JPS5913480B2 - A method for growing a single crystal of a high dissociation pressure compound for semiconductors using a double melt seal pulling method and an apparatus therefor - Google Patents

A method for growing a single crystal of a high dissociation pressure compound for semiconductors using a double melt seal pulling method and an apparatus therefor

Info

Publication number
JPS5913480B2
JPS5913480B2 JP15262478A JP15262478A JPS5913480B2 JP S5913480 B2 JPS5913480 B2 JP S5913480B2 JP 15262478 A JP15262478 A JP 15262478A JP 15262478 A JP15262478 A JP 15262478A JP S5913480 B2 JPS5913480 B2 JP S5913480B2
Authority
JP
Japan
Prior art keywords
melt
crucible
rotating
dissociation pressure
high dissociation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15262478A
Other languages
Japanese (ja)
Other versions
JPS5580796A (en
Inventor
福彦 菅
憲治 冨沢
瑞弘 梅原
和敏 浅草
幹男 岸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP15262478A priority Critical patent/JPS5913480B2/en
Publication of JPS5580796A publication Critical patent/JPS5580796A/en
Publication of JPS5913480B2 publication Critical patent/JPS5913480B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Description

【発明の詳細な説明】 この発明は、砒化ガリウム、リン化ガリウム、および砒
化インジウムなどの半導体用高解離圧化合物単結晶の成
長法およびその装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method and apparatus for growing single crystals of high dissociation pressure compounds for semiconductors such as gallium arsenide, gallium phosphide, and indium arsenide.

従来、第1図に概略縦断面図で例示されるように、メイ
ンヒータ7によって加熱されて融液となる高解離圧化合
物としての例えば砒化ガリウム8を収容し、回転軸9の
上端部に固定された黒鉛サセプタ10によって支持され
た石英製回転るつぼ2と、アフターヒータ3によって加
熱されて融液となる酸化はう素5を収容した状態で前記
るつぼ2の上端部に嵌合装着された石英装嵌め込み蓋4
を通して前記るつぼ2内に貫挿され、先端部にはチャッ
ク11を介して砒化ガリウムなどの種結晶12を取付け
た回転引上軸6とを、金属容器1内に密閉装着し、前記
金属容器1内を排気系14から排気して真空とした後、
前記嵌め込み蓋4内の酸化はう素5をアフターヒータ3
によって加熱して融液となすことによって前記るつぼ2
の上端部をシールし、ついで不活性ガス導入系13より
アルゴンなどの不活性ガスを導入して前記るつぼ2の外
部を不活性ガス雰囲気としつつ、前記るつぼ2内の砒化
ガリウム8をメインヒータ7によって加熱して融液とす
ると共に、前記引上軸6を前記るつぼ2と反対方向に回
転させながら前記引上軸6の先端部にチャック11を介
して取付けた種結晶12を砒化ガリウム融液8に接触す
べく前記引上軸6を降下させ、引続いてこれを引上げる
ことによって単結晶15を成長させる(第1図図示の状
態)方法およびその装置(以下従来単結晶成長法という
)が提案されている。
Conventionally, as illustrated in a schematic vertical cross-sectional view in FIG. A rotary quartz crucible 2 supported by a graphite susceptor 10, and a quartz crucible 2 fitted into the upper end of the crucible 2 containing boron oxide 5 which is heated by an after-heater 3 to become a melt. Fitted lid 4
A rotary pulling shaft 6 is inserted into the crucible 2 through the metal container 1 and has a seed crystal 12 such as gallium arsenide attached to the tip via a chuck 11. After evacuating the inside from the exhaust system 14 to create a vacuum,
The boronic oxide 5 in the fitted lid 4 is transferred to the after-heater 3.
The crucible 2 is heated by heating to form a melt.
After sealing the upper end, an inert gas such as argon is introduced from the inert gas introduction system 13 to create an inert gas atmosphere outside the crucible 2, and the gallium arsenide 8 in the crucible 2 is transferred to the main heater 7. While rotating the pulling shaft 6 in the opposite direction to the crucible 2, a seed crystal 12 attached to the tip of the pulling shaft 6 via a chuck 11 is heated to form a melt. A method and apparatus for growing a single crystal 15 by lowering the pulling shaft 6 so as to contact the crystal 8 and then pulling it up (the state shown in FIG. 1) and its apparatus (hereinafter referred to as conventional single crystal growth method) is proposed.

上記従来単結晶成長法によれば、成長単結晶15が上記
酸化はう素融液シール5によって高温下で不活性ガス雰
囲気に曝されることがないため、単結晶150表面から
の砒素の解離が抑制されるようになることから、単結晶
表面近傍の結晶性が阻害されることがないという利点が
もたらされるが、一方この従来単結晶成長法には、砒化
ガリウム融液8の表面からの蒸発物が石英製回転るつぼ
2の加熱壁内面に主として砒化ガリウムとして付着し、
ついには外部から視界をさえぎって引上げ中の成長単結
晶15の観察を不可能ならしめるのみならず、ときおり
前記付着砒化ガリウムの小片が砒化ガリウム融液8の表
面に直接剥離落下して単結晶成長条件を乱し、単結晶化
を妨害するほか、酸化はう素融液シール50回転引上軸
6を伝う流下をできるだけ少なくするために、前記引上
軸6と石英装嵌め込み蓋4との間隙を可能な限り小さく
しているので、ともすると前記引上軸6と石英製回転る
つぼ2との円滑な回転に支障をきたすことがしばしば発
生し、その度ごとに回転るつぼ2に振動をもたらし、こ
の回転るつぼ2の振動は砒化ガリウム融液8の表面に伝
わって単結晶15の品質および収率に悪影響を及ぼし、
また、石英製回転るつぼ2としては特殊な形状をもった
大型のものを使用しなければならないと共に、上記表め
込み蓋4が石英で製造されているため1回の単結晶成長
ごとに破損し、その度ごとに新しいものと取換えなげれ
ばならず、製造コストの上昇を招くなどの種々の問題点
がある。
According to the conventional single crystal growth method, the growing single crystal 15 is not exposed to an inert gas atmosphere at high temperature by the boron oxide melt seal 5, so that arsenic is dissociated from the surface of the single crystal 150. This has the advantage that the crystallinity near the single crystal surface is not inhibited, but on the other hand, in this conventional single crystal growth method, The evaporated material mainly adheres to the inner surface of the heated wall of the quartz rotating crucible 2 as gallium arsenide,
Not only does it eventually block the view from the outside and make it impossible to observe the growing single crystal 15 being pulled, but sometimes small pieces of the deposited gallium arsenide peel off and fall directly onto the surface of the gallium arsenide melt 8, preventing the growth of the single crystal. In addition to disturbing the conditions and interfering with single crystallization, in order to minimize the flow of the boronic melt seal 50 through the rotating pulling shaft 6, the gap between the pulling shaft 6 and the quartz-inserted lid 4 is Since this is made as small as possible, it often occurs that the smooth rotation of the pulling shaft 6 and the quartz rotating crucible 2 is hindered, and each time this occurs, vibrations are caused in the rotating crucible 2. This vibration of the rotating crucible 2 is transmitted to the surface of the gallium arsenide melt 8 and adversely affects the quality and yield of the single crystal 15.
In addition, a large quartz crucible with a special shape must be used as the quartz rotary crucible 2, and since the recessed lid 4 is made of quartz, it may break during each single crystal growth. , it has to be replaced with a new one each time, leading to various problems such as an increase in manufacturing costs.

本発明者等は、上述のような観点から、上記従来単結晶
成長法のもつ問題点を解決して、結晶性および量産性よ
く、かつ経済的に半導体用高解離圧化合物単結晶を得べ
く研究を行なった結果、(a) 先端部に種結晶を取
付けた回転引上軸の下方部分と、単結晶に成長させんと
する高解離圧化合物融液を保持した石英製回転るつぼと
、前記るつぼを回転支持する回転軸の上方部分とを石英
製炉芯管内に収納すると共に、前記炉芯管の上下端部を
酸化はう素融液でシールし、さらに前記るつぼ内の高解
離圧化合物融液を酸化はう素融液で被覆(2重融液シー
ル)すると、前記高解離圧化合物融液中の揮発性成分(
例えば前記融液が砒化ガリウムであれば砒素)のみが前
記酸化はう素融液被覆を通して選択的に蒸発気化して前
記炉芯管内に前記揮発性成分の雰囲気が形成されるよう
になるため、単結晶の成長は前記揮発性成分の雰囲気中
で行なわれるようになることから、前記成長単結晶表面
から揮発性成分が解離して単結晶表面近傍の結晶性が阻
害されることがなく、さらに前記酸化はう素融液被覆に
よって前記揮発性成分以外の物質の蒸発が著しく抑制さ
れるため、前記炉芯管の加熱壁内面への物質付着がきわ
めて少なくなることから、内部観察が妨げられることが
なく、例え前記加熱壁内面にわずかに付着した物質が剥
離して落下しても、前記酸化はう素融液被覆上への落下
となるため、単結晶条件が阻害されることがないことか
ら、飛躍的に単結晶化率の向上をはかることができるこ
と(2重融液シールの引上法という)。
From the above-mentioned viewpoint, the present inventors aimed to solve the problems of the conventional single-crystal growth method described above, and to economically obtain a high-dissociation-pressure compound single crystal for semiconductors with good crystallinity and mass productivity. As a result of the research, we found that (a) a lower part of a rotating pulling shaft with a seed crystal attached to the tip, a quartz rotating crucible holding a high dissociation pressure compound melt to be grown into a single crystal, and the above-mentioned The upper part of the rotating shaft that rotatably supports the crucible is housed in a quartz furnace core tube, and the upper and lower ends of the furnace core tube are sealed with an oxidized boron melt, and the high dissociation pressure compound in the crucible is When the melt is coated with the boronic oxide melt (double melt seal), the volatile components in the high dissociation pressure compound melt (
For example, if the melt is gallium arsenide, only arsenic (arsenic) is selectively evaporated through the boron oxide melt coating, so that an atmosphere of the volatile components is formed in the furnace core tube. Since the single crystal is grown in an atmosphere containing the volatile components, the volatile components do not dissociate from the surface of the growing single crystal and the crystallinity near the surface of the single crystal is not inhibited. In the oxidation, the evaporation of substances other than the volatile components is significantly suppressed by the borium melt coating, so that the adhesion of substances to the inner surface of the heating wall of the furnace core tube is extremely reduced, which hinders internal observation. Even if a small amount of material attached to the inner surface of the heating wall peels off and falls, the oxidation will fall onto the boron melt coating, so the single crystal conditions will not be disturbed. (This is called the double melt seal pulling method.)

という知見を得たのであり、さらに装置に関しては、 (b) 酸化はう素融液シール用嵌め込み蓋をモリブ
デンあるいはモリブデン合金で製造することにより、前
記モリブデンあるいはモリブデン合金は酸化はう素融液
や高温の揮発性成分に対してすぐれた耐食性をもつこと
から、前記嵌め込み蓋の半永久的使用を可能となし、し
かも前記嵌め込み蓋を石英製炉芯管に対してすり合せ蓋
とすることにより十分な気密を確保するようにしたこと
Furthermore, regarding the device, (b) By manufacturing the fitting lid for sealing the oxidized boronic liquid from molybdenum or a molybdenum alloy, the molybdenum or molybdenum alloy can be used for the oxidized boronic melt or the molybdenum alloy. Since it has excellent corrosion resistance against high-temperature volatile components, it is possible to use the fitting lid semi-permanently, and by making the fitting lid fit against the quartz furnace core tube, the fitting lid can be used for a long time. Ensure airtightness.

(C) 上述のように、高解離圧化合物融液およびこ
れを被覆するための酸化はう素融液を収容保持する石英
製回転るつぼを炉芯管内に収納した構造とすることによ
り、前記るつぼの形状を単純にして小形にすることが可
能となるから、前記るつぼが特に前記被覆用酸化はう素
融液と反応して侵されてもその取換えあるいは修理をコ
スト安く行なうことができ、また炉芯管に振動がもたら
された場合でも前記るつぼには全く振動が伝わらず、さ
らに別体として設けた炉芯管を上下移動自在の駆動台上
に設置した構造とすることにより、下部嵌め込み蓋への
炉芯管の装着を遠隔操作できるようにしたこと。
(C) As described above, by adopting a structure in which a rotating quartz crucible containing and holding a high dissociation pressure compound melt and a oxidized borosilicate melt for coating it is housed in a furnace core tube, the crucible can be Since the shape of the crucible can be simplified and made smaller, even if the crucible is attacked by reacting with the boron melt, it can be replaced or repaired at low cost. In addition, even if vibrations are brought to the furnace core tube, the vibrations are not transmitted to the crucible at all, and by having a structure in which the furnace core tube is installed separately on a drive stand that can be moved up and down, the lower part of the crucible is The attachment of the furnace core tube to the fitting lid can be remotely controlled.

(d) 上部および下部嵌め込み蓋と、回転引上軸お
よび回転軸との間隔を従来の倍以上にして回転るつぼと
引上軸との相互回転を円滑にし、この間隙の拡大によっ
て、特に引上軸および回転軸を伝って流下するシール用
酸化はう素融液を引上軸の下方端部および回転軸に設け
たモリブデンあるいはモリブデン合金製受皿によって受
は溜めして成長単結晶に影響を及ぼさないようにしたこ
と。
(d) The gap between the upper and lower fitting lids and the rotary pulling shaft and rotating shaft is more than double that of the conventional one to facilitate mutual rotation between the rotating crucible and the pulling shaft, and by widening this gap, especially when pulling The sealing oxidation boron melt flowing down the shaft and rotating shaft is collected by a molybdenum or molybdenum alloy saucer provided at the lower end of the pulling shaft and the rotating shaft, and has no effect on the growing single crystal. I tried to avoid it.

以上(b)〜(d)の点に改良を施したものである。Improvements have been made in the points (b) to (d) above.

この発明は、上記知見および改良にもとづいてなされた
ものであり、以下に実施例により図面を参照しながら具
体的に説明する。
The present invention has been made based on the above findings and improvements, and will be specifically explained below with reference to the drawings by way of examples.

第2図には、この発明の実施装置が概略縦断面図で示さ
れている。
FIG. 2 shows a schematic longitudinal sectional view of a device for implementing the invention.

第2図に示されるように、 (1)単純形状にして小形の石英製るつぼ2と、回転引
上軸6の下方部分と、回転軸9の上方部分とを、上下移
動自在の駆動台19上に設置した炉芯管20内に収納し
たこと。
As shown in FIG. 2, (1) A driving platform 19 that can move the simple and small quartz crucible 2, the lower part of the rotating pull-up shaft 6, and the upper part of the rotating shaft 9 vertically; It was stored in the furnace core tube 20 installed above.

(2)上記炉芯管20の上端部には、上部アフターヒー
タ3によって加熱されて融液となるシール用酸化はう素
5を収容したモリブデンあるいはモリブデン合金製の下
部嵌め込み蓋4をすり合せ嵌合し、一方前記炉芯管20
の下端部には、下部アフターヒータ23によって加熱さ
れて融液となるシール用酸化はう素22を収容し、支持
台18上に載置されたモリブデンあるいはモリブデン合
金製の下部嵌め込み蓋21をすり合せ嵌合したこと。
(2) At the upper end of the furnace core tube 20, a lower fitting lid 4 made of molybdenum or a molybdenum alloy containing sealing boron oxide 5 which is heated by the upper afterheater 3 and becomes a melt is fitted. On the other hand, the furnace core tube 20
The lower end contains sealing boron oxide 22 which is heated by the lower after-heater 23 and becomes a melt, and the lower fitting lid 21 made of molybdenum or molybdenum alloy placed on the support base 18 is slid. They were mated together.

(3)単結晶に成長させんとする高解離圧化合物として
の砒化ガリウムの融液8の表面を酸化はう素融液16で
被覆したこと。
(3) The surface of the melt 8 of gallium arsenide as a high dissociation pressure compound to be grown into a single crystal is coated with the boron oxide melt 16.

(4)金属容器1内の排気中には、回転引上軸6が貫挿
されている下部嵌め込み蓋4を上記炉芯管20の上方で
支持し、単結晶成長中には、前記下部嵌め込み蓋4およ
び下部嵌め込み蓋21から引上軸6および回転軸9を伝
って流下するシール用酸化はう素融液を受は溜めするた
めのモリブデンあるいはモリブデン合金製受皿17゜2
4を前記炉芯管20内における前記引上軸6および回転
軸9に設けたこと。
(4) While the metal container 1 is being evacuated, the lower fitting lid 4, into which the rotating pulling shaft 6 is inserted, is supported above the furnace core tube 20, and during single crystal growth, the lower fitting lid 4 is supported above the furnace core tube 20. Molybdenum or molybdenum alloy saucer 17°2 for receiving and storing the sealing boron oxide melt flowing down from the lid 4 and the lower fitting lid 21 along the pulling shaft 6 and rotating shaft 9.
4 are provided on the pulling shaft 6 and rotating shaft 9 in the furnace core tube 20.

以上(1)〜(4)の点以外は、第1図に示される従来
例と同じであるので、同じ部材には同一符号を付し、さ
らに操作態様もほぼ同様であるので、前述の説明を援用
し、重複説明を省略する。
Other than the points (1) to (4) above, it is the same as the conventional example shown in FIG. , and omit duplicate explanations.

いま、内径:90mmの石英製回転るつぼ2内に高純度
砒化ガリウム多結晶=1ゆと所定量の被覆用酸化はう素
を装填し、加熱して融液8,16となし、前記回転るつ
ぼ2と、引上軸6とをそれぞれ反対方向に回転させると
共に、常法にしたがってシードづげを行ない、引上げた
ところ、前記引上軸6と前記回転るつぼ2の相互反対方
向回転がスムーズに、しかも前記炉芯管20内の内部観
察良好に、結晶性のすぐれた直径40gmの大口径砒化
ガリウム単結晶15を製造することができた。
Now, 1 high-purity gallium arsenide polycrystal and a predetermined amount of boron oxide for coating are loaded into a rotating crucible 2 made of quartz with an inner diameter of 90 mm, and heated to form a melt 8, 16, and the rotating crucible is heated. 2 and the pulling shaft 6 in opposite directions, seeding was carried out according to a conventional method, and the crucible 2 was pulled up. As a result, the pulling shaft 6 and the rotating crucible 2 smoothly rotated in opposite directions. Moreover, a large-diameter gallium arsenide single crystal 15 with a diameter of 40 gm and excellent crystallinity could be manufactured by observing the inside of the furnace core tube 20 well.

また、上記実施例において、上部および下部嵌め込み蓋
4,21をモリブデン製とした場合、20回以上の繰り
返し使用でも何らの不都合が発生せず、半永久的使用が
可能であった。
Further, in the above example, when the upper and lower fitting lids 4 and 21 were made of molybdenum, no problems occurred even after repeated use 20 times or more, and semi-permanent use was possible.

なお、このことは前記上部および下部嵌め込み蓋をモリ
ブデン合金製とした場合にも同様である。
Note that this also applies to the case where the upper and lower fitting lids are made of molybdenum alloy.

さらに、上記実施例では90%以上のきわめて高い単結
晶化率を示し、第1図に示される従来例の場合にはたか
だ−か30%の単結晶化率しか示さないのに比して、一
段とすぐれた単結晶化率で単結晶を成長させることがで
きた。
Furthermore, the above example shows an extremely high single crystallization rate of 90% or more, whereas the conventional example shown in FIG. 1 shows a single crystallization rate of only 30% at most. We were able to grow single crystals with an even better single crystallization rate.

また、この発明の実施に際して、単結晶の成長条件設定
に関し、引上軸および回転るつぼの回転数や、引上軸の
上昇速度などを単結晶成長に最も高した条件に自由に選
定できることは勿論のこと、必要に応じて高解離圧化合
物融液にドーパントを添加したり、さらには既存の直径
制御機構を具備させたりしてもよいことは勿論である。
Furthermore, when carrying out the present invention, it is of course possible to freely select the conditions for single crystal growth, such as the rotational speed of the pulling shaft and rotating crucible, and the rate of rise of the pulling shaft, to the highest conditions for single crystal growth. Needless to say, a dopant may be added to the high dissociation pressure compound melt, or an existing diameter control mechanism may be provided, if necessary.

上述のように、この発明によれば、従来単結晶成長法の
もつ問題点がすべて解決され、しかも単結晶の大口径化
、長尺化、製造時間の短縮化、および単結晶化率の改善
などの量産性向上、並びに低転位化などの結晶性向上が
はかれた状態で半導体用高解離圧化合物単結晶を製造コ
スト安く製造することができるのである。
As described above, according to the present invention, all the problems of conventional single crystal growth methods are solved, and in addition, it is possible to increase the diameter and length of the single crystal, shorten the manufacturing time, and improve the single crystallization rate. It is possible to produce a high dissociation pressure compound single crystal for semiconductors at a low manufacturing cost with improved mass productivity such as, and improved crystallinity such as low dislocations.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来単結晶成長法の実施装置を示す概略縦断面
図、第2図はこの発明の単結晶成長法の実施装置を示す
概略縦断面図である。 図面において、 1・・・・・・金属容器、2・・・・・・石英製回転る
つぼ、3゜23・・・・・・アフターヒータ、4・・・
・・・上部酸め込み蓋、5.22・・・・・・シール用
酸化はう素、6・・・・・・回転引上軸、7・・・・・
・メインヒータ、8・・・・・・高解離圧化合物、9・
・・・・・回転軸、10・・・・・・黒鉛サセプタ、1
1・・・・・・チャック、12・・・・・・種結晶、1
3・・・・・・不活性ガス導入系、14・・・・・・排
気系、15・・・・・・単結晶、16・・・・・・被覆
用酸化はう素、17,24・・・・・・受皿、18・・
・・・・支持台、19・・・・・・駆動台、20・・・
・・・炉芯管、21・・・・・・下部酸め込み蓋。
FIG. 1 is a schematic longitudinal cross-sectional view showing an apparatus for carrying out a conventional single crystal growth method, and FIG. 2 is a schematic longitudinal cross-sectional view showing an apparatus for carrying out a single crystal growth method according to the present invention. In the drawings, 1...Metal container, 2...Quartz rotating crucible, 3゜23...After heater, 4...
... Upper acid-filled lid, 5.22 ... Boron oxide for sealing, 6 ... Rotating lifting shaft, 7 ...
・Main heater, 8... High dissociation pressure compound, 9.
... Rotating shaft, 10 ... Graphite susceptor, 1
1... Chuck, 12... Seed crystal, 1
3... Inert gas introduction system, 14... Exhaust system, 15... Single crystal, 16... Boron oxide for coating, 17, 24 ...Saucer, 18...
...Support stand, 19...Drive stand, 20...
...Furnace core tube, 21...Lower acid filling lid.

Claims (1)

【特許請求の範囲】 1 回転軸の上端部に支持された石英製回転るつぼ内に
高解離圧化合物融液を保持し、先端部に種結晶を取付け
た回転引上軸を、前記るつぼと反対方向に回転させなが
ら引上げることによって高解離圧化合物単結晶を成長さ
せる方法において、前記引上軸の下方部分、前記るつぼ
、および前記回転軸の上方部分を石英製炉芯管内に収納
すると共に、前記炉芯管の上下端部を酸化はう素融液で
シールし、さらに前記るつぼ内の高解離圧化合物融液な
酸化はう素融液で被覆し、前記高解離圧化合物融液中の
揮発性成分のみを前記酸化はう素融液被覆を通して選択
的に蒸発気化させることによって前記揮発性成分で構成
された雰囲気中で高解離圧化合物単結晶を成長させるこ
とを特徴とする2重融液シールの引上法による半導体用
高解離圧化合物単結晶の成長法。 2 回転軸の上端部に支持された石英製回転るつぼ内に
高解離圧化合物融液を保持し、先端部に種結晶を取付け
た回転引上軸を、前記るつぼと反対方向に回転させなが
ら引上げることによって高解離圧化合物単結晶を成長さ
せる装置において、前記引上軸の下方部分と、前記るつ
ぼと、前記回転軸の上方部分を収納する石英製炉芯管を
上下移動自在の駆動台上に設置すると共に、前記炉芯管
の上下端部には、それぞれシール用酸化はう素融液を保
持するためのモリブデンあるいはモリブデン合金製の上
部および下部嵌め込み蓋を設け、さらに前記炉芯管内に
おける前記引上軸および回転軸には、前記上部および下
部嵌め込み蓋より前記引上軸および回転軸を伝って流下
するシール用酸化はう素融液な受は溜めするための受皿
を設けたことを特徴とする2重融液シールの引上法によ
る半導体用高解離圧化合物単結晶の成長装置。
[Claims] 1. A high dissociation pressure compound melt is held in a rotating quartz crucible supported at the upper end of a rotating shaft, and a rotating pulling shaft with a seed crystal attached to the tip is placed opposite to the crucible. In a method for growing a high dissociation pressure compound single crystal by pulling it while rotating it in a direction, the lower part of the pulling shaft, the crucible, and the upper part of the rotating shaft are housed in a quartz furnace core tube, and The upper and lower ends of the furnace core tube are sealed with a boron oxide melt, and the high dissociation pressure compound melt in the crucible is coated with a boron melt, and the high dissociation pressure compound melt in the crucible is coated with a boron oxide melt. A double melting method characterized by growing a high dissociation pressure compound single crystal in an atmosphere composed of the volatile components by selectively evaporating only the volatile components through the boron oxide melt coating. A method for growing single crystals of high dissociation pressure compounds for semiconductors using the liquid seal pulling method. 2 A high dissociation pressure compound melt is held in a rotating quartz crucible supported at the upper end of the rotating shaft, and the rotating pulling shaft with a seed crystal attached to the tip is pulled while rotating in the opposite direction to the crucible. In an apparatus for growing a single crystal of a high dissociation pressure compound by lifting, a quartz furnace core tube housing a lower part of the pulling shaft, the crucible, and an upper part of the rotating shaft is mounted on a drive stand that can be moved vertically. At the same time, upper and lower fitting lids made of molybdenum or molybdenum alloy are provided at the upper and lower ends of the furnace core tube to hold the borosilicate oxide melt for sealing, respectively. The pulling shaft and the rotating shaft are provided with a saucer for collecting the sealing oxidized boron melt flowing down from the upper and lower fitting lids along the pulling shaft and the rotating shaft. A device for growing single crystals of high dissociation pressure compounds for semiconductors using a double melt seal pulling method.
JP15262478A 1978-12-12 1978-12-12 A method for growing a single crystal of a high dissociation pressure compound for semiconductors using a double melt seal pulling method and an apparatus therefor Expired JPS5913480B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15262478A JPS5913480B2 (en) 1978-12-12 1978-12-12 A method for growing a single crystal of a high dissociation pressure compound for semiconductors using a double melt seal pulling method and an apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15262478A JPS5913480B2 (en) 1978-12-12 1978-12-12 A method for growing a single crystal of a high dissociation pressure compound for semiconductors using a double melt seal pulling method and an apparatus therefor

Publications (2)

Publication Number Publication Date
JPS5580796A JPS5580796A (en) 1980-06-18
JPS5913480B2 true JPS5913480B2 (en) 1984-03-29

Family

ID=15544440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15262478A Expired JPS5913480B2 (en) 1978-12-12 1978-12-12 A method for growing a single crystal of a high dissociation pressure compound for semiconductors using a double melt seal pulling method and an apparatus therefor

Country Status (1)

Country Link
JP (1) JPS5913480B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2585276B2 (en) * 1987-07-14 1997-02-26 住友電気工業株式会社 CdTe crystal manufacturing equipment

Also Published As

Publication number Publication date
JPS5580796A (en) 1980-06-18

Similar Documents

Publication Publication Date Title
US3998686A (en) Sapphire growth from the melt using porous alumina raw batch material
WO1992001826A1 (en) Method and apparatus for making single crystal
US4097329A (en) Process for the production of monocrystalline silicon rods
TWI272321B (en) Process for producing single crystal of compound semiconductor and crystal growing apparatus
JPS5913480B2 (en) A method for growing a single crystal of a high dissociation pressure compound for semiconductors using a double melt seal pulling method and an apparatus therefor
JPS6041037B2 (en) Manufacturing equipment for high dissociation pressure compound single crystal for semiconductors
JP2519459B2 (en) Single crystal pulling device
JP3722264B2 (en) Manufacturing method of semiconductor single crystal
JP3085072B2 (en) Single crystal pulling device
JP3900827B2 (en) Quartz crucible for single crystal pulling, single crystal pulling apparatus and single crystal pulling method
JP2733898B2 (en) Method for manufacturing compound semiconductor single crystal
JP3627255B2 (en) III-V compound semiconductor single crystal growth method
JP2690420B2 (en) Single crystal manufacturing equipment
JP2531875B2 (en) Method for producing compound semiconductor single crystal
JP2830315B2 (en) High dissociation pressure single crystal manufacturing equipment
JP3938674B2 (en) Method for producing compound semiconductor single crystal
JPS589799B2 (en) Zinc sulfide crystal growth method
JP2005200224A (en) Apparatus for growing single crystal
JP3392245B2 (en) Method for manufacturing compound semiconductor single crystal
JPH11199365A (en) Production of single crystal silicon and producing apparatus
JPS62216996A (en) Device for growing compound semiconductor single crystal
JPH04139030A (en) Method and device for growing single crystal
JPH0483794A (en) Method and apparatus for growing compound semiconductor single crystal
JPH0364477B2 (en)
JPH03252385A (en) Production of single crystal having high dissociation pressure