JPS6051698A - Arsenic compound single crystal growing apparatus - Google Patents

Arsenic compound single crystal growing apparatus

Info

Publication number
JPS6051698A
JPS6051698A JP15788383A JP15788383A JPS6051698A JP S6051698 A JPS6051698 A JP S6051698A JP 15788383 A JP15788383 A JP 15788383A JP 15788383 A JP15788383 A JP 15788383A JP S6051698 A JPS6051698 A JP S6051698A
Authority
JP
Japan
Prior art keywords
arsenic
single crystal
sealing
container
quartz
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15788383A
Other languages
Japanese (ja)
Other versions
JPS6348837B2 (en
Inventor
Kenji Tomizawa
冨澤 憲治
Koichi Sasa
佐々 紘一
Yasushi Shimanuki
島貫 康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Shingijutsu Kaihatsu Jigyodan
Original Assignee
Research Development Corp of Japan
Shingijutsu Kaihatsu Jigyodan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Development Corp of Japan, Shingijutsu Kaihatsu Jigyodan filed Critical Research Development Corp of Japan
Priority to JP15788383A priority Critical patent/JPS6051698A/en
Priority to DE8484109948T priority patent/DE3472577D1/en
Priority to DE198484109948T priority patent/DE139157T1/en
Priority to EP84109948A priority patent/EP0139157B1/en
Priority to US06/644,840 priority patent/US4704257A/en
Publication of JPS6051698A publication Critical patent/JPS6051698A/en
Publication of JPS6348837B2 publication Critical patent/JPS6348837B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/10Crucibles or containers for supporting the melt

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To provide a single crystal growing apparatus which is resistant to high temps. and capable of tightly sealing gaseous arsenic by using materials such as Mo (alloy), gas impermeable carbon, and oxides like alumina to form a tightly sealed vessel, and forming the vessel separable into two parts. CONSTITUTION:A gaseous arsenic sealing vessels 26 and 26' are formed of >=1 kind among Mo, Mo alloy, gas permeable carbon, SiN, and oxides like alunima. A sealing material 27 such as B2O3 is used for sealing a pulling shaft 29 and a crucible rotating shaft 38, and a sealing material 30 such as B2O3 is used for tightly sealing the opening part of the crucible 32. In addition a quartz rod or a quartz fiber 28 perforating through the vessel 26 is provided to observe the inside of the vessels 26 and 26'. The deformation of the vessels 26 and 26' is not recognizable with said structure, and the arsenic compound single crystal which is suitably used for a laser or an IC substrate can be easily manufactured.

Description

【発明の詳細な説明】 技術分野 本発明は、レーザー用あるいはIC用基板として有用な
砒素化合物単結晶の成長装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to an apparatus for growing an arsenic compound single crystal useful as a substrate for a laser or an IC.

従来技術 従来砒素化合物半導体であるGaAs単結晶はHB法か
LEC法により¥A造されているが、それぞれの製法に
は特有の欠点があり満足できる状態ではない。
Prior Art Conventionally, single crystal GaAs, which is an arsenic compound semiconductor, has been manufactured by the HB method or the LEC method, but each manufacturing method has its own drawbacks and is not in a satisfactory state.

すなわち、レーザー用あるいはIC川の基板としては(
1oo)面の円形で欠陥のないものが要求されるが、H
B法では、〈111〉方位のインゴットがボート上に育
成される/jめ、(100)面の円形ウェハを得るノc
めには、結晶成長方向に対して54.7°の角度で切断
しl(後、円形に打ら抜かなければならない。
In other words, as a substrate for laser or IC (
1oo) A circular surface with no defects is required, but H
In method B, an ingot with a <111> orientation is grown on a boat, and a circular wafer with a (100) orientation is obtained.
For this purpose, it must be cut at an angle of 54.7° to the crystal growth direction (and then punched into a circular shape).

また、LEC法では< 100>方位での育成はできる
が、欠陥の少ないインボッiを安定して製造することは
難かしい状態である。
Furthermore, although the LEC method allows growth in <100> orientation, it is difficult to stably produce ingots with few defects.

これらの問題点を解決する方法として、特開昭55−8
0796号公報に2重融液シールの引上法による半導体
用高解離圧化合物半導体単結晶の成長法およびその装置
が提案されている。
As a method to solve these problems, JP-A-55-8
No. 0796 proposes a method for growing a high dissociation pressure compound semiconductor single crystal for semiconductors by a double melt seal pulling method and an apparatus therefor.

この方法は(100)面の円形ウェハを得ることができ
、しかもHB法と同程度以下の結晶欠陥密度のウェハが
得られるため好都合である反面、砒素雰囲気を保つため
の容器として石英を用いているため、砒化ガリウムの融
点である1240℃に保持しているときに圧力変動が生
じた場合には、石英容器が変形してしまうという難点が
あり、40φ以上の大型結晶を育成Jるためには砒素密
封容器の開発が必要であった。
This method is convenient because it can obtain circular wafers with (100) planes and wafers with a crystal defect density comparable to or lower than that of the HB method. Therefore, if pressure fluctuations occur while holding the quartz container at 1240°C, which is the melting point of gallium arsenide, the quartz container will be deformed. necessitated the development of arsenic sealed containers.

これを図面によって具体的に説明】°ると、第1図は従
来の石英により構成された砒素密封容器を用いた引上げ
装置を示す。図中1が金属製容器、2が石英製回転ルツ
ボ、3並びに23がアフターヒーター、4が土部はめ込
み蓋、5.22がシール用酸化(よう素、6が回転引上
げ軸、7がメインヒーター、8が高解離圧化合物、9が
回転軸、10が黒鉛サセプタ、11がチャック、12が
種結晶、13が不活性ガス導入系、14が排気系、15
が単結晶、16が被覆用酸化はう素、17.24が受1
プ皿、18が支持台、19が駆動台、20が炉心管、2
1がF部はめ込み蓋である。かかる装置では詳細な温度
測定の結果、砒素密封容器の内部観察部が1050〜1
150℃に限定され、融液上に被覆用酸化はう素がない
と、さらに観察可能部分は1080〜1150℃にIば
まってしまう。950〜1080℃の領域は、石英製砒
素密封容器の内側が砒化ガリウだ。又、アフターヒータ
ー3の内側は隠れてしまうため観察には不適な部分と考
えられ無視されていた。しかし、本発明者らの詳細な観
察結果によれば、この部分は610〜950℃の温度範
囲で石英製砒素密封容器の内側は引上げ操作中透明であ
り、観察する角度を変更することにより、内部観察部分
として有用になると考えるに至った。
This will be explained in detail with reference to the drawings. FIG. 1 shows a conventional lifting device using an arsenic sealed container made of quartz. In the figure, 1 is a metal container, 2 is a quartz rotating crucible, 3 and 23 are after heaters, 4 is a lid that fits into the soil part, 5.22 is oxidation for sealing (iodine), 6 is a rotating shaft, and 7 is a main heater. , 8 is a high dissociation pressure compound, 9 is a rotating shaft, 10 is a graphite susceptor, 11 is a chuck, 12 is a seed crystal, 13 is an inert gas introduction system, 14 is an exhaust system, 15
is single crystal, 16 is boron oxide for coating, 17.24 is receiving 1
18 is a support stand, 19 is a drive stand, 20 is a furnace tube, 2
1 is the F section fitting lid. As a result of detailed temperature measurement in such a device, the internal observation part of the arsenic sealed container was 1050 to 1
If the temperature is limited to 150°C and there is no coating boronate on the melt, the observable area will be stuck at 1080-1150°C. In the 950-1080°C range, the inside of the quartz arsenic sealed container is galium arsenide. Furthermore, since the inside of the after-heater 3 is hidden, it was considered to be an inappropriate part for observation and was ignored. However, according to the detailed observation results of the present inventors, the inside of the quartz arsenic sealed container is transparent during the pulling operation in the temperature range of 610 to 950 degrees Celsius, and by changing the observation angle, I came to think that it would be useful as an internal observation part.

一方、石英製の炉心管20の内側の外側に圧力差が生じ
た場合、特に外側の圧力が高くなつ/jときには、炉心
管20がつぶれ、黒鉛り゛セブタ10の回転を不可能に
する。大型結晶を得るためには必然的に大型の炉心管が
必要であり、大型の炉心管になる程、変形に対りる抵抗
がますまず小さくなるため、炉心管内外の圧力差を小さ
くツることが必要になる。当然のことながら、砒素を石
英製の炉心管20の中に有効に密閉する1=めには、炉
心管の外側の圧力を内側よりも高く保つことが要求され
るが、この要求を満足づるためには石英よりも高温強度
があり、砒素ガスに耐え、砒素ガスの密封が可能な1質
の選択が必要ぐあった。
On the other hand, if a pressure difference occurs between the inside and the outside of the quartz furnace core tube 20, especially when the pressure on the outside becomes high, the furnace core tube 20 will collapse, making it impossible for the graphite septa 10 to rotate. In order to obtain large crystals, a large core tube is inevitably required, and the larger the core tube, the smaller the resistance to deformation, which reduces the pressure difference inside and outside the core tube. It becomes necessary. Naturally, in order to effectively seal arsenic into the quartz core tube 20, it is required to maintain a higher pressure on the outside of the core tube than on the inside, and this requirement cannot be met. Therefore, it was necessary to select a material that has higher temperature strength than quartz, can withstand arsenic gas, and can be sealed against arsenic gas.

目 的 本発明は以上の点に鑑み、砒化ガリウムの融点である1
240℃以上の高温に耐え、又、砒素ガスに耐えつつ砒
素ガスを密封できるものであり、かつ結晶育成という点
から内部の観察ができる容器を提供するものCある。
Purpose In view of the above points, the present invention has been developed to obtain a melting point of 1, which is the melting point of gallium arsenide.
There is a method C that provides a container that can withstand high temperatures of 240° C. or higher, can withstand arsenic gas and hermetically seal the arsenic gas, and allows the inside to be observed from the standpoint of crystal growth.

構 成 本発明は、容器内に密封した砒素ガスの圧力を制御しつ
つ砒素化合物単結晶を引き上げる装置において、容器が
モリブデンまたはモリブデン合金、ガス不透過性カーボ
ン、窒化硅素、アルミナ系酸化物、ジルコニアの中の1
種または数種によって構成され、かつ二分割可能である
ことを特徴と16砒素化合物単結晶成長装置である。
Structure The present invention provides an apparatus for pulling an arsenic compound single crystal while controlling the pressure of arsenic gas sealed in a container, in which the container is made of molybdenum or molybdenum alloy, gas-impermeable carbon, silicon nitride, alumina-based oxide, or zirconia. middle one
This is a 16 arsenic compound single crystal growth apparatus characterized by being composed of one or more seeds and being able to be divided into two.

また、内部観察用石英窓または容器を貝通する石英ロン
ドあるいはファイバースコープの申の少なくとも一種を
具備している装置である。
The device is also equipped with at least one of the following: a quartz window for internal observation, a quartz rond for passing through the container, or a fiber scope.

さらに、上記の二分割した容器のト部容器には酸化はう
素保持部を設け、該酸化はう素中に上部容器の下端を浸
−りことにより砒素ガスを密封し、該容器の上下動によ
り任意に分離可能とした装置である。
Furthermore, a boron oxide holding section is provided in the top container of the above-mentioned two-part container, and the lower end of the upper container is immersed in the boron oxide to seal the arsenic gas. This is a device that can be separated at will by motion.

前述のように、砒素を炉心管の中に有効に密閉りるため
には、01250℃で砒素ガスと接触しても変化しない
こと、01250℃で砒素密封容器内外に圧力差を生じ
ても変形しないこと、■シール材である8203が固化
したときに破損しないこと、■砒素ガスを密封づるlこ
めの構造に加工できること、■砒素ガスを透過しないこ
と、等の要件を満す材質の選定が必要であり、本発明に
おかては、モリブデンまたはモリブデン合金、ガス不透
過性万一ボン、窒化硅素、アルミナ系酸化物、ジルコニ
アがかかる目的に適した材料であることを見出し、又、
これらの材料がシール材として用いられる酸化ホウ素と
接しても壊れない特性を有するため、繰返し使用が可能
になったものである。容器は二分割して酸化はう素でシ
ールしているため、原料のチャージおよびルツボ、結晶
の取出しに有利である。大型I(品をつくる大型容器で
は従来のようにすりf′せ式では密封と取外しの両方を
満足づることはできないので、本発明では酸化はう素に
よるシール方式を採用した。
As mentioned above, in order to effectively seal arsenic inside the reactor core tube, it must not change even if it comes into contact with arsenic gas at 01,250°C, and it must not deform even if a pressure difference is created between the inside and outside of the arsenic sealed container at 01,250°C. It is important to select a material that satisfies the following requirements: ■ It does not break when the sealing material 8203 solidifies; ■ It can be processed into a closed structure that seals out arsenic gas; ■ It does not allow arsenic gas to pass through. In the present invention, it has been found that molybdenum or molybdenum alloys, gas-impermeable gas bubbles, silicon nitride, alumina-based oxides, and zirconia are suitable materials for such purposes;
These materials have the property of not breaking even when they come into contact with boron oxide, which is used as a sealing material, so they can be used repeatedly. The container is divided into two parts and sealed with boronic oxide, which is advantageous for charging raw materials and taking out the crucible and crystals. Since it is not possible to satisfy both sealing and removal using the conventional sliding f' method for large containers used for making large I products, the present invention employs a sealing method using boron oxide.

又、内部観察用に石英ロッド又は)1イバースコープを
用い、これらの先端温度を610〜950℃にすること
により、砒素や砒化カリウムが付着すること°なく、明
瞭な像の観察が可能なことが判明した。
In addition, by using a quartz rod or an iverscope for internal observation and setting the temperature of the tip to 610 to 950°C, it is possible to observe a clear image without adhesion of arsenic or potassium arsenide. There was found.

以下実施例を第2図に基づいて説明すると、図中25は
砒素圧制御用電気炉、26..26=は砒素ガス密封容
器、27はシャフトシール川酸化ホウ素、28は内部観
察用石英ロット又は石英フッ1イバー、29は引上げシ
ャツ1〜.30は砒素ガス密封用酸化ホウ素、31はヒ
ーター、32はルツボ、33は砒素化合物融液、34は
砒素化合物単結晶、35は台座、36は不活性ガス導入
系、37は真空排気系、38はルツボ回転@である。
The embodiment will be described below based on FIG. 2. In the figure, 25 is an electric furnace for controlling arsenic pressure; 26. .. 26 is an arsenic gas sealed container, 27 is a shaft seal made of boron oxide, 28 is a quartz lot or quartz filter for internal observation, and 29 is a pulled shirt 1 to . 30 is boron oxide for sealing arsenic gas, 31 is a heater, 32 is a crucible, 33 is an arsenic compound melt, 34 is an arsenic compound single crystal, 35 is a pedestal, 36 is an inert gas introduction system, 37 is a vacuum exhaust system, 38 is crucible rotation @.

実施例1 砒素ガス密封容器26.26 ′として、ガス不透過性
の特殊カーボンを用い、引上げシ11フ1〜29、ルツ
ボ回転軸38の軸封にはシャフトシール用酸化ホウ素2
7を用いた。
Example 1 Special gas-impermeable carbon was used as the arsenic gas sealed containers 26 and 26', and boron oxide 2 for shaft sealing was used for the shaft seals of the pulling shafts 11 to 29 and the crucible rotating shaft 38.
7 was used.

ルツボ32を取出すために必要であるルツボより大きな
間口部のシールには、砒素ガス密封用酸化ホウ素30を
用いている。
Boron oxide 30 for sealing arsenic gas is used to seal the opening larger than the crucible, which is necessary to take out the crucible 32.

このシール手段においては、砒素ガス密封容器26−(
下部チャンバー)を上−トタることにより、密封は自由
にできる。また、砒素ガス密封容器26.26=とは独
立に、ルツボ32の上下も自由にできる構造となってい
る。
In this sealing means, the arsenic gas sealed container 26-(
The seal can be freely sealed by turning the lower chamber upward. Furthermore, the structure is such that the crucible 32 can be moved up and down independently of the arsenic gas sealed container 26, 26=.

かかる装置のルツボ32内にCa As 2 K+1、
As150. S i 006gをチャージして、砒素
化合物単結晶34を引上げ、ウェハーのEPDとキャリ
ア濃度を測定した。EPDは中心部40φについてはE
 P D 2000/ c+u以下で、その外側は20
00〜10000/c鴨2程度であった。一方キャリア
濃度は1×108/C1以上であり、半導体レーザー用
基板として充分に使用できるインボッ1−が育成された
In the crucible 32 of such a device, Ca As 2 K+1,
As150. The arsenic compound single crystal 34 was pulled up by charging S i 006 g, and the EPD and carrier concentration of the wafer were measured. EPD is E for center part 40φ
P D 2000/c+u or less, outside of that is 20
It was about 00-10000/c duck 2. On the other hand, the carrier concentration was 1×10 8 /C1 or more, and inbo 1- was grown which could be used satisfactorily as a substrate for a semiconductor laser.

ンに変形は認められず、繰返し使用ができた。No deformation was observed in the tube, and it could be used repeatedly.

又、容器内の観察は内部観察用石英ロッド28により明
瞭に行なうことができた。
Furthermore, the inside of the container could be clearly observed using the quartz rod 28 for internal observation.

実施例2 砒素ガス密封容器26.26−の月賀として、ガラス不
透過性のアルミナ系酸化物を用い、惟は実施例1と同じ
様な構成にした。
Example 2 A glass-impermeable alumina-based oxide was used as the cover for the arsenic gas sealed container 26.26, and the structure was the same as in Example 1.

また、砒素化合物融液33を保持するためのルツボ32
としはPBNを用い、Qa +AS IKgをチャージ
し、砒素ガス密封容器中で直接合成した後、Ga AS
単結晶を引上げた。
Also, a crucible 32 for holding the arsenic compound melt 33
After using PBN and charging Qa + AS IKg, directly synthesizing it in an arsenic gas sealed container, Ga AS
A single crystal was pulled.

この結晶のフロント部のEPDは約3000/cm2バ
ックのEPDは約7000/cm2の半絶縁性結晶を得
た。
A semi-insulating crystal was obtained in which the front EPD of this crystal was approximately 3000/cm2 and the back EPD was approximately 7000/cm2.

効 果 本発明は以上のとおりであって、大口径の容器をもって
大口径の砒素化合物を彎ることが可能となり、レーザー
用あるいはIC用基板として有用な材料を容易に製造し
得る。
Effects The present invention is as described above, and it becomes possible to store a large-diameter arsenic compound using a large-diameter container, and it is possible to easily produce materials useful as substrates for lasers or ICs.

第1図は従来の単結晶成長装置の一例の断面図、第2図
は本発明の実施例の断面図をそれぞれ承り。
FIG. 1 is a sectional view of an example of a conventional single crystal growth apparatus, and FIG. 2 is a sectional view of an embodiment of the present invention.

1・・・金属製容器、2・・・石英製回転ルツボ、3並
びに23・・・アフターヒーター、4・・・上部はめ込
み蓋、 5.22・・・シール用酸化はう素、 6・・・回転引上げ軸、7・・・メインヒーター、8・
・・高解離圧化合物、9・・・回転軸、10・・・黒鉛
1ルプタ、11・・・チャック、12・・・種結晶、1
3・・・不活性ガス導入系、14・・・排気系、15・
・・単結晶、16・・・被覆用酸化はう素、17.24
・・・受は皿、18・・・支持台、19・・・駆動台、
20・・・炉心管、21・・・下部はめ込み蓋、 25・・・砒素圧制御用電気炉、 2G、26−・・・砒素ガス密封容器、27・・・シ1
r71〜シール用酸化ホウ素、28・・・内部観察用石
英ロット又は石英ファイバー、29・・・引上げシャフ
ト、 30・・・砒素ガス密封用酸化ホウ素、31・・・ヒー
ター、32・・・ルツボ、33・・・砒素化合物融液、 34・・・砒素化合物単結晶、35・・・台座、3G・
・・不活性ガス導入系、37・・・真空排気系、38・
・・ルツボ回転軸、 特許出願人 新技術開発事業団 ほか2名 代理人 弁理士 小 松 秀 岳 才1図 千1売ネ11正書 (自発) 昭和58年9月220 特許庁長官 若杉和夫 殿 1、事イ′1の表示 昭和58年特許願第157883
号2、発明の名称 砒素化合物単結晶成長装置3、補正
を覆る者 事件との関係 特許出願人 名 称 新技術開発事業団 はか2名 5、補正命令の日イー] (自 発) 6、補止の対象 明l11店中光明の詳細な説明の欄。
1... Metal container, 2... Quartz rotary crucible, 3 and 23... After heater, 4... Upper fitting lid, 5.22... Boron oxide for sealing, 6...・Rotating pull-up shaft, 7... Main heater, 8.
... High dissociation pressure compound, 9 ... Rotating shaft, 10 ... Graphite 1 Lupta, 11 ... Chuck, 12 ... Seed crystal, 1
3... Inert gas introduction system, 14... Exhaust system, 15.
...Single crystal, 16...Boron oxide for coating, 17.24
...The receiver is a plate, 18...Support stand, 19...Drive stand,
20... Furnace core tube, 21... Lower fitting lid, 25... Electric furnace for arsenic pressure control, 2G, 26-... Arsenic gas sealed container, 27... Si1
r71 ~ Boron oxide for sealing, 28... Quartz rod or quartz fiber for internal observation, 29... Pulling shaft, 30... Boron oxide for arsenic gas sealing, 31... Heater, 32... Crucible, 33... Arsenic compound melt, 34... Arsenic compound single crystal, 35... Pedestal, 3G.
...Inert gas introduction system, 37...Vacuum exhaust system, 38.
...Crucible rotating shaft, Patent applicant: New Technology Development Corporation and 2 other agents, Patent attorney: Hide Komatsu, Takesai, 1 drawing, 1,100 sales, 11 books (self-motivated), September 1980, 220, Commissioner of the Japan Patent Office, Kazuo Wakasugi. 1. Indication of matter A'1 1982 Patent Application No. 157883
No. 2, Title of the invention: Arsenic compound single crystal growth device 3, Relationship with the person's case overturning the amendment Name of patent applicant Title: New Technology Development Corporation Detailed explanation column of Komei in 11th store.

(1)明細書第5頁第4行「内側の」を「内側と」とへ
J正する。
(1) On page 5 of the specification, line 4, ``inside'' is changed to ``inside''.

(2)第8頁第6行ないし7tjの「カリウム」を「ガ
リウムJと5j正づる。
(2) Correct “potassium” on page 8, lines 6 to 7tj as “gallium J”.

(3)同第12行「石英ロツ1〜」を「石英【コツト」
と訂正づる。
(3) The 12th line “Quartz 1~” is “Quartz [kotsuto]”
I am corrected.

(4)第9頁第11行のrcaAsjを1−GaA5J
と訂正づる。
(4) rcaAsj on page 9, line 11 is 1-GaA5J
I am corrected.

(5)同第9行「32としは」を132どしては」と訂
正する。
(5) In the 9th line, ``32 Toshiha'' is corrected to ``132 Doshiha''.

手Uごン111正書 (自発) 昭和59年8月30 El 特へ′1庁長官 志 賀 学 殿 1、事件の表示 昭和58年特許願第157883号 2、発明の名称 砒素化合物単結晶成長装置 3、補正をJる者 ( 小イ′1どの関係 特許出願人 名 称 新技術開発事業団 (ばか2名)4 、 代 
理 人 〒 H17(電話586−8854>住所 東
京都港区赤坂4丁目13番5号赤坂オフィスハイツ 氏名 (7899) 井理十 小 松 秀 Gji 、
 ?ili正命令のEl (=l (自 発)6、補正
の対Φ 明I’ll n:中、発明の詳細な説明の欄並びに昭和
58年9月22日促出の補正臼の71、イBli、iE
O’1内容の欄。
Handbook No. 111 (Spontaneous) August 30, 1980 El Special Edition '1 Director General Manabu Shiga 1, Indication of the incident 1983 Patent Application No. 157883 2, Name of the invention Arsenic compound single crystal growth Apparatus 3, Person who makes the amendment
Rito H17 (Telephone 586-8854> Address Akasaka Office Heights, 4-13-5 Akasaka, Minato-ku, Tokyo Name (7899) Riju Iri Hide Komatsu Gji,
? ili regular instruction El (=l (spontaneous) 6, pair of amendments Bli,iE
O'1 content column.

7、補正の内容 (1)明細書第9貞第17行r1X108Jを「1×1
018」と訂正する。
7. Contents of the amendment (1) Change the description No. 9, line 17, r1X108J to “1×1
018”, corrected.

(2)第10頁第6行「ガラス」を1ガス」と訂正づる
(2) On page 10, line 6, ``Glass'' is corrected to ``1 gas''.

(3)同頁第9行「32としは」を「32どしては」と
訂正する。
(3) On the 9th line of the same page, ``32 toshiha'' is corrected to ``32 doshiha''.

(4)昭和58月9月22提出の補正出中、7゜補正の
内容の欄の第(5)項を撤回づる。
(4) In the amendment submitted on September 22, 1982, paragraph (5) in the 7° amendment content column is withdrawn.

Claims (3)

【特許請求の範囲】[Claims] (1) 容器内に密封した砒素ガスの圧力を制御しつつ
砒素化合物単結晶を引き上げる装置に43いて、容器が
モリブデンまたはモリブデン合金、ガス不透過性カーボ
ン、窒化硅素、アルミナ系酸化物、ジルコニアの中の1
種または数種によって構成され、かつ二分割可能である
ことを特徴とす゛る砒素化合物単結晶成長装置。
(1) A device is used to pull up an arsenic compound single crystal while controlling the pressure of arsenic gas sealed in a container. middle one
An apparatus for growing an arsenic compound single crystal, characterized in that it is composed of one or more seeds and can be divided into two.
(2) 内部観察用石英窓まl〔は容器を貫通Jる石英
Oラドあるいはファイバースコープの中の少なくとも一
様を具備してなる特許請求の範囲第1項記載の砒素化合
物単結晶成長装置。
(2) The apparatus for growing an arsenic compound single crystal according to claim 1, comprising at least one of a quartz window or a fiber scope passing through the container.
(3) 二分割した容器には酸化はう素保持部を設り、
該酸化はう素中に上部容器の下端を浸すことにより砒素
ガスを密封し、該容器の上下動により任意に分離可能と
した特許請求の範囲第1項記載の砒素化合物半導体・単
結晶成長装置。
(3) A boron oxide holding part is provided in the two-part container,
Arsenic compound semiconductor/single crystal growth apparatus according to claim 1, wherein the arsenic gas is sealed by immersing the lower end of the upper container in the boron oxide, and can be separated at will by vertical movement of the container. .
JP15788383A 1983-08-31 1983-08-31 Arsenic compound single crystal growing apparatus Granted JPS6051698A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP15788383A JPS6051698A (en) 1983-08-31 1983-08-31 Arsenic compound single crystal growing apparatus
DE8484109948T DE3472577D1 (en) 1983-08-31 1984-08-21 Apparatus for growing single crystals of dissociative compounds
DE198484109948T DE139157T1 (en) 1983-08-31 1984-08-21 DEVICE FOR GROWING SINGLE CRYSTALLINE DEGRADABLE CONNECTIONS.
EP84109948A EP0139157B1 (en) 1983-08-31 1984-08-21 Apparatus for growing single crystals of dissociative compounds
US06/644,840 US4704257A (en) 1983-08-31 1984-08-28 Apparatus for growing single crystals of dissociative compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15788383A JPS6051698A (en) 1983-08-31 1983-08-31 Arsenic compound single crystal growing apparatus

Publications (2)

Publication Number Publication Date
JPS6051698A true JPS6051698A (en) 1985-03-23
JPS6348837B2 JPS6348837B2 (en) 1988-09-30

Family

ID=15659496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15788383A Granted JPS6051698A (en) 1983-08-31 1983-08-31 Arsenic compound single crystal growing apparatus

Country Status (1)

Country Link
JP (1) JPS6051698A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS516871A (en) * 1974-06-03 1976-01-20 Little Inc A MUKIKAGOBUTSUNOYOJUGOSEINOTAMENOHANNOYOKI OYOBI SOCHI
JPS5899195A (en) * 1981-12-04 1983-06-13 Mitsubishi Metal Corp Producing device for single crystal of high dissociation pressure compound for semiconductor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS516871A (en) * 1974-06-03 1976-01-20 Little Inc A MUKIKAGOBUTSUNOYOJUGOSEINOTAMENOHANNOYOKI OYOBI SOCHI
JPS5899195A (en) * 1981-12-04 1983-06-13 Mitsubishi Metal Corp Producing device for single crystal of high dissociation pressure compound for semiconductor

Also Published As

Publication number Publication date
JPS6348837B2 (en) 1988-09-30

Similar Documents

Publication Publication Date Title
US3716345A (en) Czochralski crystallization of gallium arsenide using a boron oxide sealed device
CN113930841A (en) Gallium oxide crystal manufacturing device and gallium oxide crystal manufacturing method
US4704257A (en) Apparatus for growing single crystals of dissociative compounds
JP5187848B2 (en) Single crystal manufacturing method
JPS60251191A (en) Process for growing single crystal of compound having high dissociation pressure
Capper Bulk crystal growth: methods and materials
JPS6051698A (en) Arsenic compound single crystal growing apparatus
JPS6341879B2 (en)
JPS60264390A (en) Growing method for single crystal
JPH06128096A (en) Production of compound semiconductor polycrystal
JPS62297291A (en) Pulling-up system for gaas single crystal
JPS5934679B2 (en) Uniform impurity doping method and device using liquid capsule method
JP2611336B2 (en) High dissociation pressure compound semiconductor processing equipment
JP2539841B2 (en) Crystal manufacturing method
JP2712247B2 (en) (II)-Method for producing bulk single crystal of group VI compound
JPH0527500Y2 (en)
Manimaran et al. Growth of CdGeAs2 single crystals by a microprocessor‐controlled bridgman system
JP2003146791A (en) Method of manufacturing compound semiconductor single crystal
JPS5973500A (en) Preparation of compound semiconductor
JPH11189499A (en) Production of compound semiconductor single crystal
Szofran et al. Reduction of defects in germanium-silicon
JPS60122791A (en) Pulling up method of crystal under liquid sealing
CN1195717A (en) Method and device for growing diamond of aureoviridae family
JPH05117083A (en) Apparatus for producing oxide single crystal and oxide single crystal production process
JPS63222094A (en) Crucible for producing single crystal