JP2002249868A - Vapor deposition system - Google Patents

Vapor deposition system

Info

Publication number
JP2002249868A
JP2002249868A JP2001045296A JP2001045296A JP2002249868A JP 2002249868 A JP2002249868 A JP 2002249868A JP 2001045296 A JP2001045296 A JP 2001045296A JP 2001045296 A JP2001045296 A JP 2001045296A JP 2002249868 A JP2002249868 A JP 2002249868A
Authority
JP
Japan
Prior art keywords
vapor deposition
discharge
deposition
downstream
discharge port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001045296A
Other languages
Japanese (ja)
Other versions
JP4599727B2 (en
Inventor
Shoichi Kawai
川井  正一
Hiroto Hayashi
裕人 林
Harumi Suzuki
晴視 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2001045296A priority Critical patent/JP4599727B2/en
Publication of JP2002249868A publication Critical patent/JP2002249868A/en
Application granted granted Critical
Publication of JP4599727B2 publication Critical patent/JP4599727B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To shorten the distance between a substrate for vapor deposition and outlet holes while keeping the uniformity of vapor deposition and to attain the improvement of vapor deposition ratio and the miniaturization of a chamber. SOLUTION: A transfer pipe 60 for transferring evaporated organic metal 100 from an evaporation chamber 30a to the vicinity of a vapor deposition surface 200a of a glass substrate 200 is provided, and also a plurality of outlet holes 62a for the discharge of the evaporated organic metal 100 are provided to a discharge part 62, as a part facing the vapor deposition surface 200a, of the transfer pipe 60. By this method, as compared with the case where the discharge is done directly into a chamber 20 via an outlet hole 30b opening in the upper part of a crucible 30 of the conventional vapor deposition system, the uniformity of vapor deposition onto the vapor deposition surface can be maintained even if the distance L1 between the vapor deposition surface 200a and the outlet holes 62a is shortened.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、内部が減圧された
チャンバ内にて、蒸発した蒸着物質を物理蒸着法(PV
D)により被蒸着板に蒸着させる蒸着装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a physical vapor deposition (PV)
The present invention also relates to a vapor deposition device for vapor-depositing on a plate to be vapor-deposited by D).

【0002】[0002]

【従来の技術】図8に示す従来の蒸着装置は、内部が減
圧されたチャンバ20内に、蒸発源となる蒸着物質10
0を有する坩堝30と、坩堝30の上方に水平に保持さ
れた被蒸着板200とを備えている。そして、坩堝30
にて加熱されて蒸発した蒸着物質100を、坩堝30上
部に開口する放出口30bからそのままチャンバ20内
に放出させて被蒸着板200に蒸着させるようになって
いる。
2. Description of the Related Art In a conventional vapor deposition apparatus shown in FIG. 8, a vapor deposition material 10 serving as an evaporation source is placed in a chamber 20 having a reduced pressure.
The crucible 30 includes a crucible 30 and a deposition target plate 200 horizontally held above the crucible 30. And crucible 30
The evaporation material 100 heated and evaporated by the above is discharged into the chamber 20 as it is from the discharge port 30b opened at the top of the crucible 30, and is deposited on the deposition target plate 200.

【0003】そして、被蒸着板200と坩堝30とを大
きく引き離して配置して、蒸着物質100が水平方向に
十分拡散するようにしており、被蒸着板200への蒸着
の均一化を図っている。なお、一般的には、被蒸着板2
00と放出口30bとの間隔L1を、被蒸着板200の
一辺の長さL2の約3倍の大きさにしている。
[0003] Then, the deposition target plate 200 and the crucible 30 are disposed far apart from each other so that the deposition material 100 is sufficiently diffused in the horizontal direction, thereby making the deposition on the deposition target plate 200 uniform. . Generally, the deposition target plate 2
The distance L1 between the position 00 and the discharge port 30b is set to be about three times the length L2 of one side of the deposition target plate 200.

【0004】[0004]

【発明が解決しようとする課題】しかし、上記従来装置
のように被蒸着板200と放出口30bとの間隔L1を
大きくすると、蒸着物質100の多くは被蒸着板200
に付着せず、チャンバ20の内面に付着してしまうとい
う問題があった。特に、チャンバ20の内面を頻繁に清
掃しなければならないことが作業効率を大きく低下させ
ていた。因みに、L1の大きさがL2の3倍の場合に
は、坩堝30内の蒸着物質100が蒸着する割合(蒸着
率)は約6%である。
However, when the distance L1 between the deposition target plate 200 and the discharge port 30b is increased as in the above-described conventional apparatus, most of the deposition material 100 is reduced.
However, there is a problem that it does not adhere to the inner surface of the chamber 20 without adhering. In particular, frequent cleaning of the inner surface of the chamber 20 has greatly reduced work efficiency. Incidentally, when the size of L1 is three times as large as L2, the rate of deposition of the deposition material 100 in the crucible 30 (deposition rate) is about 6%.

【0005】また、被蒸着板200と放出口30bとの
間隔L1を大きくすると、チャンバ20が大型化してし
まい、チャンバ20内を真空にするための時間が長くな
るとともに真空にするためのエネルギー消費が大きくな
るという問題があった。
When the distance L1 between the deposition target plate 200 and the discharge port 30b is increased, the size of the chamber 20 is increased, so that the time required for evacuating the chamber 20 becomes longer and the energy consumption for evacuating the chamber 20 becomes longer. There was a problem that it became large.

【0006】本発明は、上記点に鑑み、被蒸着板への蒸
着の均一性を保ちつつ、被蒸着板と放出口との間隔を小
さくして、蒸着率の向上およびチャンバの小型化を図る
ことを目的とする。
SUMMARY OF THE INVENTION In view of the above, the present invention aims to improve the deposition rate and reduce the size of the chamber by reducing the distance between the deposition target plate and the discharge port while maintaining the uniformity of the deposition on the deposition target plate. The purpose is to:

【0007】[0007]

【課題を解決するための手段】上記目的を達成するた
め、請求項1に記載の発明では、内部が減圧されたチャ
ンバ(20)内にて蒸着物質(100)を物理蒸着法に
より被蒸着板(200)に蒸着させる蒸着装置におい
て、蒸着物質(100)を加熱して蒸発させる蒸発室
(30a)と、蒸発室(30a)と連通し、蒸発室(3
0a)から被蒸着板(200)の蒸着面(200a)近
傍へ蒸着物質(100)を移送する移送管(60)とを
備え、移送管(60)のうち蒸着面(200a)に相対
する部分である放出部(62)には、蒸着面(200
a)に向けて蒸着物質(100)を放出する複数の放出
口(62a)が形成されていることを特徴とする。
In order to achieve the above object, according to the first aspect of the present invention, a deposition material (100) is deposited by a physical vapor deposition method in a chamber (20) having a decompressed inside. In the vapor deposition device for vapor deposition on (200), an evaporation chamber (30a) for heating and vaporizing the vapor deposition material (100) communicates with the evaporation chamber (30a), and the evaporation chamber (3) is formed.
0a) and a transfer tube (60) for transferring the deposition material (100) from the vicinity of the deposition surface (200a) of the deposition target plate (200), and a portion of the transfer tube (60) facing the deposition surface (200a). Is provided on the vapor deposition surface (200).
A plurality of outlets (62a) for discharging the deposition material (100) toward a) are formed.

【0008】これにより、蒸発した蒸着物質(100)
は、移送管(60)により強制的に蒸着面(200a)
近傍へ移送され、その後、蒸着面(200a)に相対す
る位置に形成された複数の放出口(62a)から蒸着面
(200a)に向けて放出されることとなる。よって、
従来の蒸着装置による坩堝(30)上部に開口する放出
口(30b)からそのままチャンバ(20)内に放出さ
せる場合に比べて、蒸着面(200a)と放出口(62
a)との間隔を小さくしても、蒸着面(200a)への
蒸着の均一性を保つことができる。従って、被蒸着板
(200)への蒸着の均一性を保ちつつ、蒸着率の向上
およびチャンバ(20)の小型化を図ることができる。
Thus, the evaporated substance (100)
Is forcibly deposited by the transfer tube (60).
It is transported to the vicinity, and then discharged toward the vapor deposition surface (200a) from the plurality of discharge ports (62a) formed at positions opposite to the vapor deposition surface (200a). Therefore,
As compared with the case where the discharge port (30b) opened at the top of the crucible (30) by the conventional vapor deposition apparatus is discharged directly into the chamber (20), the vapor deposition surface (200a) and the discharge port (62) are used.
Even if the distance from the point (a) is reduced, uniformity of deposition on the deposition surface (200a) can be maintained. Therefore, it is possible to improve the deposition rate and reduce the size of the chamber (20) while maintaining the uniformity of the deposition on the deposition target plate (200).

【0009】ところで、移送管(60)が所定温度以下
の低温であると、蒸発した蒸着物質(100)が移送管
(60)内面に付着し易くなり、特に、放出口(62
a)にて蒸着物質(100)が目詰まりし易くなってし
まう。これに対し、請求項2に記載の発明では、移送管
(60)を加熱する加熱手段(70)を備えることを特
徴とするので、蒸着物質(100)の移送管(60)内
面への付着および放出口(62a)の目詰まりを抑制で
きる。
When the transfer pipe (60) is at a low temperature below a predetermined temperature, the evaporated deposition material (100) tends to adhere to the inner surface of the transfer pipe (60), and in particular, the discharge port (62).
In a), the deposition material (100) is easily clogged. On the other hand, according to the second aspect of the present invention, since the heating means (70) for heating the transfer pipe (60) is provided, the deposition material (100) adheres to the inner surface of the transfer pipe (60). Also, clogging of the discharge port (62a) can be suppressed.

【0010】請求項3に記載の発明では、チャンバ(2
0)内に、被蒸着板(200)を保持する保持部材(5
0)を備え、保持部材(50)および放出部(62)の
少なくとも一方が、蒸着面(200a)に対して平行に
可動であることを特徴とするので、蒸着面(200a)
と放出口(62a)との間隔を大きくすることなく、蒸
着面(200a)への蒸着の均一性を向上できる。
In the invention according to claim 3, the chamber (2)
0), a holding member (5) holding the deposition target plate (200).
0), wherein at least one of the holding member (50) and the emission portion (62) is movable parallel to the vapor deposition surface (200a), so that the vapor deposition surface (200a)
The uniformity of vapor deposition on the vapor deposition surface (200a) can be improved without increasing the distance between the discharge port and the discharge port (62a).

【0011】請求項4に記載の発明では、移送管(6
0)の放出部(62)を、蒸着面(200a)に対向し
て略平行に延びるように形成したことを特徴とする。こ
れにより、蒸発した蒸着物質(100)は蒸着面(20
0a)に対して平行に拡がるように移送されるので、蒸
着面(200a)と放出口(62a)との間隔を大きく
することなく、蒸着面(200a)への蒸着の均一性を
向上できる。
According to the invention described in claim 4, the transfer pipe (6
The emission section (62) of (0) is formed so as to extend substantially parallel to the vapor deposition surface (200a). As a result, the evaporated deposition material (100) is deposited on the deposition surface (20).
Since the transfer is performed so as to spread in parallel to 0a), the uniformity of the deposition on the deposition surface (200a) can be improved without increasing the distance between the deposition surface (200a) and the discharge port (62a).

【0012】ところで、放出部(62)内の下流部分に
おける蒸着物質(100)の圧力は、上流部分の放出口
(62a)からの放出により低くなるため、下流部分の
放出口(62a)の放出量は上流部分の放出口(62
a)の放出量に比べて少なくなり、ひいては、蒸着面
(200a)への蒸着の均一性が損なわれてしまう。こ
れに対し、請求項5に記載の発明では、放出部(62)
のうち蒸着物質(100)の移送方向の下流側部分を加
熱する下流側加熱手段(71)および上流側部分を加熱
する上流側加熱手段(72)を備え、下流側および上流
側加熱手段(71、72)による加熱度合をそれぞれ個
別に調節可能にしたことを特徴とする。
By the way, since the pressure of the vapor deposition material (100) in the downstream part in the discharge part (62) becomes lower due to the discharge from the discharge port (62a) in the upstream part, the pressure in the discharge part (62a) in the downstream part is reduced. The volume is measured at the outlet (62
The emission amount is smaller than the emission amount of a), and the uniformity of evaporation on the evaporation surface (200a) is impaired. On the other hand, in the invention according to claim 5, the discharge section (62)
Among them, a downstream heating means (71) for heating a downstream portion in a transport direction of the deposition material (100) and an upstream heating means (72) for heating an upstream portion, and the downstream and upstream heating means (71) are provided. , 72) are individually adjustable.

【0013】これにより、下流側加熱手段(71)によ
る加熱度合を上流側加熱手段(72)による加熱度合よ
り大きくして、下流側の蒸着物質(100)の温度を上
昇させれば、放出部(62)内の下流部分の圧力低下を
抑制でき、下流部分の放出口(62a)の放出量が上流
部分の放出口(62a)の放出量に比べて少なくなるこ
とを抑制できる。
Thus, if the degree of heating by the downstream heating means (71) is made larger than the degree of heating by the upstream heating means (72), and the temperature of the vapor deposition material (100) on the downstream side is raised, the discharge section The pressure drop in the downstream portion of (62) can be suppressed, and the discharge amount of the discharge port (62a) in the downstream portion can be suppressed from being smaller than the discharge amount of the discharge port (62a) in the upstream portion.

【0014】請求項6に記載の発明では、複数の放出口
(62a)のうち、蒸着物質(100)の移送方向の下
流側に位置する放出口(62a)を、上流側に位置する
放出口(62a)よりも大きい開口面積に形成したこと
を特徴とするので、下流部分の放出口(62a)の放出
量が上流部分の放出口(62a)の放出量に比べて少な
くなることを抑制できる。
According to the sixth aspect of the present invention, of the plurality of outlets (62a), the outlet (62a) located on the downstream side in the transport direction of the deposition material (100) is changed to the outlet located on the upstream side. Since it is characterized in that it is formed with an opening area larger than (62a), it is possible to suppress the emission amount of the emission port (62a) in the downstream portion from being smaller than the emission amount of the emission port (62a) in the upstream portion. .

【0015】請求項7に記載の発明では、蒸着物質(1
00)の移送方向の下流側に位置する放出口(62a)
の間隔(P2)を、上流側に位置する放出口(62a)
の間隔(P3)より狭くしたことを特徴とするので、放
出部(62)の下流部分からの放出量が上流部分からの
放出量に比べて少なくなることを抑制できる。
In the invention according to claim 7, the vapor deposition material (1
00), a discharge port (62a) located on the downstream side in the transfer direction.
The interval (P2) of the discharge port (62a) located on the upstream side
, The discharge amount from the downstream portion of the discharge portion (62) can be suppressed from being smaller than the discharge amount from the upstream portion.

【0016】請求項8に記載の発明では、放出口(62
a)のうち蒸着物質(100)の移送方向の最も下流に
位置する最下流位置放出口(62a)と放出部(62)
の先端との距離(L3)は、最下流位置放出口(62
a)と最下流位置放出口(62a)の隣に位置する放出
口(62a)との距離(P4)より長いことを特徴とす
る。
In the invention according to claim 8, the discharge port (62)
a) a discharge port (62a) located at the most downstream position in the transport direction of the deposition material (100) and a discharge section (62);
The distance (L3) from the tip of the lowermost position is the lowermost position discharge port (62).
a) and a distance (P4) between the discharge port (62a) located next to the discharge port (62a) at the most downstream position.

【0017】これにより、放出部(62)内のうち最下
流位置放出口(62a)と放出部(62)の先端との間
には所定長さ(L3)の空間(62b)が形成される。
従って、上流側から最下流位置放出口(62a)へ移送
される蒸着物質(100)の圧力の脈動を、前記空間
(62b)内の蒸着物質(100)により吸収でき、前
記空間(62b)がいわゆるサージタンクとして機能す
るので、前記脈動による最下流位置放出口(62a)の
放出圧力が一時的に低下してしまうことを抑制できる。
よって、最下流位置放出口(62a)の一時的な放出量
の減少を抑制できる。
As a result, a space (62b) having a predetermined length (L3) is formed between the discharge port (62a) at the most downstream position and the tip of the discharge section (62) in the discharge section (62). .
Therefore, the pressure pulsation of the vapor deposition material (100) transferred from the upstream side to the most downstream position discharge port (62a) can be absorbed by the vapor deposition material (100) in the space (62b), and the space (62b) is Since it functions as a so-called surge tank, it is possible to suppress a temporary decrease in the discharge pressure of the discharge port (62a) at the most downstream position due to the pulsation.
Therefore, it is possible to suppress a temporary decrease in the amount of discharge at the most downstream position discharge port (62a).

【0018】請求項9に記載の発明では、複数本の放出
部(62)を、蒸着面(200a)と平行な面上に並列
配置したことを特徴とする。これにより、放出部(6
2)の延びる方向および放出部(62)の並列方向の2
方向に放出口(62a)を並べて配置できるので、蒸着
面(200a)に対して蒸着物質(100)を2次元的
に放出でき、蒸着面(200a)への蒸着の均一性を向
上できる。
According to a ninth aspect of the present invention, a plurality of emission portions (62) are arranged in parallel on a plane parallel to the vapor deposition surface (200a). Thereby, the discharge part (6
2) in the extending direction and 2 in the parallel direction of the discharge portion (62).
Since the discharge ports (62a) can be arranged side by side in the direction, the deposition material (100) can be discharged two-dimensionally to the deposition surface (200a), and the uniformity of deposition on the deposition surface (200a) can be improved.

【0019】ここで、下流部分の放出口(62a)の放
出量が上流部分の放出口(62a)の放出量に比べて少
なくなってしまう場合であっても、請求項10に記載の
発明のように、隣り合う放出部(62)内の蒸着物質
(100)が、互いに対向する向きに移送されるように
なっていれば、蒸着面(200a)への蒸着の均一性を
容易に確保できる。
Here, even if the amount of discharge from the discharge port (62a) in the downstream portion is smaller than the amount of discharge from the discharge port (62a) in the upstream portion, the invention according to claim 10 is provided. As described above, if the deposition materials (100) in the adjacent emission portions (62) are transferred in the directions facing each other, uniformity of deposition on the deposition surface (200a) can be easily secured. .

【0020】なお、上記各手段の括弧内の符号は、後述
する実施形態に記載の具体的手段との対応関係を示す一
例である。
The reference numerals in parentheses of the above means are examples showing the correspondence with specific means described in the embodiments described later.

【0021】[0021]

【発明の実施の形態】(第1実施形態)本実施形態は、
有機エレクトロルミネッセンス素子(以下、有機EL素
子と呼ぶ)の製造工程のうち、発光層を形成する有機金
属(蒸着物質)をガラス基板(被蒸着板)上に成膜する
蒸着装置に本発明の蒸着装置を用いた場合を示してい
る。因みに、この有機EL素子は、ガラス基板上に、第
1電極層、正孔注入層、正孔輸送層、発光層、電子輸送
層、第2電極層が順次積層されてなる周知の有機EL素
子である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS (First Embodiment)
In the manufacturing process of an organic electroluminescence element (hereinafter, referred to as an organic EL element), the present invention is applied to a vapor deposition apparatus for forming an organic metal (vapor deposition substance) for forming a light emitting layer on a glass substrate (plate to be vapor deposited). The case where the device is used is shown. Incidentally, this organic EL element is a known organic EL element in which a first electrode layer, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and a second electrode layer are sequentially laminated on a glass substrate. It is.

【0022】図1は、本実施形態の蒸着装置の全体構成
を示す図であり、真空ポンプ10により内部が減圧(例
えば約1.33×10-4Pa(約1×10-6tor
r))された成膜チャンバ20内にて、蒸発した有機金
属100を物理蒸着法(PVD)によりガラス基板20
0に蒸着させて成膜するようになっている。また、成膜
チャンバ20は分割して組立解体できるように形成され
ており、成膜チャンバ20内部への有機金属100の供
給作業およびガラス基板200の脱着作業は、成膜チャ
ンバ20を分割解体して行われるようになっている。
FIG. 1 is a view showing the overall configuration of the vapor deposition apparatus of the present embodiment. The inside of the vapor deposition apparatus is depressurized by a vacuum pump 10 (for example, about 1.33 × 10 −4 Pa (about 1 × 10 −6 torr).
r) In the formed film forming chamber 20, the evaporated organic metal 100 is deposited on the glass substrate 20 by physical vapor deposition (PVD).
In this case, the film is formed by vapor deposition to zero. The film forming chamber 20 is formed so that it can be divided and assembled and disassembled. The work of supplying the organic metal 100 to the inside of the film forming chamber 20 and the work of attaching and detaching the glass substrate 200 are performed by dividing and disassembling the film forming chamber 20. Is performed.

【0023】成膜チャンバ20内の下方部分には、蒸発
源となる固体の有機金属(例えばAlq3(アルミキノ
リール)、CuPC(銅フタロシアニン)等)100を
貯蔵する坩堝30が配置され、坩堝30の外周面には通
電により発熱するシーズヒータ(加熱手段)40が巻き
付けられている。そして、坩堝30内の蒸発室30aに
は、シーズヒータ40により加熱されて蒸発した有機金
属100が充満するようになっている。なお、本実施形
態では約320℃で加熱するようになっている。
A crucible 30 for storing a solid organic metal (for example, Alq3 (aluminum quinolyl), CuPC (copper phthalocyanine), etc.) 100 as an evaporation source is arranged in a lower portion in the film forming chamber 20. A sheath heater (heating means) 40, which generates heat when energized, is wound around the outer peripheral surface thereof. The evaporation chamber 30 a in the crucible 30 is filled with the organic metal 100 heated and evaporated by the sheath heater 40. In addition, in this embodiment, it heats at about 320 degreeC.

【0024】一方、成膜チャンバ20内の上方部分に
は、板状のガラス基板200を水平に保持する保持部材
(例えばサセプタ)50が備えられており、この保持部
材50は成膜チャンバ20に回転可能に取り付けられて
いる。そして、坩堝30の上部には、蒸発室30aと連
通し、蒸発室30aからガラス板200の蒸着面200
a近傍へ蒸発した有機金属100を移送するとともに、
蒸着面200aに向けて成膜チャンバ20内に蒸発した
有機金属100を放出する円筒形状の移送管60が備え
られている。
On the other hand, a holding member (for example, a susceptor) 50 for horizontally holding a plate-like glass substrate 200 is provided in an upper portion in the film forming chamber 20. It is rotatably mounted. The upper part of the crucible 30 communicates with the evaporation chamber 30a, and the evaporation surface 30a of the glass plate 200 extends from the evaporation chamber 30a.
While transferring the evaporated organic metal 100 to the vicinity of a,
A cylindrical transfer pipe 60 for discharging the evaporated organic metal 100 into the deposition chamber 20 toward the deposition surface 200a is provided.

【0025】この移送管60は、坩堝30の上部から上
方に延びた後に略90度曲がるエルボ形状の移送部61
と、蒸着面200aの下方部分にて蒸着面200aに対
向して略平行に延びるように形成されて、蒸発した有機
金属100を蒸着面200aに対して平行に拡がるよう
に移送する放出部62とから構成されている。そして、
放出部62のうち蒸着面200aと対向する部分には蒸
発した有機金属100を上方に放出する複数の放出口6
2aが形成されている。
The transfer tube 60 has an elbow-shaped transfer portion 61 which extends upward from the upper portion of the crucible 30 and then bends by approximately 90 degrees.
And an emission unit 62 formed to extend substantially parallel to the deposition surface 200a at a lower portion of the deposition surface 200a and to transport the evaporated organic metal 100 so as to spread in parallel with the deposition surface 200a. It is composed of And
A plurality of discharge ports 6 for discharging the evaporated organic metal 100 upward are provided in a part of the discharge part 62 facing the deposition surface 200a.
2a is formed.

【0026】なお、本実施形態では、放出部62は図1
の左右方向にガラス基板200の一辺とほぼ同一の長さ
L2に延びる配管形状であり、その長手方向に9個の放
出口62aが等間隔(P1=約33mm)に一列に形成
されている。そして、放出口62aの開口形状は直径約
0.5mmの円形である。
Note that, in the present embodiment, the discharging section 62 is
Has a length L2 substantially the same as one side of the glass substrate 200 in the left-right direction, and nine discharge ports 62a are formed in a row in the longitudinal direction at equal intervals (P1 = about 33 mm). The opening shape of the discharge port 62a is a circle having a diameter of about 0.5 mm.

【0027】また、ガラス着板200と放出口62aと
の間隔L1は、少なくともガラス基板200の一辺の長
さL2よりも小さく設定されており、本実施形態では、
ガラス着板200と放出口62aとの間隔L1(例えば
約90mm)がガラス基板200の一辺の長さL2(例
えば約200mm)の約0.45倍の大きさになるよう
に設定されている。
The distance L1 between the glass mounting plate 200 and the discharge port 62a is set to be at least smaller than the length L2 of one side of the glass substrate 200.
The distance L1 (for example, about 90 mm) between the glass mounting plate 200 and the discharge port 62a is set to be about 0.45 times the length L2 (for example, about 200 mm) of one side of the glass substrate 200.

【0028】また、移送管60の外周面には、通電によ
り発熱するシーズヒータ(加熱手段)70が巻き付けら
れており、移送管60は加熱されて所定温度(例えば3
00℃)に保温されている。これにより、蒸発した有機
金属100の移送管60内面への付着および放出口62
aの目詰まりを防止している。
A sheath heater (heating means) 70 which generates heat by energization is wound around the outer peripheral surface of the transfer pipe 60, and the transfer pipe 60 is heated to a predetermined temperature (for example, 3 ° C.).
(00 ° C). Thereby, the evaporated organic metal 100 adheres to the inner surface of the transfer pipe 60 and the discharge port 62.
a is prevented from being clogged.

【0029】次に、上記構成による蒸着装置の作動を説
明する。
Next, the operation of the vapor deposition apparatus having the above configuration will be described.

【0030】先ず、成膜チャンバ20を分割解体した状
態で、ガラス基板200を保持部材50に取り付ける。
また、蒸発源となる固体の有機金属100を坩堝30内
に供給する。その後、成膜チャンバ20を組み立て、真
空ポンプ10により成膜チャンバ20内を減圧する。そ
して、シーズヒータ40に通電して個体の有機金属10
0を加熱して蒸発させる。蒸発した有機金属100は、
移送管60の移送部61により強制的に蒸着面200a
近傍へ移送され、その後、放出部62により、蒸着面2
00aに対して図1の左右方向に拡がるように移送され
る。そして、蒸発した有機金属100は、放出部62に
開口する複数の放出口62aから蒸着面200に向かっ
て成膜チャンバ20内に放出され、ガラス基板200の
蒸着面200aに付着して蒸着する。
First, the glass substrate 200 is attached to the holding member 50 in a state where the film forming chamber 20 is divided and disassembled.
Further, a solid organic metal 100 serving as an evaporation source is supplied into the crucible 30. After that, the film forming chamber 20 is assembled, and the pressure inside the film forming chamber 20 is reduced by the vacuum pump 10. Then, a current is supplied to the sheath heater 40 so that the organic metal 10
Heat 0 to evaporate. The evaporated organic metal 100 is
The transfer unit 61 of the transfer pipe 60 forcibly deposits the deposition surface 200a.
Is transported to the vicinity, and thereafter, by the emission unit 62, the deposition surface 2
It is transported so as to spread in the left-right direction of FIG. Then, the evaporated organic metal 100 is discharged into the film forming chamber 20 from the plurality of discharge ports 62 a opening to the discharge part 62 toward the deposition surface 200, and adheres to the deposition surface 200 a of the glass substrate 200 to be deposited.

【0031】このように、蒸発した有機金属100は、
蒸着面200aに相対する位置に形成された複数の放出
口62aから放出されるので、蒸着面200aと放出口
62aとの間隔L1をガラス基板200の一辺の長さL
2より小さくしても(本実施形態ではL1=0.45×
L2)、蒸着面200aへの蒸着の均一性を保つことが
でき、ガラス着板200への蒸着の均一性を保ちつつ、
蒸着率の向上およびチャンバ20の小型化を図ることが
できる。因みに、従来の蒸着装置による蒸着率が約6%
であるのに対し、本実施形態では蒸着率を約30%にす
ることができることが本発明の出願人らの実験により明
らかになった。
As described above, the evaporated organic metal 100 is
Since the light is emitted from the plurality of emission ports 62a formed at positions opposite to the deposition surface 200a, the distance L1 between the deposition surface 200a and the emission port 62a is set to the length L of one side of the glass substrate 200.
2 (in this embodiment, L1 = 0.45 ×
L2) It is possible to maintain uniformity of vapor deposition on the vapor deposition surface 200a, and while maintaining uniformity of vapor deposition on the glass mounting plate 200,
The deposition rate can be improved and the size of the chamber 20 can be reduced. By the way, the deposition rate by the conventional deposition equipment is about 6%.
On the other hand, it has been clarified by experiments of the present inventors that the deposition rate can be reduced to about 30% in the present embodiment.

【0032】また、移送管60内の圧力は、有機金属1
00が体積一定の条件下で加熱されることに伴い、成膜
チャンバ20内の圧力より高くなる。これにより、放出
口62aから放出された有機金属100は急激に減圧膨
張して過冷却状態となりクラスター化する。そして、ク
ラスター化した蒸着物質100が被蒸着板200に付着
すると蒸着物質100のマイグレーション、凝集が起こ
るため、蒸着物質100の被蒸着板200への密着性を
向上させることができる。
The pressure in the transfer pipe 60 is controlled by the organic metal 1
As 00 is heated under a constant volume condition, the pressure becomes higher than the pressure in the film forming chamber 20. As a result, the organic metal 100 discharged from the discharge port 62a rapidly expands under reduced pressure to be in a supercooled state and to be clustered. When the clustered deposition material 100 adheres to the deposition target plate 200, migration and aggregation of the deposition material 100 occur, so that the adhesion of the deposition material 100 to the deposition target plate 200 can be improved.

【0033】(第2実施形態)図2は本実施形態の蒸着
装置のうち移送管60および坩堝40等の主要部分を示
す斜視図であり、放出部62のうち有機金属100の移
送方向の下流側部分(図2の左側部分)には下流側シー
ズヒータ(加熱手段)71が巻き付けられている。ま
た、上流側部分(図2の右側部分)には上流側シーズヒ
ータ(加熱手段)72が巻き付けられており、下流側お
よび上流側シーズヒータ71、72に印可させる電圧を
それぞれ個別に調節することができるようになってい
る。
(Second Embodiment) FIG. 2 is a perspective view showing a main part of a transfer tube 60, a crucible 40 and the like in the vapor deposition apparatus of the present embodiment, and shows a downstream side of a discharge part 62 in a transfer direction of the organic metal 100. A downstream sheath heater (heating means) 71 is wound around the side portion (the left side portion in FIG. 2). An upstream sheath heater (heating means) 72 is wound around the upstream portion (the right portion in FIG. 2), and the voltages applied to the downstream and upstream sheath heaters 71 and 72 are individually adjusted. Is available.

【0034】そして、ガラス基板200のうち下流側シ
ーズヒータ71に対応する部分の有機金属100の膜厚
を計測する下流側膜厚モニター81と、上流側シーズヒ
ータ72に対応する部分の有機金属100の膜厚を計測
する上流側膜厚モニター82とが備えられている。ま
た、下流側および上流側シーズヒータ71、72の各温
度を計測する図示しない熱電対が備えられている。
A downstream film thickness monitor 81 for measuring the film thickness of the organic metal 100 in a portion of the glass substrate 200 corresponding to the downstream sheath heater 71, and an organic metal 100 in a portion corresponding to the upstream sheath heater 72. And an upstream-side film thickness monitor 82 for measuring the film thickness. Further, a thermocouple (not shown) that measures each temperature of the downstream and upstream sheathed heaters 71 and 72 is provided.

【0035】そして、膜厚モニター81により計測され
た膜厚に応じて熱電対による計測温度を変化させるよう
に各シーズヒータ71、72への印加電圧を調節してい
る。例えば、下流側の膜厚が薄くなれば下流側シーズヒ
ータ71に印可する電圧を高めて、下流側の有機金属1
00の温度を上昇させれば、放出部62内の下流部分の
圧力低下を抑制でき、下流部分の放出口62aの放出量
が上流部分の放出口62aの放出量に比べて少なくなる
ことを抑制できる。
The voltage applied to each of the sheathed heaters 71 and 72 is adjusted so that the temperature measured by the thermocouple is changed according to the film thickness measured by the film thickness monitor 81. For example, when the film thickness on the downstream side is reduced, the voltage applied to the downstream sheathed heater 71 is increased, and the organic metal 1 on the downstream side is increased.
If the temperature of 00 is increased, the pressure drop in the downstream part in the discharge part 62 can be suppressed, and the discharge amount of the discharge port 62a in the downstream part is suppressed from being smaller than the discharge amount of the discharge port 62a in the upstream part. it can.

【0036】(第3実施形態)第1実施形態では、複数
の放出口62aの開口面積を全て同一に形成している
が、本実施形態では、図3に示すように、有機金属10
0の移送方向の下流側(図3の左側)に位置する放出口
62aを、上流側(図3の右側)に位置する放出口62
aよりも大きい開口面積に形成している。これにより、
下流部分の放出口62aの放出量が上流部分の放出口6
2aの放出量に比べて少なくなることを抑制できる。
(Third Embodiment) In the first embodiment, the opening areas of the plurality of discharge ports 62a are all the same, but in the present embodiment, as shown in FIG.
The discharge port 62a located on the downstream side (the left side in FIG. 3) in the transfer direction 0 is changed to the discharge port 62 located on the upstream side (the right side in FIG. 3).
The opening area is larger than a. This allows
The discharge amount of the discharge port 62a in the downstream portion is equal to the discharge port 6 in the upstream portion.
It can be suppressed that it becomes smaller than the release amount of 2a.

【0037】(第4実施形態)第1実施形態では、複数
の放出口62aの間隔P1を全て同一に形成している
が、本実施形態では、図4に示すように、有機金属10
0の移送方向の下流側に位置する放出口62aの間隔P
2を、上流側に位置する放出口62aの間隔P3より狭
くしている。これにより、放出部62の下流部分からの
放出量が上流部分からの放出量に比べて少なくなること
を抑制できる。
(Fourth Embodiment) In the first embodiment, the intervals P1 between the plurality of discharge ports 62a are all the same, but in the present embodiment, as shown in FIG.
0, the distance P between the discharge ports 62a located downstream in the transfer direction.
2 is smaller than the interval P3 of the discharge port 62a located on the upstream side. Accordingly, it is possible to suppress the amount of release from the downstream portion of the release section 62 from being smaller than the amount of release from the upstream portion.

【0038】(第5実施形態)図5に示すように、本実
施形態では、放出口62aのうち有機金属100の移送
方向の最も下流(図5の最も左側)に位置する最下流位
置放出口62aと放出部62の先端との距離L3は、最
下流位置放出口62aと最下流位置放出口62aの隣
(図5の右側)に位置する放出口62aとの距離P4よ
り長くなるように形成されている。
(Fifth Embodiment) As shown in FIG. 5, in the present embodiment, the discharge port 62a located at the most downstream position (leftmost position in FIG. 5) of the discharge port 62a in the transport direction of the organic metal 100. The distance L3 between the tip 62a and the tip of the discharge portion 62 is formed to be longer than the distance P4 between the most downstream position discharge port 62a and the discharge port 62a located next to the most downstream position discharge port 62a (right side in FIG. 5). Have been.

【0039】これにより、放出部62内のうち最下流位
置放出口62aと放出部62の先端との間には所定長さ
L3の空間62bが形成される。従って、上流側から最
下流位置放出口62aへ移送される有機金属100の圧
力の脈動を、前記空間62b内の有機金属100により
吸収でき、空間62bがいわゆるサージタンクとして機
能するので、前記脈動による最下流位置放出口62aの
放出圧力が一時的に低下してしまうことを抑制できる。
As a result, a space 62b having a predetermined length L3 is formed between the discharge port 62a at the most downstream position in the discharge section 62 and the tip of the discharge section 62. Therefore, the pulsation of the pressure of the organic metal 100 transferred from the upstream side to the most downstream position discharge port 62a can be absorbed by the organic metal 100 in the space 62b, and the space 62b functions as a so-called surge tank. It is possible to prevent the discharge pressure of the discharge port 62a at the most downstream position from temporarily decreasing.

【0040】(第6実施形態)第1実施形態の移送管6
0は、1本の移送部61に1本の放出部62を連通させ
て構成されているが、本実施形態では、図6に示すよう
に、1本の移送部61に複数本の放出部62を蒸着面2
00aと平行な面上に並列配置させて、櫛歯状に構成さ
れている。これにより、放出部62の延びる方向(図6
の左右方向)および放出部62の並列方向の2方向に放
出口62aを並べて配置できるので、蒸着面200aに
対して有機金属100を2次元的に放出でき、蒸着面2
00aへの蒸着の均一性を向上できる。
(Sixth Embodiment) The transfer pipe 6 of the first embodiment
In the present embodiment, a single transfer unit 61 is connected to a single discharge unit 62, but in the present embodiment, as shown in FIG. 62 is evaporation surface 2
It is arranged in parallel on a plane parallel to 00a, and is configured in a comb-tooth shape. Thereby, the extending direction of the discharge portion 62 (FIG. 6)
The discharge ports 62a can be arranged side by side in two directions, that is, the left and right directions) and the parallel direction of the discharge portions 62, so that the organic metal 100 can be discharged two-dimensionally to the vapor deposition surface 200a.
The uniformity of vapor deposition on 00a can be improved.

【0041】(第7実施形態)図7に示すように、本実
施形態では、ガラス基板200の左右両側に1つずつ坩
堝30が配置されており、それぞれの坩堝30には第6
実施形態の櫛歯状の移送管60が連結されている。そし
て、左右両側からの放出部62がそれぞれ交互に配置さ
れており、隣り合う放出部62内の有機金属100が、
互いに対向する向きに移送されるようになっている。こ
れにより、下流部分の放出口62aの放出量が上流部分
の放出口62aの放出量に比べて少なくなってしまう場
合であっても、蒸着面200aへの蒸着の均一性を容易
に確保できる。
(Seventh Embodiment) As shown in FIG. 7, in this embodiment, one crucible 30 is disposed on each of the left and right sides of a glass substrate 200, and the crucible 30 is
The comb-shaped transfer tube 60 of the embodiment is connected. And the emission parts 62 from both the left and right sides are arranged alternately, and the organic metal 100 in the adjacent emission parts 62 is
They are transported in opposite directions. Thereby, even when the emission amount of the emission port 62a in the downstream portion is smaller than the emission amount of the emission port 62a in the upstream portion, uniformity of evaporation on the evaporation surface 200a can be easily secured.

【0042】また、2つの坩堝30を備えるので、一方
の坩堝30に有機金属100を供給し、他方の坩堝30
に有機金属中に混入させるための添加物を供給するよう
にすれば、有機金属100の蒸着工程と同時に、添加物
の添加を行うことができ、好適である。
Also, since two crucibles 30 are provided, the organic metal 100 is supplied to one crucible 30 and the other crucible 30 is supplied.
If an additive to be mixed into the organic metal is supplied, the additive can be added simultaneously with the step of depositing the organic metal 100, which is preferable.

【0043】(他の実施形態)第1実施形態では、保持
部材50を放出部62の上方に備え、放出口62aを上
向きに開口するように形成しているが、保持部材50を
放出部62の下方に備え、放出口62aを下向きに開口
するように形成するようにしてもよい。これにより、蒸
着面200aにマスク部材を設置する場合においては、
マスク部材は蒸着面200aの上側に設置されることと
なるので、マスク部材がガラス基板200から重力で剥
がれ落ちてしまうことを考慮する必要が無くなるため、
マスク部材のガラス基板200への設置を容易にでき
る。
(Other Embodiments) In the first embodiment, the holding member 50 is provided above the discharge portion 62, and the discharge port 62a is formed to open upward. , The discharge port 62a may be formed to open downward. Thereby, when the mask member is installed on the deposition surface 200a,
Since the mask member is installed above the vapor deposition surface 200a, it is not necessary to consider that the mask member is peeled off from the glass substrate 200 by gravity.
The installation of the mask member on the glass substrate 200 can be facilitated.

【0044】また、第1実施形態の放出部62および保
持部材50のうち少なくとも一方を、第6実施形態の複
数本の放出部62の並列方向と同じ方向に揺動させるよ
うにすれば、第6実施形態と同様に2次元的に有機金属
100を放出することができ、好適である。
In addition, if at least one of the discharge unit 62 and the holding member 50 of the first embodiment is swung in the same direction as the parallel direction of the plurality of discharge units 62 of the sixth embodiment, The organic metal 100 can be released two-dimensionally as in the sixth embodiment, which is preferable.

【0045】また、第1実施形態では、坩堝30を成膜
チャンバ20内に配置しているが、成膜チャンバ20の
外方に配置するようにしてもよい。これにより、成膜チ
ャンバ20を分割して解体することなく、坩堝30に有
機金属100を供給することができるので、蒸着装置に
よる生産性を高めることができるとともに、成膜チャン
バ20のより一層の小型化を図ることができる。
Further, in the first embodiment, the crucible 30 is disposed in the film forming chamber 20, but may be disposed outside the film forming chamber 20. Accordingly, the organic metal 100 can be supplied to the crucible 30 without dividing and disassembling the film forming chamber 20, so that the productivity by the vapor deposition apparatus can be improved and the film forming chamber 20 can be further improved. The size can be reduced.

【0046】また、第1実施形態では、加熱手段として
シーズヒータを用いた抵抗加熱蒸着法に本発明の蒸着装
置を適用しているが、電子ビーム蒸着法、高周波蒸着
法、レーザ蒸着法等の蒸着においても本発明を適用で
き、さらに、本発明は有機金属の蒸着への適用に限られ
ず、各種金属膜、半導体膜、絶縁体膜、高透電体膜等の
薄膜を形成する際の蒸着にも適用できることは勿論であ
る。
In the first embodiment, the vapor deposition apparatus of the present invention is applied to a resistance heating vapor deposition method using a sheathed heater as a heating means, but the electron beam vapor deposition method, the high frequency vapor deposition method, the laser vapor deposition method and the like are used. The present invention can also be applied to vapor deposition, and the present invention is not limited to application to organic metal vapor deposition, and is used for forming thin films such as various metal films, semiconductor films, insulator films, and highly conductive films. Of course, it can be applied to

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施形態に係る蒸着装置の全体構
成図である。
FIG. 1 is an overall configuration diagram of a vapor deposition apparatus according to a first embodiment of the present invention.

【図2】本発明の第2実施形態に係る蒸着装置の主要部
分を示す斜視図である。
FIG. 2 is a perspective view showing a main part of a vapor deposition apparatus according to a second embodiment of the present invention.

【図3】本発明の第3実施形態に係る蒸着装置の主要部
分を示す上面図である。
FIG. 3 is a top view illustrating a main part of a vapor deposition apparatus according to a third embodiment of the present invention.

【図4】本発明の第4実施形態に係る蒸着装置の主要部
分を示す斜視図である。
FIG. 4 is a perspective view showing a main part of a vapor deposition apparatus according to a fourth embodiment of the present invention.

【図5】本発明の第5実施形態に係る蒸着装置の主要部
分を示す斜視図である。
FIG. 5 is a perspective view showing a main part of a vapor deposition apparatus according to a fifth embodiment of the present invention.

【図6】本発明の第6実施形態に係る蒸着装置の主要部
分を示す斜視図である。
FIG. 6 is a perspective view showing a main part of a vapor deposition apparatus according to a sixth embodiment of the present invention.

【図7】本発明の第7実施形態に係る蒸着装置の主要部
分を示す斜視図である。
FIG. 7 is a perspective view showing a main part of a vapor deposition apparatus according to a seventh embodiment of the present invention.

【図8】従来の蒸着装置を示す全体構成図である。FIG. 8 is an overall configuration diagram showing a conventional vapor deposition apparatus.

【符号の説明】[Explanation of symbols]

20…成膜チャンバ、30a…蒸発室、50…保持部
材、60…移送管、62…放出部、62a…放出口、7
0…シーズヒータ、100…有機金属、200…ガラス
着板、200a…蒸着面、L1…ガラス着板と放出口と
の間隔、L2…ガラス基板の一辺の長さ。
Reference Signs List 20: film forming chamber, 30a: evaporation chamber, 50: holding member, 60: transfer pipe, 62: discharge section, 62a: discharge port, 7
0: sheath heater, 100: organic metal, 200: glass plate, 200a: vapor deposition surface, L1: distance between glass plate and discharge port, L2: length of one side of glass substrate.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鈴木 晴視 愛知県刈谷市昭和町1丁目1番地 株式会 社デンソー内 Fターム(参考) 4K029 AA09 BA62 BD00 CA01 DB06 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Harumi Suzuki 1-1-1 Showa-cho, Kariya-shi, Aichi F-term in DENSO Corporation (Reference) 4K029 AA09 BA62 BD00 CA01 DB06

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 内部が減圧されたチャンバ(20)内に
て蒸着物質(100)を物理蒸着法により被蒸着板(2
00)に蒸着させる蒸着装置において、 前記蒸着物質(100)を加熱して蒸発させる蒸発室
(30a)と、 前記蒸発室(30a)と連通し、前記蒸発室(30a)
から前記被蒸着板(200)の蒸着面(200a)近傍
へ前記蒸着物質(100)を移送する移送管(60)と
を備え、 前記移送管(60)のうち前記蒸着面(200a)に相
対する部分である放出部(62)には、前記蒸着面(2
00a)に向けて前記蒸着物質(100)を放出する複
数の放出口(62a)が形成されていることを特徴とす
る蒸着装置。
An evaporation material (100) is deposited in a chamber (20) having a reduced pressure by a physical vapor deposition method in a chamber (20).
00) an evaporation chamber (30a) for heating and evaporating the evaporation material (100); and an evaporation chamber (30a) communicating with the evaporation chamber (30a).
And a transfer pipe (60) for transferring the deposition material (100) from the vicinity of the deposition surface (200a) of the deposition target plate (200), and the transfer pipe (60) relative to the deposition surface (200a). The vapor deposition surface (2)
A plurality of discharge ports (62a) for discharging the deposition material (100) toward 00a) are formed.
【請求項2】 前記移送管(60)を加熱する加熱手段
(70)を備えることを特徴とする請求項1に記載の蒸
着装置。
2. The vapor deposition apparatus according to claim 1, further comprising heating means (70) for heating the transfer pipe (60).
【請求項3】 前記チャンバ(20)内に、前記被蒸着
板(200)を保持する保持部材(50)を備え、 前記保持部材(50)および前記放出部(62)の少な
くとも一方が、前記蒸着面(200a)に対して平行に
可動であることを特徴とする請求項1または2に記載の
蒸着装置。
3. A holding member (50) for holding the deposition target plate (200) in the chamber (20), wherein at least one of the holding member (50) and the discharge section (62) is provided with the holding member (50). The vapor deposition apparatus according to claim 1, wherein the vapor deposition apparatus is movable parallel to the vapor deposition surface.
【請求項4】 前記移送管(60)の前記放出部(6
2)を、前記蒸着面(200a)に対向して略平行に延
びるように形成したことを特徴とする請求項1ないし3
のいずれか1つに記載の蒸着装置。
4. The discharge section (6) of the transfer pipe (60).
4. A method according to claim 1, wherein said step (2) is formed so as to extend substantially parallel to said vapor deposition surface (200a).
The vapor deposition apparatus according to any one of the above.
【請求項5】 前記放出部(62)のうち前記蒸着物質
(100)の移送方向の下流側部分を加熱する下流側加
熱手段(71)および上流側部分を加熱する上流側加熱
手段(72)を備え、 前記下流側および上流側加熱手段(71、72)による
加熱度合をそれぞれ個別に調節可能にしたことを特徴と
する請求項4に記載の蒸着装置。
5. A downstream heating means (71) for heating a downstream portion of the discharge section (62) in the direction of transport of the deposition material (100) and an upstream heating means (72) for heating an upstream portion. 5. The vapor deposition apparatus according to claim 4, wherein a degree of heating by the downstream and upstream heating means (71, 72) is individually adjustable. 6.
【請求項6】 前記複数の放出口(62a)のうち、前
記蒸着物質(100)の移送方向の下流側に位置する放
出口(62a)を、上流側に位置する放出口(62a)
よりも大きい開口面積に形成したことを特徴とする請求
項4または5に記載の蒸着装置。
6. The outlet (62a) located on the downstream side in the transport direction of the deposition material (100) among the plurality of outlets (62a), the outlet (62a) located on the upstream side.
The vapor deposition apparatus according to claim 4, wherein the vapor deposition apparatus has a larger opening area.
【請求項7】 前記蒸着物質(100)の移送方向の下
流側に位置する前記放出口(62a)の間隔(P2)
を、前記上流側に位置する前記放出口(62a)の間隔
(P3)より狭くしたことを特徴とする請求項4ないし
6のいずれか1つに記載の蒸着装置。
7. An interval (P2) between the discharge ports (62a) located on the downstream side in the transport direction of the deposition material (100).
The vapor deposition apparatus according to any one of claims 4 to 6, wherein the distance (P3) between the discharge ports (62a) located on the upstream side is smaller than the distance (P3).
【請求項8】 前記放出口(62a)のうち前記蒸着物
質(100)の移送方向の最も下流に位置する最下流位
置放出口(62a)と前記放出部(62)の先端との距
離(L3)は、前記最下流位置放出口(62a)と前記
最下流位置放出口(62a)の隣に位置する放出口(6
2a)との距離(P4)より長いことを特徴とする請求
項4ないし7のいずれか1つに記載の蒸着装置。
8. A distance (L3) between the most downstream discharge port (62a) of the discharge ports (62a) located at the most downstream in the transport direction of the deposition material (100) and the tip of the discharge section (62). ) Is a discharge port (6a) located adjacent to the most downstream position discharge port (62a) and the most downstream position discharge port (62a).
The vapor deposition apparatus according to any one of claims 4 to 7, wherein the distance is longer than a distance (P4) with respect to 2a).
【請求項9】 複数本の前記放出部(62)を、前記蒸
着面(200a)と平行な面上に並列配置したことを特
徴とする請求項4ないし8のいずれか1つに記載の蒸着
装置。
9. The vapor deposition according to claim 4, wherein a plurality of the emission portions are arranged in parallel on a plane parallel to the vapor deposition surface. apparatus.
【請求項10】 隣り合う前記放出部(62)内の前記
蒸着物質(100)は、互いに対向する向きに移送され
るようになっていることを特徴とする請求項9に記載の
蒸着装置。
10. The deposition apparatus according to claim 9, wherein the deposition materials (100) in the adjacent emission portions (62) are transported in directions facing each other.
JP2001045296A 2001-02-21 2001-02-21 Vapor deposition equipment Expired - Fee Related JP4599727B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001045296A JP4599727B2 (en) 2001-02-21 2001-02-21 Vapor deposition equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001045296A JP4599727B2 (en) 2001-02-21 2001-02-21 Vapor deposition equipment

Publications (2)

Publication Number Publication Date
JP2002249868A true JP2002249868A (en) 2002-09-06
JP4599727B2 JP4599727B2 (en) 2010-12-15

Family

ID=18907118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001045296A Expired - Fee Related JP4599727B2 (en) 2001-02-21 2001-02-21 Vapor deposition equipment

Country Status (1)

Country Link
JP (1) JP4599727B2 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006249541A (en) * 2005-03-14 2006-09-21 Hitachi Zosen Corp Vapor deposition apparatus
WO2008038821A1 (en) * 2006-09-29 2008-04-03 Tokyo Electron Limited Deposition apparatus, deposition apparatus control apparatus, deposition apparatus control method, deposition apparatus using method and outlet manufacturing method
KR100826743B1 (en) * 2003-07-17 2008-04-30 후지 덴키 홀딩스 가부시키가이샤 Organic thin film manufacturing apparatus
JP2008150649A (en) * 2006-12-15 2008-07-03 Tokki Corp Vacuum deposition apparatus
EP2025774A1 (en) * 2006-05-19 2009-02-18 Ulvac, Inc. Vapor deposition apparatus for organic vapor deposition material and process for producing organic thin film
US20090061088A1 (en) * 2007-09-04 2009-03-05 Von Ardenne Anlagentechnik Gmbh Method and device for producing and processing layers of substrates under a defined processing atmosphere
JP2009084676A (en) * 2007-09-10 2009-04-23 Ulvac Japan Ltd Vapor production device, vapor deposition apparatus and film-forming method
JP2009161797A (en) * 2007-12-28 2009-07-23 Ulvac Japan Ltd Film deposition source and film deposition apparatus
JP2009161798A (en) * 2007-12-28 2009-07-23 Ulvac Japan Ltd Film deposition source and film deposition apparatus
US7611587B2 (en) 2003-05-16 2009-11-03 Chow Peter P Thin-film deposition evaporator
JP2010013731A (en) * 2009-07-24 2010-01-21 Hitachi Zosen Corp Vapor deposition apparatus
WO2010035130A2 (en) * 2008-09-29 2010-04-01 Applied Materials, Inc. Evaporator for organic materials
KR100977374B1 (en) 2009-08-03 2010-08-20 텔리오솔라 테크놀로지스 인크 Fast devaporation system for large-sized thin film-type cigs solar cell manufacturing and method thereof
US20110195187A1 (en) * 2010-02-10 2011-08-11 Apple Inc. Direct liquid vaporization for oleophobic coatings
US20120021556A1 (en) * 2010-07-22 2012-01-26 Beck Markus E Deposition system
WO2012081476A1 (en) * 2010-12-14 2012-06-21 シャープ株式会社 Vapor deposition apparatus, vapor deposition method, and method for manufacturing organic electroluminescent display device
WO2012086568A1 (en) * 2010-12-24 2012-06-28 シャープ株式会社 Vapor deposition device, vapor deposition method, and method of manufacturing organic electroluminescent display device
JP2012126958A (en) * 2010-12-15 2012-07-05 Ulvac Japan Ltd Vapor deposition apparatus and vapor deposition method
WO2013122059A1 (en) * 2012-02-14 2013-08-22 東京エレクトロン株式会社 Film forming apparatus
JP5282025B2 (en) * 2007-02-28 2013-09-04 株式会社アルバック Vapor deposition source, vapor deposition apparatus, and organic thin film deposition method
US8715779B2 (en) 2011-06-24 2014-05-06 Apple Inc. Enhanced glass impact durability through application of thin films
TWI461554B (en) * 2009-12-09 2014-11-21 Ulvac Inc Apparatus for forming organic thin film and method for forming thin film of organic material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000188259A (en) * 1998-12-22 2000-07-04 Mitsubishi Heavy Ind Ltd Gas supply device and connector structure

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5219184A (en) * 1975-08-06 1977-02-14 Osaka Kouon Denki Kk Vapor source
JPS55160422A (en) * 1979-05-31 1980-12-13 Matsushita Electric Ind Co Ltd Method and device for thin film growth
JPH05132764A (en) * 1991-11-12 1993-05-28 Ulvac Japan Ltd Omnidirectional and simultaneous vapor-deposition polymerization device
JP2734965B2 (en) * 1993-12-20 1998-04-02 双葉電子工業株式会社 Field emission device and method of manufacturing the same
JP3249356B2 (en) * 1995-10-26 2002-01-21 三菱重工業株式会社 Plasma chemical vapor deposition equipment

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000188259A (en) * 1998-12-22 2000-07-04 Mitsubishi Heavy Ind Ltd Gas supply device and connector structure

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7611587B2 (en) 2003-05-16 2009-11-03 Chow Peter P Thin-film deposition evaporator
KR100826743B1 (en) * 2003-07-17 2008-04-30 후지 덴키 홀딩스 가부시키가이샤 Organic thin film manufacturing apparatus
JP4535908B2 (en) * 2005-03-14 2010-09-01 日立造船株式会社 Vapor deposition equipment
JP2006249541A (en) * 2005-03-14 2006-09-21 Hitachi Zosen Corp Vapor deposition apparatus
US8308866B2 (en) 2006-05-19 2012-11-13 Ulvac, Inc. Vapor deposition apparatus for an organic vapor deposition material and a method for producing an organic film
EP2025774A1 (en) * 2006-05-19 2009-02-18 Ulvac, Inc. Vapor deposition apparatus for organic vapor deposition material and process for producing organic thin film
EP2025774A4 (en) * 2006-05-19 2012-07-25 Ulvac Inc Vapor deposition apparatus for organic vapor deposition material and process for producing organic thin film
JP2008088490A (en) * 2006-09-29 2008-04-17 Tokyo Electron Ltd Deposition apparatus, deposition apparatus control apparatus, deposition apparatus control method, deposition apparatus using method and outlet manufacturing method
WO2008038821A1 (en) * 2006-09-29 2008-04-03 Tokyo Electron Limited Deposition apparatus, deposition apparatus control apparatus, deposition apparatus control method, deposition apparatus using method and outlet manufacturing method
JP2008150649A (en) * 2006-12-15 2008-07-03 Tokki Corp Vacuum deposition apparatus
JP5282025B2 (en) * 2007-02-28 2013-09-04 株式会社アルバック Vapor deposition source, vapor deposition apparatus, and organic thin film deposition method
US20090061088A1 (en) * 2007-09-04 2009-03-05 Von Ardenne Anlagentechnik Gmbh Method and device for producing and processing layers of substrates under a defined processing atmosphere
US20110290186A1 (en) * 2007-09-04 2011-12-01 Von Ardenne Anlagentechnik Gmbh Method and device for producing and processing layers of substrates under a defined processing atmosphere
JP2009084676A (en) * 2007-09-10 2009-04-23 Ulvac Japan Ltd Vapor production device, vapor deposition apparatus and film-forming method
JP2009161797A (en) * 2007-12-28 2009-07-23 Ulvac Japan Ltd Film deposition source and film deposition apparatus
JP2009161798A (en) * 2007-12-28 2009-07-23 Ulvac Japan Ltd Film deposition source and film deposition apparatus
WO2010035130A3 (en) * 2008-09-29 2010-06-17 Applied Materials, Inc. Evaporator for organic materials
WO2010035130A2 (en) * 2008-09-29 2010-04-01 Applied Materials, Inc. Evaporator for organic materials
TWI467040B (en) * 2008-09-29 2015-01-01 Applied Materials Inc Evaporator for organic materials
JP2010013731A (en) * 2009-07-24 2010-01-21 Hitachi Zosen Corp Vapor deposition apparatus
KR100977374B1 (en) 2009-08-03 2010-08-20 텔리오솔라 테크놀로지스 인크 Fast devaporation system for large-sized thin film-type cigs solar cell manufacturing and method thereof
TWI461554B (en) * 2009-12-09 2014-11-21 Ulvac Inc Apparatus for forming organic thin film and method for forming thin film of organic material
US20110195187A1 (en) * 2010-02-10 2011-08-11 Apple Inc. Direct liquid vaporization for oleophobic coatings
US20120021556A1 (en) * 2010-07-22 2012-01-26 Beck Markus E Deposition system
WO2012081476A1 (en) * 2010-12-14 2012-06-21 シャープ株式会社 Vapor deposition apparatus, vapor deposition method, and method for manufacturing organic electroluminescent display device
US9093646B2 (en) 2010-12-14 2015-07-28 Sharp Kabushiki Kaisha Vapor deposition method and method for manufacturing organic electroluminescent display device
JP2012126958A (en) * 2010-12-15 2012-07-05 Ulvac Japan Ltd Vapor deposition apparatus and vapor deposition method
JP5330608B2 (en) * 2010-12-24 2013-10-30 シャープ株式会社 Vapor deposition apparatus, vapor deposition method, and manufacturing method of organic electroluminescence display apparatus
JP2013249541A (en) * 2010-12-24 2013-12-12 Sharp Corp Vapor deposition device
JPWO2012086568A1 (en) * 2010-12-24 2014-05-22 シャープ株式会社 Vapor deposition apparatus, vapor deposition method, and manufacturing method of organic electroluminescence display apparatus
US8845808B2 (en) 2010-12-24 2014-09-30 Sharp Kabushiki Kaisha Vapor deposition device, vapor deposition method, and method of manufacturing organic electroluminescent display device
WO2012086568A1 (en) * 2010-12-24 2012-06-28 シャープ株式会社 Vapor deposition device, vapor deposition method, and method of manufacturing organic electroluminescent display device
US9714466B2 (en) 2010-12-24 2017-07-25 Sharp Kabushiki Kaisha Vapor deposition device, vapor deposition method, and method of manufacturing organic electroluminescent display device
US8715779B2 (en) 2011-06-24 2014-05-06 Apple Inc. Enhanced glass impact durability through application of thin films
US9282653B2 (en) 2011-06-24 2016-03-08 Apple Inc. Enhanced glass impact durability through application of thin films
WO2013122059A1 (en) * 2012-02-14 2013-08-22 東京エレクトロン株式会社 Film forming apparatus

Also Published As

Publication number Publication date
JP4599727B2 (en) 2010-12-15

Similar Documents

Publication Publication Date Title
JP2002249868A (en) Vapor deposition system
US6830626B1 (en) Method and apparatus for coating a substrate in a vacuum
EP1803836B1 (en) Evaporation source and method of depositing thin film using the same
KR101263005B1 (en) Vapor deposition sources and method
KR100495751B1 (en) Method and apparatus for coating a substrate in a vacuum
JPH10245547A (en) Method for building up organic layer in organic luminescent element
TW200304171A (en) Elongated thermal physical vapor deposition source with plural apertures for making an organic light-emitting device
TW200814392A (en) Deposition apparatus
US6849832B2 (en) Evaporation apparatus
US20090142489A1 (en) Linear deposition sources for deposition processes
CN102301032A (en) Vacuum Deposition Sources Having Heated Effusion Orifices
JP2004100002A (en) Evaporation source and thin-film deposition system using the same
JP2014214379A (en) Evaporation equipment and evaporation method for mass production
JP2004091919A (en) Thin film forming apparatus and method
JP3754380B2 (en) Molecular beam source cell for thin film deposition and thin film deposition method
JP4216522B2 (en) Evaporation source and thin film forming apparatus using the same
US7398605B2 (en) Method of feeding particulate material to a heated vaporization surface
JP4445497B2 (en) Thin film deposition apparatus and thin film deposition method using the same
US20040223751A1 (en) Evaporation apparatus
JP2020063476A (en) Vapor deposition device
JP2004220852A (en) Film forming device and manufacturing device of organic el element
JP6282852B2 (en) Vapor deposition apparatus, film forming method, and manufacturing method of organic EL apparatus
JP6271241B2 (en) Vapor deposition apparatus and organic EL device manufacturing method
JP2021031753A (en) Vapor deposition apparatus
JP7129280B2 (en) Gas carrier vapor deposition system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100831

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100913

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4599727

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees