JP2021031753A - Vapor deposition apparatus - Google Patents

Vapor deposition apparatus Download PDF

Info

Publication number
JP2021031753A
JP2021031753A JP2019155607A JP2019155607A JP2021031753A JP 2021031753 A JP2021031753 A JP 2021031753A JP 2019155607 A JP2019155607 A JP 2019155607A JP 2019155607 A JP2019155607 A JP 2019155607A JP 2021031753 A JP2021031753 A JP 2021031753A
Authority
JP
Japan
Prior art keywords
vapor deposition
shutters
deposition apparatus
sources
shutter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019155607A
Other languages
Japanese (ja)
Other versions
JP7374662B2 (en
Inventor
精二 真下
Seiji Mashita
精二 真下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2019155607A priority Critical patent/JP7374662B2/en
Priority to KR1020200103730A priority patent/KR20210027103A/en
Priority to CN202010877099.9A priority patent/CN112442661B/en
Publication of JP2021031753A publication Critical patent/JP2021031753A/en
Application granted granted Critical
Publication of JP7374662B2 publication Critical patent/JP7374662B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/542Controlling the film thickness or evaporation rate
    • C23C14/543Controlling the film thickness or evaporation rate using measurement on the vapor source
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/564Means for minimising impurities in the coating chamber such as dust, moisture, residual gases

Abstract

To provide a configuration that can constantly monitor a vapor deposition rate without causing increase in size of an apparatus in a cluster type vapor deposition apparatus that includes multiple vapor deposition sources and shutters corresponding to the respective vapor deposition sources.SOLUTION: A vapor deposition apparatus includes vapor deposition sources 1, 2 and shutters 5, 6 for controlling the vapor deposition sources 1, 2 to perform vapor deposition or not. The vapor deposition apparatus disposes the shutters 5, 6 so as to be positioned in mutually different heights and to overlap on each other in an open state. The vapor deposition apparatus includes a partition wall 12 that partitions between the shutters 5, 6 in the open state.SELECTED DRAWING: Figure 1

Description

本発明は、複数の蒸着源を備えた蒸着装置に関する。 The present invention relates to a vapor deposition apparatus including a plurality of vapor deposition sources.

近年、有機発光素子は、低電圧駆動による高輝度発光が可能な発光素子として注目されている。このような発光素子を構成する有機材料には、高分子と低分子がある。低分子材料を用いた発光素子は、通常、真空蒸着法により形成する。有機発光素子は複数の機能層からできており、機能層としては、ホール注入層、ホール輸送層、発光層、電子輸送層、電子注入層などがあり、これらが陽極と陰極の間に順次蒸着により形成される。
一般的に用いられる蒸着装置には、インライン型とクラスター型がある。インライン型は、大判基板の成膜に適しており、一方でクラスター型は、小型から大型基板まで、用途に合わせた対応が可能である。また、発光素子の層構成変更に対しても、蒸着室の追加が容易であり、柔軟に対応が可能である。クラスター型の蒸着装置においては、クロスコンタミネーション、タクト等を考慮した場合、各層ごとにチャンバーを設けることが基本的には望ましい。しかしながら、装置コストを抑え、且つ装置の小型化のために蒸着室の数を減らしたり、或いは複数の材料を同時蒸着したりするために、同一チャンバー内で異なる複数の材料を蒸着する場合がある。
特許文献1には、複数の蒸着源を備えたクラスター型の蒸着装置が開示されており、係る蒸着装置においては、個々の蒸着源にシャッターが配置され、該シャッターの開閉により、蒸着・非蒸着を制御している。
In recent years, an organic light emitting element has attracted attention as a light emitting element capable of high-luminance light emission by low voltage drive. Organic materials constituting such light emitting devices include polymers and low molecules. A light emitting device using a low molecular weight material is usually formed by a vacuum vapor deposition method. The organic light emitting device is composed of a plurality of functional layers, and the functional layers include a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and the like, and these are sequentially vapor-deposited between the anode and the cathode. Is formed by.
Generally used vapor deposition equipment includes in-line type and cluster type. The in-line type is suitable for film formation of large-format substrates, while the cluster type can be used for various applications from small to large substrates. Further, even if the layer structure of the light emitting element is changed, it is easy to add a vapor deposition chamber, and it is possible to flexibly respond to it. In a cluster type vapor deposition apparatus, it is basically desirable to provide a chamber for each layer in consideration of cross-contamination, tact, and the like. However, in order to reduce the equipment cost and reduce the number of vapor deposition chambers for miniaturization of the equipment, or to simultaneously deposit a plurality of materials, different materials may be deposited in the same chamber. ..
Patent Document 1 discloses a cluster-type vapor deposition apparatus provided with a plurality of vapor deposition sources. In such a vapor deposition apparatus, shutters are arranged at each vapor deposition source, and by opening and closing the shutters, vapor deposition / non-depositionation Is in control.

特開2015−124440号公報Japanese Unexamined Patent Publication No. 2015-124440

特許文献1に開示されているように、複数の蒸着源を有するインライン型の蒸着装置においては、蒸着源の選択をシャッターの開閉で制御している。
一方、一つの蒸着室内で複数層を順次形成する場合には、タクト短縮のため、各蒸着源の蒸着レートが変動しないよう常にモニターで蒸着レートを測定し、制御しておくことが望ましい。しかしながら、シャッターが蒸着源に近い場合、シャッターが閉じている状態では、シャッターが邪魔をして蒸着レートを膜厚センサーでモニターすることができない。従って、シャッターが閉じている時でも蒸着レートをモニターするためには、シャッターを蒸着源からある程度離す必要がある。そして、シャッターを蒸着源から離した状態で、シャッターが閉じている時に被蒸着基板に蒸着源からの蒸発物の付着を防止するためには、シャッターのサイズを大きくする必要がある。
シャッターのサイズを大きくすると、複数のシャッターを同時に開いた場合にシャッター同士が干渉しないように、隣り合う蒸着源の間隔を広げる必要があり、蒸着室のサイズの大型化を招くという問題があった。
本発明の課題は、複数の蒸着源と、個々の蒸着源に対応するシャッターと、を有するクラスター型の蒸着装置において、装置の大型化を招くことなく、常時蒸着レートをモニターすることができる構成を提供することにある。
As disclosed in Patent Document 1, in an in-line type vapor deposition apparatus having a plurality of vapor deposition sources, the selection of the vapor deposition source is controlled by opening and closing the shutter.
On the other hand, when a plurality of layers are sequentially formed in one vapor deposition chamber, it is desirable to constantly measure and control the vapor deposition rate with a monitor so that the vapor deposition rate of each vapor deposition source does not fluctuate in order to shorten the tact. However, when the shutter is close to the vapor deposition source, when the shutter is closed, the shutter interferes and the vapor deposition rate cannot be monitored by the film thickness sensor. Therefore, in order to monitor the deposition rate even when the shutter is closed, it is necessary to move the shutter away from the deposition source to some extent. Then, in order to prevent the evaporation from the vapor deposition source from adhering to the substrate to be vapor-deposited when the shutter is closed with the shutter away from the vapor deposition source, it is necessary to increase the size of the shutter.
When the size of the shutter is increased, it is necessary to widen the distance between adjacent vapor deposition sources so that the shutters do not interfere with each other when a plurality of shutters are opened at the same time, which causes a problem that the size of the vapor deposition chamber is increased. ..
An object of the present invention is a configuration in which a cluster-type vapor deposition apparatus having a plurality of vapor deposition sources and shutters corresponding to individual vapor deposition sources can constantly monitor the vapor deposition rate without inviting an increase in size of the apparatus. Is to provide.

本発明は、水平方向に並んで配置した二つの蒸着源と、前記二つの蒸着源のそれぞれの開口部の上方に配置された二つのシャッターと、を有する蒸着装置であって、
前記二つのシャッターは、互いに高さが異なり、且つ、水平方向に移動することにより開閉し、垂直方向からの平面視において開状態で互いに重なる領域を有し、
前記重なる領域において、前記二つのシャッターの間を隔てる隔壁を有することを特徴とする。
The present invention is a thin-film deposition apparatus including two thin-film deposition sources arranged side by side in the horizontal direction and two shutters arranged above the openings of the two thin-film deposition sources.
The two shutters have different heights and open and close by moving in the horizontal direction, and have regions that overlap each other in the open state in a plan view from the vertical direction.
It is characterized by having a partition wall separating the two shutters in the overlapping region.

本発明によれば、二つのシャッターを互いに異なる高さに設けることで、両シャッターが開いた状態でも互いに干渉することがない。よって、シャッターを蒸着源から離し、且つシャッター自体を大型化しても、二つの蒸着源同士の間隔を広げる必要がなく、装置を大型化するおそれがない。また、二つのシャッターの間に隔壁を設けたことにより、シャッターの高さを異ならせたことによるクロスコンタミネーションなどの不都合も抑制される。 According to the present invention, by providing the two shutters at different heights, they do not interfere with each other even when both shutters are open. Therefore, even if the shutter is separated from the vapor deposition source and the shutter itself is enlarged, it is not necessary to widen the distance between the two vapor deposition sources, and there is no risk of increasing the size of the apparatus. Further, by providing a partition wall between the two shutters, inconveniences such as cross contamination due to different shutter heights can be suppressed.

本発明の蒸着装置の一実施形態の構成を模式的に示す断面図である。It is sectional drawing which shows typically the structure of one Embodiment of the vapor deposition apparatus of this invention. 図1の蒸着装置を上方から見た平面概略図である。It is a plan schematic view which looked at the vapor deposition apparatus of FIG. 1 from above. 本発明の蒸着装置の他の実施形態の構成を模式的に示す断面図である。It is sectional drawing which shows typically the structure of the other embodiment of the vapor deposition apparatus of this invention. 従来の蒸着装置の構成を模式的に示す断面図である。It is sectional drawing which shows typically the structure of the conventional thin-film deposition apparatus. 第一及び第二のシャッターを互いに異なる高さとした蒸着装置の構成を模式的に示す断面図である。It is sectional drawing which shows typically the structure of the vapor deposition apparatus which made the 1st and 2nd shutters different heights from each other. 図5の蒸着装置におけるコンタミネーションの発生過程を示す断面図である。It is sectional drawing which shows the generation process of contamination in the vapor deposition apparatus of FIG.

本発明の蒸着装置は、複数の蒸着源と、個々の蒸着源に対応するシャッターと、を有するクラスター型の蒸着装置である。本発明においては、2個の蒸着源に対応する二つのシャッターの高さを互いに異なるように構成し、さらに、これらシャッターの重なる領域において、二つのシャッター間に隔壁を設けたことに特徴を有する。 The vapor deposition apparatus of the present invention is a cluster type vapor deposition apparatus having a plurality of vapor deposition sources and shutters corresponding to the individual vapor deposition sources. The present invention is characterized in that the heights of the two shutters corresponding to the two vapor deposition sources are configured to be different from each other, and a partition wall is provided between the two shutters in the overlapping region of these shutters. ..

先ず、複数の蒸着源と、シャッターとを有する従来の蒸着装置について図4を用いて説明する。図4は、従来のクラスター型の蒸着装置の蒸着室100の構成を模式的に示す断面図であり、主要な構成部材のみを図示している。図中、1,2は蒸着源であり、水平方向に所定の距離を置いて配置され、それぞれ上方に開口を有する坩堝1a,2aを有している。坩堝1a,2aの外周にはヒーター1b,2bが配置され、該ヒーター1b,2bによって坩堝1a,2aを加熱することにより、坩堝1a,2a内に収納された蒸着材料1c,2cを蒸発させて上方に向けて飛散させることができる。尚、蒸着源1,2は、図示した部材以外にも、不図示のリフレクターや熱電対などの部材を有している。 First, a conventional thin-film deposition apparatus having a plurality of thin-film deposition sources and a shutter will be described with reference to FIG. FIG. 4 is a cross-sectional view schematically showing the configuration of the vapor deposition chamber 100 of the conventional cluster type vapor deposition apparatus, and shows only the main constituent members. In the figure, reference numerals 1 and 2 are vapor deposition sources, which are arranged at a predetermined distance in the horizontal direction and have crucibles 1a and 2a having openings above them, respectively. Heaters 1b and 2b are arranged on the outer periphery of the crucibles 1a and 2a, and the heaters 1b and 2b heat the crucibles 1a and 2a to evaporate the vapor deposition materials 1c and 2c stored in the crucibles 1a and 2a. It can be scattered upward. The vapor deposition sources 1 and 2 have members such as a reflector and a thermocouple (not shown) in addition to the members shown in the figure.

蒸着室100の天井には基板ホルダー20が回転軸20aによって回転可能に取り付けられ、該基板ホルダー20の下面に被蒸着基板9が取り付けられ、さらに、被蒸着面(下面)側にマスク10が取り付けられている。蒸着時には、被蒸着基板9は被蒸着面内で回転し、マスク10の開口部に蒸着源1,2からの蒸発物が蒸着する。 A substrate holder 20 is rotatably attached to the ceiling of the vapor deposition chamber 100 by a rotating shaft 20a, a substrate 9 to be deposited is attached to the lower surface of the substrate holder 20, and a mask 10 is attached to the surface (lower surface) side to be deposited. Has been done. At the time of vapor deposition, the substrate 9 to be vapor-deposited rotates in the surface to be vapor-deposited, and the evaporated products from the vapor deposition sources 1 and 2 are deposited on the openings of the mask 10.

蒸着源1,2に対しては、それぞれからの蒸発物の被蒸着基板9への蒸着を妨げるシャッター5,6が配置されている。シャッター5,6はそれぞれ、支持材5a,6aによって回転し、図4に実線で示される位置は開状態、破線5b,6bで示される位置は閉状態である。シャッター5,6は、閉状態5b、6bでは、それぞれ、蒸着源1,2の開口部と被蒸着基板9との間を遮って、被蒸着基板9への蒸発物の飛散を妨げる。よって、図4に示される蒸着装置においては、シャッター5,6の開閉によって、被蒸着基板9への蒸着を制御することができる。例えば、蒸着材料1c,2cの一方のみを蒸着する場合には、係る一方の側のシャッターを開状態とし、他方のシャッターを閉状態とする。また、シャッター5,6を両方開状態として蒸着を行えば、蒸着材料1c、2cの共蒸着を行うこともできる。 Shutters 5 and 6 that prevent evaporation of evaporation from each of the vapor deposition sources 1 and 2 on the substrate 9 to be vapor-deposited are arranged. The shutters 5 and 6 are rotated by the support members 5a and 6a, respectively, and the positions shown by the solid lines in FIG. 4 are in the open state and the positions shown by the broken lines 5b and 6b are in the closed state. In the closed states 5b and 6b, the shutters 5 and 6 block between the openings of the vapor deposition sources 1 and 2 and the film-deposited substrate 9, respectively, to prevent the evaporated matter from scattering to the film-deposited substrate 9. Therefore, in the thin-film deposition apparatus shown in FIG. 4, the vapor deposition on the substrate 9 to be vapor-deposited can be controlled by opening and closing the shutters 5 and 6. For example, when only one of the vapor deposition materials 1c and 2c is vapor-deposited, the shutter on one side thereof is in the open state and the shutter on the other side is in the closed state. Further, if the vapor deposition is performed with both the shutters 5 and 6 open, the vapor deposition materials 1c and 2c can be co-deposited.

図4中、11は水平方向において蒸着源1,2を互いに仕切る仕切り板である。また、7,8はそれぞれ、蒸着源1,2の蒸着レートを測定するモニターである。ここで、閉状態の際にシャッター5,6が蒸着源1,2の開口部に近い場合、閉状態ではシャッター5,6に遮られてモニター7,8が蒸着源1,2の蒸着レートを測定することができない。シャッター5,6を蒸着源1,2の開口部から上方に離して配置すれば、モニター7,8はシャッター5,6と蒸着源1,2の開口部との隙間から蒸着レートを測定することができる。しかしながら、図4に一点鎖線で示すように、蒸着源1,2の開口部から被蒸着基板9に向かって、蒸発物の飛散領域が広がるため、シャッター5,6を蒸着源1,2から離すほど、シャッター5,6を大きくする必要がある。シャッター5,6は、開状態では互いに接近するため、シャッター5,6を大きくすれば、蒸着源1,2の間隙を広くする必要があり、蒸着室100を大型化する必要があった。 In FIG. 4, reference numeral 11 denotes a partition plate that partitions the vapor deposition sources 1 and 2 from each other in the horizontal direction. Further, 7 and 8 are monitors for measuring the vapor deposition rates of the vapor deposition sources 1 and 2, respectively. Here, when the shutters 5 and 6 are close to the openings of the vapor deposition sources 1 and 2 in the closed state, the monitors 7 and 8 are blocked by the shutters 5 and 6 in the closed state, and the vapor deposition rates of the vapor deposition sources 1 and 2 are set. Cannot measure. If the shutters 5 and 6 are arranged away from the openings of the vapor deposition sources 1 and 2, the monitors 7 and 8 measure the vapor deposition rate from the gap between the shutters 5 and 6 and the openings of the vapor deposition sources 1 and 2. Can be done. However, as shown by the alternate long and short dash line in FIG. 4, since the scattering region of the evaporated material expands from the openings of the vapor deposition sources 1 and 2 toward the substrate 9 to be vapor-deposited, the shutters 5 and 6 are separated from the vapor deposition sources 1 and 2. It is necessary to enlarge the shutters 5 and 6 as much as possible. Since the shutters 5 and 6 approach each other in the open state, if the shutters 5 and 6 are enlarged, the gap between the vapor deposition sources 1 and 2 needs to be widened, and the vapor deposition chamber 100 needs to be enlarged.

本発明においては、第一の特徴として、シャッター5,6が閉状態の時もモニター7,8が蒸着レートを測定できるように、シャッター5,6を蒸着源1,2から上方に離して配置する。当然、シャッター5,6を大きくする必要があるが、ここで、図5に示すように、シャッター5,6の高さを互いに異ならせ、開状態で互いに重なるように配置することで、蒸着源1,2の間隔を広げる必要がなくなる。 In the present invention, as a first feature, the shutters 5 and 6 are arranged apart from the vapor deposition sources 1 and 2 so that the monitors 7 and 8 can measure the vapor deposition rate even when the shutters 5 and 6 are closed. To do. Naturally, it is necessary to increase the size of the shutters 5 and 6, but as shown in FIG. 5, the heights of the shutters 5 and 6 are different from each other, and the shutters 5 and 6 are arranged so as to overlap each other in the open state. There is no need to increase the interval between 1 and 2.

しかしながら、シャッター5,6の高さを互いに異ならせた場合、蒸着源1,2間でクロスコンタミネーションを生じ易くなることがわかった。図6を用いて図5の蒸着装置におけるクロスコンタミネーションについて説明する。尚、図6は図5と同じ構成の蒸着装置の説明に必要な部材のみを図示する。 However, it has been found that when the heights of the shutters 5 and 6 are different from each other, cross contamination is likely to occur between the vapor deposition sources 1 and 2. The cross-contamination in the vapor deposition apparatus of FIG. 5 will be described with reference to FIG. Note that FIG. 6 illustrates only the members necessary for explaining the vapor deposition apparatus having the same configuration as that of FIG.

シャッター5,6の裏面(蒸着源1,2側)には、閉状態の際に蒸着源1,2からの蒸発物が付着する。図6(a)に示すように、シャッター5,6を同時に開状態とした場合、高さが高い方のシャッター6の裏面に付着した蒸発物31が剥離して、高さが低い方のシャッター5の表面に落下する場合がある。この状態で、図6(b)に示すようにシャッター5を閉状態に向けて回転させると、シャッター5上の蒸発物31aが、図6(c)に示すように蒸着源1上に落下するおそれがある。蒸着源1上に落下した蒸発物31aは、蒸着源1の開口部を塞いだり、ヒーター1bによって加熱されて蒸着材料1cと共に飛散して被蒸着基板9に蒸着(クロスコンタミネーション)してしまうおそれがある。 Evaporates from the vapor deposition sources 1 and 2 adhere to the back surfaces (vapor deposition sources 1 and 2) of the shutters 5 and 6 in the closed state. As shown in FIG. 6A, when the shutters 5 and 6 are opened at the same time, the evaporator 31 adhering to the back surface of the shutter 6 having a higher height is peeled off, and the shutter having a lower height is released. It may fall on the surface of 5. In this state, when the shutter 5 is rotated toward the closed state as shown in FIG. 6 (b), the evaporator 31a on the shutter 5 falls onto the vapor deposition source 1 as shown in FIG. 6 (c). There is a risk. The evaporated material 31a that has fallen onto the thin-film deposition source 1 may block the opening of the thin-film deposition source 1 or may be heated by the heater 1b and scattered together with the thin-film deposition material 1c to be vapor-deposited (cross-contamination) on the substrate 9 to be deposited. There is.

本発明においては、第二の特徴として、シャッター5,6間に隔壁を設けることで、図6に示したようなシャッター6の裏面に付着した蒸発物の蒸着源1への落下を防止する。図1を用いて説明する。 In the present invention, as a second feature, by providing a partition wall between the shutters 5 and 6, it is possible to prevent the evaporation matter adhering to the back surface of the shutter 6 from falling to the vapor deposition source 1 as shown in FIG. This will be described with reference to FIG.

図1は、本発明の蒸着装置の好ましい実施形態の蒸着室の主要な構成を概略的に示す垂直方向の断面図である。本実施形態の構成は、基本的に図5に示した従来の蒸着装置と同様の構成を備え、さらに、隔壁12を備えている。 FIG. 1 is a vertical sectional view schematically showing a main configuration of a vapor deposition chamber according to a preferred embodiment of the vapor deposition apparatus of the present invention. The configuration of this embodiment basically has the same configuration as the conventional thin-film deposition apparatus shown in FIG. 5, and further includes a partition wall 12.

本実施形態においては、図5の蒸着装置と同様に、二つの蒸着源1,2と、これらの蒸着源1,2の蒸着レートを測定する二つのモニター7,8を備えている。蒸着源1,2に対しては、蒸発物の被蒸着基板9への飛散を妨げるシャッター5,6が配置されている。シャッター5,6は、閉状態においてもモニター7,8が蒸着レートを測定し得るように、蒸着源1,2から上方に離れた位置において支持材5a,6aにより回転可能に配置されている。シャッター5,6は、垂直方向からの平面視において、開状態で互いに重なる領域を有しており、本実施形態においては、該重なる領域において、シャッター5,6間を遮る隔壁12が設けられている。 In the present embodiment, similarly to the vapor deposition apparatus of FIG. 5, two vapor deposition sources 1 and 2 and two monitors 7 and 8 for measuring the vapor deposition rates of these vapor deposition sources 1 and 2 are provided. Shutters 5 and 6 are arranged on the vapor deposition sources 1 and 2 to prevent the vaporized matter from being scattered on the substrate 9 to be vapor-deposited. The shutters 5 and 6 are rotatably arranged by the support members 5a and 6a at positions separated upward from the vapor deposition sources 1 and 2 so that the monitors 7 and 8 can measure the vapor deposition rate even in the closed state. The shutters 5 and 6 have a region that overlaps with each other in the open state in a plan view from a vertical direction. In the present embodiment, a partition wall 12 that blocks the shutters 5 and 6 is provided in the overlapping region. There is.

シャッター5,6と隔壁12、仕切り板11の垂直方向からの平面視を図3(a)に示す。図3(a)中、破線で示す5c,6cはそれぞれ、回転によってシャッター5,6の占める領域の外周である。よって、領域5cと6cとが重なる領域21(斜線のハッチングで示される領域)が、シャッター5,6が開状態で互いに重なる領域である。隔壁12は該領域21に重なるように、シャッター5,6の間の高さに配置されており、シャッター5,6がいずれも開状態の時、シャッター5,6間を隔てる。係る隔壁12により、シャッター6の裏面に付着した蒸発物が剥離して落下した場合でも、剥離した蒸発物は隔壁12上に落下し、シャッター5の表面には落下しない。よって、シャッター6の裏面に付着した蒸発物が蒸着源1に落下して蒸着源1の開口部を塞いだり、クロスコンタミネーションを生じるといった不都合が抑制される。 FIG. 3A shows a plan view of the shutters 5 and 6, the partition wall 12, and the partition plate 11 from the vertical direction. In FIG. 3A, the broken lines 5c and 6c are the outer circumferences of the areas occupied by the shutters 5 and 6, respectively, due to rotation. Therefore, the region 21 (the region indicated by the hatching of the diagonal line) where the regions 5c and 6c overlap is the region where the shutters 5 and 6 overlap each other in the open state. The partition wall 12 is arranged at a height between the shutters 5 and 6 so as to overlap the region 21, and separates the shutters 5 and 6 when the shutters 5 and 6 are all open. Even if the evaporated material adhering to the back surface of the shutter 6 is peeled off and dropped by the partition wall 12, the separated evaporator falls on the partition wall 12 and does not fall on the surface of the shutter 5. Therefore, inconveniences such as the evaporation material adhering to the back surface of the shutter 6 falling onto the vapor deposition source 1 and blocking the opening of the vapor deposition source 1 or causing cross-contamination are suppressed.

本実施形態においては、隔壁12は、長手方向(紙面上下方向)の両端において支持材22で支持されている。また、本実施形態では、蒸着源1,2間を遮る仕切り板11の上端に、蒸着源2に向かって第二の隔壁13が取り付けられている。これにより、シャッター5の裏面に付着した蒸発物が剥離して蒸着源2側に落下するのを抑制し、該蒸発物によって、蒸着源2の開口部が塞がれたり、クロスコンタミネーションが生じるのが抑制される。 In the present embodiment, the partition wall 12 is supported by support members 22 at both ends in the longitudinal direction (vertical direction on the paper surface). Further, in the present embodiment, a second partition wall 13 is attached toward the vapor deposition source 2 at the upper end of the partition plate 11 that blocks between the vapor deposition sources 1 and 2. As a result, the evaporation material adhering to the back surface of the shutter 5 is prevented from peeling off and falling to the vapor deposition source 2 side, and the evaporation material closes the opening of the vapor deposition source 2 or causes cross contamination. Is suppressed.

さらに、図2に本発明の蒸着装置の他の実施形態の蒸着室の主要な構成を概略的に示す垂直方向の断面図を示す。本実施形態では、図1の蒸着装置に加えて、隔壁(以下、第一の隔壁と記す)12と第二の隔壁13とをつなぐ第一の側壁14と、第一の隔壁12の蒸着源1側の端部より上方に向かって突出する第二の側壁15と、を有している。このように、側壁14,15を設けることで、シャッター5,6の裏面に付着した蒸発物が剥離して、それぞれ蒸着源2,1側に落下するのをより効果的に抑制することができる。また、本実施形態のように、仕切り板11、第二の隔壁13、第一の側壁14、第一の隔壁12、第二の側壁15が順次連結されているため、一体で取り扱うことができ、付着した蒸発物の除去など、メンテナンスが容易である。 Further, FIG. 2 shows a vertical sectional view schematically showing a main configuration of a vapor deposition chamber according to another embodiment of the vapor deposition apparatus of the present invention. In the present embodiment, in addition to the vapor deposition apparatus of FIG. 1, the first side wall 14 connecting the partition wall (hereinafter referred to as the first partition wall) 12 and the second partition wall 13 and the vapor deposition source of the first partition wall 12 It has a second side wall 15 that projects upward from the end on one side. By providing the side walls 14 and 15 in this way, it is possible to more effectively suppress the evaporations adhering to the back surfaces of the shutters 5 and 6 from peeling off and falling to the vapor deposition sources 2 and 1, respectively. .. Further, since the partition plate 11, the second partition wall 13, the first side wall 14, the first partition wall 12, and the second side wall 15 are sequentially connected as in the present embodiment, they can be handled integrally. Easy maintenance such as removal of adhering evaporation.

図1、図2に示した実施形態では、蒸着源が2個の場合を示したが、蒸着源が3個以上の場合でも、そのうちの2個の蒸着源について、本発明を適用すればよい。また、蒸着源が4個の場合には、2個一組として、それぞれの組に本発明を適用すればよい。いずれの場合も、隣り合う組の蒸着源同士は仕切り板で仕切ることが好ましい。また、図1、図2には、被蒸着基板を回転させて蒸着を行う形態を示したが、被蒸着基板を固定して、蒸着源を回転テーブルに載せて回転させる形態であってもよい。また、シャッター5,6は回転させて開状態と閉状態とする構成を示したが、水平移動する形態であれば、移動形態は特に限定されない。 In the embodiments shown in FIGS. 1 and 2, the case where there are two vapor deposition sources is shown, but even when there are three or more vapor deposition sources, the present invention may be applied to two of the vapor deposition sources. .. Further, when there are four vapor deposition sources, the present invention may be applied to each set as a set of two. In either case, it is preferable to partition the adjacent sets of vapor deposition sources with a partition plate. Further, although FIGS. 1 and 2 show a mode in which the substrate to be vapor-deposited is rotated to perform vapor deposition, the substrate to be vapor-deposited may be fixed and the vapor deposition source may be placed on a rotary table to be rotated. .. Further, although the shutters 5 and 6 are rotated to be in the open state and the closed state, the moving form is not particularly limited as long as the shutters move horizontally.

図1、図5に示す構成で、4個の蒸着源を備えた蒸着装置において、蒸着源を2個一組として、異なる4種の蒸着材料を用いて共蒸着を行った。一方の組のシャッターは同時に開状態、他方の組のシャッターは同時に閉状態とする工程を、5分ずつ、開状態と閉状態とを入れ替えて繰り返し、各蒸着源の蒸着レートを1.0nm/sで一定とし、連続120時間行った。また、図2の蒸着装置において、蒸着レートを1.0nm/sで一定とし、2個のシャッターを同時に5分間隔で開状態と閉状態とを繰り返して連続120時間、異なる蒸着材料の共蒸着を行った。蒸着終了後、蒸着源の加熱を停止し、蒸着室を大気状態に戻した後、各蒸着源の周辺をワイパーでふき取り、ワイパーに付着した物質をHPLC(高速液体クロマトグラフ)分析にかけた。その結果、図1、図2の蒸着装置では、いずれの蒸着源においても、他の蒸着源からの蒸発物は観察されなかったが、図5の蒸着装置では、同じ組の一方の蒸着源に他方の蒸着源からの蒸発物の付着が認められた。 In the vapor deposition apparatus provided with four thin-film deposition sources with the configurations shown in FIGS. 1 and 5, co-evaporation was performed using two different vapor deposition materials as a set of two vapor deposition sources. The process of opening one set of shutters at the same time and closing the other set of shutters at the same time is repeated every 5 minutes, switching between the open state and the closed state, and the vapor deposition rate of each vapor deposition source is 1.0 nm /. It was kept constant at s and continued for 120 hours. Further, in the thin-film deposition apparatus of FIG. 2, the vapor deposition rate was kept constant at 1.0 nm / s, and the two shutters were simultaneously repeatedly opened and closed at 5-minute intervals for 120 hours continuously to co-deposit different vapor deposition materials. Was done. After the vapor deposition was completed, the heating of the vapor deposition source was stopped, the vapor deposition chamber was returned to the atmospheric state, the periphery of each vapor deposition source was wiped off with a wiper, and the substance adhering to the wiper was subjected to HPLC (high performance liquid chromatography) analysis. As a result, in the vapor deposition apparatus of FIGS. 1 and 2, no evaporation from other vapor deposition sources was observed in any of the vapor deposition sources, but in the vapor deposition apparatus of FIG. 5, one vapor deposition source of the same set was used. Adhesion of evaporation from the other deposition source was observed.

1,2:蒸着源、5,6:シャッター、7,8:モニター、11:仕切り板、12,13:隔壁、14,15:側壁 1,2: vapor deposition source, 5,6: shutter, 7,8: monitor, 11: partition plate, 12,13: partition wall, 14,15: side wall

Claims (7)

水平方向に並んで配置した二つの蒸着源と、前記二つの蒸着源のそれぞれの開口部の上方に配置された二つのシャッターと、を有する蒸着装置であって、
前記二つのシャッターは、互いに高さが異なり、且つ、水平方向に移動することにより開閉し、垂直方向からの平面視において開状態で互いに重なる領域を有し、
前記重なる領域において、前記二つのシャッターの間を隔てる隔壁を有することを特徴とする蒸着装置。
A thin-film deposition apparatus having two vapor deposition sources arranged side by side in the horizontal direction and two shutters arranged above the openings of the two thin-film deposition sources.
The two shutters have different heights and open and close by moving in the horizontal direction, and have regions that overlap each other in the open state in a plan view from the vertical direction.
A thin-film deposition apparatus comprising a partition wall separating the two shutters in the overlapping region.
前記二つのシャッターのうち、高さの低いシャッターの開状態に重なる領域において、前記シャッターの下方に第二の隔壁を有することを特徴とする請求項1に記載の蒸着装置。 The vapor deposition apparatus according to claim 1, wherein a second partition wall is provided below the shutter in a region of the two shutters that overlaps with the open state of a shutter having a low height. 前記二つのシャッターの間を隔てる隔壁と、前記第二の隔壁とが、高さの高い側のシャッターに対応する蒸着源の側に配置された側壁で連結されていることを特徴とする請求項2に記載の蒸着装置。 The claim is characterized in that the partition wall separating the two shutters and the second partition wall are connected by a side wall arranged on the side of the vapor deposition source corresponding to the shutter on the higher side. 2. The vapor deposition apparatus according to 2. 前記二つのシャッターの間を隔てる隔壁の、高さの低い側のシャッターに対応する蒸着源の側の端部に、前記端部より上方に突出する側壁が配置されていることを特徴とする請求項1乃至3のいずれか一項に記載の蒸着装置。 A claim characterized in that a side wall projecting upward from the end is arranged at an end of the partition wall separating the two shutters on the side of the vapor deposition source corresponding to the shutter on the lower side. Item 3. The vapor deposition apparatus according to any one of Items 1 to 3. 前記二つの蒸着源の間に、仕切り板を有することを特徴とする請求項1乃至4のいずれか一項に記載の蒸着装置。 The vapor deposition apparatus according to any one of claims 1 to 4, wherein a partition plate is provided between the two vapor deposition sources. 前記二つの蒸着源のそれぞれに対して、蒸発物の量を測定するモニターを有し、前記モニターは、前記二つのシャッターの開閉に関わらず、前記蒸発物の量を測定できる位置に設けられていることを特徴とする請求項1乃至5のいずれか一項に記載の蒸着装置。 Each of the two vapor deposition sources has a monitor for measuring the amount of evaporation, and the monitor is provided at a position where the amount of evaporation can be measured regardless of whether the two shutters are opened or closed. The vapor deposition apparatus according to any one of claims 1 to 5, wherein the vapor deposition apparatus is provided. 前記二つの蒸着源からの蒸発物が互いに異なることを特徴とする請求項1乃至6のいずれか一項に記載の蒸着装置。 The vapor deposition apparatus according to any one of claims 1 to 6, wherein the evaporations from the two vapor deposition sources are different from each other.
JP2019155607A 2019-08-28 2019-08-28 Vapor deposition equipment Active JP7374662B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019155607A JP7374662B2 (en) 2019-08-28 2019-08-28 Vapor deposition equipment
KR1020200103730A KR20210027103A (en) 2019-08-28 2020-08-19 Vapor deposition system
CN202010877099.9A CN112442661B (en) 2019-08-28 2020-08-27 Vapor deposition device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019155607A JP7374662B2 (en) 2019-08-28 2019-08-28 Vapor deposition equipment

Publications (2)

Publication Number Publication Date
JP2021031753A true JP2021031753A (en) 2021-03-01
JP7374662B2 JP7374662B2 (en) 2023-11-07

Family

ID=74677148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019155607A Active JP7374662B2 (en) 2019-08-28 2019-08-28 Vapor deposition equipment

Country Status (3)

Country Link
JP (1) JP7374662B2 (en)
KR (1) KR20210027103A (en)
CN (1) CN112442661B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114672772A (en) * 2022-04-18 2022-06-28 昆山梦显电子科技有限公司 Evaporation source device and using method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0556951U (en) * 1992-01-09 1993-07-30 沖電気工業株式会社 Vacuum deposition equipment
JP2005126821A (en) * 2003-09-30 2005-05-19 Fuji Photo Film Co Ltd Vacuum deposition apparatus and pretreatment method for vacuum deposition

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59226177A (en) * 1983-06-06 1984-12-19 Hitachi Ltd Thin film forming device
JPH06179967A (en) * 1992-12-15 1994-06-28 Nikon Corp Pvd device
JPH0878791A (en) * 1994-08-31 1996-03-22 Canon Inc Thin-film forming device
JPH08120442A (en) * 1994-10-19 1996-05-14 Oki Electric Ind Co Ltd Vacuum deposition and vacuum deposition device
JPH09324267A (en) * 1996-06-06 1997-12-16 Nippon Telegr & Teleph Corp <Ntt> Device for producing laminated thin film and production of laminated thin film using the same
JP3330036B2 (en) * 1996-11-29 2002-09-30 シャープ株式会社 Optical semiconductor end face coating method and apparatus
EP0962260B1 (en) * 1998-05-28 2005-01-05 Ulvac, Inc. Material evaporation system
JP2003221665A (en) * 2002-01-30 2003-08-08 Shin Meiwa Ind Co Ltd Vacuum film-forming apparatus
JP2004053421A (en) * 2002-07-19 2004-02-19 Fuji Photo Film Co Ltd Method for manufacturing radiation image conversion panel
JP2006324649A (en) * 2005-04-22 2006-11-30 Semiconductor Energy Lab Co Ltd Manufacturing method of organic semiconductor device
KR101258252B1 (en) * 2006-02-06 2013-04-26 엘지디스플레이 주식회사 Apparatus for depositing chemical layers
JP2007332433A (en) * 2006-06-16 2007-12-27 Seiko Epson Corp Vacuum vapor-deposition apparatus
JP2008223066A (en) * 2007-03-12 2008-09-25 Seiko Epson Corp Vapor deposition apparatus
CN101896633B (en) * 2007-12-12 2012-11-14 山特维克知识产权股份有限公司 A shutter system
WO2009122809A1 (en) * 2008-04-03 2009-10-08 コニカミノルタエムジー株式会社 Manufacturing equipment for radiographic image conversion panel and manufacturing method for radiographic image conversion panel
JP2010027213A (en) * 2008-07-15 2010-02-04 Fujimura Denshino Gijutsu Kenkyusho:Kk Salinity difference power generation system
TW201122132A (en) * 2009-12-25 2011-07-01 Hon Hai Prec Ind Co Ltd Coating machine
US9496527B2 (en) * 2012-08-13 2016-11-15 Kaneka Corporation Vacuum deposition device and method of manufacturing organic EL device
CN106062240B (en) * 2014-03-11 2018-09-28 株式会社日本有机雷特显示器 Evaporation coating device and the evaporation coating method of evaporation coating device and the manufacturing method of device are used
US20170229647A1 (en) * 2014-05-05 2017-08-10 Okinawa Institute Of Science And Technology School Corporation System and method for fabricating perovskite film for solar cell applications
CN108966661B (en) * 2017-03-17 2021-01-15 应用材料公司 Apparatus for vacuum processing of substrates, system for manufacturing of devices with organic material, and method for sealing an opening connecting two pressure areas
CN107686969A (en) * 2017-08-22 2018-02-13 武汉华星光电半导体显示技术有限公司 A kind of evaporation source
CN208517517U (en) * 2018-05-29 2019-02-19 佳能特机株式会社 Film formation device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0556951U (en) * 1992-01-09 1993-07-30 沖電気工業株式会社 Vacuum deposition equipment
JP2005126821A (en) * 2003-09-30 2005-05-19 Fuji Photo Film Co Ltd Vacuum deposition apparatus and pretreatment method for vacuum deposition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114672772A (en) * 2022-04-18 2022-06-28 昆山梦显电子科技有限公司 Evaporation source device and using method thereof

Also Published As

Publication number Publication date
KR20210027103A (en) 2021-03-10
CN112442661A (en) 2021-03-05
JP7374662B2 (en) 2023-11-07
CN112442661B (en) 2023-07-25

Similar Documents

Publication Publication Date Title
US8961692B2 (en) Evaporating apparatus
KR101885245B1 (en) Depositing apparatus and method for manufacturing organic light emitting diode display using the same
JP2002249868A (en) Vapor deposition system
JP4478113B2 (en) Heating vessel support and vapor deposition apparatus equipped with the same
KR20130045432A (en) Rotary deposition apparatus
JP2021031753A (en) Vapor deposition apparatus
US7819975B2 (en) Deposition method and apparatus
JP4445497B2 (en) Thin film deposition apparatus and thin film deposition method using the same
KR100647578B1 (en) Apparatus and Method for evaporation
JP4026449B2 (en) Organic electroluminescence device manufacturing equipment
KR101009558B1 (en) Equipments for forming layers in vacuum condition
KR20150072726A (en) Apparatus of deposition
KR100684739B1 (en) Apparatus for sputtering organic matter
KR20140123313A (en) Thin film deposition processing apparatus
KR20050036227A (en) Effusion cell and method for depositing substrate with the effusion cell
US11505863B2 (en) Methods for forming films on substrates
JP7223604B2 (en) Vacuum deposition equipment
JP5658520B2 (en) Vapor deposition equipment
KR20030060608A (en) Method of vacuum evaporation and apparatus the same
KR20070051602A (en) Vacuum deposition apparatus of organic substances
JPS61276964A (en) Rotary film forming apparatus
KR100612866B1 (en) Deposition apparatus for thin layer with thickness variation
JP2024012115A (en) Sputtering apparatus and sputtering method utilizing the same
JP2023173544A (en) Vacuum evaporation source of vacuum evaporation system
KR20080002523A (en) Device for depositing organic electro-luminescentelement

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220816

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231025

R151 Written notification of patent or utility model registration

Ref document number: 7374662

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151