下をできるだけ少なくするために、前記回転引上軸
6と石英製隊め込み蓋4との間隙を可能な限り小さくし
ているので、ともすると前記回転引上軸6とびん形の石
英製回転るつぼ2との円滑な相互反対回転に支障をきた
すことがいまいま発生し、その度ごとに前記回転るつぼ
2に振動をもたらし、この回転るつぼ2の振動は枇化ガ
リウム融液8の表面に伝豚して単結晶15の品質および
収率に悪影響を及ぼすこと。
'b- In order to minimize the flow of the boron oxide melt 5 for sealing along the rotational pull-up shaft 6, the gap between the rotary pull-up shaft 6 and the quartz lining lid 4 is made as small as possible. Therefore, it is likely that the smooth counter-rotation of the rotating pull-up shaft 6 and the bottle-shaped quartz rotating crucible 2 will be hindered, and the rotating crucible 2 will be vibrated each time. This vibration of the rotating crucible 2 is transferred to the surface of the gallium sulfide melt 8 and adversely affects the quality and yield of the single crystal 15.

{c} 石英製回転るつぼ2は、特殊な形状を有するび
ん形の一体ものであるため高価であり、袴に近年の大蓬
単結晶(直径:3〜4インチ)の要求に対処するため、
これを大型化するに際しては、一段と高価なものとなり
、かつ大型化するほど回転るつぼ内外の圧力差によって
変形しやすくなるばかりでなく、下方部分にかかる重量
も大きくなって変形の原因となり、このように回転るつ
ぼ2が変形した場合、上記回転引上鞠6との相互反応方
向回転がスムーズに行なわれなくなって実質的に単結晶
の製造が困難になること。{d} 鞍め込み蓋4が石英
で製造されているために1回の単結晶成長ごとに破損し
、その度ごとに新しいものと取換えなければならず、製
造コスト上昇の原因となること。などの問題点を有する
ものであった。
{c} The quartz rotating crucible 2 is expensive because it is a bottle-shaped unit with a special shape.
When increasing the size of the crucible, it becomes more expensive, and the larger the crucible, the more easily it deforms due to the pressure difference between the inside and outside of the rotating crucible, and the weight placed on the lower part also increases, causing deformation. If the rotating crucible 2 is deformed, the rotation in the direction of interaction with the rotating pull-up ball 6 will not be carried out smoothly, making it substantially difficult to produce a single crystal. {d} Because the saddle-fitting lid 4 is manufactured from quartz, it breaks after each single crystal growth, and must be replaced with a new one each time, which causes an increase in manufacturing costs. . It had problems such as:

この発明は、上記従釆単結晶製造装置のもつ問題点を解
決し、もって半導体用高解離圧化合物単結晶を結晶性お
よび量産性よく、かつ大蓬化可能にして経済的に製造す
る装置を提供するもので、回転軸の上端部に支持され、
かつ高解離圧化合物融液(この高解離圧化合物融液は多
結晶のものを直接溶融して形成しても、またこれを構成
する成分単体、例えば枇化ガリウムであればGaとAS
とを装入し、加熱反応させて形成してもよい)およびこ
れを被覆するための酸化ほう素融液を保持するるつぼと
、上端部にシール用酸化ほう素藤液を保持するMoまた
はMo合金製の鮫め込み蓋を有し、かつ前記るつぼ内径
より小径の外径を有する下端部が上記高解離圧化合物融
液被覆用酸化ほう素融液中に浸糟された状態で保持動さ
れた石英製炉芯管と、必要に応じて前記炉芯管の下方部
における少なくとも前記被覆用酸化ほう素融液中に浸没
されている部分を、酸化アルミニウム、窒化アルミニウ
ム、酸化チタン、窒化チタン、炭化チタン、室化けし、
素、炭化けし、素、窒化ボ。
The present invention solves the problems of the conventional single crystal production equipment described above, and provides an equipment for economically producing high dissociation pressure compound single crystals for semiconductors with good crystallinity and mass production, and which can be commercialized widely. It is supported on the upper end of the rotating shaft,
and a high dissociation pressure compound melt (this high dissociation pressure compound melt may be formed by directly melting a polycrystalline material, or it may be formed by a single component such as Ga and AS in the case of gallium sulfide).
and a crucible holding a boron oxide melt for coating this, and a Mo or Mo crucible holding a boron oxide molten liquid for sealing at the upper end. The crucible has a lid made of an alloy and has an outer diameter smaller than the inner diameter of the crucible. A quartz furnace core tube made of aluminum oxide, aluminum nitride, titanium oxide, titanium nitride, aluminum oxide, aluminum nitride, titanium oxide, titanium nitride, titanium carbide, room garnish,
Base, carbide, base, nitride.

ン、炭化ボロン、炭素、Mo、Au、およびPtなどの
酸化ほう素融液および高解離圧化合物融液中の揮発性成
分に対して鱗反応性の材料からなる保護層で被覆し、上
記石英製炉芯管を貫通し、回転および引上げ自在に装着
され、かつ先端部に種結晶が敬付けてある回転引上軸と
、上記石英製炉芯管内における上記回転引上甑に・固着
された、上記高解離圧化合物を構成する揮発性成分の単
体を保持する受皿と、を備えたことを特徴とする半導体
用高解離圧化合物単績晶の製造装置に特徴を有するもの
である。
The above-mentioned quartz is coated with a protective layer made of a material that is scale-reactive to volatile components in the boron oxide melt and the high dissociation pressure compound melt, such as boron carbide, carbon, Mo, Au, and Pt. A rotating pulling shaft that penetrates the furnace core tube and is attached to be rotatable and pullable, and has a seed crystal attached to its tip, and is fixed to the rotating lifting pot in the quartz furnace core tube. The present invention is characterized by an apparatus for producing a single crystal of a high dissociation pressure compound for semiconductors, comprising a saucer for holding a single volatile component constituting the high dissociation pressure compound.

つぎに、この発明の装置を図面を参照しながら具体的に
説明する。第2図はこの発明の実施袋贋が概略縦断面図
で示されている。
Next, the apparatus of the present invention will be specifically explained with reference to the drawings. FIG. 2 is a schematic longitudinal sectional view of a bag counterfeit according to the present invention.

図示されるように、【aー 高解離圧化合物融液8およ
びこれを被覆するための酸化ほう素融液16を保持する
石英製るつぼ2′の形状を単純化したこと。
As shown in the figure, [a] The shape of the quartz crucible 2' holding the high dissociation pressure compound melt 8 and the boron oxide melt 16 for coating it has been simplified.

{b)下端部をるつぼ2′の内径よりも小径の外径とし
た石英製炉芯管17が支持台20上に支持され、しかも
この炉芯管17は、るつぼ2′および/または支持台2
0の上下動により単結晶引上げに伴う高解離圧化合物融
液8の葛虫液面降下に追従して、炉芯管下端部が常に被
覆用酸化ほう素融液16中の所定位直にあうように上下
動位置調節自在に支持されていること。
{b) A quartz furnace core tube 17 whose lower end has an outer diameter smaller than the inner diameter of the crucible 2' is supported on the support stand 20, and this furnace core tube 17 is supported on the crucible 2' and/or the support stand. 2
The lower end of the furnace core tube always aligns directly with the predetermined position in the boron oxide melt 16 for coating, following the drop in the liquid level of the high dissociation pressure compound melt 8 due to the vertical movement of the single crystal. It must be supported so that its vertical position can be adjusted freely.

【cー シール用酸化ほう素融液5を保持する鉄め込み
蓋4をMoまたはMo合金製としたこと。
[c- The iron-filled lid 4 that holds the sealing boron oxide melt 5 is made of Mo or Mo alloy.

{d} 炉芯管17内を、高解離圧化合物を構成する揮
発性成分(例えば高解離圧化合物が硯化ガリウムであれ
ば枇素)の雰囲気とするための前記揮発性成分単体19
を保持する受皿18を炉芯管17内における上記回転引
上軸6に設けたこと。‘e} 炉芯管17の少なくとも
被覆用酸化ほう素融液浸濃部分を、必要に応じて酸化ほ
う素融液16および高藤隣圧化合物融液8中の揮発性成
分とほとんど反応しない(簸反応性)保護層で被覆した
こと。
{d} The volatile component alone 19 for creating an atmosphere of volatile components constituting the high dissociation pressure compound (for example, phosphorus if the high dissociation pressure compound is gallium silicide) in the furnace core tube 17
A saucer 18 for holding the is provided on the rotary pulling shaft 6 in the furnace core tube 17. 'e} If necessary, at least the part of the furnace core tube 17 immersed in the boron oxide melt for coating is made to hardly react with volatile components in the boron oxide melt 16 and the Takato pressure compound melt 8 (elutriation). Reactive) coated with a protective layer.

以上【a’〜【e’の点以外は、第1図に示される従来
単結晶製造装置と同じであるので、同じ部材には同一の
符号を付し、さらに操作態様もほぼ同様であるので、前
述の説明を援用し、重複説明を省略する。
The above points [a' to [e'] are the same as the conventional single crystal manufacturing apparatus shown in FIG. , the above explanation will be used and duplicate explanation will be omitted.

したがって、この発明の装置によれば、 ‘a} 受皿18内に保持された揮発性成分の単体19
がアフターヒータ3によって加熱されて気化するため、
炉芯管17内が前記揮発性成分の亥囲気となり、単結晶
の成長は前記揮発性成分の雰囲気中で行なわれるように
なることから、前記成長単結晶表面から揮発性成分が解
離して単結晶表面近傍の結晶性が阻害されることがない
Therefore, according to the device of the present invention, 'a} the volatile component 19 held in the saucer 18
is heated by the after-heater 3 and vaporized, so
The interior of the furnace core tube 17 becomes an atmosphere of the volatile components, and the growth of the single crystal occurs in the atmosphere of the volatile components. Therefore, the volatile components dissociate from the surface of the growing single crystal and the single crystal grows. Crystallinity near the crystal surface is not inhibited.

{b)高解離圧化合物融液8が酸化ほう素敵液16によ
って被覆されているため、前記高解離圧化合物融液から
の蒸発が著しく抑制され、この結果炉芯管17の加熱壁
内面への蒸発物質の付着がきわめて少なくなることから
、内部観察が妨げられることがなく、例え前記加熱壁内
面にわずかに付着した物質が剥離して落下しても、前記
被覆用酸化ほう素融液16上への落下となるため、単結
晶成長条件が阻害されることがなく、飛躍的に単結晶化
率を向上させることができること。
{b) Since the high dissociation pressure compound melt 8 is coated with the oxidized boron solution 16, evaporation from the high dissociation pressure compound melt is significantly suppressed, and as a result, evaporation from the high dissociation pressure compound melt to the inner surface of the heating wall of the furnace core tube 17 is Since the adhesion of evaporated substances is extremely reduced, internal observation is not obstructed, and even if a small amount of substances adhering to the inner surface of the heating wall peels off and falls, it will not be possible to remove the substances on the coating boron oxide melt 16. Since the single crystal growth conditions are not inhibited, the single crystallization rate can be dramatically improved.

‘c} 炉芯管17を、その下端部がるつぼ2′の内径
よりも小径の外径を有するものとし、かつ炉芯管下端部
が常に被覆用酸化ほう素融液16中の所定位置にあるよ
うにるつぼ2′および/または支持台20を上下動位置
調節自在に設置したので、炉芯管17に振動がもたらさ
れた場合でも前記るつぼ2には振動が全く伝わらず、し
かもその形状を単純化することができるため、従釆単結
晶製造装置におけるびん形の回転るつぼ2に比して製造
コストは著しく安く、さらに単結晶の大蓬化に際しても
特に大型のものを使用する必要がないばかりでなく、炉
芯管17の内外に生じた圧力差は被援用酸化ほう秦軸液
16の融液面の上下動によって吸収され、炉芯管の内外
面にかかる圧力は常に同一となることから、炉芯管に変
形が起ることがほとんどないこと。
'c} The lower end of the furnace core tube 17 has an outer diameter smaller than the inner diameter of the crucible 2', and the lower end of the furnace core tube 17 is always at a predetermined position in the coating boron oxide melt 16. Since the crucible 2' and/or the support stand 20 are installed so as to be able to move up and down and adjust their positions, even if vibrations are caused to the furnace core tube 17, the vibrations will not be transmitted to the crucible 2 at all, and the shape of the crucible Because the crucible can be simplified, the manufacturing cost is significantly lower than the bottle-shaped rotating crucible 2 in the secondary single crystal production equipment, and there is no need to use a particularly large crucible when producing single crystals in large quantities. Not only that, but the pressure difference that occurs inside and outside the furnace core tube 17 is absorbed by the vertical movement of the melt surface of the oxidized oxide shaft liquid 16, and the pressure applied to the inner and outer surfaces of the furnace core tube is always the same. Therefore, there is almost no deformation of the furnace core tube.

{d)シ−ル用酸化ほう素融液5を収容する舷め込み蓋
4を、酸化ほう素融液や高温の揮発性成分に対してすぐ
れた耐食性を示すMoまたはMo合金製としたので、欧
め込み蓋4の半永久的使用が可能となり、しかもこの鉄
め込み蓋4を石葵製炉芯管17に対してすり合せ蓋とす
ることにより十分な気密が確保できること。
{d) The overhanging lid 4 that houses the sealing boron oxide melt 5 is made of Mo or Mo alloy, which exhibits excellent corrosion resistance against the boron oxide melt and high-temperature volatile components. , Semi-permanent use of the iron-fitted lid 4 is possible, and sufficient airtightness can be ensured by making the iron-fitted lid 4 fit against the masonry hearth tube 17.

{c’炉芯管17内における回転引上甑6に設直した高
解離圧化合物を構成する揮発性成分の単体19を保持す
る受皿(MoまたはMo合金製とするのが望ましい)1
8により、炉芯管内に前記揮発性成分の雰囲気が形成さ
れるほか、藤め込み蓋4から回転引上軸6を伝って流下
する酸化ほう素融液が受け溜めされるようになることか
ら、成長単結晶がこれら流下する酸化ほう素融液によっ
て悪影響を受けることがないこと。
{c' Receiver (preferably made of Mo or Mo alloy) 1 for holding the volatile component 19 constituting the high dissociation pressure compound installed in the rotary pulling vat 6 in the furnace core tube 17
8, an atmosphere of the volatile components is formed in the furnace core tube, and the boron oxide melt flowing down from the wisteria-filling lid 4 along the rotating lifting shaft 6 is collected. , the growing single crystal is not adversely affected by these flowing boron oxide melts.

などの工業上有用な効果がもたらされ、この結果単結晶
の大蚤化、最尺化、製造時間の短縮、および単結晶化率
の改善などの量産性向上、並びに低転位化などの結晶性
向上がはかれた状態で半導体用高解離圧化合物単結晶を
製造コスト安く製造することができるようになるのであ
る。
This brings about industrially useful effects such as increasing the size of single crystals, increasing the size of single crystals, shortening manufacturing time, and improving mass productivity such as improving single crystallization rate, as well as crystallization such as lowering dislocations. This makes it possible to produce high dissociation pressure compound single crystals for semiconductors at low production costs while improving properties.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来単結晶製造装置を示す概略縦断面図、第2
図はこの発明の単結晶製造装置を示す概略縦断面図であ
る。 図面において、1・・・・・・金属容器、2・・・・・
・びん形石英製回転るつぼ、2′・・…・単純形状の石
英製るつぼ、3・・・・・・アフターヒータ、4・・・
・・・鉄め込み蓋、5・・・・・・シール用酸化ほう素
融液、6・・・・・・回転引上軸、7・・・・・・メイ
ンヒータ、8・・・・・・高解離圧化合物融液、9・・
・・・・回転軸、11・・・・・・チャック、12・・
・・・・種結晶、13・・・・・・不活性ガス導入系、
14・・・・・・排気系、15・・・・・・成長単結晶
、16・・・・・・被覆用酸化ほう秦幕虫液、17・・
・・・・石英製炉芯管、18・・・・・・受皿、19・
・・・・・揮発性成分単体、20・・・・・・炉芯管支
持台。 発’図第2図
Figure 1 is a schematic vertical cross-sectional view showing a conventional single crystal manufacturing equipment;
The figure is a schematic vertical sectional view showing a single crystal manufacturing apparatus of the present invention. In the drawings, 1...metal container, 2...
・Bottle-shaped quartz rotating crucible, 2'...Simple-shaped quartz crucible, 3...After heater, 4...
...Iron-inserted lid, 5...Boron oxide melt for sealing, 6...Rotating pulling shaft, 7...Main heater, 8...・・High dissociation pressure compound melt, 9・・
... Rotating axis, 11 ... Chuck, 12 ...
...Seed crystal, 13...Inert gas introduction system,
14... Exhaust system, 15... Growth single crystal, 16... Oxidized borax liquid for coating, 17...
...Quartz hearth tube, 18...Saucer, 19.
... Volatile component alone, 20 ... Furnace core tube support stand. Figure 2

Claims (1)

【特許請求の範囲】 1 回転軸の上端部に支持され、かつ高解離圧化合物融
液およびこれを被覆するための酸化ほう素融液を保持す
るるつぼと、上端部にシール用酸化ほう素融液を保持す
るMoまたはMo合金製の嵌め込み蓋を有し、かつ前記
るつぼ内径より小径の外径を有する下端部が上記高解離
圧化合物融液被覆用酸化ほう素融液中に浸漬された状態
で保持された石英製炉芯管と、上記石英製炉芯管を貫通
し、回転および引上げ自在に装着され、かつ先端部に種
結晶が取付けてある回転引上軸と、上記石英製炉芯管内
における上記回転引上軸に固着された、上記高解離圧化
合物を構成する揮発性成分の単体を保持する受皿と、を
備えたことを特徴とする半導体用高解離圧化合物単結晶
の製造装置。 2 上記特許請求の範囲第1項記載の半導体用高解離圧
化合物単結晶の製造装置において、上記石英製炉芯管の
少なくとも上記被覆用酸化ほう素融液浸漬部分が、酸化
ほう素融液および高解離圧化合物融液中の揮発性成分に
対して難反応性の材料から成る保護層で被覆されたこと
を特徴とする半導体用高解離圧化合物単結晶の製造装置
[Scope of Claims] 1. A crucible supported at the upper end of a rotating shaft and holding a high dissociation pressure compound melt and a boron oxide melt for coating it, and a boron oxide melt for sealing at the upper end. A state in which the lower end has a fitting lid made of Mo or Mo alloy that holds the liquid and has an outer diameter smaller than the inner diameter of the crucible and is immersed in the boron oxide melt for coating the high dissociation pressure compound melt. a rotating pulling shaft that passes through the quartz furnace core tube and is attached to the shaft so that it can be rotated and pulled up freely, and has a seed crystal attached to its tip, and the quartz furnace core An apparatus for producing a single crystal of a high dissociation pressure compound for semiconductors, comprising: a saucer for holding a single volatile component constituting the high dissociation pressure compound, the tray being fixed to the rotational pulling shaft in a tube. . 2. In the apparatus for producing a single crystal of a high dissociation pressure compound for semiconductors as set forth in claim 1 above, at least the portion of the quartz furnace core tube immersed in the boron oxide melt for coating is immersed in the boron oxide melt and 1. An apparatus for producing a single crystal of a high dissociation pressure compound for semiconductors, characterized in that the single crystal is coated with a protective layer made of a material that is difficult to react with volatile components in a melt of the high dissociation pressure compound.
JP56195298A 1981-12-04 1981-12-04 Manufacturing equipment for high dissociation pressure compound single crystal for semiconductors Expired JPS6041037B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56195298A JPS6041037B2 (en) 1981-12-04 1981-12-04 Manufacturing equipment for high dissociation pressure compound single crystal for semiconductors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56195298A JPS6041037B2 (en) 1981-12-04 1981-12-04 Manufacturing equipment for high dissociation pressure compound single crystal for semiconductors

Publications (2)

Publication Number Publication Date
JPS5899195A JPS5899195A (en) 1983-06-13
JPS6041037B2 true JPS6041037B2 (en) 1985-09-13

Family

ID=16338822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56195298A Expired JPS6041037B2 (en) 1981-12-04 1981-12-04 Manufacturing equipment for high dissociation pressure compound single crystal for semiconductors

Country Status (1)

Country Link
JP (1) JPS6041037B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0538861U (en) * 1991-10-19 1993-05-25 太陽誘電株式会社 Feedthrough capacitor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6036397A (en) * 1983-08-06 1985-02-25 Sumitomo Electric Ind Ltd Apparatus for growing compound single crystal
JPS6051698A (en) * 1983-08-31 1985-03-23 Res Dev Corp Of Japan Arsenic compound single crystal growing apparatus
JPS60264390A (en) * 1984-06-08 1985-12-27 Sumitomo Electric Ind Ltd Growing method for single crystal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0538861U (en) * 1991-10-19 1993-05-25 太陽誘電株式会社 Feedthrough capacitor

Also Published As

Publication number Publication date
JPS5899195A (en) 1983-06-13

Similar Documents

Publication Publication Date Title
US5891245A (en) Single crystal pulling method and apparatus for its implementation
WO1992001826A1 (en) Method and apparatus for making single crystal
TWI272321B (en) Process for producing single crystal of compound semiconductor and crystal growing apparatus
JPS6041037B2 (en) Manufacturing equipment for high dissociation pressure compound single crystal for semiconductors
JPH09183687A (en) Method for elevating flow regulating cylinder of apparatus for pulling up single crystal and flow regulating cylinder elevating mechanism for apparatus for pulling up single crystal
JP2723249B2 (en) Crystal growing method and crucible for crystal growing
JPS5913480B2 (en) A method for growing a single crystal of a high dissociation pressure compound for semiconductors using a double melt seal pulling method and an apparatus therefor
JPH07330482A (en) Method and apparatus for growing single crystal
WO2003068696A1 (en) Production method for compound semiconductor single crystal
JP2690420B2 (en) Single crystal manufacturing equipment
JP2000313690A (en) Production of semiconductor single crystal and solid semiconductor raw material mass used therefore
JP2002234792A (en) Method of producing single crystal
JP3392245B2 (en) Method for manufacturing compound semiconductor single crystal
JP2830315B2 (en) High dissociation pressure single crystal manufacturing equipment
JPH0543381A (en) Apparatus for growing single crystal by molten layer process and method for controlling oxygen concentration in single crystal using the apparatus
JP3938674B2 (en) Method for producing compound semiconductor single crystal
JP2006213553A (en) Crystal growth apparatus
JP3125681B2 (en) Method for growing ZnSe single crystal
JPH11189499A (en) Production of compound semiconductor single crystal
JPH07196398A (en) Single crystal pull-up apparatus
JPH03247582A (en) Production device of compound semiconductor crystal
JPH07206584A (en) Production of compound semiconductor single crystal
JPH0483794A (en) Method and apparatus for growing compound semiconductor single crystal
JP2005200224A (en) Apparatus for growing single crystal
JPS59141494A (en) Production unit for single crystal