JP2010027213A - Salinity difference power generation system - Google Patents

Salinity difference power generation system Download PDF

Info

Publication number
JP2010027213A
JP2010027213A JP2008183393A JP2008183393A JP2010027213A JP 2010027213 A JP2010027213 A JP 2010027213A JP 2008183393 A JP2008183393 A JP 2008183393A JP 2008183393 A JP2008183393 A JP 2008183393A JP 2010027213 A JP2010027213 A JP 2010027213A
Authority
JP
Japan
Prior art keywords
water
fresh water
salt
power generation
salt water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008183393A
Other languages
Japanese (ja)
Inventor
Akihiro Fujimura
明宏 藤村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FUJIMURA DENSHINO GIJUTSU KENK
FUJIMURA DENSHINO GIJUTSU KENKYUSHO KK
Original Assignee
FUJIMURA DENSHINO GIJUTSU KENK
FUJIMURA DENSHINO GIJUTSU KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FUJIMURA DENSHINO GIJUTSU KENK, FUJIMURA DENSHINO GIJUTSU KENKYUSHO KK filed Critical FUJIMURA DENSHINO GIJUTSU KENK
Priority to JP2008183393A priority Critical patent/JP2010027213A/en
Publication of JP2010027213A publication Critical patent/JP2010027213A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/50Measures to reduce greenhouse gas emissions related to the propulsion system
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Landscapes

  • Devices For Medical Bathing And Washing (AREA)
  • Physical Vapour Deposition (AREA)
  • Hybrid Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To take out a large capacity of electrical energy and easily obtain optional high voltage with a compact system in a power generation system utilizing salinity difference between fresh water in rivers or the like and salt water in seas or the like, both of which exist almost infinitely. <P>SOLUTION: The system uses such a configuration that electric short-circuit through a water-supply channel and a water-discharge channel is prevented by falling fresh water and salt water as water drops respectively to utilize the insulation performance of air or by interposing a valve using a valve body, a valve seat and a valve box, all of which are made of an insulating material, and thereby, electric short-circuit between a plurality of cells generating unit electromotive force is prevented. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、塩分濃度差発電システム(濃淡電池システム)に関するものである。   The present invention relates to a salt concentration difference power generation system (concentration cell system).

特願2003−130617、特開2004−335312の「要約」には、次のような記載がある。 「海水淡水化設備1の濃縮海水排出管7を濃淡電池8の濃縮海水供給用マニホールド18に接続する。海水淡水化設備1の海水導入管3より分岐させた海水供給管3aを濃淡電池8の海水供給用マニホールド20に接続する。濃淡電池8の交互に並べてある陽イオン交換膜10と陰イオン交換膜11の間に、濃縮海水6と海水2を交互に流すことにより発電を行わせるようにする。これにより濃縮海水6の化学エネルギーを電気エネルギーに変換してエネルギーの有効利用を図るようにする。」“Summary” in Japanese Patent Application Nos. 2003-130617 and 2004-335313 includes the following description. “The concentrated seawater discharge pipe 7 of the seawater desalination facility 1 is connected to the concentrated seawater supply manifold 18 of the concentration battery 8. The seawater supply pipe 3 a branched from the seawater introduction pipe 3 of the seawater desalination facility 1 is connected to the concentration battery 8. Connected to the seawater supply manifold 20. Concentrated seawater 6 and seawater 2 are allowed to flow alternately between the cation exchange membranes 10 and the anion exchange membranes 11 arranged alternately in the concentration cell 8, so that power generation is performed. As a result, the chemical energy of the concentrated seawater 6 is converted into electric energy so that the energy can be used effectively. " 特願2001−375185、特開2003−176775の「要約」には、次のような記載がある。「海水淡水化装置2で逆浸透圧を利用して海水を淡水化する際に同時に生成された濃縮海水に、これよりも濃度の薄い海水又は淡水などの希釈水を半透膜を介して浸透させ、その正浸透圧エネルギーで濃縮海水側の流量を増加させ、増加した流量で水流発電機26を駆動させて発電する。」The “summary” in Japanese Patent Application Nos. 2001-375185 and 2003-176775 includes the following description. “Dilute water, such as seawater or fresh water with a lower concentration than this, is permeated through the semipermeable membrane into the concentrated seawater generated simultaneously with desalination of seawater using reverse osmosis pressure in the seawater desalination apparatus 2. Then, the flow rate on the concentrated seawater side is increased by the forward osmotic pressure energy, and the water current generator 26 is driven at the increased flow rate to generate electric power. 平成20年2月6日に、インターネット「のサイト piano.chem.yamaguchi-u.ac.jp/Membrane/chap-5/Chap5-j.html-キャッシュ → [piano.chem.yamaguchi-u.ac.jp/index2.html。]のコンテンツに次のような記載がある。「濃淡電池 図 海水と河水を用いた濃淡電池の模式図。A,Cはそれぞれ陰イオン交換膜、陽イオン交換膜を示す。海水から製塩する場合は、陽イオンと陰イオン交換膜の間に海水を入れ電圧をかけることで、海水と淡水が得られます。 反対に、イオン交換膜の間に海水と淡水を交互に流すと, 図に示すように,Naイオン,塩化物イオンが,それぞれ逆向きに拡散するので電極間に起電力を生じます。 これは濃淡電池と呼ばれ,両側の濃度比を30にすると一対の陽,陰イオン交換膜1m2あたり1.2Wの出力が得られます。 」On February 6, 2008, the Internet “Site piano.chem.yamaguchi-u.ac.jp/Membrane/chap-5/Chap5-j.html-Cash → [piano.chem.yamaguchi-u.ac. The contents of jp / index2.html.] include the following: “Concentration cell diagram Schematic diagram of concentration cell using seawater and river water. A and C indicate anion exchange membrane and cation exchange membrane, respectively. When making salt from seawater, seawater and fresh water can be obtained by applying seawater between the cation and anion exchange membrane and applying voltage. As shown in the figure, Na ions and chloride ions diffuse in opposite directions, causing an electromotive force between the electrodes, which is called a concentration cell. An output of 1.2 W per 1 m2 of positive and negative ion exchange membranes can be obtained. "

上記の文献その他に、陰イオン交換膜と、陽イオン交換膜を左右に平行に並べ、その間隙に海水等の塩水を入れ、両交換膜の外に淡水を入れれば、陰イオン交換膜の左の淡水中に入れた電極が陰極となり、陽イオン交換膜の右側に入れた電極が陽極となり、両電極を外部を通る電線で結べば、陽極から陰極に向かって1V(ボルト)程度の起電力による電流が流れることが知られている。
地球上の広大な海には、大量の塩水が存在する。また、海洋に流れ込む、膨大な太陽エネルギーで生産された河川の淡水も大量であり、その淡水の1%でも、このような発電システムに用いることができれば、膨大な電力が得られることになり、二酸化炭素を出さずに多量の電力が生産できるので、地球温暖化の低減に貢献するところは大となる。
しかし、上記のような一つのセルから成る単位起電力を出すユニットでは、わずかの電力しか得られない(安価で高性能のイオン交換膜の開発が非常に重要ではあるが)。
そこで、多数のセルをコンパクトにまとめた並列セルを造ることが必要である。
しかし、多数のセルを一つの容器に収めて、並列に接続した単位起電力しか出力しないユニットでは、1V程度の出力電圧しか得られず、サイリスターと変圧器を用いた昇圧コンバーターに加えて昇圧するにしても、エネルギー変換効率が必ずしも高くならない。
そこで、直列に接続して数10V〜数100V程度の出力を得ることが望ましい。
直列に接続する際、複数のセルやユニットに、各1系の淡水管路、及び塩水管路を用いて給水すると、プラスチック製の管を用いたとしても、各セル間や、ユニット間の出力電圧が、給水経路内の水を通じて短絡(電気的短絡・ショート)し、直列接続が実現できないことになる。
同様に、各ユニットからの廃水も、一つの淡水排出管路と、一つの塩水排出管路を用いると、各廃水を通じて短絡が起こる。
多数の並列セルを1容器内にコンパクトに設ける場合でも、給水管路・排水管路を通じての短絡が起こりうる。
In addition to the above references, an anion exchange membrane and a cation exchange membrane are arranged in parallel on the left and right, salt water such as seawater is put in the gap, and fresh water is put outside both the exchange membranes. The electrode placed in fresh water is the cathode, the electrode placed on the right side of the cation exchange membrane is the anode, and if both electrodes are connected by an electric wire passing outside, an electromotive force of about 1 V (volt) from the anode to the cathode It is known that the current due to.
There is a large amount of salt water in the vast ocean on the earth. In addition, there is a large amount of fresh water in rivers produced by enormous solar energy flowing into the ocean, and even if 1% of the fresh water can be used in such a power generation system, enormous power will be obtained. Since a large amount of electric power can be produced without producing carbon dioxide, the place that contributes to the reduction of global warming is significant.
However, a unit that generates a unit electromotive force composed of one cell as described above can obtain only a small amount of power (although development of an inexpensive and high-performance ion exchange membrane is very important).
Therefore, it is necessary to make a parallel cell in which a large number of cells are gathered in a compact manner.
However, in a unit that puts a large number of cells in one container and outputs only unit electromotive force connected in parallel, only an output voltage of about 1 V can be obtained. Even so, the energy conversion efficiency does not necessarily increase.
Therefore, it is desirable to obtain an output of about several tens to several hundreds V by connecting in series.
When connected in series, if water is supplied to multiple cells or units using each of the 1-system fresh water pipes and salt water pipes, even if plastic pipes are used, the output between each cell and between units The voltage is short-circuited (electrically short-circuited / short-circuited) through the water in the water supply path, and series connection cannot be realized.
Similarly, the waste water from each unit is short-circuited through each waste water if one fresh water discharge pipe and one salt water discharge pipe are used.
Even when a large number of parallel cells are provided compactly in one container, a short circuit may occur through the water supply pipe and the drain pipe.

各1枚の陰イオン交換膜と陽イオン交換膜を対向させ、両イオン交換膜間に塩水流下空間を形成させ、各イオン交換膜の外面に接する淡水流下空間を設け、両空間に存在する淡水層間に単位起電力を発生させる塩分濃度差発電セルを、並列または直列に多数接続し大出力を得るシステムにおいて、作動時に等電位を示す以外の、各流下空間に淡水または塩水を供給する給水経路中に、各流下空間相互の電気的短絡を防止するための、点滴落下空間内の電気絶縁体である気体層を介在させるか、断続開閉する、1次側(給水側)と、2次側(排水側)との間が電気絶縁材料(絶縁体)から成る、電気的駆動弁を介在させて成る、塩分濃度差発電システムにより、解決することを中心にする。
なお、断続的に落下する水的間に存在する空気層等の気体層は、通常、10mmあたり、3万ボルト程度の耐圧(絶縁破壊電圧)を有し、短絡防止をする。
また、電気的駆動弁には、電磁弁、電気モーターで弁体を駆動する電動弁、圧電体で駆動するピエゾバルブ等が含まれる。
Each anion exchange membrane and cation exchange membrane face each other, a salt water flowing space is formed between the two ion exchange membranes, and a fresh water flowing space is provided in contact with the outer surface of each ion exchange membrane. In a system in which a large number of salinity-difference power generation cells that generate unit electromotive force between layers are connected in parallel or in series to obtain a large output, a water supply path that supplies fresh water or salt water to each downstream space, other than showing an equipotential during operation Primary side (water supply side) and secondary side that interpose a gas layer, which is an electrical insulator in the drip drop space, or intermittently open / close, to prevent electrical short circuit between the respective flowing-down spaces The main point is to solve the problem by a salinity-difference power generation system in which an electrically driven valve is interposed between the (drainage side) and an electrically driven material (insulator).
Note that a gas layer such as an air layer that is intermittently falling has a withstand voltage (dielectric breakdown voltage) of about 30,000 volts per 10 mm to prevent a short circuit.
In addition, the electrically driven valve includes an electromagnetic valve, an electric valve that drives a valve body with an electric motor, a piezo valve that is driven with a piezoelectric body, and the like.

本発明を実施すれば、塩分濃度差発電システムの単位起電力発生ユニットを多数、コンパクトに並列または直列に接続した大出力の塩分濃度差発電システム(濃淡電池)が得られ、河川等の大量の淡水と、海水とを用いた、環境汚染の小さい、多量の再生可能電力が得られる利点が生じる。
また、そのシステムに入る淡水と塩水の温度差を利用した発電や、システムを出た後の両水の浸透圧差を利用した発電も行ないうるので、総合的に高効率の発電が可能となる。
また、その出力電力を効果的に利用した船舶や、その推進機、地震探査システム、浚渫装置等も得られる。
By carrying out the present invention, a large-capacity salinity-difference power generation system (concentration cell) in which a large number of unit electromotive force generating units of a salinity-difference power generation system are connected in parallel or in series can be obtained. There is an advantage that a large amount of renewable electric power using fresh water and seawater can be obtained with little environmental pollution.
In addition, power generation using the temperature difference between fresh water and salt water entering the system and power generation using the osmotic pressure difference between the two waters after leaving the system can be performed, so that highly efficient power generation is possible.
In addition, a ship that effectively uses the output power, its propulsion device, seismic exploration system, dredging device, and the like can be obtained.

図1は本発明を実施した、一容器内に、二つのセルが直列に接続されて収められている直列電池堆型ユニットを用いた塩分濃度差発電システムの平面図。
1は、プラスチック、繊維強化プラスチック(FRP)、表面を絶縁被覆した金属等から成る一辺の長さが数10cm〜数m程度の絶縁容器。
2は図示しない前方の給水ポンプに連なり、絶縁容器状にいたる淡水供給管。
3は、その後端に連なり、絶縁体製弁体を用いる等して、給水側と、排水側とを電気的に絶縁した電磁弁。
4は、それに続き、下端は絶縁容器1内の前方に連なる角形の淡水供給筒。
5は、その上壁に取り付けた超音波水位計。
6は、上壁に開けた通気孔。
7は、図示しないポンプに連なる塩水供給管。
8は、それに連なる3と同様の電磁弁。
9は、それに続き、絶縁容器1内の後方に連なる塩水供給筒。
10は、超音波水位計。
11は、通気孔。
なお、供給管2と7、電磁弁3と8を筒4と9の上端につないでもよい。
FIG. 1 is a plan view of a salinity-difference power generation system using a series battery stack unit in which two cells are connected in series in a single container according to the present invention.
Reference numeral 1 denotes an insulating container having a length of about several tens of centimeters to several meters made of plastic, fiber reinforced plastic (FRP), metal whose surface is insulated and coated.
Reference numeral 2 denotes a fresh water supply pipe connected to a front water supply pump (not shown) to form an insulating container.
3 is an electromagnetic valve that is connected to the rear end and electrically insulates the water supply side and the drainage side by using an insulating valve body.
Reference numeral 4 denotes a rectangular fresh water supply tube that is connected to the front of the insulating container 1 at the lower end.
5 is an ultrasonic water level meter attached to the upper wall.
6 is a vent hole opened in the upper wall.
7 is a salt water supply pipe connected to a pump (not shown).
8 is the same solenoid valve as 3 connected to it.
9 is a salt water supply tube that continues to the rear of the insulating container 1.
10 is an ultrasonic water level meter.
11 is a vent hole.
The supply pipes 2 and 7 and the electromagnetic valves 3 and 8 may be connected to the upper ends of the cylinders 4 and 9.

12は、絶縁容器1の左壁前下部に突出した廃淡水排出管。
13は、後下部に突出した廃塩水排出管。
14は、絶縁容器1の左面に突出したマイナス側導電線。(負電極・リード線)
15は、絶縁容器1の右端から前方に突出した雌ねじを切った突起。
16は、後方に凸出した同様の突起。
Reference numeral 12 denotes a waste fresh water discharge pipe protruding from the front lower part of the left wall of the insulating container 1.
13 is a waste salt water discharge pipe protruding in the lower rear part.
Reference numeral 14 denotes a negative conductive wire protruding from the left surface of the insulating container 1. (Negative electrode / lead wire)
Reference numeral 15 denotes a protrusion formed by cutting a female screw protruding forward from the right end of the insulating container 1.
16 is a similar protrusion protruding backward.

17は、絶縁容器1の右端に、はめ込まれた絶縁体製の蓋。
18は、その右端から前方に突出した円筒孔を開けた突起。
19は、それに通され、突起15にねじ込まれ、蓋及び容器内の各物体を左方に押し付けているボルト。
20は、後方に突出した突起。
21は、それに通され、突起16にねじ込まれ、蓋その他を左方に押しているボルト。
22は、蓋17を貫き、その右方に突出したプラス側導電線。
Reference numeral 17 denotes an insulating lid fitted at the right end of the insulating container 1.
Reference numeral 18 denotes a projection having a cylindrical hole projecting forward from its right end.
Reference numeral 19 denotes a bolt which is passed through the screw and screwed into the protrusion 15 to press the objects in the lid and the container to the left.
20 is a protrusion protruding rearward.
21 is a bolt which is passed through it, screwed into the protrusion 16, and pushes the lid and the like to the left.
22 is a plus-side conductive wire that penetrates the lid 17 and protrudes to the right.

図2は、絶縁容器1の上壁の直下における横断面図。
23は、導電線14の右端に連なる四角形の電極板36を取り囲む4角形(額縁形)のプラスチックや、硬質の合成ゴム・ウレタンゴム・シリコーンゴム・その他から成る絶縁体製の、絶縁容器1の左壁の右側面に接する電極板付点滴装置形成用フレーム。(撥水製材料で造ったり、表面を撥水性材料で被覆したりしてもよい。また、容器1の前後壁の内面を水密化用のゴム膜で被覆した場合には、フレームの前部と後部を除去した形でもよい。)
24は、その右方に接する同様の材質から成り、陰イオン交換膜37の上下前後を囲む、陰イオン交換膜付の点滴装置形成用フレーム。
25は、その右方に接し、同様の材質から成り、陽イオン交換膜39を囲む陽イオン交換膜付点滴装置形成用フレーム。
26は、24と全く同じ材質・構造の陰イオン交換膜付点滴装置形成用フレーム。
27は、その右方の25と全く同材質、同構造の陽イオン交換膜付点滴装置形成用フレーム。
28は、その右面に接し、フレーム26と同材質で、ほぼ同構造をし、電極板41を囲む点滴装置形成用フレーム。
29は、密接する各フレーム23〜28の上縁前部に設けたコの字形の切欠の連続により形成され、淡水供給筒4の下端に連なる左右に長い淡水供給溝。
30〜32は、その底壁にある前後に多数並んだ、上口は4角形で、下口は細い円筒管になった漏斗形をなす、フレーム23の右面と24の査面、25の右面と26の左面、27の右面と28の左面の上部の切欠直下にある陥凹(くぼみ)が左右、合わさって形成されている、淡水点滴ノズル。
33は、各フレーム23〜28の上縁後部に設けた切欠の連続により形成され左右に長い、塩水供給筒9の下端に連なる塩水供給溝。
34〜35は、その底面にある前後に多数並んだ、上口は4角形で、下口は細い円筒管になった漏斗形をなす、フレーム24の右面と25の査面、26の右面と27の左面の上部後方の切欠の直下にある陥凹(くぼみ)が左右、合わさって形成されている、塩水点滴ノズル。
なお、実際には、24〜27のような陰・陽イオン交換膜付点滴装置形成用フレームは、数10枚〜数1000枚並べられる。
また、淡水点滴ノズルや塩水点滴ノズルを、前後方向に数10〜数1000個、並べることもある。
FIG. 2 is a transverse cross-sectional view immediately below the upper wall of the insulating container 1.
Reference numeral 23 denotes an insulating container 1 made of an insulator made of a square (frame) plastic surrounding the square electrode plate 36 connected to the right end of the conductive wire 14, hard synthetic rubber, urethane rubber, silicone rubber, or the like. Drip device forming frame with electrode plate in contact with the right side of the left wall. (It may be made of a water-repellent material, or the surface may be covered with a water-repellent material. When the inner surfaces of the front and rear walls of the container 1 are covered with a water-tight rubber film, the front portion of the frame And the rear part may be removed.)
Reference numeral 24 denotes a drip device forming frame with an anion exchange membrane, which is made of the same material in contact with the right side and surrounds the upper and lower sides of the anion exchange membrane 37.
Reference numeral 25 denotes a cation exchange membrane-attached drip device forming frame that is in contact with the right side and is made of the same material and surrounds the cation exchange membrane 39.
26 is a frame for forming an infusion device with an anion exchange membrane of the same material and structure as 24.
27 is a frame for forming an infusion device with a cation exchange membrane having the same material and structure as 25 on the right side.
Reference numeral 28 denotes a drip device forming frame which is in contact with the right surface of the frame 26 and has the same material and has substantially the same structure and surrounds the electrode plate 41.
Reference numeral 29 denotes a fresh water supply groove that is formed by a continuous U-shaped notch provided in the upper edge front portion of each of the frames 23 to 28 that are in close contact with each other and that is continuous to the lower end of the fresh water supply tube 4.
Numerals 30 to 32 are arranged in the front and back of the bottom wall, the upper mouth is a quadrangle, and the lower mouth is a funnel shape that is a thin cylindrical tube, the right side of the frame 23 and the inspection surface of 24, the right side of 25 A fresh water drip nozzle in which a recess (indentation) immediately below the notch in the upper left and right sides of 27 and 26, the right side of 27 and the left side of 28 is formed.
33 is a salt water supply groove that is formed by a continuous notch provided at the rear edge of the upper edge of each of the frames 23 to 28 and that is long on the left and right and that is continuous with the lower end of the salt water supply tube 9.
34 to 35 are arranged in a large number in the front and rear of the bottom surface, the upper mouth is a quadrangle, and the lower mouth is a funnel shape that is a thin cylindrical tube, the right side of the frame 24, the 25 side inspection surface, and the right side of 26 27. A salt water drip nozzle in which a recess (indentation) just below a notch at the upper rear of the left surface of 27 is formed by combining left and right.
In practice, several dozens to several thousands of frames for forming an infusion device with an anion / cation exchange membrane such as 24 to 27 are arranged.
In addition, several tens to several thousands of fresh water drip nozzles and salt water drip nozzles may be arranged in the front-rear direction.

図3は、淡水供給筒4の位置における容器1の縦断正面図。
図4は、容器1のほぼ中央の高さにおける横断面図。
図5は、フレーム24の左面の、わずか右方の位置における縦断左側面図。
図6は、フレーム25の左面の、わずか右方の位置における縦断左側面図。
FIG. 3 is a longitudinal front view of the container 1 at the position of the fresh water supply cylinder 4.
FIG. 4 is a transverse cross-sectional view at a height approximately at the center of the container 1.
FIG. 5 is a longitudinal left side view of the left side of the frame 24 at a position slightly to the right.
FIG. 6 is a longitudinal left side view of the left surface of the frame 25 at a position slightly to the right.

36は、導電線14の右端に連なり、フレーム23中にある金属製のマイナス電極板(陰極板)。
これは、炭素製、炭素メッキした金属製、金メッキした銅板、上面を炭素メッキしたプラスチックフィルムを中央で下方に折り曲げた板、耐食性合金板、その他から成る導電性材料製等であってもよい。
36Bは、その右面から突出し、陰イオン交換膜37に右端が接し、図5等に記すように、上下に3本存在し、上段と下段のものは、後端が短く中段のものは前端が短く、それらの上下及び相互間にジグザグ形の淡水流下空間48を形成する、淡水流下空間形成用スペーサー。(この右端のみ絶円被覆してもよいし、全体をプラスチック製にしてもよい。また、その本数を4本以上にしてもよい。)
この材質は、電極板36と同じでもよいが、表面全体に絶縁被覆を施した金属や、プラスチック製でもよい。電極板36を金属箔性にし、左面から金型で右方に押して加圧成型し、突出させてもよい。
37〜38は、電気製塩に用いるもの等と同様の陰イオン交換膜。
39〜40は、電気製塩に用いるもの等と同様の陽イオン交換膜。
41は、導電線22の左端に連なり、フレーム28の中に収められている36と同様の金属製プラス電極板(陽極板)。(左面には、淡水流下経路形成用の突起が存在する。)
41Aは、それから左方に突出したスペーサー。
42〜44は、淡水点滴ノズル30〜32の下方に設けた、それらノズルの形成部材(フレームの材質)の下方の部分により囲まれている淡水点滴落下空間。
45は、中央の淡水点滴落下空間43の下方の淡水流下空間49を左右に仕切る金属製の導電性隔壁。
45Aは、その左面に突出した36Bと同様の淡水流下経路形成作用をするスペーサー。
45Bは、右面に突出したスペーサー。
46〜47は、塩水点滴落下空間の下方において、陰イオン交換膜37と陽イオン交換膜39との間に挿入された塩水流下空間形成用のプラスチック網等から成る隔壁。(フレーム24や26と同材質製にし、フレームに周囲が付着した細い縦糸と、太い横糸とから成る網状構造等にし、フレームと共にこの隔壁を成型してもよい。)
46A〜47Aは、それらの左面に突出した多数のスペーサー。
46B〜47Bは、右面に突出したスペーサー。
48〜50は、各淡水点滴落下空間42〜44の下端に連なる淡水流下空間
51〜52は、塩水点滴ノズル34〜35の下方の塩水点滴落下空間の下に連なる塩水流下空間。
Reference numeral 36 denotes a metal negative electrode plate (cathode plate) that is connected to the right end of the conductive wire 14 and is in the frame 23.
This may be made of carbon, carbon-plated metal, gold-plated copper plate, a plate in which a plastic film whose surface is carbon-plated is bent downward at the center, a corrosion-resistant alloy plate, or other conductive material.
36B protrudes from the right surface thereof, and the right end is in contact with the anion exchange membrane 37. As shown in FIG. 5 and the like, there are three upper and lower parts, the upper and lower stages have a short rear end, the middle stage has a front end. A spacer for forming a fresh water flow space which is short and forms a zigzag fresh water flow space 48 above and below and between them. (Only the right end may be covered with a circle, or the whole may be made of plastic. The number may be four or more.)
This material may be the same as that of the electrode plate 36, but may be a metal having an insulating coating on the entire surface or a plastic. The electrode plate 36 may be made of a metal foil, pressed from the left surface to the right with a mold, press-molded, and protruded.
37 to 38 are anion exchange membranes similar to those used for electric salt production.
39 to 40 are cation exchange membranes similar to those used for electric salt production.
Reference numeral 41 denotes a metal positive electrode plate (anode plate) similar to 36 that is connected to the left end of the conductive wire 22 and is housed in the frame 28. (There is a protrusion for forming a fresh water flow path on the left side.)
41A is a spacer protruding to the left.
Reference numerals 42 to 44 denote fresh water drip dropping spaces which are provided below the fresh water drip nozzles 30 to 32 and are surrounded by lower portions of the nozzle forming members (frame materials).
45 is a metallic conductive partition that partitions a freshwater flow-down space 49 below the central freshwater drip drop space 43 into left and right.
45A is a spacer that forms the fresh water flow path forming action similar to 36B protruding on the left side.
45B is a spacer protruding on the right side.
Reference numerals 46 to 47 denote partition walls made of a plastic net or the like for forming a salt water flowing space inserted between the anion exchange membrane 37 and the cation exchange membrane 39 below the salt water drip dropping space. (It may be made of the same material as the frames 24 and 26, and has a net-like structure composed of thin warps and thick wefts attached to the periphery of the frame, and this partition may be molded together with the frame.)
46A to 47A are a number of spacers protruding from the left side of them.
46B to 47B are spacers protruding on the right side.
Reference numerals 48 to 50 denote fresh water flow down spaces 51 to 52 connected to the lower ends of the fresh water drip drop spaces 42 to 44. Reference symbols 51 to 52 denote salt water flow down spaces connected to the salt water drip drop spaces below the salt water drip nozzles 34 to 35.

53は、図5に記すが、淡水流下空間48の後上部に設けた淡水水位検出電極。(絶縁板を介して2枚の小さな金属電極が存在する等の構造を持つ。)
54〜56は、淡水流下空間の前下端に設けた廃淡水点滴ノズル。
57〜59は、その下方の廃淡水点滴落下空間。
60は、その下端に連なるフレーム23〜28の前下縁の切欠の連続から形成された廃淡水排出溝。
61は、塩水点滴ノズル34の下方の塩水点滴落下空間。
65は、その前上部に設けた塩水水位検出電極。
66は、塩水流下空間の後下端の廃塩水点滴ノズル。
68は、その下方の廃塩水点滴落下空間。
70は、その下端に連なる廃塩水排出溝。
53 is a fresh water level detection electrode provided in the rear upper part of the fresh water flow-down space 48 as shown in FIG. (It has a structure in which two small metal electrodes exist through an insulating plate.)
Reference numerals 54 to 56 denote waste fresh water drip nozzles provided at the front lower end of the fresh water flow-down space.
57-59 is the waste freshwater drip drop space below it.
Reference numeral 60 denotes a waste fresh water discharge groove formed from a series of notches at the front lower edges of the frames 23 to 28 connected to the lower ends thereof.
61 is a salt water drip falling space below the salt water drip nozzle 34.
65 is a salt water level detection electrode provided in the front upper part.
66 is a waste salt water drip nozzle at the rear lower end of the salt water flowing space.
68 is a waste saline drip falling space below.
70 is a waste saltwater discharge groove connected to the lower end thereof.

次に、図示しないコンピューターで制御されるこのシステムの動作について記す。
図示しない河川等の水源から採水し、濾過し、浄化し、適度に加圧した淡水が淡水供給管2に供給され、海水も浄化されて塩水供給管7に供給される。
コンピューターの制御により、超音波水位計5と10が、淡水供給筒4と9内の水位が設定値以下になったことを検出すれば、電磁弁3または8を開閉して、両筒内の水位を常に設定値に保たせる。
その際、通気孔6と11を経て、筒内の空気が外へ出たり、外危が内部に入ったりする。
淡水供給筒4内の淡水は、その水位で定まる水圧で、下方の絶縁容器1内の前上部の淡水供給溝29に満たされる。
その淡水は、各淡水点滴ノズル30〜32の下端から、水自身の表面張力で給形化した水滴となり、1滴ずつ断続的に、淡水点滴落下空間42〜44の絶縁体である空気中を落下してゆく。(この点滴速度は、ノズル下端の口径、ノズル下端にいたる水深、水の粘性、ノズル内面の形等により定まる。)
これにより、淡水供給溝29内の水と、点滴落下空間以下に貯まる水とは電気的に絶縁され、淡水流下空間48〜50の各々が、淡水供給溝29中の水を経て短絡されることが防止される。(もし、淡水点滴空間42〜44が水で満たされていたとすれば、短絡し、三者の電位は等くなってしまう。)
Next, the operation of this system controlled by a computer (not shown) will be described.
Fresh water sampled from a water source such as a river (not shown), filtered, purified and appropriately pressurized is supplied to the fresh water supply pipe 2, and seawater is also purified and supplied to the salt water supply pipe 7.
Under the control of the computer, if the ultrasonic water level gauges 5 and 10 detect that the water level in the fresh water supply pipes 4 and 9 is below the set value, the electromagnetic valves 3 or 8 are opened and closed to Always keep the water level at the set value.
In that case, the air in a cylinder goes out through the vent holes 6 and 11, and an external danger enters inside.
The fresh water in the fresh water supply cylinder 4 is filled in the fresh water supply groove 29 at the front upper part in the lower insulating container 1 at a water pressure determined by the water level.
The fresh water becomes water droplets formed by the surface tension of the water itself from the lower ends of the fresh water drip nozzles 30 to 32, and drops one by one intermittently in the air that is an insulator of the fresh water drip drop spaces 42 to 44. It will fall. (This drip rate is determined by the diameter of the nozzle lower end, the water depth reaching the nozzle lower end, the viscosity of water, the shape of the inner surface of the nozzle, etc.)
Thereby, the water in the fresh water supply groove 29 and the water stored below the drip drop space are electrically insulated, and each of the fresh water flow-down spaces 48 to 50 is short-circuited through the water in the fresh water supply groove 29. Is prevented. (If the freshwater drip spaces 42 to 44 are filled with water, they are short-circuited and the three potentials become equal.)

淡水点滴落下空間42〜44内から、下方の淡水流下空間48〜50に入った淡水は、それぞれ3本ずつあるスペーサー36B、45A、45B、41Aの最上部の上の空間に入り、後→下→前→下→後→下→前の経路をゆき、前下方の廃淡水点滴ノズル54〜56に入り、水滴となり、その下方の廃淡水落下空間57〜59内の空気中を落下し、廃淡水排出溝60に入り、廃淡水排出管12を経て、外部にすてられる。
その際、淡水流下空間48〜50中の水と、廃淡水排出溝60中の水とは電気的に絶縁され、淡水流下空間48〜50間の短絡が防止される。
Fresh water that has entered the fresh water flow-down spaces 48 to 50 from within the fresh water drip drop spaces 42 to 44 enters the space above the top of each of the three spacers 36B, 45A, 45B, and 41A. → Front → Down → Back → Down → Go along the previous path, enter the front and lower waste fresh water drip nozzles 54 to 56, become water droplets, fall in the air in the waste fresh water fall space 57 to 59 below, and waste It enters into the fresh water discharge groove 60 and passes through the waste fresh water discharge pipe 12 to the outside.
At that time, the water in the fresh water flowing space 48 to 50 and the water in the waste fresh water discharge groove 60 are electrically insulated, and a short circuit between the fresh water flowing spaces 48 to 50 is prevented.

廃淡水点滴ノズル54〜56の下端の直径は、淡水点滴ノズル30〜32のそれより、やや小さく造られるか、ノズル数を少なく造られ、淡水流下空間48〜50の最上部にまで、水は貯まる。
もし、その水位が高くなりすぎると、水面が水位検出電極53に接し、コンピューターは、超音波水位計5の検出設定値を低くし、電磁弁3の開放時間を小さくし、淡水供給筒4内の水位を下げ、淡水点滴ノズル30〜32における点滴頻度を小さくする。(水滴一個の大きさは、ほぼノズル下端の口径に支配され、水圧の影響は受けないが、点滴頻度は、水圧の影響を受ける。)
なお、淡水水位検出電極53に水面が接すると、電磁弁3が閉じるようにし、淡水供給筒4内の水位を制御してもよい。
The diameter of the lower end of the waste fresh water drip nozzles 54 to 56 is made slightly smaller than that of the fresh water drip nozzles 30 to 32, or the number of nozzles is made smaller. Accumulate.
If the water level becomes too high, the water surface comes into contact with the water level detection electrode 53, and the computer lowers the detection setting value of the ultrasonic water level gauge 5, reduces the opening time of the electromagnetic valve 3, and reduces the inside of the fresh water supply cylinder 4 The water level of the fresh water drip nozzles 30 to 32 is reduced. (The size of a single water droplet is almost governed by the diameter of the lower end of the nozzle and is not affected by water pressure, but the frequency of infusion is affected by water pressure.)
The water level in the fresh water supply tube 4 may be controlled by closing the electromagnetic valve 3 when the water surface comes into contact with the fresh water level detection electrode 53.

いっぽう、塩水供給筒9内の塩水も、塩水供給溝33に入り、塩水点滴ノズル34〜35から水滴となって落下し、塩水流下空間51〜52に入り、スペーサー46A、46B、47A、47Bにそって、前→下→後→下→前→下→後とゆき、廃塩水点滴ノズル66、廃塩水落下空間68等を経て、廃塩水排出溝70に入り、塩水排出管13を経て、外部にすてられる。
この際も、各点滴落下空間内の空気の電気的な絶縁作用により、塩水供給溝33内の塩水や、廃塩水排出溝70中の塩水を通じての塩水流下空間51と52の短絡が防止される。
On the other hand, the salt water in the salt water supply tube 9 also enters the salt water supply groove 33, falls as water droplets from the salt water drip nozzles 34 to 35, enters the salt water flowing spaces 51 to 52, and enters the spacers 46A, 46B, 47A, 47B. Then, front → bottom → back → bottom → front → bottom → back, through the waste salt water drip nozzle 66, waste salt water drop space 68, etc., enter the waste salt water discharge groove 70, pass through the salt water discharge pipe 13, and externally. It is done.
Also in this case, due to the electrical insulation action of the air in each drip drop space, a short circuit between the salt water flow-down spaces 51 and 52 through the salt water in the salt water supply groove 33 and the salt water in the waste salt water discharge groove 70 is prevented. .

塩水流下空間51〜52の水位が高くなると、塩水水位検出電極65に水面が接触し、検出電流がコンピューターに流れ、超音波水位計10の水面検出設定値が低く設定され、電磁弁8の開放時間が小さくなり、水位を低くし、塩水点滴ノズル34〜35の点滴頻度を小さくする。   When the water level of the salt water flow-down spaces 51 to 52 becomes high, the water surface comes into contact with the salt water level detection electrode 65, the detection current flows to the computer, the water level detection set value of the ultrasonic water level meter 10 is set low, and the electromagnetic valve 8 is opened. Time is reduced, the water level is lowered, and the infusion frequency of the salt water infusion nozzles 34-35 is reduced.

なお、上例では、淡水供給溝29や塩水供給溝33等をフレーム23〜28の上縁の切欠の連続で形成させたが、フレーム上縁の突出部を削除し、平坦化し、容器1の上壁から下垂する物体で、その突出部の代わりをさせたり、容器1の上壁を上に溝状にふくらませて溝29と33を形成してもよい。
下部の廃淡水排出溝60と、廃塩水排出溝70も同様に形成させてもよい。
各点滴ノズルや、その下方の点滴落下空間をフッ素樹脂その他の撥水性の大きい材料で作製したり、表面を撥水性材料で被覆してもよい。
In the above example, the fresh water supply groove 29, the salt water supply groove 33, and the like are formed by the continuous cutouts on the upper edges of the frames 23 to 28. Grooves 29 and 33 may be formed by an object that hangs down from the upper wall, instead of the protruding portion, or by bulging the upper wall of the container 1 in a groove shape.
The lower waste fresh water discharge groove 60 and the waste salt water discharge groove 70 may be formed in the same manner.
Each drip nozzle and the drip drop space below it may be made of a fluororesin or other highly water repellent material, or the surface may be covered with a water repellent material.

次に容器1外の電線を通じて、マイナス側導電線14と、プラス側導電線22とをつないだ際の電気的な作用について説明する。
その際、陰イオンは塩化物イオン(塩素イオン)で代表し、陽イオンは、ナトリウムイオンで代表して記載することにする。
なお、実用的には、導電線14と22間にインバーターを入れ、昇圧し、交流に変換し、送電線に供給する等することが多い。
塩水流下空間51中に貯まった塩水中の塩化物イオン等の陰イオンは、陰イオン交換膜37を通過して、左方の淡水流下空間48に入り、陽イオン交換膜39を通過したナトリウムイオン等の陽イオンは、右方の淡水流下空間49に入り、イオン流による電流は、淡水流下空間49から、淡水流下空間48に流れることになる。
その結果、マイナス電極板36と、導電性隔壁45との間が一つの起電力ユニット(セル)を形成し、両者間に、1V程度の電位差(起電力)が生じることになる。
また、塩水流下空間52内の塩水中の陰イオンは、左方の淡水流下空間49に入り、陽イオン交換膜40を通過した陽イオンは、右方の淡水流下空間50に入り、一つの起電力ユニットを形成し、導電性隔壁45と、プラス電極板41との間に、1V程度の電位差(起電力)が生じる。
両ユニット(セル)は、直列につながっているので、マイナス電極板36とプラス電極板41との間、すなわち、導電線14と22の間には、2V程度の電位差(起電力)が生じることになる。
電極板36(淡水流下空間48)の電位を0Vとすれば、塩水流下空間51は約0.5V、導電生隔壁45は約1v、塩水流下空間52は約1.5V、プラス電極板41は、約2Vになる。
Next, the electrical action when the minus side conductive wire 14 and the plus side conductive wire 22 are connected through the electric wire outside the container 1 will be described.
In this case, the anion is represented by chloride ion (chlorine ion), and the cation is represented by sodium ion.
In practice, an inverter is often inserted between the conductive wires 14 and 22 to increase the pressure, convert it into alternating current, and supply it to the power transmission line.
Anions such as chloride ions stored in the saltwater flow-down space 51 pass through the anion exchange membrane 37, enter the left freshwater flow space 48, and pass through the cation exchange membrane 39. And the like enter the fresh water flow space 49 on the right side, and the current due to the ion flow flows from the fresh water flow space 49 to the fresh water flow space 48.
As a result, a single electromotive force unit (cell) is formed between the negative electrode plate 36 and the conductive partition wall 45, and a potential difference (electromotive force) of about 1 V is generated between them.
Also, the anions in the salt water in the salt water flow-down space 52 enter the left fresh water flow space 49, and the cations that have passed through the cation exchange membrane 40 enter the right fresh water flow space 50 to generate one occurrence. A power unit is formed, and a potential difference (electromotive force) of about 1 V is generated between the conductive partition wall 45 and the positive electrode plate 41.
Since both units (cells) are connected in series, a potential difference (electromotive force) of about 2 V is generated between the negative electrode plate 36 and the positive electrode plate 41, that is, between the conductive wires 14 and 22. become.
If the potential of the electrode plate 36 (fresh water flow space 48) is 0V, the salt water flow space 51 is about 0.5V, the conductive partition wall 45 is about 1v, the salt water flow space 52 is about 1.5V, and the positive electrode plate 41 is , About 2V.

一つの絶縁容器1を右方に延長し、その中に、このようなユニット(セル)を多数設ければ、各ユニットに生じる単位起電力は、そのユニット数(セル数)だけ倍増されることになる。
左右幅1〜2mm程度の間に、一つのユニット(セル)を形成することも可能であるから、一つの絶縁容器1で、数千V、数万ボルトの起電力を得ることも可能になる。
If one insulating container 1 is extended to the right and a large number of such units (cells) are provided therein, the unit electromotive force generated in each unit is doubled by the number of units (cells). become.
Since it is possible to form one unit (cell) between about 1 to 2 mm in the lateral width, an electromotive force of several thousand volts and tens of thousands of volts can be obtained with one insulating container 1. .

なお、各容器1内に多数の直列セルを設け、高電圧を取り出しうるようにする場合の、
淡水(淡水層)、隔壁(導電性隔壁)、陰膜(陰イオン交換膜)、塩水(塩水層)、陽膜(陽イオン交換膜)、等の配列は、例えば、次のようになる。
−−−−−−−−−−−−−−−−−−−−−−−−−
陰極→淡水→陰膜→塩水→陽膜→淡水→隔壁→淡水→陰膜→塩水→陽膜
→淡水→隔壁→淡水→陰膜→塩水→陽膜→淡水→隔壁→淡水→陰膜→塩水
→陽膜→淡水→隔壁→淡水→陰膜→塩水→陽膜→淡水→隔壁→淡水→陰膜
→塩水→陽膜→淡水→隔壁→淡水→隔壁……→淡水→陽極
−−−−−−−−−−−−−−−−−−−−−−−−−
In addition, in the case of providing a large number of series cells in each container 1 so that a high voltage can be taken
The arrangement of fresh water (fresh water layer), partition wall (conductive partition wall), negative membrane (anion exchange membrane), salt water (salt water layer), positive membrane (cation exchange membrane), etc. is as follows, for example.
------------------------
Cathode → fresh water → negative membrane → salt water → positive membrane → fresh water → septum → fresh water → negative membrane → salt water → positive membrane → fresh water → septum → fresh water → negative membrane → salt water → positive membrane → fresh water → septum → fresh water → negative membrane → salt water → Positive membrane → Freshwater → Separate → Freshwater → Inverted membrane → Positive membrane → Freshwater → Separate → Freshwater → Intimate membrane → Saltwater → Positive membrane → Freshwater → Separate → Freshwater → Separate …… → Freshwater → Anode −−−−− --------------------

上表の各隔壁の左側は、塩素(または塩素ガス)を発生する可能性のある淡水層で、塩素域(陰イオン拡散淡水流下空間)とよび、右側は、水素(または水素ガス)を発生する可能性のある淡水層で、水素域(陽イオン拡散淡水流下空間)とよぶことにする。
図2その他に記す淡水供給溝29を前後の2本に分け、前者に入った淡水は、それにのみ連なる点滴ノズルを経て、塩素域に入り、後者に入った淡水は、専用のノズルを経て、水素域に入り、二種のガスを分離しやすくしてもよい。
廃淡水排出溝60も前後に分け、塩素域の廃淡水は前者に、水素域の廃淡水は、後者に流せばよい。
The left side of each partition in the above table is a fresh water layer that can generate chlorine (or chlorine gas), which is called the chlorine region (anion diffusion fresh water flow space), and the right side generates hydrogen (or hydrogen gas). This is a freshwater layer that has the potential to be called a hydrogen region (a cation diffusion freshwater flow space).
The fresh water supply groove 29 described in FIG. 2 and others is divided into two front and rear, and the fresh water that has entered the former passes through the drip nozzle connected only to it, enters the chlorine region, and the fresh water that enters the latter passes through a dedicated nozzle, It may be easy to separate the two gases by entering the hydrogen region.
The waste fresh water discharge groove 60 is also divided into front and rear, and waste fresh water in the chlorine region may flow to the former, and waste fresh water in the hydrogen region may flow to the latter.

塩素域の廃淡水は塩素が少なく、水素域の廃淡水はナトリウムが多く、両水を多量に海に流すと、海水がアルカリ性に傾くので、その場合には、隔壁を省略したシステムを用いるか、回収した塩素ガスを廃水に細度加える必要がある。   Chlorine wastewater is low in chlorine, hydrogen wastewater is rich in sodium, and if a large amount of both water flows into the sea, the seawater becomes inclined to alkalinity. Therefore, it is necessary to add the recovered chlorine gas to waste water.

なお、導電性隔壁45は、考察を容易にするためと、その左側に塩素ガスを発生させ、右側に水素ガスと水酸化ナトリウムを得るために設けたものであり、それらの採取を求めなければ、スペーサー機能だけを持つ、絶縁体製の網等でもよい。
なお、ボルタ電池等の外部を導電線でつなぐと、電流は、陽極から陰極に流れるが、電池内部では逆に、亜鉛の陽イオンは、陰極の亜鉛板から、陽極の銅板に移動する。
同様に、陽イオン交換膜39〜40から右方に出た陽イオンは、マイナス電極板36側から、プラス電極板41の側に移動し、容器1の外で、電線で結べば、プラス側導電線22からマイナス側導電線14に電線を通じて電流が流れる。(電子流は、その逆になる。)
The conductive partition wall 45 is provided for easy consideration and for generating chlorine gas on the left side and for obtaining hydrogen gas and sodium hydroxide on the right side. Also, an insulator net having only a spacer function may be used.
When the outside of the voltaic battery or the like is connected by a conductive wire, the current flows from the anode to the cathode. Conversely, inside the battery, the cation of zinc moves from the zinc plate of the cathode to the copper plate of the anode.
Similarly, the cation emitted to the right side from the cation exchange membranes 39 to 40 moves from the negative electrode plate 36 side to the positive electrode plate 41 side and is connected to the positive electrode plate 41 outside the container 1 by a wire. A current flows from the conductive wire 22 to the negative conductive wire 14 through the electric wire. (The electron flow is the opposite.)

各流下空間の間の電気的な短絡は、前述のように、各点滴落下空間中の空気の絶縁作用により防止されるが、このような多くのユニットを含む絶縁容器を多数設け、その両端の導電線を直列につなぎ、更に高い電圧を得ることもできる。
その際、各一つの淡水供給管と塩水供給管をそれぞれ分岐させて給水することになるが、高電圧になると、一容器内では短絡が起こらなかったとしても、多数の容器がつながると、点滴落下空間内の空気の絶縁破壊が起こりうるので、前術のように、電似弁3や8も電気絶縁性にすることが望ましい。
ただし、各点滴落下空間の上下長を充分大きくすれば、比例して、耐圧性は大きくなる。
As described above, an electrical short circuit between each falling space is prevented by the insulating action of air in each drip dropping space. However, a large number of insulating containers including many such units are provided, and Even higher voltages can be obtained by connecting the conductive lines in series.
At that time, each of the fresh water supply pipe and the salt water supply pipe is branched to supply water. However, when a high voltage is applied, even if a short circuit does not occur in one container, if a large number of containers are connected, drip Since dielectric breakdown of the air in the fall space can occur, it is desirable to make the electrovalve valves 3 and 8 electrically insulating as in the previous operation.
However, if the vertical length of each drip drop space is made sufficiently large, the pressure resistance is proportionally increased.

電力消費量が増加し、導電線36と41を通じて多量の電流が流れれば、塩水流下空間51と52内のイオンの移動も増加し、それら空間内の塩分濃度が低下し、結果的に導電線36と41の電位差が低下するが、それを電位差検出器で常時測定しておき、電位差低下が起これば、コンピューターの制御で、電磁弁3と8の開放頻度が増し、各点滴ノズルからの滴下量が増すようにしてもよい。   If the power consumption increases and a large amount of current flows through the conductive wires 36 and 41, the movement of ions in the saltwater flowing spaces 51 and 52 also increases, and the salinity concentration in these spaces decreases, resulting in the conduction of electricity. Although the potential difference between the lines 36 and 41 decreases, it is always measured with a potential difference detector. If the potential difference decreases, the frequency of opening the solenoid valves 3 and 8 increases under the control of the computer, The amount of dripping may be increased.

各流下空間内での水の流動経路を上下にたどるジグザグ経路にしたり、全前後幅をほぼ同時に流下する経路にしたり、その他任意に設計しうる。
発生したガスを速く逃がすため、各流下空間の上下幅を小さくし、ガスは通すが、水は通しにくい微孔を多数有する布、糸、多数の小突起列等にし、前端、または後端が短くなった、ただ1本のスペーサーを用い、水がu字形流路を経て流下するようにしてもよい。
淡水や塩水の流下空間に挿入するスペーサーを、前上部から後下部に走る、1mm径程度のプラスチック細線群と、その逆方向に走るプラスチック細線群を重ねて融着して造った網製にし、廃淡水点滴ノズル54〜56、廃淡水排出溝60等を後下方に設け、廃塩水落下ノズル66、廃塩水排出溝70等を前下方に設ける等してもよい。
The flow path of water in each flow-down space can be a zigzag path that traces up and down, or can be designed to flow along the entire front-back width almost simultaneously, or any other design.
In order to allow the generated gas to escape quickly, the vertical width of each flow-down space is reduced and gas is allowed to pass but water is not allowed to pass through. Only one spacer, which is shortened, may be used so that the water flows down through the u-shaped channel.
The spacer to be inserted into the fresh water and salt water flow-down space is made of a net made by laminating and fusing a group of plastic thin wires of about 1 mm diameter running from the front upper part to the rear lower part and a group of plastic thin wires running in the opposite direction, The waste fresh water drip nozzles 54 to 56, the waste fresh water discharge groove 60 and the like may be provided on the rear lower side, and the waste salt water dropping nozzle 66, the waste salt water discharge groove 70 and the like may be provided on the front lower side.

また、容器1や各フレームを前後に広げて、淡水流下空間48〜50の下端から、少し前へゆき、各流下空間の最上部の高さより、やや低い位置まで上昇する経路につなぎ、それを更に前方に少し伸ばし、更に下に曲げて、7字形の個別流路を形成させ、その直下に廃淡水点滴ノズル54〜56、及び廃点滴落下空間57〜59を設け、廃淡水排出溝60に連なるようにしてもよい。
同様に塩水流下空間51〜52の最下端から後上方に7字形に曲がる流路をつなぎ、容器1内の後上部に位置する廃塩水点滴ノズル等を設けてもよい。
それらの場合、流下空間内の水位は、ほぼ上に向けた流路の最高点の高さに規定されることになる。
In addition, the container 1 and each frame are spread back and forth, and a little forward from the lower end of the freshwater flow space 48 to 50, and connected to a route that rises to a position slightly lower than the height of the top of each flow space, Furthermore, it extends a little forward and bends further downward to form a 7-shaped individual flow path. A waste fresh water drip nozzle 54 to 56 and a waste drip drop space 57 to 59 are provided immediately below the flow path. You may make it continue.
Similarly, a waste water drop drip nozzle or the like located at the rear upper part in the container 1 may be provided by connecting a flow path bent in a seven-letter shape from the lowermost end of the salt water lowering spaces 51 to 52.
In those cases, the water level in the flow-down space is defined by the height of the highest point of the flow path substantially upward.

陰イオン交換膜37を通過して淡水流下空間48に入った塩化物イオンは、マイナス電極板36に電子をうばわれ、園素原子・分子になり、多くは水に溶解する。
陰イオン交換膜38を通過して淡水流下空間49に入った塩化物イオンは、陽イオン交換膜39を右へ通過したナトリウム陽イオンが接している導電性隔壁45に接して、塩素原子・分子になり、多くは水に溶解する。
水に溶けたものは、廃淡水排出管12に入るので、図示しない気水分離タンクに導き、塩素ガスを回収してもよい。
一部は、気化して、淡水点滴落下空間42〜43に入るので、図示しないが、それら空間の上部に設けたフレームの溝状陥凹から成る小排気管を経て、淡水供給溝29の前方に設けたフレーム23〜28の切欠や左右方向の貫通孔の集合から成るガス排気溝を経て、容器1外に取り出すようにする。(ポンプで吸引してもよい。)
ただし、導電性隔壁45を省略した場合には、両イオンが対になり、塩化ナトリウムを形成して、水中にのみ溶解することになる。
Chloride ions that have passed through the anion exchange membrane 37 and entered the fresh water flow-down space 48 receive electrons in the negative electrode plate 36 to become arsenic atoms / molecules, and most of them are dissolved in water.
Chloride ions that have passed through the anion exchange membrane 38 and entered the fresh water flow space 49 come into contact with the conductive partition 45 where the sodium cation that has passed through the cation exchange membrane 39 to the right is in contact with chlorine ions / molecules. And many dissolve in water.
Since the substance dissolved in water enters the waste fresh water discharge pipe 12, it may be led to an air / water separation tank (not shown) to collect chlorine gas.
Some of them are vaporized and enter the fresh water drip drop spaces 42 to 43, so that although not shown, the front of the fresh water supply groove 29 passes through a small exhaust pipe made of a groove recess in the frame provided in the upper part of these spaces. It is made to take out out of the container 1 through the gas exhaust groove which consists of the notch of the frames 23-28 provided in this, and the collection of the through-hole of the left-right direction. (It may be sucked with a pump.)
However, when the conductive partition wall 45 is omitted, both ions are paired to form sodium chloride and dissolve only in water.

資源回収の目的から、導電性隔壁45を密閉型の板にし、その左方の水酸化ナトリウムを含む水と、右方の塩素を含む水とを別個の廃淡水経路に導き、容器1外に取り出してもよい。
水素ガスや塩素ガスを多量に取り出すため、他の装置で発電した電圧をマイナス側導電線14と、プラス側導電線22に並列または直列に印加し、エネルギーの加算を図ってもよい。
For the purpose of resource recovery, the conductive partition wall 45 is a sealed plate, the water containing sodium hydroxide on the left side and the water containing chlorine on the right side are led to separate waste fresh water passages, and outside the container 1 It may be taken out.
In order to extract a large amount of hydrogen gas or chlorine gas, the voltage generated by another device may be applied in parallel or in series to the negative side conductive wire 14 and the positive side conductive wire 22 to add energy.

陽イオン交換膜39の右方の淡水流下空間49のうちの左半部に入ったナトリウムイオンは、右方に塩化物イオンが接する導電性隔壁45に接して電子を受け、ナトリウム原子になり、水と反応して水素ガスを発生し、水酸化ナトリウムになる。
陽イオン交換膜40の右方の淡水流下空間50に入ったナトリウムイオンも、プラス電極板41から電子を受け取り、ナトリウム原子になり、水と反応して、水酸化ナトリウムになり、水素ガスを発生する。(ナトリウムイオンの周囲を取り囲む水分子の一部が、まず電子を受けて水素ガスを発生し、同時に生じる水酸化物イオンが、ナトリウムイオンと対になるといってもよい。)
それらのガスの一部は水に溶けたまま、廃淡水排出管12に入るので、気水分離タンクで水素ガスを回収してもよい。
その水素ガスは、導電性隔壁45の右方に生じた淡水点滴落下空間43に塩素ガスと共に入るので、前記の回収管に導くか、導電性隔壁45の左右に別個に設けた淡水点滴ノズルと点滴落下空間を経た淡水が入るようにし、塩素ガスのみ、及び水素ガスのみを回収しうるようにする。
淡水流下空間50に入ったナトリウムイオンは、プラス電極板41から電子を受け取り、ナトリウム原子になり、水と反応して水酸化ナトリウムになり、水素ガスを発生し、一部は水に溶解して廃淡水排出管12に入り、他の一部は淡水点滴落下空間44に入り、図示しないガス排気管を経て、容器1外に導かれる。
ただし、塩水流下空間51〜52内では、塩化物イオンとナトリウムイオンが、等量減少するので、ガスの発生は起こらない。
Sodium ions entering the left half of the fresh water flow space 49 on the right side of the cation exchange membrane 39 are in contact with the conductive partition wall 45 in contact with chloride ions on the right side, receive electrons, and become sodium atoms. Reacts with water to generate hydrogen gas, becoming sodium hydroxide.
Sodium ions that enter the fresh water flow space 50 on the right side of the cation exchange membrane 40 also receive electrons from the positive electrode plate 41, become sodium atoms, react with water, become sodium hydroxide, and generate hydrogen gas. To do. (It may be said that a part of water molecules surrounding the sodium ion first receives electrons to generate hydrogen gas, and the hydroxide ion generated at the same time is paired with the sodium ion.)
Since some of these gases enter the waste fresh water discharge pipe 12 while being dissolved in water, hydrogen gas may be recovered in the steam separation tank.
Since the hydrogen gas enters the fresh water drip drop space 43 generated on the right side of the conductive partition wall 45 together with the chlorine gas, the hydrogen gas is guided to the recovery pipe or a fresh water drip nozzle provided separately on the left and right sides of the conductive partition wall 45. Fresh water that has passed through the drip drop space is allowed to enter, and only chlorine gas and hydrogen gas can be recovered.
Sodium ions that have entered the freshwater flow space 50 receive electrons from the positive electrode plate 41, become sodium atoms, react with water to form sodium hydroxide, generate hydrogen gas, and partly dissolve in water. The waste fresh water discharge pipe 12 is entered and the other part enters the fresh water drip drop space 44 and is led out of the container 1 through a gas exhaust pipe (not shown).
However, since chloride ions and sodium ions are reduced in an equal amount in the saltwater flow spaces 51 to 52, no gas is generated.

各点滴落下空間には、常に、淡水や塩水に溶けていた大気中からの窒素・酸素、作動で発生した塩素・水素等の気体が存在するが、淡水供給管2や、塩水供給管7に送る水中に、ポンプで予め空気を吹き込み、飽和限度近くまで溶解させておき、点滴落下空間で気化するようにしてもよい。   In each drip fall space, there are always gases such as nitrogen and oxygen from the atmosphere dissolved in fresh water and salt water, and chlorine and hydrogen generated in operation. However, the fresh water supply pipe 2 and the salt water supply pipe 7 Air may be blown into the water to be sent in advance with a pump so as to be dissolved to near the saturation limit, and vaporized in the drip drop space.

上例では、各点滴ノズルをフレーム23〜28の集合体で形成したが、フレーム23〜28の上縁に設けた淡水点滴ノズル30〜32と、その直下の点滴落下空間42〜44、及び塩水点滴ノズル34〜35と、その直下の塩水点滴落下空間を削除・省略し、容器1の上壁下面に接する点滴ノズル容器を乗せる。
それは、前後に仕切られた浅いプラスチック製箱形で、底壁に、多数の漏斗形点滴ノズルを形成させ、その底壁の撥水性材料で被覆した下面から下方に突出する膜面に平行なスリット(細隙・細隙様貫通孔)状の内空を有する管から成る点滴落下空間を同材料で形成させ、淡水流下空間48〜50や、塩水流下空間51〜52の上縁に接触させ、同様の廃淡水用のノズル容器を各流下空間の下部に取り付け、廃淡水点滴ノズル54〜56等を省略してもよい。
その際、ノズル容器下面の点滴落下空間形成用の管の数を減し、各管の横方向のカバー範囲を左右に広げたり、その管を全部省略してもよい。
その場合、水滴が最初に接する各フレーム等の上縁を刃物状にする等して、水滴が飛散しないようにする。
In the above example, each drip nozzle is formed of an assembly of frames 23 to 28, but fresh water drip nozzles 30 to 32 provided on the upper edges of the frames 23 to 28, drip drop spaces 42 to 44 directly below, and salt water The drip nozzles 34 to 35 and the salt water drip dropping space immediately below the drip nozzles 34 are deleted and omitted, and a drip nozzle container in contact with the lower surface of the upper wall of the container 1 is placed.
It is a shallow plastic box divided in the front and back, and a lot of funnel-shaped drip nozzles are formed on the bottom wall, and a slit parallel to the film surface that protrudes downward from the bottom surface covered with a water-repellent material on the bottom wall. A drip drop space composed of a tube having a (slit / slit-like through hole) -shaped inner space is formed of the same material, and is brought into contact with the upper edge of the fresh water flow space 48 to 50 or the salt water flow space 51 to 52, A similar waste fresh water nozzle container may be attached to the lower part of each downflow space, and the waste fresh water drip nozzles 54 to 56 and the like may be omitted.
At that time, the number of tubes for forming the drip drop space on the lower surface of the nozzle container may be reduced, and the horizontal cover range of each tube may be expanded to the left or right, or all the tubes may be omitted.
In such a case, the upper edge of each frame or the like with which the water droplet first contacts is made a blade shape so that the water droplet does not scatter.

ノズル容器下面の点滴落下空間形成用の管の下端と、流下空間の上縁が、ボルト19、21等の締め付け境度により、食い違うことが起こりうるので、各フレーム上下縁とノズル容器面を凹凸形にして噛み合わせ、かつ、締め付け強度も適正値に選び、食い違いを防いでもよい。
また、例えば、上下×前後が1m角の、プラスチック細線でゆるやかに編んだ網の上下前後に、幅50mmのプラスチックフィルムテープを左右から、加熱・加圧して貼り付け、厚さ0.2mmのかみそりの刃状の枠を形成させ、淡水用のそのような網には、前縁と後縁、上半部と後半部の上縁及び下縁に、幅50mm、厚さ1mmのプラスチックシートやシリコーンゴムシートを貼り付け、かつ、後半部の上端に落ちてきた水滴が飛散しないようにするため、上縁を三角形状にとがらせ、ナイフの刃状にし(針の列状にしてもよい)、淡水用スペーサー付フレームを形成させる等してもよい。(水がナイフによく付着するように、表面を親水性物質で被覆したり、逆に、水滴がきれいに切り裂かれるように、撥水性物質で被覆したりしてもよい。)
塩水用スペーサー付フレームでは、0.2mm厚の枠を貼り付けた網の前縁と後縁及び、上縁と後縁の前半部に、50mm幅で、厚さが1mmのプラスチックシートやシリコーンゴムシートを左右から貼り付け、上端をナイフの刃状にしたものにする。
多数の両フレームを交互に平行に並べ、1m角の陰イオン交換膜と、陽イオン交換膜を交互に、それらフレームの間に挿入した集合体を形成させる。
その集合体の上方100mm程度の高さに、上記の点滴ノズル容器の底面を位置させ、前半部には、淡水の多数の水滴が落ち、集合体上の前半部の各開口から淡水用スペーサー付フレーム中に入り、塩水の水滴は、後半部の開口から、塩水用スペーサー付フレーム中に入るようにする等にしてもよい。
例えば、容器1のゆれ等で、淡水の水滴が塩水用スペーサー付フレームの前半部の上に落ちたとしても、刃物状部分で左右に裂かれ、その左右の淡水用スペーサーの中に入る等となる。
The bottom edge of the tube for forming the drip drop space on the lower surface of the nozzle container and the upper edge of the flow space may be inconsistent depending on the tightening boundary of the bolts 19, 21, etc. It is also possible to prevent the discrepancy by selecting a proper value for the tightening strength.
Also, for example, a plastic film tape with a width of 50 mm is applied to the top and bottom of a mesh woven gently with plastic thin wires with a 1 m square at the top and bottom x front and back by heating and pressing from the left and right, and a razor of 0.2 mm thickness In such a net for fresh water, a plastic sheet or silicone with a width of 50 mm and a thickness of 1 mm is formed on the front and rear edges, and the upper and lower edges of the upper and lower edges. Attaching a rubber sheet, and in order to prevent the water droplets falling on the upper end of the second half part from scattering, the upper edge is bent into a triangular shape, and it becomes a blade shape of a knife (may be a needle row) A frame with a spacer for fresh water may be formed. (The surface may be coated with a hydrophilic substance so that water adheres well to the knife, and conversely, the surface may be coated with a water-repellent substance so that the water droplets are cut cleanly.)
In the frame with a spacer for salt water, a plastic sheet or silicone rubber with a width of 50 mm and a thickness of 1 mm is attached to the front and rear edges of the net with a 0.2 mm thick frame, and the upper half and the front half of the rear edge. Affix the sheet from the left and right sides, and make the top edge like a knife blade.
A large number of both frames are alternately arranged in parallel to form an assembly in which 1 m square anion exchange membranes and cation exchange membranes are alternately inserted between the frames.
The bottom of the drip nozzle container is positioned at a height of about 100 mm above the assembly, and a large number of fresh water drops fall on the front half, with fresh water spacers from each opening on the front half of the assembly. The salt water droplets may enter the frame and enter the frame with the salt water spacer from the opening in the latter half.
For example, even if a drop of fresh water drops on the front half of the frame with the salt water spacer due to the shaking of the container 1, it is torn to the left and right at the blade-like part and enters the right and left fresh water spacers. Become.

淡水供給管2から淡水または普通の海水を供給し、塩水供給管7から海水淡水化の副産物として生産された高濃度塩水を供給する等してもよい。   Fresh water or ordinary seawater may be supplied from the fresh water supply pipe 2, and high-concentration salt water produced as a by-product of seawater desalination may be supplied from the salt water supply pipe 7.

図7は、前例のような点滴ノズルを用いない、多数のセルを内部で並列に接続したユニットを複数個直列につないだ実施例の平面図。
図8は、その7字形排水管湾曲部の高さにおける横断面図。
図9は、淡水供給管72の位置における縦断正面図。
図10は、淡水供給管72の位置における縦断左側面図。
FIG. 7 is a plan view of an embodiment in which a plurality of units in which a large number of cells are connected in parallel are connected in series without using an infusion nozzle as in the previous example.
FIG. 8 is a cross-sectional view at the height of the curved portion of the seven-shaped drain pipe.
FIG. 9 is a longitudinal front view of the fresh water supply pipe 72.
FIG. 10 is a longitudinal left side view of the fresh water supply pipe 72.

71は、底面を撥水材料で被覆した電気絶縁材料製給水容器。
72は、その上面の前上部に設けた淡水供給管。
73は、その右後方の塩水供給管。
74は、上面に設けたステッピングモーター内蔵の電動弁駆動装置。
75は、その内部のピニオンにかみあうラック。
76は、その右端に連なる駆動板。
77〜78は、その前下端と後下端に連なり、給水容器71を左右に貫く絶縁材料製の弁体。
79〜80は、給水容器71の下部に置かれた全く同構造の、各容器内に、二つのセルが並列に接続されて収められている単位起電力しか出さない並列ユニット。
81〜82は、各ユニットの後方に突出したマイナス導電線。
83〜84は、その各右方に突出したプラス導電線。
85は、ユニット79のプラス導電線とユニット80のマイナス導電線をつなぐ連結導電線。
86A〜87Aは、各ユニットの前面に設けた側方から見た形が7字形をなす、塩素域廃淡水排出7字形管。(水位規定と、点滴ノズルとしての機能も持つ。)
86B〜87Bは、それらの各右方の水素域廃淡水排出7字形管。
88〜89は、それらの各右方に設けた廃塩水排出7字形管。
86AC〜89cは、廃淡水と廃塩水の落下点に設けた水滴検出電極。
71 is a water supply container made of an electrically insulating material whose bottom surface is covered with a water repellent material.
72 is a fresh water supply pipe provided in the front upper part of the upper surface.
73 is a salt water supply pipe on the right rear side.
74 is an electric valve driving device with a built-in stepping motor provided on the upper surface.
75 is a rack that meshes with the pinion inside.
76 is a drive plate connected to the right end.
Reference numerals 77 to 78 denote valve bodies made of an insulating material that are connected to the front lower end and the rear lower end and penetrate the water supply container 71 from side to side.
79 to 80 are parallel units that output only unit electromotive force in which two cells are connected in parallel and stored in each container in the same structure, placed under the water supply container 71.
Reference numerals 81 to 82 denote negative conductive wires protruding rearward of each unit.
83 to 84 are positive conductive wires projecting to the right of each.
Reference numeral 85 denotes a connecting conductive wire that connects the positive conductive wire of the unit 79 and the negative conductive wire of the unit 80.
86A-87A is a 7-shaped chlorinated wastewater discharge pipe, with a 7-shaped shape seen from the side provided on the front of each unit. (Also has water level regulation and function as an infusion nozzle.)
86B to 87B are 7-shaped pipes of hydrogen zone waste freshwater discharge to the right of each of them.
Nos. 88 to 89 are waste salt water discharge 7-shaped pipes provided to the right of each.
86AC to 89c are water droplet detection electrodes provided at the dropping points of waste fresh water and waste salt water.

90は、給水容器71中の前半部の淡水供給空洞。
91A〜91Bは、その底壁の左方の塩水域と水素域の淡水供給用貫通孔(ユニット79上)。
92A〜92Bは、右方の塩水域と水素域への淡水供給用貫通孔(ユニット80への)。
93A〜93Bは、弁体77に設けた左右の貫通孔。
94は、給水容器71の後半部の塩水供給空洞。
なお、その底壁には、ユニット79〜80の塩水供給溝に連なる貫通孔が存在し、底壁上の弁体78にも、貫通孔があるが、図示しない。
また、ユニット80内の各部分の符号の記載をほとんど省略する。
なお、給水容器71は、電動弁の弁箱、その底壁は弁座とみなすことができる。
Reference numeral 90 denotes a fresh water supply cavity in the first half of the water supply container 71.
91A to 91B are fresh water supply through holes (on the unit 79) in the salt water area and hydrogen area on the left side of the bottom wall.
92A to 92B are through holes for supplying fresh water to the right saltwater area and hydrogen area (to unit 80).
93 </ b> A to 93 </ b> B are left and right through holes provided in the valve body 77.
94 is a salt water supply cavity in the latter half of the water supply container 71.
The bottom wall has a through hole connected to the salt water supply grooves of the units 79 to 80, and the valve body 78 on the bottom wall also has a through hole, which is not shown.
Also, the description of the reference numerals of the respective parts in the unit 80 is almost omitted.
The water supply container 71 can be regarded as a valve box of an electric valve, and its bottom wall as a valve seat.

95〜99は、電極板、イオン交換膜等を囲む、後から前に並ぶ絶縁材料製のフレーム。
100Aは、その左上部の切欠の連続から成る前後に走る塩素域(陰イオン拡散)淡水供給溝。(図8、10のように、その底面には、フレーム95と99の上部の後面の陥凹から成るスリット状(図では長方形)の下方に連なる貫通孔が存在する。)(この溝は、底面の貫通孔の延長部分とみなすこともできる。)
100Bは、その右方の水素域(陽イオン拡散)淡水供給溝。(その底面には、フレーム97の上部の後面の陥凹より成るスリット状貫通孔が存在する。)
100cは、ユニット80の塩素域淡水供給溝。
100Dは、その右方の水素域淡水供給溝。
101A〜101Bは、ユニット79〜80の右上部の塩水供給溝。
102Aは、ユニット79内の左下部の塩素域廃淡水排出溝。
102Bは、その右方の水素域廃淡水排出溝。
103は、その右方の廃塩水排出溝。
104〜105は、フレーム95と、99に囲まれた、左上隅の張りだし部には、マイナス導電線81が貫通する並列接続用のマイナス電極板(陰極板)。(マイナス導電線が通る左上部のみを金属板製にし、それに連なる他の部分は、炭素繊維製や耐蝕性金属製の網の前後面に、目の粗い発泡樹脂板やプラスチックウール製、ガラスウール製の不織布等を貼り付けたものにしてもよい。)
106は、フレーム97に囲まれた右上隅の張り出し部にプラス導電線83が貫通するプラス電極板(陽極板)。
107A〜107Bは、ユニット80内の左下部の塩素域・水素域廃淡水排出溝。
108は、その右方の廃塩水排出溝。
109〜110は、フレーム96と、99に囲まれた陰イオン交換膜。
111〜112は、フレーム97と、98に囲まれた陽イオン交換膜。
Reference numerals 95 to 99 denote frames made of an insulating material that surround the electrode plate, the ion exchange membrane, and the like and are lined up afterwards.
100A is a chlorine region (anion diffusion) fresh water supply groove that runs forward and backward consisting of a series of notches in the upper left part. (As shown in FIGS. 8 and 10, there is a through-hole in the bottom of the slit 95 (rectangular in the figure) formed by a recess in the upper rear surface of the frames 95 and 99. (It can also be regarded as an extension of the bottom through hole.)
100B is a hydrogen region (cation diffusion) fresh water supply groove on the right side. (On its bottom surface, there is a slit-like through hole made of a recess on the rear surface of the upper portion of the frame 97.)
100 c is a chlorine region fresh water supply groove of the unit 80.
100D is the hydrogen fresh water supply groove on the right side.
101A to 101B are salt water supply grooves in the upper right part of the units 79 to 80.
102A is a chlorine area waste freshwater discharge groove in the lower left part of the unit 79.
102B is a hydrogen zone waste freshwater discharge groove on the right side.
103 is a waste saltwater drain on the right side.
Reference numerals 104 to 105 denote negative electrode plates (cathode plates) for parallel connection, which are surrounded by the frames 95 and 99 and through which a negative conductive wire 81 penetrates at the protruding portion at the upper left corner. (Only the upper left part through which the negative conductive wire passes is made of a metal plate, and the other parts connected to it are made of a carbon fiber or corrosion-resistant metal mesh on the front and rear surfaces of a meshed foam resin plate, plastic wool, or glass wool. (It may be made by pasting a non-woven fabric, etc.)
Reference numeral 106 denotes a positive electrode plate (anode plate) through which the positive conductive wire 83 penetrates the protruding portion in the upper right corner surrounded by the frame 97.
107A to 107B are chlorine / hydrogen region waste freshwater discharge grooves in the lower left part of the unit 80.
108 is a waste saltwater drain on the right side.
109 to 110 are anion exchange membranes surrounded by a frame 96 and 99.
Reference numerals 111 to 112 denote cation exchange membranes surrounded by a frame 97 and 98.

(1) 図示しない水源と電磁弁から、淡水供給管72を通じて、給水容器71内の淡水供給空洞90に淡水が供給され、塩水供給管73を通じて塩水供給空洞94に塩水が供給される。
その淡水は、弁体77の貫通孔93Aから、直下の貫通孔91Aのみを通じて、塩素域淡水供給溝100Aに入り、それに満たされ、溝の底面の二つのスリット状貫通孔を流下して、マイナス電極板104と、陰イオン交換膜109との間の塩素域淡水流下空間に入り、また、等電位である陰イオン交換膜110と、マイナス電極板105の間の塩素域淡水流下空間にも入る。
(2) ついで、図示しないコンピューターが駆動装置74内のステッピングモーターを動かし、ラック75が少し右進し、駆動板76、弁体77〜78も右進し、弁体77の貫通孔93Bが貫通溝92Aにいっちし、ユニット80の塩素域淡水供給溝100Cに入り、その下方に流下する。
(3) ついで、駆動装置74が働き、弁体77と78が右進し、貫通孔93Aが貫通孔91Bにいっちし、水素域淡水供給溝100Bに給水され、プラス電極板106の前後の等電位の水素域淡水流下空間に流下する。
(4) ついで、貫通孔93Bが貫通孔92Bにいっちし、淡水がユニット80の水素域淡水供給溝100Dに淡水を給水し、その下方に流下する。
(5) ついで、図示しない弁体78の左方の貫通孔が塩水供給溝101A上にある塩水供給空洞94の貫通孔にいっちし、塩水が塩水供給溝101Aに入り、陰イオン交換膜109と、陽イオン交換膜111の間、及び陰イオン交換膜110と、陽イオン交換膜112の間に流下する。
(6) ついで、図示しない弁体78の右方の貫通孔がユニット80の塩水供給溝101B上にある塩水供給空洞94の貫通孔にいっちし、塩水供給溝101Bに塩水が入り、その下方の二つの、陰イオン交換膜と、陽イオン交換膜の間に流下する。
なお、ここで、塩素域淡水供給溝や、水素域淡水供給溝等を経て、それぞれ、複数の等電位の流下空間が電気的につながっているが、等電位箇所間であれば、電流が流れることはない点が本発明に関して重要な点である。
(1) Fresh water is supplied from a water source and a solenoid valve (not shown) to the fresh water supply cavity 90 in the water supply container 71 through the fresh water supply pipe 72, and salt water is supplied to the salt water supply cavity 94 through the salt water supply pipe 73.
The fresh water enters the chlorine region fresh water supply groove 100A from the through hole 93A of the valve body 77 only through the direct through hole 91A, fills it, flows down the two slit-like through holes on the bottom surface of the groove, and is minus. It enters the chlorine fresh water flow space between the electrode plate 104 and the anion exchange membrane 109, and also enters the chlorine fresh water flow space between the anion exchange membrane 110 and the negative electrode plate 105 that are equipotential. .
(2) Next, a computer (not shown) moves the stepping motor in the drive device 74, the rack 75 moves slightly to the right, the drive plate 76 and the valve bodies 77 to 78 also move to the right, and the through hole 93B of the valve body 77 penetrates. It enters into the groove 92A, enters the chlorine region fresh water supply groove 100C of the unit 80, and flows downward.
(3) Next, the drive device 74 works, the valve bodies 77 and 78 move rightward, the through hole 93A enters the through hole 91B, and is supplied to the hydrogen fresh water supply groove 100B, before and after the plus electrode plate 106, etc. It flows down into the freshwater flow space of potential hydrogen region.
(4) Next, the through-hole 93B enters the through-hole 92B, and fresh water is supplied to the hydrogen region fresh water supply groove 100D of the unit 80 and flows downward.
(5) Next, the left through-hole of the valve body 78 (not shown) enters the through-hole of the salt water supply cavity 94 on the salt water supply groove 101A, so that the salt water enters the salt water supply groove 101A, and the anion exchange membrane 109 , And between the cation exchange membrane 111 and between the anion exchange membrane 110 and the cation exchange membrane 112.
(6) Next, the right through-hole of the valve element 78 (not shown) enters the through-hole of the salt water supply cavity 94 on the salt water supply groove 101B of the unit 80, and salt water enters the salt water supply groove 101B. It flows down between two anion exchange membranes and a cation exchange membrane.
Here, a plurality of equipotential flow-down spaces are electrically connected to each other via a chlorine zone freshwater supply groove, a hydrogen zone freshwater supply groove, etc., but current flows between equipotential locations. This is an important point regarding the present invention.

ユニット79〜80内の各流下空間に入った水のうち、塩素域の淡水は、塩素域廃淡水排出溝102A、または107Aに入り、7字形管86Aまたは87Aを経て、外気中に滴下される。
同様に、水素域流下空間を流下した淡水は、水素域廃淡水排出溝102B、または107Bに入り、7字形管86B、または87Bを経て、外気中に滴下される。
Of the water that has entered the downflow spaces in the units 79 to 80, the fresh water in the chlorine region enters the chlorine region waste fresh water discharge groove 102A or 107A, and is dripped into the outside air through the seven-shaped tube 86A or 87A. .
Similarly, fresh water flowing down the hydrogen zone flowing space enters the hydrogen zone waste fresh water discharge groove 102B or 107B, and is dripped into the outside air via the seven-shaped pipe 86B or 87B.

同様に、ユニット79と80の塩水流下空間を流下した塩水は、廃塩水排出溝103、または108と、7字形管88、または89を経て、外気中に滴下される。   Similarly, the salt water flowing down the salt water flowing space of the units 79 and 80 is dropped into the outside air through the waste salt water discharge groove 103 or 108 and the seven-shaped pipe 88 or 89.

このようにして、ユニット79〜80内を淡水と塩水が通過するが、淡水供給溝100〜塩水供給溝101の各上端より、やや低い位置に、廃淡水排出7字形管86〜89の上部の湾曲部があるため、各排出管からの水滴落下と共に、各供給溝内の水位が低下してゆく。
ついに、水滴検出電極86AC〜87BCのいずれかに水滴が落下しなくなると、その情報がコンピューターに入り、駆動装置74が働き、弁体77〜78が動き、貫通孔93A、または93Bが、貫通孔91A〜92Bのいずれかに連なり、減少した塩素域淡水供給溝100A〜100Bのいずれかに、淡水が供給される。
もし、水滴検出電極88C〜89Cに水滴が落ちなくなると、弁体78の図示しない貫通孔が対応する塩水供給空洞94の底壁の貫通孔に連なり、塩水供給溝101A、または101Bに塩水を供給する。
(個々の流路の水滴検出電極を省略し、全廃淡水の流量計と、全廃塩水の流量計のみを設け、一定速度で弁体77〜78を左右に動かしてもよい。)
In this way, fresh water and salt water pass through the units 79 to 80, but the upper portions of the waste fresh water discharge seven-shaped pipes 86 to 89 are positioned slightly lower than the respective upper ends of the fresh water supply groove 100 to the salt water supply groove 101. Since there is a curved portion, the water level in each supply groove decreases as water drops fall from each discharge pipe.
Finally, when the water drops no longer fall on any of the water drop detection electrodes 86AC to 87BC, the information enters the computer, the drive device 74 works, the valve bodies 77 to 78 move, and the through hole 93A or 93B becomes the through hole. Fresh water is supplied to any one of the reduced chlorine region fresh water supply grooves 100A to 100B, connected to any one of 91A to 92B.
If water drops do not fall on the water drop detection electrodes 88C to 89C, a through hole (not shown) of the valve body 78 is connected to a through hole in the bottom wall of the corresponding salt water supply cavity 94, and salt water is supplied to the salt water supply groove 101A or 101B. To do.
(The water droplet detection electrodes of the individual channels may be omitted, and a flow meter for all waste fresh water and a flow meter for all waste salt water may be provided, and the valve bodies 77 to 78 may be moved to the left and right at a constant speed.)

塩水流下空間中の塩化物イオンは、陰イオン交換膜109または110を通過して、塩素域の淡水流下空間に入り、マイナス電極板104または105に電子を与え、電子は、導電線81をマイナスに荷電させる。
ナトリウムイオンは、陽イオン交換膜111または112を通過してプラス電極板106の前後の水素域淡水流下空間中に入り、該プラス電極板から電子をうばい、該電極板と、導電線83をプラス1V程度に荷電させる。
Chloride ions in the salt water flowing space pass through the anion exchange membrane 109 or 110 and enter the fresh water flowing space in the chlorine region, giving electrons to the negative electrode plate 104 or 105, and the electrons minus the conductive wire 81. To charge.
The sodium ions pass through the cation exchange membrane 111 or 112 and enter the hydrogen fresh water flow space before and after the positive electrode plate 106, receive electrons from the positive electrode plate, and add the electrode plate and the conductive wire 83. Charge to about 1V.

このようにして、一つのユニット79内のプラス電極板106の前後に並列に接続された、それぞれ1V程度の起電力を生じる二つの塩分濃度差電池のセルが生じることになる。
また、ユニット79と80は、同構造であり、マイナス導電線82と、プラス導電線84の間にも1V程度の電位差を生じ、ユニット79と80の起電力は、連結導電線85で直列に連なっているので、マイナス導電線81と、プラス導電線84との間に、2V程度の起電力(出力)を得られることになる。
このようなユニットを更に多数左右に並べ、給水容器71、弁体77〜78その他を長くし、高い出力電圧を得ることもできる。
In this way, two salinity-difference battery cells each generating an electromotive force of about 1 V, which are connected in parallel before and after the positive electrode plate 106 in one unit 79, are generated.
Further, the units 79 and 80 have the same structure, and a potential difference of about 1 V is generated between the negative conductive line 82 and the positive conductive line 84. Since they are connected, an electromotive force (output) of about 2 V can be obtained between the negative conductive line 81 and the positive conductive line 84.
A large number of such units can be arranged on the left and right sides, the water supply container 71, the valve bodies 77 to 78, etc. can be lengthened to obtain a high output voltage.

また、各ユニット内に多数の並列セルを設け、大電流を取り出しうるようにしてもよい。
その場合の、左右方向に並べた陰極(陰極板)、淡水(淡水層)、陰膜(陰イオン交換膜)、塩水(塩水層)、陽膜(陽イオン交換膜)、陽極(陽電極板)、等の配列は、例えば、次のようになる。
−−−−−−−−−−−−−−−−−−−−−−−−−
陰極→淡水→陰膜→塩水→陽膜→淡水→陽極→淡水→陽膜→塩水→陰膜
→淡水→陰極→淡水→陰膜→塩水→陽膜→淡水→陽極→淡水→陽膜→塩水
→陰膜→淡水→陰極→淡水→陰膜→塩水→陽膜→淡水→陽極→淡水→陽膜
→塩水→陰膜→淡水→陰極→淡水→陰膜→塩水→陽膜→……
−−−−−−−−−−−−−−−−−−−−−−−−−
Further, a large number of parallel cells may be provided in each unit so that a large current can be taken out.
In that case, the cathode (cathode plate), fresh water (fresh water layer), negative membrane (anion exchange membrane), salt water (brine salt layer), positive membrane (cation exchange membrane), positive electrode (positive electrode plate) arranged in the horizontal direction ), Etc., for example, are as follows.
------------------------
Cathode → Fresh water → Plate membrane → Salt water → Positive membrane → Fresh water → Anode → Fresh water → Positive membrane → Salt water → Plate membrane → Fresh water → Cathode → Fresh water → Plate membrane → Salt water → Positive membrane → Fresh water → Anode → Fresh water → Positive membrane → Brine → Negative membrane → Fresh water → Cathode → Fresh water → Negative membrane → Salt water → Positive membrane → Fresh water → Anode → Fresh water → Positive membrane → Brine → Negative membrane → Fresh water → Cathode → Fresh water → Negative membrane → Salt water → Positive membrane → ……
------------------------

上表の中で、 (陰極→淡水→陰膜→塩水→陽膜→淡水→陽極) の範囲が、一つのセルになっているが、1容器内に、このセルを上表のように、交互に左右逆転しながら、詰め込み、全陰極を、その一隅を貫通する1本のマイナス導電線でつなぎ、全陽極を、その他隅を貫通する1本のマイナス導電線でつなげば、一容器内に数千の並列接続セルを収めたユニットも得られる。
その出力は、昇圧コンバーターで昇圧して用いればよい。
ただし、逆転して並べたセルの隣接する同名電極板の片方は通常省略する。
In the table above, the range of (cathode → fresh water → negative membrane → salt water → positive membrane → fresh water → anode) is one cell, but this cell is placed in one container as shown in the table above. Alternately turning left and right alternately, stuffing, connecting all the cathodes with one negative conductive wire passing through one corner, and connecting all the anodes with one negative conductive wire passing through the other corner, into one container Units containing thousands of parallel connected cells are also available.
The output may be boosted by a boost converter.
However, one of the electrode plates with the same name adjacent to the cells arranged in reverse is usually omitted.

上例において、もし、弁体77〜78を金属製にしたり、省略したりすると、給水容器71内の水を通じて、塩素域と、水素域の電位差、及びユニット79内の水と、80内の水が短絡路となって電気的短絡が起こる。
また、塩素域淡水供給溝100Aと、水素域淡水供給溝100B間等の隔壁を省略すると、マイナス電極板104〜105と、プラス電極板106とが、両溝の水を通じて短絡する等となる。
また、隔壁の省略により、両供給溝に上がってくる塩素ガスと、水素ガスを分離して回収することはできなくなる。
In the above example, if the valve bodies 77 to 78 are made of metal or omitted, the potential difference between the chlorine region and the hydrogen region, the water in the unit 79, and the water in the unit 79 are passed through the water in the water supply container 71. Water becomes a short circuit and an electrical short circuit occurs.
If the partition between the chlorine fresh water supply groove 100A and the hydrogen fresh water supply groove 100B is omitted, the negative electrode plates 104 to 105 and the positive electrode plate 106 are short-circuited through the water in both grooves.
Further, the omission of the partition walls makes it impossible to separate and recover the chlorine gas and the hydrogen gas rising to both supply grooves.

ユニット79〜80を水平面内で90°左回転させた状態に位置させ、淡水供給空洞90内に更に隔壁を設け、全半部を塩素域淡水供給溝100Aと100C専用の給水空洞にし、後半部を水素域淡水供給溝100Bと100D専用の給水空洞にし、底壁の貫通孔91Aと92Aを前半部に設け、貫通孔91Bと92Bを後半部に設け、弁体77も前後の二つ設け、それぞれに貫通孔91A〜92Bに対応する貫通孔を設けてもよい。   Units 79 to 80 are positioned 90 ° counterclockwise in the horizontal plane, a partition is further provided in fresh water supply cavity 90, and all the half portions are water supply cavities dedicated to chlorine region fresh water supply grooves 100A and 100C. To the hydrogen fresh water supply grooves 100B and 100D, the bottom wall through holes 91A and 92A are provided in the front half, the through holes 91B and 92B are provided in the rear half, and the valve body 77 is also provided in the front and rear, You may provide the through-hole corresponding to through-hole 91A-92B to each.

更に次のように、弁の構造を変えてもよい。
ユニット79〜80を、それぞれ左回りに90°、水平面内で回転させた位置を取らせるが、給水空洞90は二分しない。
全ユニットの上端を平坦化し、全ての淡水流下空間の上端を給水容器71の底面の前半に接する固有のスリットを設け(塩素域か水素域かの駆別なく)、給水容器の底壁にもそれに通じるスリット状の多数の貫通孔を設ける。
また、塩水が流下する空間の上方には、給水容器71の底面に接するスリットを設け、給水容器71の底壁に、それに通じるスリット状の多数の貫通孔を設ける。
弁体77と78には、各一つのスリット状貫通孔を設ける。
Furthermore, you may change the structure of a valve as follows.
The units 79 to 80 are respectively rotated counterclockwise by 90 ° in the horizontal plane, but the water supply cavity 90 is not divided into two.
The top of all units is flattened, and a unique slit is formed to contact the top half of all fresh water flow-down spaces with the first half of the bottom surface of the water supply container 71 (no distinction between chlorine and hydrogen areas), and also on the bottom wall of the water supply container A number of slit-shaped through-holes leading to it are provided.
In addition, a slit in contact with the bottom surface of the water supply container 71 is provided above the space where the salt water flows down, and a number of slit-shaped through holes leading to the slit are provided in the bottom wall of the water supply container 71.
Each of the valve bodies 77 and 78 is provided with one slit-like through hole.

ここで、弁体77〜78を左方から、右進させ、弁体77〜78のスリットの一つが淡水供給空洞90、または塩水供給空洞94の底面の一つのスリットにいっちするごとに、直下の一つの淡水または塩水の流下空間に、ある程度水圧が加わった淡水または塩水が、前後に長い水滴を形成して、送り込まれるようにする。(この場合、各フレーム95〜99をゴム製にし、スリットの下端は、通常は閉じているが、加圧された水が上から入ると開くようにしてもよい。)
弁体のスリットが淡水供給空洞の右端に達すれば、弁体が左進に転じ、左端にいたれば右進に転じることを反復し続けるようにし、図1〜6の実施例で記したと同様の、点滴ノズルと同等の作用を表すようにする。
このような電動弁を用いて、ユニット79〜80内に、直列接続型のセルを多数収めてもよい。
これらの場合、流下空間集合体の下面にも、同様の電動弁の弁体を設ける。
Here, the valve bodies 77 to 78 are moved to the right from the left, and each time one of the slits of the valve bodies 77 to 78 enters the fresh water supply cavity 90 or one slit on the bottom surface of the salt water supply cavity 94, it is directly below. The fresh water or salt water, to which water pressure is applied to some extent, forms a long water droplet in the front and back, and is sent into the flow space of the fresh water or salt water. (In this case, each frame 95 to 99 is made of rubber, and the lower end of the slit is normally closed, but may be opened when pressurized water enters from above.)
When the slit of the valve body reaches the right end of the fresh water supply cavity, the valve body turns to the left, and when it reaches the left end, it continues to repeat the right turn, as described in the embodiment of FIGS. The function equivalent to that of an infusion nozzle is expressed.
A large number of series-connected cells may be housed in the units 79 to 80 using such a motor-operated valve.
In these cases, a similar valve body of the motor-operated valve is also provided on the lower surface of the flow-down space assembly.

弁体77〜78をプラスチック製や、ゴム製の、給水容器71内に収まるエンドレスベルトにし、前後縁にパーホレーションやシンクロベルトのような歯を設け、給水容器71の前面と後面に取り付けたステッピングモーターの軸に連なる歯車で駆動するようにしてもよい。
その場合、スリット状の貫通孔では、変形しやすいので、前後方向に並ぶ多数の小孔の列にしてもよい。
The valve bodies 77 to 78 are made of plastic or rubber, and are endless belts that can be accommodated in the water supply container 71. You may make it drive with the gearwheel linked with the axis | shaft of a stepping motor.
In that case, since the slit-shaped through-holes are easily deformed, a plurality of small holes arranged in the front-rear direction may be provided.

更に電動弁の構造を変形した場合を次に記す。
ユニット79を多数(例えば100個)電気的には直列につなぎ、円形に並べ、給水容器71を樽形(または輪状)の円形給水容器にし、その底壁には、全流下空間上に位置する放射状に並ぶ多数のスリットを設ける。
その底壁上に、駆動装置で、ゆっくり1方向に回転する円盤形の1枚の円形弁体を乗せ、円形弁体の上面に同心円状の4個の円筒形の隔壁を設け(給水容器の上壁から下垂させてもよい)、各隔壁間に、下方の塩素域淡水供給溝100A、水素域淡水供給溝100B、塩水供給溝101Aに対応する3本の円形水槽を形成させ、各水槽の底面に、各1本のスリットを設ける。
円形給水容器の底壁に、多数の放射状の淡水滴下用スリットを設ける。
円形給水容器の上方から、各水槽に、淡水と塩水を供給する。
巡回する円形弁のスリットが、円形給水容器の底壁の放射状の淡水滴下用スリットと、塩水滴下用スリットに、いっちするごとに、下方の流下空間に、淡水及び塩水が補給されるようにする。
Further, the case where the structure of the motor-operated valve is modified will be described below.
A large number (for example, 100) of the units 79 are electrically connected in series, arranged in a circle, and the water supply container 71 is formed into a barrel-shaped (or ring-shaped) circular water supply container. A large number of slits arranged radially are provided.
On the bottom wall, a disk-shaped circular valve body that slowly rotates in one direction is placed on the bottom wall, and four concentric cylindrical partition walls are provided on the upper surface of the circular valve body (of the water supply container). 3 circular water tanks corresponding to the lower chlorine area fresh water supply groove 100A, the hydrogen area fresh water supply groove 100B, and the salt water supply groove 101A may be formed between the partition walls. One slit is provided on the bottom surface.
A large number of radial fresh water dropping slits are provided on the bottom wall of the circular water supply container.
Fresh water and salt water are supplied to each water tank from above the circular water supply container.
Each time the circular slit of the circular valve circulates into the radial fresh water dropping slit and the salt water dropping slit on the bottom wall of the circular water supply container, fresh water and salt water are replenished in the downward flow space. .

これにより、常に順次、全ユニットに対して、三つの円形水槽の各スリットから、淡水が塩素域淡水供給溝と、水素域淡水供給溝に供給され、塩水が塩水供給溝に供給されることになる。   Thus, for all units, fresh water is always supplied to the chlorine zone fresh water supply groove and the hydrogen zone fresh water supply groove, and salt water is supplied to the salt water supply groove from the slits of the three circular water tanks. Become.

この場合、円形弁体上の淡水水槽を1本化し、下壁のスリットも1本にし、その下方の位置の異なる塩素域・水素域淡水流下空間に、順次、給水するようにしてもよい。   In this case, the fresh water tank on the circular valve body may be integrated, the slit of the lower wall may be integrated, and water may be sequentially supplied to the chlorine region / hydrogen region fresh water flowing down space at different positions below.

この円形給水容器内の円形水槽の代わりに、半径方向に伸びた回転する絶縁材料製の淡水供給管と塩水供給管を設け、その先端は下方に向け、かつ下端にスリット状の貫通孔を設けたノズルを形成させ、このノズルが給水容器底壁上を回転してゆくようにしてもよい。
この底壁の貫通孔は、円周方向の幅をやや大きくしてもよい。
また、ノズルへの各給水は、電気絶縁性の電磁弁を用いて断続してもよい。
Instead of the circular water tank in this circular water supply container, a fresh water supply pipe and a salt water supply pipe made of a rotating insulating material extending in the radial direction are provided, the tip is directed downward, and a slit-shaped through hole is provided at the lower end. A nozzle may be formed, and this nozzle may rotate on the bottom wall of the water supply container.
The through hole in the bottom wall may have a slightly larger circumferential width.
In addition, each water supply to the nozzle may be intermittent using an electrically insulating electromagnetic valve.

上記のように、全実施例を通じて、空気層や絶縁体で、淡水供給管系内及び、塩水供給管系内での短絡防止を行なう。
また、架線と、海がつながっているので、淡水・塩水両供給管系間の絶縁体による短絡の防止を行なうが、両水系間の電気抵抗が充分大きければ、弁体77と78からの給水等、両系の同時点給水を行なってもよい。
As described above, the short circuit prevention is performed in the fresh water supply pipe system and the salt water supply pipe system with the air layer and the insulator through all the embodiments.
In addition, since the overhead line is connected to the sea, short circuit is prevented by an insulator between both the fresh water and salt water supply pipe systems. For example, simultaneous water supply for both systems may be performed.

円形給水容器を用いる場合、各ユニット内の各フレームを外周に近ずくほど、分厚くし、各ユニットを円弧形にしてもよいが、ユニット数を多くして、長方形のままでもよいようにする方が望ましい。   When using a circular water supply container, each frame in each unit is made thicker as it gets closer to the outer periphery, and each unit may have an arc shape, but the number of units may be increased so that it may remain rectangular. Is preferable.

水流速度を増すため、給水容器71の上下長を大きくし、水深を増したり、給水容器の上面を電磁弁でふさいだ状態で、淡水供給空洞90と、塩水供給空洞94の上方にポンプで弱く加圧した空気を送りこみ、内部の水面を適度に加圧したり、給水容器の下方から給水し、上部に貯まった空気の圧縮圧を利用したりし、かつ、各廃水用7字形管86A〜89の排出口下端を低くし、更に細くして、サイホンの原理による負圧が加わるようにしたり、ポンプで吸引圧を加える等してもよい。   In order to increase the water flow speed, the vertical length of the water supply container 71 is increased, the water depth is increased, or the upper surface of the water supply container is blocked with a solenoid valve, and the water supply pump is weakly pumped above the fresh water supply cavity 90 and the salt water supply cavity 94. Injecting pressurized air to moderately pressurize the internal water surface, supplying water from below the water supply container, utilizing the compressed pressure of the air stored in the upper part, and each waste water 7-shaped pipe 86A ~ The lower end of the discharge port 89 may be lowered and further narrowed to apply a negative pressure based on the principle of siphon, or a suction pressure may be applied by a pump.

上例では、電動モーターで弁体を駆動する電動弁を用いたが、次のように、弁体、弁座、弁箱が絶縁体で造られ、内部に水が入っていても、弁口が閉じている時には、その一次側(給水側)と、二次側(排水側)が電気的に絶縁される電磁弁を用いたもので発電システムを構成してもよい。
例えば、多数の並列接続セルを内蔵した100個のユニットを設け、それらを直列に接続する。
一つの淡水水源と、一つの塩水水源に連なる、各1本の淡水給水本管と、塩水供給本管を設ける。
淡水供給本管には200個の上記のような電気絶縁性の電磁弁を介して200本の分枝管を取り付け、そのうち100本は各ユニットの塩素域の淡水供給溝に給水し、他の100本は、水素域の淡水供給溝に給水するようにする。
塩水供給本管には100個の電磁弁を介して100本の分枝管をつなぎ、各ユニットの塩水供給溝に給水する。
各ユニットの塩素域の廃淡水排出管と、水素域の廃淡水排出管に、各1個の電磁弁をつなぎ、排水する。
各ユニットの廃塩水排出管にも、各1個の電磁弁をつないで排水する。
多数の電磁弁のうちの、ただ1個のみが短時間、順次開き、給水路系内での短絡、排水路系内での短絡、両系間での短絡、淡水路系と塩水路系間の短絡等の電気的短絡を防止しながら、淡水または塩水をいずれかのユニットの、いずれかの給水溝及び流下空間に供給することを反復する動作をコンピューターの制御により行なう。
In the above example, the electric valve that drives the valve element with an electric motor was used. However, as shown below, the valve element, valve seat, and valve box are made of insulators, When is closed, the power generation system may be configured by using an electromagnetic valve in which the primary side (water supply side) and the secondary side (drainage side) are electrically insulated.
For example, 100 units including a large number of parallel connection cells are provided and connected in series.
One fresh water source, one fresh water supply main, and a salt water supply main that are connected to one salt water source are provided.
200 branch pipes are attached to the fresh water supply mains through the 200 electric insulating solenoid valves as described above, 100 of which are supplied to fresh water supply grooves in the chlorine area of each unit, and the other 100 water is supplied to the fresh water supply groove in the hydrogen region.
100 branch pipes are connected to the salt water supply main pipe via 100 solenoid valves, and water is supplied to the salt water supply groove of each unit.
Connect each solenoid valve to the waste freshwater discharge pipe in the chlorine area and the waste freshwater discharge pipe in the hydrogen area of each unit to drain the water.
Drain the waste saltwater discharge pipe of each unit by connecting one solenoid valve.
Of the many solenoid valves, only one of them opens in a short time, one after another, short circuit in the water supply system, short circuit in the drainage system, short circuit between the two systems, between the fresh water system and the salt water system An operation of repeatedly supplying fresh water or salt water to any one of the water supply channels and the flowing-down space of any unit is performed under the control of a computer while preventing an electrical short circuit such as a short circuit.

なお、自然状態で、河水が海に流れこんだ際、塩分のイオンが淡水中に拡散し、イオンの運動の際の水分子への衝突で、混合水の温度は、少量上がるものと考えられるが、このような塩分濃度差発電システムを用いると、その温度上昇度が、小さくなり、電気エネルギーに変換され、種々の電気機器で消費され、そこで熱に変わり、空気等に移動し、大部分は、それから宇宙空間に、熱放射として逃げることになり、自然状態での海水温上昇による、温暖化効果より、エネルギー終始としては、わずかながら小さくなるものと考えられる。
上記の濃淡電池(塩分濃度差発電装置)において、陽イオンまたは陰イオンがイオン交換膜を通過して、淡水中に入ると、塩やナトリウムの原子にかえるが、それにより、その原子の持つ化学エネルギーが低下し、熱運動エネルギーも小さくなり、淡水の温度低下が起こるものと考えられる。(水温・電流・その他を高感度で実測する研究をすることが望ましい。)
In the natural state, when the river water flows into the sea, the salt ions diffuse into the fresh water, and the collision of the ions with the water molecules during the movement of the ions is thought to increase the temperature of the mixed water by a small amount. However, when such a salinity difference power generation system is used, the temperature rise is reduced, converted into electric energy, consumed by various electric devices, where it is converted into heat, transferred to air, etc. Then, it will escape to outer space as thermal radiation, and it is thought that it will be slightly smaller from the beginning of energy due to the warming effect due to the rise in seawater temperature in the natural state.
In the above-mentioned concentration cell (salt concentration difference power generation device), when a cation or an anion passes through the ion exchange membrane and enters the fresh water, it is changed to a salt or sodium atom. It is thought that energy decreases, thermal kinetic energy decreases, and the temperature of fresh water decreases. (It is desirable to conduct research to measure water temperature, current, etc. with high sensitivity.)

通常のイオン交換膜は、イオンはよく通すが、水分子はほとんど通さない。
そこで、イオンの通る微孔をやや大きくしたり、水分子が通る微孔をイオンの通過孔の付近に設けたりして、イオンも水分子も通すようにした膜を造り、陰イオン交換膜109〜110や、陽イオン交換膜111〜112として用いる。
陰イオン交換膜109と110に、マイナス電極板104と105を密接し、陽電極板106の厚みを増して、陽イオン交換膜111と112に密接させる。
陰イオン交換膜109と、陽イオン交換膜111との間、及び、陰イオン交換膜110と、陽イオン交換膜112の間には、塩水供給空洞94から、塩水を流すが、淡水供給空洞90からの淡水は、一切流さない。
このようにして二つの電池セルが形成される。
A normal ion exchange membrane allows ions to pass well, but hardly allows water molecules to pass.
Therefore, by making the micropores through which ions pass slightly larger, or by providing micropores through which water molecules pass in the vicinity of the through holes of ions, a membrane that allows ions and water molecules to pass therethrough is created, and the anion exchange membrane 109 To 110 and cation exchange membranes 111 to 112.
The negative electrode plates 104 and 105 are brought into close contact with the anion exchange membranes 109 and 110, and the thickness of the positive electrode plate 106 is increased so as to be brought into close contact with the cation exchange membranes 111 and 112.
Salt water flows from the salt water supply cavity 94 between the anion exchange membrane 109 and the cation exchange membrane 111, and between the anion exchange membrane 110 and the cation exchange membrane 112. No fresh water from the river.
In this way, two battery cells are formed.

このセルのマイナス導電線81と、プラス導電線83とを電線で短絡すると、両イオン交換膜間に流した塩水中の塩化物イオンは、陰イオン交換膜を通過して、マイナス電極板104に接して電子をうばわれ塩素原子になり、熱運動で多くは陰イオン交換膜の微孔を経て塩水中にもどり、ごく一部は、同じ陰イオン交換膜を通過した少量の水分子間に入りこみ、やがては、別の微孔を経て、塩水中にもどるようになる。
陽イオン交換膜を通過したナトリウムイオンのプラス電極板に接して電子を与えられ、ナトリウム原子になり、多くは熱運動で同じ微孔を通って塩水中にもどり、塩水中の水分子と反応し、水素ガスを発生させ、水酸化ナトリウムになり、ごく一部は、微孔を通過した付近の水分子間に入り、水素ガスを発生させ、水酸化ナトリウムとなり、やがて、微孔を通り、塩水中にもどる。
このようにして、外部導電線に、ある程度の電流が流れる。
When the negative conductive wire 81 and the positive conductive wire 83 of this cell are short-circuited with an electric wire, the chloride ions in the salt water flowing between the two ion exchange membranes pass through the anion exchange membrane and reach the negative electrode plate 104. Electrons are contacted to become chlorine atoms, and by thermal motion, most of them return to salt water through the pores of the anion exchange membrane, and a small part enters between the small amount of water molecules that have passed through the same anion exchange membrane. Eventually, it will return to salt water through another micropore.
Electrons are given in contact with the positive electrode plate of sodium ions that have passed through the cation exchange membrane to become sodium atoms, and many of them return to salt water through the same micropores due to thermal motion and react with water molecules in the salt water. Hydrogen gas is generated and becomes sodium hydroxide, and a small part enters between water molecules near the micropores, generates hydrogen gas, and becomes sodium hydroxide. Return inside.
In this way, a certain amount of current flows through the external conductive line.

これらの場合、淡水に塩が溶けこんだ状態の海水は、淡水単独の状態より、多くのエネルギーを持っており、また、熱エネルギーも持っている。それらが電気エネルギーとして、このような構成で、ある程度取り出されることになるとみなすことができる。   In these cases, seawater in which salt is dissolved in fresh water has more energy than that of fresh water alone, and also has thermal energy. It can be considered that they will be extracted to some extent as electrical energy in such a configuration.

陽極板の付近の水素域で発生する水素は回収して、燃料電池その他に用いればよいが、塩素は、廃水に加え、ナトリウムと反応させて塩化ナトリウムにもどし、海に投機することが望ましい。   Hydrogen generated in the hydrogen region in the vicinity of the anode plate may be recovered and used in a fuel cell or the like. However, it is desirable that chlorine is returned to sodium chloride by reacting with sodium in addition to waste water and then projected to the sea.

陰イオン交換膜ばかりを多数平行に並べ、一つおきの間隙に淡水と塩水を交互に流し、淡水流下空間に陰電極板を入れ、塩水流下空間に陽極を入れた場合(これらの陰・陽を逆転させてもよい)でも、ある程度の起電力は生じるが効率はわるい。
その他、種々の設計変更が可能である。
When many anion exchange membranes are arranged in parallel, fresh water and salt water flow alternately in every other gap, a negative electrode plate is placed in the fresh water flow space, and an anode is placed in the salt water flow space (these anions and positives) However, although some electromotive force is generated, efficiency is poor.
In addition, various design changes are possible.

通常の電気製塩システムでは、淡水が得られるので、それと海水を利用して本発命を用いて発電し、電気製塩のための電力にしたり、海水淡水化システムから出る濃厚塩水を塩水供給管7に加えてもよい。(特許文献1、2参照)   In a normal electric salt production system, fresh water is obtained. Using this and sea water, the power is generated using this mission to generate electric power for electric salt production, or the concentrated salt water from the sea water desalination system is used as the salt water supply pipe 7. You may add to. (See Patent Documents 1 and 2)

次のような並列接続ユニットも可能である。
例えば、上下幅1m、左右長99mの陰イオン交換膜の後に、陽イオン交換膜を置き、その間に、同サイズの不織布製の塩水流下空間形成用のスペーサーを挟み、両イオン交換膜の前後に、淡水流下空間形成用のスペーサーを重ね、更に前に金属箔製の陰極板を重ね、後には、陽極板を重ねる。
この7重層材を1mピッチで前後にジグザグに折り重ね、上下幅が1.2mの上下壁がない「ロの字形」の絶縁容器の中間の高さにつめこめば、容器内の左端には陰極板の端がきて、右端には、陽極板の端がきて、容器の左右壁を貫く導電線につなぐことができる。
底面に多数のスリットを有する深さ10cm 、前後幅が50cmの、淡水供給溝容器と、同様の塩水供給溝容器を、ジグザグ折りセットの上面に重ね、淡水流下空間形成用スペーサーには淡水を、塩水流下空間形成用スペーサーには塩水を供給するようにする。
また、ジグザグ折りセットの下面に接する、上面に多数のスリットを有する廃淡水排出溝容器と、廃塩水排出溝容器を接触させる。
The following parallel connection units are also possible.
For example, a cation exchange membrane is placed after an anion exchange membrane having a vertical width of 1 m and a left and right length of 99 m, and a spacer for forming a salt water flowing space made of nonwoven fabric of the same size is sandwiched between them, before and after both ion exchange membranes. Then, a spacer for forming a fresh water flowing space is stacked, a cathode plate made of metal foil is further stacked in front, and an anode plate is stacked later.
If this 7-layer material is folded back and forth at a pitch of 1m and is fitted in the middle height of a "R" shaped insulation container with a top and bottom width of 1.2m and no upper and lower walls, The end of the cathode plate comes and the end of the anode plate comes to the right end and can be connected to the conductive wire that penetrates the left and right walls of the container.
A fresh water supply groove container having a depth of 10 cm having a number of slits on the bottom surface and a front and rear width of 50 cm and a similar salt water supply groove container are stacked on the upper surface of the zigzag fold set, and fresh water is added to the spacer for forming the fresh water flow space. Salt water is supplied to the spacer for forming the salt water flow space.
Further, a waste fresh water discharge groove container having a large number of slits on the upper surface, which is in contact with the lower surface of the zigzag folding set, and a waste salt water discharge groove container are brought into contact with each other.

次のようにして、ロール型の並列接続ユニットを得ることもできる。
上記の7重層材を鉛直に立つ、太めの陰極導電棒に巻き付け、金属管製陽極内につめこみ、電気絶縁体製のマニホールドを介して、淡水と塩水を供給したり、排出させたりしてもよい。
ただし、陰極棒に接する左端を除いて、陰極板の前面に陽極板との短絡防止用の絶縁塗料を塗り、左回転する陰極棒にそれらを巻き付けてゆく。
これらの並列接続ユニットの出力も、コンバーターやインバーターで昇圧し、50〜60ヘルツの交流に変換し、更に変圧機で昇圧して送電線に送ったり、多数のユニットを直列につないで昇圧し、インバーターで交流に変換して送電する等する。
A roll-type parallel connection unit can be obtained as follows.
Even if the above seven-layered material is vertically wound around a thick cathodic conductive rod, fitted in a metal tube anode, and fresh water and salt water are supplied or discharged through an electric insulator manifold Good.
However, except for the left end in contact with the cathode rod, an insulating paint for preventing a short circuit with the anode plate is applied to the front surface of the cathode plate, and these are wound around the cathode rod rotating to the left.
The output of these parallel connection units is also boosted by converters and inverters, converted to AC of 50-60 Hz, further boosted by a transformer and sent to the transmission line, or boosted by connecting multiple units in series, For example, power is converted into AC by an inverter.

上記の図1〜10に記すシステムに供給する淡水と塩水は、通常、数℃程度の温度差があり、その総熱エネルギーは、水の比熱と、流量と、温度差の積であらわされる値で、かなりの多量であり、それを有効に利用することが全システムのエネルギー効率を高めることになる。
しかし、例えば、一つの銅と、コンスタンタンによる熱電対素子の常温付近における温度差1℃当りの起電力は、40μV(百万分の40ボルト)程度にすぎないので、半導体素子を用いた昇圧コンバーター等で昇圧するとしても、数10V程度の収合起電力を得たい。
それには、素子を10万個程度直列に接続する必要がある。(温度差5×10万×40μV=20V)
次にそのような多数の素子を直列につなぎうる、比較的安価に製産しうる、前述のシステムに前置する、熱電堆発電システムについて記す。
The fresh water and salt water supplied to the systems shown in FIGS. 1 to 10 usually have a temperature difference of about several degrees Celsius, and the total heat energy is a value represented by the product of the specific heat of water, the flow rate, and the temperature difference. Therefore, it is a considerable amount, and effectively using it increases the energy efficiency of the entire system.
However, for example, the electromotive force per 1 ° C. of the temperature difference in the vicinity of room temperature of a thermocouple element made of one copper and constantan is only about 40 μV (40 parts per million), so a boost converter using a semiconductor element Even if the voltage is boosted, etc., we want to obtain a converged electromotive force of about several tens of volts.
For this, about 100,000 elements need to be connected in series. (Temperature difference 5 × 100,000 × 40μV = 20V)
Next, a thermoelectric power generation system that precedes the above-described system, in which such a large number of elements can be connected in series and can be produced at a relatively low cost, will be described.

図11は、LSI等のように、多数の熱電対素子を直列につないだ大規模直列熱電堆発電システムの縦断左側面図。
113は、その上部に設けた上下に広がった扁平な淡水供給管。
114は、その下部の塩水供給管。
115〜116は、それらの後面と前面に接し、かつ直列につながれた大規模直列熱電堆。
117〜118は、それらの表面を覆う断熱材。
FIG. 11 is a vertical left side view of a large-scale series thermoelectric power generation system in which a large number of thermocouple elements are connected in series, such as an LSI.
Reference numeral 113 denotes a flat fresh water supply pipe which is provided at the upper part and spreads vertically.
114 is a salt water supply pipe at the bottom.
115 to 116 are large-scale series thermopiles that are in contact with the rear surface and the front surface and connected in series.
117 to 118 are heat insulating materials covering the surfaces thereof.

淡水は、淡水供給管113を経て、前述の淡水供給管2や72に送られ、塩水は、塩水供給管114を経て、前述の塩水供給管7や73に送られるが、その間に、多数の直列に接続された熱電対を含む大規模直列熱電対115〜116を加温または冷却し、両水の温度差が5℃程度であれば、それぞれ、10V近くの起電力を発生し、両者の直列起電力として、20V程度の集合起電力が得られる。
その際、断熱材117〜118は、外危温が、両熱電堆に及ぶのを防ぐ。
Fresh water is sent to the fresh water supply pipes 2 and 72 through the fresh water supply pipe 113, and salt water is sent to the salt water supply pipes 7 and 73 through the salt water supply pipe 114. When large-scale series thermocouples 115 to 116 including thermocouples connected in series are heated or cooled, if the temperature difference between the two waters is about 5 ° C., an electromotive force of about 10 V is generated respectively. A collective electromotive force of about 20 V is obtained as the series electromotive force.
At that time, the heat insulating materials 117 to 118 prevent the outside dangerous temperature from reaching both thermopiles.

図12は、大規模直列熱電堆115を作製する真空蒸着装置システムの縦断左側面図。
119は、真空容器。
120は、図示しない固定装置で固定された、縦・横1m程度、厚さ0.1〜1mm程度のプラスチックフィルムや、表面を絶縁被覆した金属板等から成る蒸着基板。
121は、右方の蒸着源。
122〜123は、上下に並んだモーター付の巻き取りドラム。
124は、それらに巻き込まれた厚さ0.1mm程度のステンレス鋼・銅・その他の金属板にリソグラフィー等により、縦方向に走る多数のスリットを設けて成るシャドーマスク。(図示しないが、前後縁には、写真フィルムのようなパーホレーションが設けられる。)
125〜126は、そのパーホレーションにかみ合う歯車が付き、コンピューターで制御されるステッピングモーターを用いた駆動装置も付いたローラー。
FIG. 12 is a longitudinal left side view of a vacuum evaporation system for producing a large-scale series thermopile 115.
119 is a vacuum container.
Reference numeral 120 denotes a vapor deposition substrate made of a plastic film having a length of about 1 m and a thickness of about 0.1 to 1 mm fixed by a fixing device (not shown), a metal plate having an insulating coating on the surface, and the like.
121 is a deposition source on the right side.
122 to 123 are winding drums with a motor arranged vertically.
A shadow mask 124 is formed by providing a large number of slits that run in the vertical direction by lithography or the like on stainless steel, copper, or other metal plates having a thickness of about 0.1 mm that are wound around them. (Although not shown, perforations such as photographic film are provided at the front and rear edges.)
125 to 126 are rollers with gears that mesh with the perforations and with a drive using a computer controlled stepping motor.

蒸着源121には、複数の加熱装置があり、それぞれに銅、コンスタンタン、2酸化ケイ素等がセットされており、コンピューター制御で順次、それらの蒸着材料の蒸気を発生し、巻取ドラム122〜123や、ローラー125〜126を駆動し、シャドーマスク124を順次1コマずつ、精度よく駆動し、設計通りの蒸着パターンを基板120の右面に形成してゆき、大規模熱電堆115または116を作製する。   The vapor deposition source 121 includes a plurality of heating devices, each of which is set with copper, constantan, silicon dioxide, and the like. The vapor of the vapor deposition material is sequentially generated by computer control, and the winding drums 122 to 123 are generated. Alternatively, the rollers 125 to 126 are driven, and the shadow mask 124 is driven one frame at a time with high accuracy, and a vapor deposition pattern as designed is formed on the right surface of the substrate 120 to produce the large-scale thermoelectric stack 115 or 116. .

図13は、熱電堆作製の第1工程で基板120の表面に銅製薄膜電極群が形成された場合(半製品)の正面図。
127は、蒸着源121で蒸発した銅の蒸気が、蒸着パターンを形成するシャドーマスク124の多数のスリットを通して基板120に凝着して成る、基板上の上半部に蒸着で形成された、縦長の銅製電極群。(例えば、その厚さは、数10〜1000nm程度、横幅は1mm以下でもよい。蒸着以外のスパッタリング、CVCA法、電気化学メッキ法、その他を用いてもよい。)
127Aは、それらの各右下端から下方に伸びた幅がせまい接続部。
127Bは、その下端から左方に少し伸びた接続突起部。
FIG. 13 is a front view in the case where a copper thin film electrode group is formed on the surface of the substrate 120 in the first step of producing a thermoelectric stack (semi-finished product).
127 is a vertically long film formed by vapor deposition on the upper half of the substrate, in which copper vapor evaporated from the vapor deposition source 121 is adhered to the substrate 120 through a number of slits of the shadow mask 124 forming the vapor deposition pattern. Copper electrode group. (For example, the thickness may be about several 10 to 1000 nm and the width may be 1 mm or less. Sputtering other than vapor deposition, CVCA method, electrochemical plating method, or the like may be used.)
127A is a connection part with a narrow width extending downward from the respective lower right corners.
127B is a connection protrusion that extends slightly to the left from its lower end.

図14は、第2工程で、図13の表面に蒸着された半製品の正面図。
図示しないコンピューターにより、モーター付の巻き取りドラム122〜123や、ローラー125〜126が働き、シャドーマスク124を1コマ引き下げ、次のパターンを蒸着させる。次の工程でも、同様に、1コマずつシャドーマスクが引き下げられる。(同パターンの際には移動しなかったり、前に使用したパターンの部分にもどったりもする。このようにパーホレーション付のシャドーマスクは、歯車付ローラーによって、正確に位置ぎめされて、重層パターンの蒸着が、容易に、急速に行なわれる。)
128は、銅製電極127と、基板の下半部にまで及んで蒸着されたコンスタンタン製電極群。
128Aは、その上下の中間の接続部。(この部分は、導電性の大きい銅製にしてもよいし、コンスタンタン上に銅を重ねたものでもよい。)
FIG. 14 is a front view of a semi-finished product deposited on the surface of FIG. 13 in the second step.
A take-up drum 122 to 123 with a motor and rollers 125 to 126 are operated by a computer (not shown) to lower the shadow mask 124 by one frame and deposit the next pattern. Similarly, in the next process, the shadow mask is lowered frame by frame. (In the case of the same pattern, it may not move, or it may return to the part of the pattern used previously. In this way, the shadow mask with perforation is accurately positioned by the geared roller, Pattern deposition is easy and rapid.)
Reference numeral 128 denotes a copper electrode 127 and a constantan electrode group deposited on the lower half of the substrate.
128A is a middle connecting portion between the upper and lower sides. (This part may be made of copper having a high conductivity, or may be formed by superposing copper on a constantan.)

図15は、第3工程の半製品の正面図。
129は、その上部と、接続部を覆う2酸化ケイ素その他の材料から成る絶縁膜。
129Aは、その延長部。
FIG. 15 is a front view of the semi-finished product in the third step.
Reference numeral 129 denotes an insulating film made of silicon dioxide or other material covering the upper portion and the connecting portion.
129A is an extension thereof.

図16は、第4工程の半製品の正面図。
130は、前工程の半製品の上を覆う、コンスタンタン製電極群128と同形の銅製電極群。
130Aは、その接続部。
FIG. 16 is a front view of a semi-finished product in the fourth step.
130 is a copper electrode group having the same shape as the constantan electrode group 128 covering the semi-finished product of the previous process.
130A is the connection part.

図17は、第5工程の半製品の正面図。
131は、銅製電極129の接続部と下半部を覆う絶縁膜。
131Aは、その接続部。
FIG. 17 is a front view of a semi-finished product in the fifth step.
Reference numeral 131 denotes an insulating film that covers the connection portion and the lower half of the copper electrode 129.
131A is the connection part.

図18は、第6工程の半製品の正面図。
132は、それらを覆うコンスタンタン電極。
132Aは、その接続部。
FIG. 18 is a front view of a semi-finished product in the sixth step.
132 is a constantan electrode covering them.
132A is the connection part.

図19は、第7工程の半製品の正面図。
133は、その下部を覆う銅製電極。
133Aは、その右上端に連なる接続部。
133Bは、その上端から右方に少し突出し、基板上に着き、更に、隣接する各銅製電極127の接続突起127Bの上に重なって蒸着され、隣接部に直列接続している接続突起部。
ただし、最右側の接続突起は、基板120の面に付着する。
FIG. 19 is a front view of a semi-finished product in the seventh step.
133 is the copper electrode which covers the lower part.
133A is a connection part connected to the upper right end thereof.
133B protrudes slightly to the right from the upper end thereof, arrives on the substrate, and is further deposited on the connection protrusion 127B of each adjacent copper electrode 127, and is connected in series to the adjacent portion.
However, the rightmost connection protrusion adheres to the surface of the substrate 120.

図20は、基板120の右面への蒸着が完成したものを左に倒して拡大した縦断正面の模式図。   FIG. 20 is a schematic front view of a longitudinally enlarged view of a substrate 120 that has been deposited on the right surface and is tilted to the left.

なお、実際には、1m角の基板120に、横幅1mm弱の電極群を1千個設け、各部に、前記のように50セットの直列接続された熱電対を形成させる等すれば、一面の基板に5万個の直列接続熱電対が形成される。
重層数を増すには、コンスタンタン製電極128〜絶縁膜131の4層から成る1セットを多数セット重ねればよい。
接続突起部127Bにハンダズケ等で、一つのリード線をつなぎ、接続突起部133Bに、もう一つのリード線をつなぎ、かつ、熱電堆115〜116を直列に接続すれば、10万個が直列接続されることになり、温度差5℃で、20V程度の起電力が得られることになる。
Actually, if one thousand square electrode groups having a width of less than 1 mm are provided on a 1 m square substrate 120 and 50 sets of thermocouples connected in series are formed in each part as described above, one surface 50,000 serially connected thermocouples are formed on the substrate.
In order to increase the number of layers, a large number of one set of four layers of constantan electrode 128 to insulating film 131 may be stacked.
If one lead wire is connected to the connecting projection 127B by soldering or the like, another lead wire is connected to the connecting projection 133B, and the thermopiles 115 to 116 are connected in series, 100,000 pieces are connected in series. Thus, an electromotive force of about 20 V is obtained at a temperature difference of 5 ° C.

なお、銅電極127その他の主要部分より、横幅が、やや小さい接続部Aを設け、それに接続突起部127A等を設けることにより、発電に寄与する部分を広く取れる利点がある。 接続部を主要部と同じ幅にすると、接続突起部127Bが左方に突出するため、各主要部間を広くあけねばならないことになり、発電有効面積が小さくなる。   In addition, there exists an advantage which can take the part which contributes to power generation widely by providing the connection part A whose lateral width is a little smaller than the copper electrode 127 other main parts, and providing the connection projection part 127A etc. in it. If the connecting portion has the same width as the main portion, the connecting protrusion 127B protrudes to the left, so that the main portions must be widened, and the effective power generation area is reduced.

なお、基板に接する銅製電極群127と、最表面の銅製電極群133とを分厚くして抵抗を減らし、電流通過による発熱量を低減してもよい。
熱電対の材料として、クロメル:コンスタンタン、その他の組み合わせを用いてもよい。
各接続部127Aその他を長くすれば、離れた部分の温度差を利用することもできる。
Note that the copper electrode group 127 in contact with the substrate and the copper electrode group 133 on the outermost surface may be thickened to reduce resistance and reduce the amount of heat generated by passing current.
As the thermocouple material, chromel: constantan or other combinations may be used.
If each connecting portion 127A and others are lengthened, the temperature difference between the separated portions can be used.

淡水供給管113と塩水供給管114を上下幅が1m程度で、横方向が10〜100m程度の2枚のプラスチックフィルムの上・中・下に融着線を設けたフレキシブルチューブにし、真空容器内の前後2箇所のドラムに巻き、フィルムの上下縁に設けたパーホレーションにかみ合う歯車が付いたローラーを介して、基板120の位置に少しずつ露出させ、全長にわたって、数万個の直列に連なる熱電対群を形成させ、フィルムチューブ内に淡水及び塩水を通し、温度差を利用するようにしてもよい。
この場合、熱電対の重層枚数を比較的少くしてもよい。
The fresh water supply pipe 113 and the salt water supply pipe 114 are made into flexible tubes provided with fusion lines on the top, middle and bottom of two plastic films having a vertical width of about 1 m and a horizontal direction of about 10 to 100 m. It is wound around two drums at the front and rear of the film, and is exposed to the position of the substrate 120 little by little through a roller with gears meshing with the perforation provided on the upper and lower edges of the film, and several tens of thousands are connected in series over the entire length. A thermocouple group may be formed, fresh water and salt water may be passed through the film tube, and a temperature difference may be utilized.
In this case, the number of stacked thermocouples may be relatively small.

熱電堆115のような大規模熱電堆の上半部に黒色塗装をほどこしたり、太陽電池を貼り付けたりして日光の吸収による加温を高め、下半部にはアルミニウムメッキしたプラスチックフィルムを貼り付ける等し、日光にさらし、上半部と、下半部の温度差を生じさせ、熱電発電を行なってもよい。
この場合、下半部にも黒色塗装をほどこし、上下の中央で折り曲げ、両者間に断熱層を設け、一面は日光にさらして高温化し、別の面は、うちゅうその他の空間に向けて放熱を図り、熱電発電をしてもよい。
Black paint is applied to the upper half of a large-scale thermoelectric stack such as the thermoelectric stack 115, or solar cells are attached to increase heating by absorbing sunlight, and an aluminum-plated plastic film is applied to the lower half For example, it may be exposed to sunlight to cause a temperature difference between the upper half and the lower half, and thermoelectric power generation may be performed.
In this case, black paint is also applied to the lower half, bent at the top and bottom, and a heat insulating layer is provided between them. To achieve thermoelectric power generation.

このような大規模直列熱電堆は、比較的安価に製造でき、水・空気・土地・日光照射部等の温度さをも電力に変換することができ、従来の火力発電所や原子力発電所の温廃水と大気や海洋水との温度差による発電その他、上記以外の用途にも利用しうる。   Such a large-scale series thermopile can be manufactured at a relatively low cost, and can convert the temperature of water, air, land, sunlight irradiator, etc. into electric power, and can be used in conventional thermal power plants and nuclear power plants. It can also be used for other purposes than the above, such as power generation due to temperature difference between warm wastewater and air or ocean water.

この大規模直列熱電堆に通電し、ペルチェ効果により、上半部に発熱させ、下半部を冷却し、冷却部を冷却機に利用する等してもよい。   The large-scale series thermopile may be energized, and heat may be generated in the upper half by the Peltier effect, the lower half may be cooled, and the cooling unit may be used for a cooler.

この大規模直列熱電堆のように、パーホレーション付のシャドーマスク124と、その駆動装置の巻き取りドラム122〜123や、歯車付ローラー125〜126を用いた真空蒸着装置(スパッタリング装置等も含む)や、それを用いた製法は、熱電堆以外の製造にも用いうる。   Like this large-scale serial thermopile, a vacuum masking device (including a sputtering device and the like) using a shadow mask 124 with perforation, a winding drum 122 to 123 of the driving device, and rollers 125 to 126 with gears. ) And a manufacturing method using the same can be used for manufacturing other than thermopile.

上記、図1〜10の廃塩水排出管13等には、かなりの塩分が残された廃塩水が排出され、廃淡水排出管の廃淡水も廃塩水と同塩分濃度にはならない。
図1〜10に記すシステムにおいて、淡水と塩水の濃度差が大きいほど、起電力が大きいので、原水からのエネルギー採取量を大きくしようとして、塩水から淡水へのイオン移動量を大きくしすぎると、起電力の低下が起こるので、河川や海からの採水に要するエネルギーや、パイプライン建設コスト、運転コスト等も加味して、原水からのエネルギー採取量を定めればよいが、いずれにしても、廃塩水と、廃淡水との塩分濃度差には、かなりの差が残される。
この差を利用して次のように浸透圧利用の発電システムを作動させ、高効率化を図ることが望ましい。
図21は、浸透圧発電システムの横断面図。
134は、円筒形の金属その他から成る耐圧容器。
135は、その左後部に連なる塩水供給中継管。
136は、耐圧容器の左端に連なる淡水供給管。
137は、耐圧容器内に多数(数万本以上)存在する海水淡水化等にも用いる半透膜(浸透膜・逆浸透膜)から成る中空糸膜。
138は、淡水排出管。
139は、耐圧容器の右前部に連なる塩水排出管。
140は、それに連なるタービン。
141は、その回転軸に連なる発電機にも電動機にもなりうる発電電動機。(タービン軸と発電電動機の軸との間に、摩擦クラッチや減速歯車セット等を挿入してもよい。)
142は、同じ軸に連なるロータリーポンプ、歯車ポンプ、軸流ポンプ等を用いた塩水供給高圧ポンプで、その排出側には、塩水供給中継管135が連なる。(歯車系で減速したレシプロポンプを用いてもよい。)
143は、その給水側に連なる塩水供給管。
The waste saltwater discharge pipe 13 and the like in FIGS. 1 to 10 discharge waste saltwater with a considerable amount of salt, and the waste freshwater in the waste freshwater discharge pipe does not have the same salinity as the waste saltwater.
In the system shown in FIGS. 1 to 10, since the electromotive force is larger as the concentration difference between fresh water and salt water is larger, if the amount of ion transfer from salt water to fresh water is increased too much in an attempt to increase the amount of energy collected from raw water, Since the electromotive force decreases, the amount of energy collected from the raw water can be determined by taking into account the energy required for water sampling from rivers and the sea, pipeline construction costs, operating costs, etc. A considerable difference is left in the salt concentration difference between the waste salt water and the waste fresh water.
Using this difference, it is desirable to operate a power generation system using osmotic pressure as follows to achieve high efficiency.
FIG. 21 is a cross-sectional view of an osmotic pressure power generation system.
134 is a pressure vessel made of cylindrical metal or the like.
135 is a salt water supply relay pipe connected to the left rear part.
136 is a fresh water supply pipe connected to the left end of the pressure vessel.
137 is a hollow fiber membrane made of a semipermeable membrane (osmosis membrane / reverse osmosis membrane) used for seawater desalination or the like, which is present in large numbers (tens of thousands or more) in the pressure vessel.
138 is a fresh water discharge pipe.
139 is a salt water discharge pipe connected to the right front portion of the pressure vessel.
140 is a turbine connected to it.
Reference numeral 141 denotes a generator motor that can be a generator connected to the rotating shaft or an electric motor. (A friction clutch or a reduction gear set may be inserted between the turbine shaft and the generator motor shaft.)
142 is a salt water supply high-pressure pump using a rotary pump, a gear pump, an axial flow pump or the like connected to the same shaft, and a salt water supply relay pipe 135 is connected to the discharge side thereof. (A reciprocating pump decelerated by a gear system may be used.)
143 is a salt water supply pipe connected to the water supply side.

始動の際は、図示しない始動スイッチを押すと、蓄電池から、図示しない淡水供給ポンプに給電され、淡水供給管136→中空糸膜137→淡水排出管138に淡水が流れ、かつ、発電電動機141にも給電され、それを回転させ、内部が空のタービン140と、ポンプ142が回転し、塩水供給管143を通じて、塩水がポンプから塩水供給中継管135を経て、耐圧容器134内に供給される。   When starting, when a start switch (not shown) is pressed, power is supplied from a storage battery to a fresh water supply pump (not shown), fresh water flows into the fresh water supply pipe 136 → the hollow fiber membrane 137 → the fresh water discharge pipe 138, and the generator motor 141 is supplied. Also, the turbine 140 and the pump 142, which are empty inside, are rotated. The salt water is supplied from the pump through the salt water supply relay pipe 135 into the pressure vessel 134 through the salt water supply pipe 143.

その結果、中空糸膜の半透膜面を通過して、膜内から膜外の耐圧容器内の塩水中に、多量の淡水が拡散し、その塩水を希釈し、増量させ、数10気圧にも及ぶ浸透圧を発生させる。
この高圧希釈塩水は、塩水排出管139を経て、出力駆動装置であるタービン140内の細いノズル先端から、高速度のジェット水流になり、タービンブレードに当り、回転させ、図示しない排出管を経てタービン外に出るが、高速でタービン軸を回転させ、連動する発電電動機141に発電させ、その出力の一部は図示しない送電線に送られ、他の一部は過大電流を適正値にする制御回路を経て、蓄電池に充電される。
また、タービンの回転は、ポンプ142も回転させ続けるので、絶えず耐圧容器内に塩水を供給し続ける。
As a result, a large amount of fresh water diffuses from the inside of the membrane through the semipermeable membrane surface of the hollow fiber membrane into the salt water in the pressure vessel outside the membrane, and the salt water is diluted and increased to several tens of atmospheres. To generate osmotic pressure.
This high-pressure diluted salt water passes through a salt water discharge pipe 139, becomes a high-speed jet water flow from a thin nozzle tip in the turbine 140 which is an output drive device, hits a turbine blade, rotates, and passes through a discharge pipe (not shown) through the turbine. A control circuit that goes outside but rotates the turbine shaft at high speed to cause the generator motor 141 to generate power, a part of the output is sent to a transmission line (not shown), and the other part is a control circuit that sets the excessive current to an appropriate value. After that, the storage battery is charged.
In addition, since the rotation of the turbine continues to rotate the pump 142, salt water is continuously supplied into the pressure vessel.

このようにして、タービン140は回転し続け、発電電動機141から送電が、続けられる。
停止させるには、淡水供給ポンプへの給電を止めたり、塩水排出管139に挿入した図示しない電磁弁を閉じる。
In this way, the turbine 140 continues to rotate and power transmission from the generator motor 141 continues.
To stop the power supply to the fresh water supply pump, the solenoid valve (not shown) inserted in the salt water discharge pipe 139 is closed.

このしすてむにおいて、タービン軸に連なる発電電動機も、ポンプも回転運動をするだけであり、騒音発生量が小さく、エネルギー効率が大きく、始動装置も簡素で、経済性もすぐれ、大規模発電にも、小型船舶に積載し、電動水進機を動かすような用いかたにも使用できる、浸透圧発電システムが構成される。
なお、タービン140の軸に、淡水供給管136への給水ポンプもつないでもよい。
半透性中空糸膜の代わりに、布製スペーサーを内蔵した面状半透膜製袋等を用いてもよい。
耐圧容器134内の希釈塩水を139とは別の塩水排出管を設け、連動する自動切替の機械式や電磁式の弁が付いたピストンエンジン(レシプロエンジン)のシリンダー内に導き、それを往復運動させ、そのピストンロッドの外端に該エンジンのピストンより直径がやや小さいピストンがつながるレシプロ型ポンプをつなぎ、エンジンの往復運動でレシプロポンプを同様に往復運動させ、高エネルギー効率で、高圧塩水を耐圧容器134内に送り込むようにしてもよい。(同一ピストンロッドに中空糸膜137内に淡水を送り込むレシプロポンプのピストンをつないでもよいが、低水圧でよいため、このピストンの直径は大きくてもよい。また、このピストンロッドの動きを回転運動に変換し、発電機または発電電動機を動かしてもよい。)
In this process, the generator motor connected to the turbine shaft and the pump only rotate, the amount of noise generated is small, the energy efficiency is large, the starter is simple, the economy is high, and the large-scale power generation In addition, an osmotic pressure power generation system that can be used in such a manner that it is loaded on a small ship and moves an electric watercraft is constructed.
Note that the shaft of the turbine 140 may not have a feed water pump to the fresh water supply pipe 136.
Instead of the semipermeable hollow fiber membrane, a sheet-like semipermeable membrane bag with a built-in cloth spacer may be used.
Diluted salt water in the pressure vessel 134 is introduced into a cylinder of a piston engine (reciprocating engine) with an automatic switching mechanical and electromagnetic valve provided with a salt water discharge pipe different from 139, and reciprocating it. A reciprocating pump connected to a piston with a diameter slightly smaller than that of the piston of the engine is connected to the outer end of the piston rod. You may make it send in the container 134. FIG. (The piston of a reciprocating pump that sends fresh water into the hollow fiber membrane 137 may be connected to the same piston rod, but the diameter of this piston may be large because low water pressure is required. And the generator or generator motor may be moved.)

絶縁材料製にした淡水供給管136内と、淡水排出管138内に、仕切板を内蔵させて2分し、中空糸膜137群を2群に分け、それぞれに電気的に絶縁した水路を形成させ、第1水路につながる中空糸膜群は陰イオン交換膜製にし、第2水路の中空糸膜は陽イオン交換膜製にし、かつ、各中空糸膜内に細い金属線を入れ、排出管外まで導き、陰・陽の導電線にする。
塩水排出管139の前端をタービン140にはつながないで排水路につなぐ。
このようみして、前述と同様の起電力を発生する濃淡電池ユニット(セル)を形成させてもよい。
そのような多数のセルの各導電線を直列につなぎ、その出力電力を蓄電池に一部充電し、一部は他に送電し、一部で発電電動機141を回し、ポンプ142で、各容器内に塩水を供給したり、別のポンプで淡水を供給するようにしてもよい。
A partition plate is built in the fresh water supply pipe 136 and the fresh water discharge pipe 138 made of an insulating material and divided into two, and the hollow fiber membranes 137 are divided into two groups to form electrically insulated water channels. The hollow fiber membrane group connected to the first water channel is made of an anion exchange membrane, the hollow fiber membrane of the second water channel is made of a cation exchange membrane, and a thin metal wire is put in each hollow fiber membrane, and the discharge pipe Lead to the outside and make Yin / yang conductive wire.
The front end of the salt water discharge pipe 139 is not connected to the turbine 140 but connected to the drainage channel.
In this way, a concentration battery unit (cell) that generates an electromotive force similar to that described above may be formed.
Each conductive wire of such a large number of cells is connected in series, the output power is partially charged to the storage battery, some is transmitted to the other, some are driven by the generator motor 141, and the pump 142 is used in each container. You may make it supply salt water to fresh water with another pump.

図22は、代替エネルギーとして淡水を積載し、前述の塩分濃度差発電システムで得た電力を有効利用した推進機その他を動作させる、石油等の燃料油消費量が少ない海洋浚渫船の平面図。
144は、通常の船舶のように、運航時の水流抵抗が小さくなるための外形をなす、左端に設けた船尾アダプター。
145は、その甲板に取り付けた推進方向変更装置。
146は、それに連なり、下方は海水中に入っている、電撃爆発推進機。
147は、船尾アダプターの右側にねじ止めされている直方体形の淡水タンク。
147Aは、その甲板に設けた操船パネル等がある操船室。
148は、淡水タンクの右側にねじ止めされている、通常の船舶のように、運航時の水流抵抗を小さくするための外形をなす、船首アダプター。
149は、その甲板の左方に取り付けた排水管駆動装置。
150は、埋め立て区域に伸びた排水管。
151は、排水管と船首アダプター内の送水ポンプをつなぐホース。
152は、そのポンプと浚渫本管駆動装置をつなぐホース。
153は、甲板の右方に取り付けた浚渫本管駆動装置。
154は、それから右方に伸び、下垂し、更に右方に曲がっている浚渫本管。
155は、その先端に取り付けた浚渫端管回転装置。
156は、それから右方に伸びた、先端は閉じた浚渫端管。
157は、その先端の上面に設けた多数の小孔。
FIG. 22 is a plan view of a marine dredger with a small amount of fuel oil consumption such as petroleum, in which fresh water is loaded as an alternative energy and a propulsion unit or the like that effectively uses the electric power obtained by the salt concentration difference power generation system is operated.
144 is a stern adapter provided at the left end that forms an outer shape to reduce water flow resistance during operation like a normal ship.
145 is a propulsion direction changing device attached to the deck.
146 is an electric explosion propulsion unit that is connected to it, and the lower part is in seawater.
147 is a rectangular parallelepiped fresh water tank screwed to the right side of the stern adapter.
147A is a maneuvering room with a maneuvering panel provided on its deck.
148 is a bow adapter which is screwed to the right side of the fresh water tank and has an outer shape to reduce the water flow resistance during operation like a normal ship.
149 is a drain drive device attached to the left side of the deck.
150 is a drain pipe extending to the landfill area.
151 is a hose that connects the drain pipe and the water pump in the bow adapter.
152 is a hose connecting the pump and the main pipe drive device.
153 is a main drive unit attached to the right side of the deck.
154 is the main pipe that extends to the right, then hangs down, and then turns to the right.
155 is an end tube rotating device attached to the tip.
156 is a saddle tube that extends to the right and has a closed tip.
157 is a large number of small holes provided on the top surface of the tip.

図23は、浚渫船の左半部の拡大縦断正面図。
図24は、浚渫船の右半部の拡大縦断正面図。
158は、船尾アダプター144中に設けた前述のような塩分濃度差発電システム。
159は、推進方向変更装置1の下部のモーター。
160は、電撃爆発推進装置中にある、サイリスター・昇高圧コイルその他から成る、塩分濃度差発電システム157の出力を数万ボルトに昇圧する昇圧回路。
161は、その出力電圧の蓄積用高圧コンデンサー。
162は、その蓄積電力を次の各装置に、順次に送るサイリスター等を用いたスイッチング回路 。
163は、左端が開いた金属管から成る多数の爆発電極管。
164は、その右端の内部に設けたセラミック等から成る絶縁管。
165は、その内部に保持され、両端が左右に突出した棒状電極。
166は、船尾アダプター144の右壁の内面に取り付けたフランジ付の円筒形の防水ボルトホルダー。(左端には、内向きのフランジが付いており、ボルトの頭部が、非使用時に、脱落するのを防いでいる。)
167は、その中に収められている防水ボルト。その右端は、とがり、かつ、ねじが切られている。左端の頭部には、六角レンチで回すことができるように六角柱状のくぼみが付いている。(軸の右端をフクロナットに差し込む際、右端が多少上下前後に動いてもよいようにするため、頭部をホルダー内面と同直径の球面をなすようにしてもよい。)
168は、ボルト頭部の右側のワッシャー。(その内径をボルトの軸径より、やや大きくして、軸の右端が多少上下前後にずれても適応しうるようにしてもよい。あるいは、外径をやや小さくしてもよい。)
169は、ワッシャーの右側のタイヤ用ゴム等、硬質ゴムその他から成る円筒形の、船尾アダプターと貯水タンクとの間激を通じて、海水が船尾アダプター内に侵入することを防ぐためのパッキング。
170は、その右側のワッシャー。
171は、淡水タンク147の左壁内面に取り付けられたフクロナットで、ボルト167の右端がねじこまれている。
172は、淡水タンク147の右壁内面に取り付けられたフランジ付の円筒形の防水ボルトホルダー。(165のものと、やや形識を異にするものを例示している。)
173は、その中に収められているボルトで、軸の右端は、とがり、ねじが切られており、頭部の外面は六角形をなし、頭部の右端にはホルダーの外面に接する、非使用時に、ホルダーから脱落するのを防止するための、内向きのフランジが付いている。(これらのフランジは、ボルトの頭部に小さなねじで止めつける等すればよい。)
174は、ねじの軸の左端を囲むパッキング。
FIG. 23 is an enlarged longitudinal front view of the left half of the dredger.
FIG. 24 is an enlarged vertical front view of the right half of the dredger.
158 is a salinity difference power generation system as described above provided in the stern adapter 144.
Reference numeral 159 denotes a motor below the propulsion direction changing device 1.
160 is a booster circuit that boosts the output of the salt concentration difference power generation system 157 to tens of thousands of volts, which is comprised of a thyristor, a boosting high voltage coil, and the like in the electric shock explosion propulsion device.
161 is a high-voltage capacitor for storing the output voltage.
162 is a switching circuit using a thyristor or the like that sequentially sends the stored power to each of the following devices.
163 is a number of explosive electrode tubes made of a metal tube having an open left end.
Reference numeral 164 denotes an insulating tube made of ceramic or the like provided inside the right end.
Reference numeral 165 denotes a rod-shaped electrode that is held inside and protrudes from the left and right sides.
Reference numeral 166 denotes a cylindrical waterproof bolt holder with a flange attached to the inner surface of the right wall of the stern adapter 144. (The left end has an inward flange that prevents the bolt head from falling off when not in use.)
Reference numeral 167 denotes a waterproof bolt housed therein. Its right end is pointed and threaded. The leftmost head has a hexagonal columnar recess that can be turned with a hexagon wrench. (When inserting the right end of the shaft into the nut, the head may have a spherical surface with the same diameter as the inner surface of the holder so that the right end may move somewhat up and down.)
168 is a washer on the right side of the bolt head. (The inner diameter may be made slightly larger than the shaft diameter of the bolt so that the right end of the shaft may be slightly shifted up and down, or the outer diameter may be made slightly smaller.)
169 is a cylindrical packing made of hard rubber or the like, such as tire rubber on the right side of the washer, to prevent seawater from entering the stern adapter through the gap between the stern adapter and the water storage tank.
170 is the right washer.
Reference numeral 171 denotes an owl nut attached to the inner surface of the left wall of the fresh water tank 147, and the right end of the bolt 167 is screwed.
172 is a cylindrical waterproof bolt holder with a flange attached to the inner surface of the right wall of the fresh water tank 147. (Examples are slightly different from those of 165.)
173 is a bolt housed therein, the right end of the shaft is pointed and threaded, the outer surface of the head is hexagonal, and the right end of the head is in contact with the outer surface of the holder. It has an inward flange to prevent it from falling out of the holder when in use. (These flanges may be secured to the bolt head with a small screw.)
174 is a packing surrounding the left end of the screw shaft.

175は、船首アダプター148の左壁内面に取り付けたボルト173の右端がねじこまれているフクロナット。
176は、排水管駆動装置149の下部のモーター。
177は、浚渫本管駆動装置の下部のモーター。
178は、浚渫本管駆動装置153内において、浚渫本管154の左端の上部に付いている半円形板
179は、その下方の歯車状の半円形板。
180は、それにかみ合う図示しないモーターに連なる歯車。
175 is an owl nut in which the right end of a bolt 173 attached to the inner surface of the left wall of the bow adapter 148 is screwed.
Reference numeral 176 denotes a motor below the drain pipe driving device 149.
177 is a motor at the bottom of the main drive unit.
Reference numeral 178 denotes a semicircular plate 179 attached to the upper portion of the left end of the main tube 154 in the main tube driving device 153.
180 is a gear connected to a motor (not shown) that meshes with it.

181は、浚渫端管回転装置155内において、浚渫端管156の左端に、端管軸に垂直に取り付けられた歯車。
182は、それにかみ合う上部の歯車。
183は、その軸に連なるモーター。
184は、船首アダプター148の甲板下に設けたホース152内の水をホース151に送る送水ポンプ。
A gear 181 is attached to the left end of the end tube 156 in the end tube rotating device 155 so as to be perpendicular to the end tube axis.
182 is the upper gear that meshes with it.
183 is a motor connected to the shaft.
184 is a water supply pump for sending water in the hose 152 provided under the deck of the bow adapter 148 to the hose 151.

このシステム全体は、船舶として自己運航し、操船室147A内の人により操船され、港等に入り、図示しない内蔵ポンプ等により、淡水タンク147内に淡水を貯留させる。
淡水タンク147内の淡水と、周囲の海洋から採取された塩水は、船首アダプター148内の塩分濃度差発電システム158に送水され、生じた電力が船内で利用される。
その電力は、船尾アダプター144に取り付けた電撃爆発推進機146中の昇圧回路160で数万ボルトに昇圧され、高圧コンデンサー161に充電される。
操船室から推進操作をすると、スイッチング回路162内の多数のスイッチング素子が順次切り替わり、爆発電極管163と、棒状電極164に数万ボルトのコンデンサー161の充電圧を印加し、両者の対向面間に存在する海水中で放電し、スパークを起こし、急速に爆発的に水蒸気が発生し、衝撃波となり、爆発電極管内の海水を左端から海中に押し出し、その反作用で、電撃爆発推進機146に加わる力は、船全体を船首側に押す。(水蒸気が冷えて水に帰り、収縮すると、海水はゆっくりした速度で爆発管内に入り、次の爆発に備えるが、爆発管の管壁や右端に海水がしんにゅうするための弁を設けてもよい。)
下方の爆発電極完での爆発が終ると、直ちに、上方の爆発電極にスイッチング回路162からの電圧印加が行なわれ、次には、図示しない他の爆発電極間内での爆発が行なわれ、ついには、最初の爆発電極完への電圧印加が行なわれることを持続的に反復する。
なお、実際には、爆発電極管の内径を10mm〜100mm程度の任囲の値にし、10行、10列の100本、または、それ以上配置し、順次に爆発させる。
この場合、一つの大きな爆発電極管を用いるよりも、小型のものを多数用いる方が、騒音が小さく、コンデンサー161の容量を小さくしうる。
The entire system is self-operated as a ship, is maneuvered by a person in the maneuvering room 147A, enters a port or the like, and stores fresh water in the fresh water tank 147 by a built-in pump or the like (not shown).
Fresh water in the fresh water tank 147 and salt water collected from the surrounding ocean are sent to the salt concentration difference power generation system 158 in the bow adapter 148, and the generated electric power is used in the ship.
The electric power is boosted to several tens of thousands of volts by the booster circuit 160 in the electric shock explosion propulsion unit 146 attached to the stern adapter 144 and charged to the high-voltage capacitor 161.
When a propulsion operation is performed from the maneuvering room, a large number of switching elements in the switching circuit 162 are sequentially switched, and a charging pressure of a capacitor 161 of tens of thousands of volts is applied to the explosive electrode tube 163 and the rod-shaped electrode 164 between the opposing surfaces. Discharge occurs in the existing seawater, sparks, explosively generates water vapor, generates shock waves, pushes the seawater in the explosion electrode tube from the left end into the sea, and the reaction exerts on the electric shock propulsion propeller 146 Push the whole ship to the bow side. (When the water vapor cools and returns to the water, the seawater enters the explosion tube at a slow speed and prepares for the next explosion. However, a valve for the seawater to enter the wall or the right end of the explosion tube may be provided. .)
Immediately after the explosion of the lower explosive electrode is completed, a voltage is applied from the switching circuit 162 to the upper explosive electrode, and then an explosion is performed between other explosive electrodes (not shown). Continuously repeats the voltage application to the first explosion electrode complete.
Actually, the explosive electrode tube has an inner diameter of about 10 mm to 100 mm and is arranged in 10 rows, 10 columns, 100 or more, and sequentially explodes.
In this case, it is possible to reduce noise and reduce the capacity of the capacitor 161 by using a large number of small tubes rather than using one large explosion electrode tube.

コンデンサー161よりずっと大きな容量のコンデンサーをも設け、スイッチング回路162に、同時に全電極に通電するモードも選びうるようにし、船が海底の土砂上に乗り上げた際等に、全爆発電極管から同位相の衝撃波を発生させ、大きな推進力を得るようにしてもよい。
そのような波面が一平面化した面積の大きい(あたかも、レンズ系で直径を大きくしたレーザーパルスのような)衝撃波面が、海底に向かって発射されるようにケーシングの方向を変えた装置を造り、海底からの反射波を捕える多数の音波センサーを設け、解析用コンピューターも設け、高分解能のソナー・地震探査装置を得てもよい。
A capacitor with a capacity much larger than that of the capacitor 161 is also provided so that the switching circuit 162 can select a mode in which all the electrodes are energized at the same time. The shock wave may be generated to obtain a large driving force.
A device that changes the direction of the casing so that a shock wavefront with a large area (such as a laser pulse with a large diameter in the lens system) is launched toward the seabed. A high-resolution sonar and seismic survey device may be obtained by providing a large number of sound wave sensors that capture reflected waves from the seabed and by providing an analysis computer.

なお、各爆発電極管を六角形にし、ハニカム状に多数並べてもよい。
逆に、爆発管の隣接間隔をやや広めに取ることもある。
棒状電極165の左端を円錐形にとがらせてもよい。
各爆発管の内部に、管内面から絶縁され、かつ、絶縁体小片を挟んだ2枚の小短冊形金属電極板を設け、両短冊形電極に通電するようにしてもよい。
Each explosion electrode tube may be hexagonal and arranged in a honeycomb shape.
On the contrary, the interval between the explosion tubes may be slightly wider.
The left end of the rod-shaped electrode 165 may be bent in a conical shape.
Each explosive tube may be provided with two small strip metal electrode plates that are insulated from the inner surface of the tube and sandwich an insulator piece, and both strip electrodes may be energized.

電撃爆発推進機146で、このようにして生じた推力により、船は船首方向に進むが、方向を変える場合には、モーター159に通電し、推進方向変更装置145を鉛直軸の周囲に回転させ、電撃爆発推進機146の方向を変えて船の進行方向を変える。
ただし、船尾アダプター144に、通常の船舶と同様の電動機や内燃機関で駆動するプロペラ型の推進機や、梶を取り付けたり、操船室147Aを船首アダプター148に設けたりしてもよい。
操船指令の電気信号は、各アダプター間をつなぐ接続ケーブルで、電車の車両間を接続するように、つながれる。
直方体の淡水タンク147をタグボート等で、そのまま曳航すれば水流抵抗が大きくなるので、簡易に着脱できる船首アダプター144と、船尾アダプター148を接続して、水流抵抗を減小させているが、自ら推進機能を持たないが、運搬したい特許第3757378「人工陸地用モジュール」に記す浮遊性構造物等を、ねじ止めし、焔隔地へ運ぶのに用いる等のこともできる。
その場合、タグボートで曳航するようにし、推進機等を省略してもよい。
With the electric shock propulsion propeller 146, the ship advances in the bow direction due to the thrust generated in this way, but when changing the direction, the motor 159 is energized and the propulsion direction change device 145 is rotated around the vertical axis. Then, change the direction of the ship by changing the direction of the electric shock explosion propulsion machine 146.
However, the stern adapter 144 may be attached with a propeller type propulsion device driven by an electric motor or an internal combustion engine similar to that of a normal ship or a dredger, or a maneuvering room 147A may be provided in the bow adapter 148.
The electric signal of the ship maneuvering command is connected so that the train cars are connected by a connection cable that connects the adapters.
If a rectangular freshwater tank 147 is towed as it is with a tugboat etc., the water flow resistance will increase, so the stern adapter 148 and the stern adapter 148 that can be easily attached and detached are connected to reduce the water flow resistance. Although it does not have a function, the floating structure etc. which are described in the patent 3757378 “artificial land module” to be transported can be screwed and used to transport to a remote area.
In that case, it may be towed by a tug boat, and a propulsion device or the like may be omitted.

また、塩分濃度差発電システム158の出力電力は、次のような浚渫作業にも利用される。
浚渫端管回転装置155中のモーター183を回転させると、歯車182、歯車181、浚渫端管156が90°回転し、多数の小孔157が前方に向く。
ついで、送水ポンプ184を作動させると、海底の堆積層上にある浚渫端管156の先端付近から、土砂混じり海水が、小孔157を経て、端管156内に吸引され、浚渫本管154→152→送水ポンプ184→ホース151→排水管150を経て、排水管の先端から埋め立て区域に流れ落ちる。(排水管の先端につないだホースを経て、埋め立て区域に土砂入り海水を送ることもある。)
The output power of the salinity difference power generation system 158 is also used for the following dredging work.
When the motor 183 in the heel end tube rotating device 155 is rotated, the gear 182, the gear 181, and the heel end tube 156 rotate by 90 °, and a large number of small holes 157 face forward.
Next, when the water pump 184 is activated, seawater mixed with earth and sand is sucked into the end pipe 156 through the small hole 157 from the vicinity of the tip of the end pipe 156 on the sediment layer on the seabed, and the main pipe 154 → After flowing through 152 → water pump 184 → hose 151 → drain pipe 150, it flows down from the tip of the drain pipe to the landfill area. (Sediment-containing seawater may be sent to the landfill area through a hose connected to the tip of the drain pipe.)

モーター177を回転させれば、排水管駆動装置149が鉛直軸の周囲に回転し、排水管150の方向を変えることができる。
また、海底を円弧状に捜査するため、モーター177に通電して、ジョイント作用をする浚渫本管駆動装置153、浚渫本管154、浚渫端管156を鉛直軸の周囲に回転させることができるが、小孔157から海水が吸引されるため、前方に向く推進力が生じ、モーター177に、それほど大きな電力を供給しなくてもすむ。
それらの管を45°程度前方に走査した後、浚渫端管回転装置155に通電し、浚渫端管を管軸の周囲に180°回転させ、小孔157を後に向けると、土砂混じり海水の吸引力が逆方向に働き、各管は後方の推進力を受ける。
モーター177の回転方向も逆転し、走査方向を切替える。
90°ほど扇形面の走査をすれば、また逆転させることを反復する。
同時に船をゆっくり右進させれば、海底の土砂面は、しだいに削られてゆく。
If the motor 177 is rotated, the drain pipe driving device 149 rotates around the vertical axis, and the direction of the drain pipe 150 can be changed.
In addition, in order to investigate the sea bottom in an arc shape, the motor 177 can be energized to rotate the main pipe driving device 153, the main pipe 154, and the end pipe 156, which act as joints, around the vertical axis. Since the seawater is sucked from the small hole 157, a forward driving force is generated, and it is not necessary to supply so much power to the motor 177.
After scanning these tubes about 45 ° forward, energize the dredge tube rotating device 155, rotate the dredge tube 180 ° around the tube axis, and turn the small hole 157 later to suck the seawater mixed with earth and sand. The force works in the opposite direction, and each tube receives a backward thrust.
The rotation direction of the motor 177 is also reversed, and the scanning direction is switched.
If the fan-shaped surface is scanned about 90 °, the reversal is repeated.
At the same time, if you slowly move the ship to the right, the bottom of the seabed will be gradually scraped.

浚渫端管156の先端を上げ下げするには、浚渫本管駆動装置153の内蔵モーターに通電し、歯車180と、半円形板179を回転させればよい。
なお、実際には、浚渫本管154は直線状にし、その先端に浚渫端管回転装置を上下方向に回転させる装置を取り付け、それに浚渫端管回転装置155を取り付け、海底面に対する浚渫本管及び、浚渫端管の傾斜を任意に変えうるようにする。
海水吸引時に、小孔157の付近に多数の針状突起を設けたり、小孔の各直径や向きを変えたりして、乱流を発生させ、付近の土砂を撹拌したり、浚渫端管回転装置155を駆動し、浚渫端管を細かく往復回転させ、小孔を上下運動させてもよい。
In order to raise and lower the tip of the saddle end tube 156, the internal motor of the main tube driving device 153 is energized and the gear 180 and the semicircular plate 179 are rotated.
In practice, the main pipe 154 is linear, and a device for rotating the dredge tube rotating device in the vertical direction is attached to the tip, and the dredge tube rotating device 155 is attached thereto. The inclination of the end tube can be changed arbitrarily.
During seawater suction, a large number of needle-like projections are provided near the small holes 157, and the diameter and direction of the small holes are changed to generate turbulent flow, stirring the nearby earth and sand, and rotating the end pipe The device 155 may be driven to reciprocate and rotate the end tube finely to move the small hole up and down.

上面の小孔157をふさぎ、浚渫端管156の前面と後面に小孔を設け、該端管の内部を前後に仕切り、前半部または後半部の水路を遮断しうる電動弁を設けてもよい。
小孔を前面に設けた端管と、後面に設けた端管とを、前後に並べて固定し、両管を交互に浚渫本管154につなぐ電動弁を設ける等してもよい。
An electric valve may be provided that closes the small hole 157 on the upper surface, provides small holes on the front surface and the rear surface of the end tube 156, partitions the inside of the end tube back and forth, and blocks the water channel in the front half or the latter half. .
An end valve provided with a small hole on the front surface and an end tube provided on the rear surface may be arranged side by side and fixed, and an electric valve that alternately connects the two tubes to the main tube 154 may be provided.

淡水タンク147内の淡水は、石油等より、はるかに消費量が大きいので、同様の淡水タンクを多数、船首アダプターと、船尾アダプター間につないでもよい。
その際、各アダプター、淡水タンク等の間を、ボルト167や173と、171や175でねじどめし、自由に着脱しうるようにする。
なお、実際には、このような防水ボルトと、フクロナットの締結装置は、各接続壁面に多数設けられる。
Since the amount of fresh water in the fresh water tank 147 is much larger than that of oil or the like, a number of similar fresh water tanks may be connected between the bow adapter and the stern adapter.
At that time, the bolts 167 and 173 and 171 and 175 are screwed between the adapters and the fresh water tank so that they can be freely attached and detached.
Actually, a large number of such waterproof bolts and owl nut fastening devices are provided on each connection wall surface.

塩文濃度差発電システム158を適当な懸架装置を介して船内に取り付け、船のゆれにより、落下する水滴の位置がずれるのを防いでもよい。
あるいは、点滴落下空間の上下長を長くしたものや、水滴の位置ずれが起きても支障がない、図7〜10に記すような、並列接続セルを多数含むユニットを多数直列に接続して用いてもよい。
The salt concentration difference power generation system 158 may be attached to the ship via an appropriate suspension device to prevent the position of the falling water drop from shifting due to the ship's shaking.
Alternatively, a unit having a large number of parallel-connected cells as shown in FIGS. 7 to 10 is used by connecting a large number of units connected in series. May be.

消費地から生産地に向かうオイルタンカーその他の船舶では、往路または復路の積み荷が少なく、船倉が空費されるので、そこに大きな軟質プラスチックを 用いたビニール袋等を入れ、淡水を積載し、それを用いて、塩分濃度差発電をし、燃料油を使用するエンジンの駆動軸につないだ電動モーターや発電電動機に通電し、燃料油の消費量を節約してもよい。
その場合、前後端が細くなった紡錘形の大きなビニール袋や硬質軽量タンクに淡水を入れ、本船から伸びた吸水ホース、または、1〜数本の平行な、可撓管製、あるいは、ユニバーサルジョイントで両端を本船とタンクにつないだ硬質管製の給水管で曳航しながら、淡水を発電に利用してもよい。
あるいは、これらの淡水を供給されて働く、塩分濃度差発電装置と、大出力の電動推進機を設けた安価な多数のリースのタグボートを用い、オイルタンカーをその内蔵淡水が消費しつくされる範囲の湊間を補助曳航するようにしてもよい。
In oil tankers and other ships heading from the consumption area to the production area, the cargo on the outbound or return path is small and the cargo hold is wasted, so a plastic bag, etc. using a large soft plastic is put in it, and fresh water is loaded on it. May be used to generate a salinity difference power generation and to energize an electric motor or a generator motor connected to a drive shaft of an engine using fuel oil to save fuel oil consumption.
In that case, put fresh water into a large spindle-shaped plastic bag or rigid lightweight tank with narrow front and rear ends, and use a water absorption hose extending from the ship, or one or several parallel flexible pipes, or a universal joint. Fresh water may be used for power generation while towing a rigid water pipe connected to the ship and tank at both ends.
Or, the range in which the built-in fresh water is consumed by an oil tanker using many low-cost lease tugs equipped with a salinity-difference power generator and a high-powered electric propulsion machine that are supplied with these fresh water. An auxiliary tow may be provided between these furrows.

上記の浚渫用船舶を発電用その他のダム湖に浮べ、固底の浚渫に用いてもよい。
その場合、排水管150の先端に取り付けた長いホースをダムの水門を通して外部に垂らし、ホースの下端を湖水面より低くすれば、サイホンの原理により、送水ポンプ184に電力を供給しなくても、小孔157から吸いこんだ水が排出されることになり、浚渫本管駆動装置153の駆動用モーター177に加える電力も少なくてすむ利点がある。(水流でタービンを回し、その減速歯車を経た力で、浚渫本管駆動装置153を回転させることもできる。)
船舶の甲板に降る雨水を淡水タンク147等に蓄え、塩分濃度差発電システム158に用いてもよい。
内陸部の塩湖の塩水と、それに流入する河水を用いて発電してもよい。
図25は、淡水タンク147の前壁に取り付けた塩分濃度差発電システム158の発生する塩素ガスと、水素ガスを用いて海底下の地震探査を行なうシステムの拡大縦断面図。
185は、淡水タンク147の前壁。
186は、それに取り付けた油圧シリンダー。
187は、その中のピストン。
188は、それから伸びた湾曲したピストンロッド。
189は、その右端に取り付けたガソリンエンジンと同様の内燃シリンダー。
190は、発電システム158から発生する水素ガスに空気または塩素ガスを加えて送る送気ホース。
191は、それに連なる電磁弁。
192は、スパークプラグ。
193は、内燃シリンダー内のピストン。
194は、シリンダー下端の内面に設けたピストンのストッパー。
195は、内燃シリンダーの下端に連なる衝撃波発生用シリンダー。
196は、ピストン193のピストンロッドの下端に連なる、上下方向の多数の細い通気孔を有するハニカム構造の硬質材料から成るピストン。(下面が平坦な半球形や円錐形にすることもある。)
197は、その下方にあり、水面に浮かんでいる、直径1m、厚さが20mm程度の(上面に硬質金属薄板を貼り付けてもよい)、水より比重が小さいポリプロピレン等の材質から成る円盤形の衝撃波発生盤。
198は、その下方のシリンダー内面に突出した多数の小突起から成る、衝撃波発生盤197が下方に脱落するのを防ぐストッパー。(シリンダー内面に周囲が固着したハニカム構造盤にしてもよい。)
199は、点線で示した海面。
The above dredger vessel may float on other dam lakes for power generation and used for solid bottom dredging.
In that case, if a long hose attached to the tip of the drainage pipe 150 is hung outside through the sluice gate of the dam, and the lower end of the hose is made lower than the surface of the lake, it is possible to supply power to the water pump 184 according to the principle of siphon. The water sucked from the small hole 157 is discharged, and there is an advantage that less power is applied to the driving motor 177 of the main pipe driving device 153. (The turbine drive device 153 can also be rotated by the force that has passed through the reduction gear by turning the turbine with water flow.)
Rainwater falling on the deck of the ship may be stored in a fresh water tank 147 or the like and used in the salinity difference power generation system 158.
You may generate electricity using the salt water of the inland salt lake and the river water flowing into it.
FIG. 25 is an enlarged longitudinal sectional view of a system that performs seismic survey under the sea floor using chlorine gas generated by the salinity difference power generation system 158 attached to the front wall of the fresh water tank 147 and hydrogen gas.
185 is the front wall of the fresh water tank 147.
186 is a hydraulic cylinder attached to it.
187 is a piston in it.
188 is a curved piston rod extending from it.
189 is an internal combustion cylinder similar to a gasoline engine attached to the right end.
190 is an air supply hose that adds air or chlorine gas to the hydrogen gas generated from the power generation system 158 and sends it.
191 is a solenoid valve connected to it.
192 is a spark plug.
193 is a piston in the internal combustion cylinder.
194 is a piston stopper provided on the inner surface of the lower end of the cylinder.
195 is a shock wave generating cylinder connected to the lower end of the internal combustion cylinder.
Reference numeral 196 denotes a piston made of a hard material of a honeycomb structure having a large number of fine ventilation holes in the vertical direction that are connected to the lower end of the piston rod of the piston 193. (The bottom may be flat or hemispherical or conical.)
197 is a disk-like shape made of a material such as polypropylene which is below the surface and floats on the water surface, having a diameter of about 1 m and a thickness of about 20 mm (a hard metal thin plate may be attached to the upper surface) and having a specific gravity smaller than that of water. Shock wave generating board.
Reference numeral 198 denotes a stopper composed of a large number of small protrusions protruding from the inner surface of the cylinder below to prevent the shock wave generating board 197 from dropping off. (It may be a honeycomb structure board whose periphery is fixed to the inner surface of the cylinder.)
199 is the sea surface indicated by a dotted line.

油圧シリンダー186内に図示しない管を通じて油を出し入れし、ピストン187を適宜必要な高さに保ち、ピストンロッド188に連なるシリンダー189、195その他も必要な高さに保持される。
塩素ガスと水素ガスは電磁弁191を開き、ピストン187を中ほどの高さに押し下げ、内燃シリンダー189内に入る。(シリンダー内面に、弾性ストッパーを設ける等して、ピストンの中間位置を設定してもよい。)
ついで、スパークプラグ192に通電し、内燃シリンダー内の混合ガスに着火し、爆発的な燃焼を起こさせると、シリンダー内の燃焼ガスは急激に膨張し、ピストン193に連動するピストン196は、その下方の空気を通気孔を通じて上方に押しやりながら、急速に加速され、下降し、衝撃波発生盤197に衝突し、立ち上がりが急峻で、かつ、直径が大きいため、遠くへいっても、比較的広がりの小さい衝撃波パルスビームが、衝撃波発生盤197内→シリンダー195内の海水中→その下方の海水中→海底の地層内を伝搬し、種々の界面で反射し、図示しない音波センサーに入り、コンピューター処理により、各界面の深度や、その連続から成る界面の形が記録される等する。
Oil is put into and out of the hydraulic cylinder 186 through a pipe (not shown), the piston 187 is appropriately maintained at a necessary height, and the cylinders 189 and 195 connected to the piston rod 188 are also maintained at a necessary height.
Chlorine gas and hydrogen gas open the solenoid valve 191 and push the piston 187 down to an intermediate height and enter the internal combustion cylinder 189. (The intermediate position of the piston may be set by providing an elastic stopper on the inner surface of the cylinder.)
Next, when the spark plug 192 is energized to ignite the mixed gas in the internal combustion cylinder and cause explosive combustion, the combustion gas in the cylinder expands rapidly, and the piston 196 linked to the piston 193 moves downward. The air is rapidly accelerated and lowered while being pushed upward through the vent hole, collides with the shock wave generation board 197, has a steep rise, and has a large diameter. A small shock wave pulse beam propagates in the shock wave generating board 197 → in the seawater in the cylinder 195 → in the seawater below it → in the seafloor formation, reflected at various interfaces, enters a sound wave sensor (not shown), and is processed by computer processing. , The depth of each interface, the shape of the interface consisting of its continuity, etc. are recorded.

この場合、硬質のピストン196が急速度で衝撃波発生盤197に衝突するので、その界面には、立ち上がりの速い波長の短い、強い衝撃波が発生し、測定対象界面からの分解能の高い反射波が得られる。
なお、塩水と水素の混合ガスを、通気孔をふさいだピストン196と、衝撃波発生盤の間に入れ、それに点火して爆発させ、直接、衝撃波発生盤の上面を加圧してもよい。
塩分濃度差発電システム158の電力でコンプレッサーを動かして得た圧縮空気を、電磁弁181を開いて、シリンダー189内に送りこみ、ピストン193と196を急速に下降させてもよい。
シリンダー189内に、船舶に積載したプロパンガスと空気(または酸素)を送りこみ、爆燃させてもよい。
衝撃波発生盤197を、硬質金属容器製にし、その中に、硬質材料製のハニカム構造体や、低比重液体を入れたりし、水に浮かぶ円盤にしてもよい。
この地震探査装置を児上で用いる場合には、衝撃波発生シリンダー195の下端と、衝撃波発生盤197の直下の高さにビニール膜等を張り、その間に水を入れ、水入り太鼓状にし、下端を地面に当てて用いればよい。
あるいは、衝撃波発生盤以下のシリンダー内に水入りビニール袋を収めてもよい。
In this case, since the hard piston 196 collides with the shock wave generation board 197 at a rapid velocity, a strong shock wave with a short rising wavelength is generated at the interface, and a reflected wave with high resolution from the measurement target interface is obtained. It is done.
Note that a mixed gas of salt water and hydrogen may be put between the piston 196 that blocks the vent hole and the shock wave generating board, and then ignited to explode and directly pressurize the upper surface of the shock wave generating board.
The compressed air obtained by moving the compressor with the electric power of the salinity difference power generation system 158 may be sent into the cylinder 189 by opening the electromagnetic valve 181 and the pistons 193 and 196 may be rapidly lowered.
Propane gas and air (or oxygen) loaded on the ship may be sent into the cylinder 189 and detonated.
The shock wave generating board 197 may be made of a hard metal container, and a honeycomb structure made of a hard material or a low specific gravity liquid may be put in the shock wave generating board 197 to make a disk floating on water.
When this seismic exploration device is used on a child, a vinyl film or the like is stretched between the lower end of the shock wave generating cylinder 195 and the height immediately below the shock wave generating board 197, and water is put between them to form a water-filled drum. Can be applied to the ground.
Or you may store a plastic bag with water in the cylinder below a shock wave generation board.

鼻づまりの際等、鼻孔から淡水を水根で排出する鼻洗浄(鼻うがい)を行なうことがよくある。それにより、鼻腔内の浄化、花粉症の場合の花粉の除去、気道を狭めている鼻汁の除去によるいびきの軽減等に有効なことが多い。
しかし、単純に水道水を用いたのでは、鼻腔粘膜への刺激が強く、痛みが起こる。
それは、淡水による粘膜への浸透圧刺激のためと、温度が体温より低いためである。(特に浸透圧刺激の影響が大きい。)
従って、病院等での鼻洗浄では、体温低度に加温した、浸透圧刺激がない、0.9%の生理的食塩水を用いる。
次のものは、一般の人が簡単に生理的食塩水を造ることができ、その食塩の一部を利用して、図1〜10に示す濃淡電池(塩分濃度差発電システム)を働かせ、その電力を利用する鼻洗浄装置である。
When stuffy nose, nasal washing (nasal gargle) is often performed to drain fresh water from the nostrils through water roots. As a result, it is often effective for purifying the nasal cavity, removing pollen in the case of hay fever, and reducing snoring by removing nasal discharge that narrows the airways.
However, using tap water simply causes strong irritation to the nasal mucosa and causes pain.
This is because the osmotic pressure is stimulated to the mucous membrane by fresh water and the temperature is lower than the body temperature. (Especially affected by osmotic pressure stimulation.)
Therefore, in nasal washing in a hospital or the like, 0.9% physiological saline heated to a low body temperature and free from osmotic pressure stimulation is used.
As for the following, the general person can easily make physiological saline, and using the part of the salt, the concentration cell (salt concentration difference power generation system) shown in FIGS. This is a nasal washing device that uses electric power.

図26は、濃淡電池を用いる鼻洗浄装置の平面図。
図27は、その縦断正面図。
200は、容量400ml程度のプラスチック製の生理的食塩水容器。
201は、その右上縁に取り付けた蝶番。
202は、それに連なる蓋。
203は、その内面に設けた壁面が傾いた食塩収納ポケット。
204は、容器200の第2底壁。
205は、その下の第1底壁との間の空気室。
206は、その右方の貫通孔上に設けた右端のみを接着した膜状弁体。
207は、第2底壁の左方の狭い三つの貫通孔の上に取り付けた詳細構造は図示しないが、左方から(陰極→塩素域淡水流下空間→陰イオン交換膜→塩水流下空間→陽イオン交換膜→水素域淡水流下空間→陽極)が並ぶ濃淡電池。
208は、その塩素域淡水流下空間の上に取り付けた点滴ノズルと点滴落下空間のセット。
209は、塩水流下空間の上に取り付けた、プラスチック製の食塩投下管。
210は、水素域淡水流下空間の上に取り付けた発泡樹脂製の水流制限体。
211は、図示しない堂電線とスイッチを介して、濃淡電池の陰極と陽極に連なる容器の左面に取り付けたモーター。
212は、その下部に取り付けた遠心ポンプ。
213は、その排水孔に連なる軟質ビニール管。
214は、その上端に取り付けた先端は細くなった洗浄ノズル。
215は、それと平行に並ぶ排水ノズル。
216は、その下端に連なるビニール管。
217は、二つのノズルが差し込まれ、両端は上に伸びた軟質樹脂で被覆された鼻挟み。
218は、その右端を保持する、容器の左面から突出した挟み状の突起。
FIG. 26 is a plan view of a nasal irrigation apparatus using a concentration battery.
FIG. 27 is a longitudinal front view thereof.
200 is a plastic physiological saline container having a capacity of about 400 ml.
201 is a hinge attached to the upper right edge.
202 is a lid connected to it.
203 is a salt storage pocket provided on the inner surface of which the wall surface is inclined.
Reference numeral 204 denotes a second bottom wall of the container 200.
205 is an air chamber between the first bottom wall below.
206 is a membranous valve body in which only the right end provided on the right through hole is adhered.
Although the detailed structure attached to the left three narrow through-holes on the left side of the second bottom wall is not shown in FIG. 207, from the left side (cathode → chlorine freshwater flow space → anion exchange membrane → salt water flow space → positive Concentration cell with ion exchange membrane → hydrogen freshwater flow space → anode).
208 is a set of a drip nozzle and a drip fall space mounted on the chlorine freshwater flow space.
209 is a plastic salt dropping pipe mounted on the salt water flowing space.
210 is a water flow restrictor made of foamed resin, which is mounted on the hydrogen region fresh water flow space.
211 is a motor attached to the left side of the container connected to the cathode and anode of the density cell via a not-shown hall cable and switch.
212 is a centrifugal pump attached to the lower part.
213 is a soft vinyl pipe connected to the drain hole.
Reference numeral 214 denotes a cleaning nozzle with a thin tip attached to the upper end.
215 is a drain nozzle arranged in parallel with it.
216 is a vinyl tube connected to the lower end.
217 is a nasal clamp in which two nozzles are inserted and both ends are covered with a soft resin extending upward.
Reference numeral 218 denotes a pinch-like protrusion that protrudes from the left surface of the container and holds the right end thereof.

使用者は、洗面台の前に立ち、容器200を棚の上におく等し、計量スプーンまたは普通のスプーンを用いて、必要な容量に設計されているポケット203に食塩を満たすと、それは、約4gとなる。
次に、400ml程度の温水(淡水)を容器内に満たし、蓋202を左にたおして閉じると、ポケット内の塩が水中に落ち、直下の食塩投下管209には高濃度の食塩が入り、濃厚食塩水が生じ、その周囲には、生理的食塩水ができる。
ついで、挟み状突起218から、鼻挟み217をはずし、抜け落ちない深さまで、洗浄ノズル214を右の鼻孔に、排水ノズル215を左の鼻孔に差し入れると、鼻孔の左右の鼻翼が鼻挟みで軽く挟まれ、ノズルと鼻孔の間隙からの水漏れが防がれる。
When the user stands in front of the wash basin, puts the container 200 on the shelf, etc., and fills the pocket 203 designed for the required volume with salt using a measuring spoon or ordinary spoon, About 4g.
Next, when the container is filled with about 400 ml of warm water (fresh water) and the lid 202 is closed to the left, the salt in the pocket falls into the water, and the salt dropping pipe 209 directly below contains high-concentration salt. Concentrated saline is generated, and physiological saline is formed around it.
Next, remove the nose pin 217 from the pinch-shaped protrusion 218 and insert the cleaning nozzle 214 into the right nostril and the drain nozzle 215 into the left nostril to a depth that does not fall out. It is sandwiched and water leakage from the gap between the nozzle and the nostril is prevented.

容器内の水は点滴ノズルセット208の上端から入り、その下端から徐々に濃淡電池207の塩素域淡水流下空間に入り、やがて空間内を満たし、下部の貫通孔からその下方の空気室205中に滴下されてゆく。
また濃厚塩水が食塩投下管209から、濃淡電池207の塩水流下空間に入る。
また、低濃度食塩水が水流制限体210を通り、徐々に水素域淡水流下空間にも入る。
電池内を通過した水は、それぞれの下方の狭い貫通孔を経て、空気室205に滴下されてゆく。
The water in the container enters from the upper end of the drip nozzle set 208, gradually enters the chlorine region fresh water flow space of the concentration cell 207 from the lower end, eventually fills the space, and enters the lower air chamber 205 from the lower through hole. It is dripped.
Concentrated salt water enters the salt water flowing space of the concentration cell 207 from the salt dropping tube 209.
Further, the low-concentration saline passes through the water flow restrictor 210 and gradually enters the hydrogen fresh water flow space.
The water that has passed through the battery is dripped into the air chamber 205 through the narrow through-holes below.

このようにして濃淡電池207内の各流下空間に水が入ってゆき、電池内では塩分の濃度差により、陰・陽のイオン交換膜の作用で、起電力が発生し、モーター211が回り、ポンプ212は、容器200内の第2底壁のすぐ上の高さから、容器内部の生理的食塩水を吸引し、ビニール管213→洗浄ノズル214を通じて、鼻腔内に送り込む。(その際、容器200と蓋202の間隙から空気が容器内に入る。)
使用者は、この時、病院等でも行なうように、口を開けて「ええー」と声を出し続けると、口腔の奥の口蓋垂が上昇し、鼻腔の後端を閉じ、鼻腔に入った水が口腔側に流下するのが防がれ、水は、右の鼻腔→咽頭上部→左の鼻腔→排水ノズル→ビニール管216、の流路を経て、洗面台に排出される。
In this way, water enters each downstream space in the concentration cell 207, and an electromotive force is generated by the action of the negative and positive ion exchange membranes due to the difference in salt concentration in the battery, the motor 211 rotates, The pump 212 sucks physiological saline inside the container from the height just above the second bottom wall in the container 200 and sends it into the nasal cavity through the vinyl tube 213 → the washing nozzle 214. (At that time, air enters the container through the gap between the container 200 and the lid 202.)
At this time, as is done in hospitals, etc., if the user keeps opening his mouth and uttering “Yes”, the uvula at the back of the oral cavity rises, the rear end of the nasal cavity is closed, and the water that has entered the nasal cavity Is prevented from flowing down to the oral cavity side, and water is discharged to the washstand through the flow path of right nasal cavity → upper pharynx → left nasal cavity → drainage nozzle → vinyl tube 216.

半量程度の水が用いられた時、図示しないスイッチを切って、モーター211を止め、ノズル214〜215を鼻孔から抜き取り、両ノズルを洗面台上に持ってきて、スイッチを入れ、手を用いて、ノズル214から出る水で両ノズルの外面を洗い、ノズル214をビニール管216の下端にさし込み、ビニール管内と、ノズル215内を洗浄する。
第2底壁204上の水がなくなると、容器200を手に持ち、蓋202を開き、上下を反転して、弁体206を自重等で開かせ、空気室205内に貯まった水を排水し、ノズル214〜215を鼻挟み217に差し戻し、鼻挟みを挟み状突起218に取り付ける。
When half the amount of water is used, turn off the switch (not shown), stop the motor 211, remove the nozzles 214 to 215 from the nostril, bring both nozzles on the washstand, turn on the switch, and use your hands The outer surfaces of both nozzles are washed with water coming out of the nozzle 214, the nozzle 214 is inserted into the lower end of the vinyl tube 216, and the inside of the vinyl tube and the inside of the nozzle 215 are washed.
When the water on the second bottom wall 204 is exhausted, the container 200 is held by hand, the lid 202 is opened, the top and bottom are inverted, the valve body 206 is opened by its own weight, etc., and the water stored in the air chamber 205 is drained. Then, the nozzles 214 to 215 are inserted back into the nose clip 217, and the nose clip is attached to the clip projection 218.

別の人が用いる場合には、両ノズルに同サイズまたは異なるサイズのプラスチック製カバーをかぶせてもよい。   If another person uses, both nozzles may be covered with plastic covers of the same or different sizes.

なお、洗面台の棚の上にAC電源に連なる浅いカップ状のヒーターを設け、その中に400ml程度の淡水を入れたポットを常時乗せておき、水を40℃程度に加温しておき、使用時に容器200に注入するようにしてもよい。   In addition, a shallow cup-shaped heater connected to the AC power source is provided on the shelf of the washstand, and a pot containing about 400 ml of fresh water is always put in it, and the water is heated to about 40 ° C., You may make it inject | pour into the container 200 at the time of use.

旅行の際等に用いる使い捨てタイプとして、400ml程度の容量の4辺形のポリ袋に3.6gの食塩を収めて密封し、上辺の右方には先端が細くなったポリフィルム製のノズルを取り付け、上辺の右方には、フィルム製の逆止弁を内蔵した上端が広がった円錐形の給水管をつけたものを造る。
その給水管を水道の蛇口につなぎ、袋に400mlほどの 水を満たし、生理的食塩水を造り、ノズルを鼻腔に差し、袋を手で握ると、水圧でノズルは膨らんで鼻孔からの水漏れが防がれた状態で、手動力で、生理的食塩水が鼻腔に注入されるようにしてもよい。
As a disposable type used for traveling, etc., 3.6 g of salt is put in a quadrilateral plastic bag with a capacity of about 400 ml and sealed. At the upper right side of the installation, make a film with a conical water supply pipe with an open upper end with a built-in check valve made of film.
Connect the water pipe to a tap, fill the bag with about 400 ml of water, make physiological saline, insert the nozzle into the nasal cavity, hold the bag with your hand, the nozzle expands due to water pressure, and water leaks from the nostrils. In a state where the water is prevented, physiological saline may be injected into the nasal cavity by manual force.

上記の各実施例において、サイズ、材料、その他を任意に変更・選択しうる。
各請求項に記す発明も、種々の用途に転用しうる。
In each of the above embodiments, the size, material, etc. can be arbitrarily changed and selected.
The invention described in each claim can also be diverted to various uses.

本発明を実施した一容器内に、二つのセルが直列に接続されて収められている直列電池堆型ユニットを用いた塩分濃度差発電システムの平面図。The top view of the salt concentration difference power generation system using the series battery stack type unit in which two cells are connected and stored in one container which implemented this invention. 絶縁容器1の上壁の直下における横断面図。FIG. 3 is a cross-sectional view immediately below the upper wall of the insulating container 1. 淡水供給筒4の位置における容器1の縦断正面図。The longitudinal cross-sectional front view of the container 1 in the position of the freshwater supply cylinder 4. FIG. 容器1のほぼ中央の高さにおける横断面図。FIG. 3 is a transverse cross-sectional view at a substantially central height of the container 1. フレーム24の左面の、わずか右方の位置における縦断左側面図。FIG. 4 is a longitudinal left side view of the left side of the frame 24 at a position slightly to the right. フレーム25の左面の、わずか右方の位置における縦断左側面図。FIG. 4 is a longitudinal left side view of the left side of the frame 25 at a position slightly to the right. 点滴ノズルを用いない、並列接続ユニットを複数個直列につないだ実施例の平面図。The top view of the Example which connected several parallel connection units in series without using an infusion nozzle. その7字形排水管の湾曲部の高さにおける横断面図。The cross-sectional view in the height of the curved part of the 7-shaped drain pipe. 淡水供給管72の位置における縦断正面図。The longitudinal front view in the position of the fresh water supply pipe 72. FIG. 淡水供給管72の位置における縦断左側面図。The longitudinal left side view in the position of the fresh water supply pipe 72. FIG. 多数の熱電対素子を直列につないだ大規模熱電堆発電システムの縦断左側面図。A vertical left side view of a large-scale thermoelectric power generation system in which a large number of thermocouple elements are connected in series. 大規模直列熱電堆115を作製する真空蒸着装置システムの縦断左側面図。The longitudinal left side view of the vacuum evaporation system which produces the large-scale series thermopile 115. FIG. 熱電対作製の第1工程で、基板120の表面に銅製薄膜電極群が形成された場合(半製品)の正面図。The front view when the copper thin film electrode group is formed in the surface of the board | substrate 120 at the 1st process of thermocouple preparation (semi-finished product). 第2工程で、図13の表面に蒸着された半製品の正面図。The front view of the semi-finished product vapor-deposited on the surface of FIG. 13 at the 2nd process. 第3工程の半製品の正面図。The front view of the semi-finished product of a 3rd process. 第4工程の半製品の正面図。The front view of the semi-finished product of a 4th process. 第5工程の半製品の正面図。The front view of the semi-finished product of a 5th process. 第6工程の半製品の正面図。The front view of the semi-finished product of a 6th process. 第7工程の半製品の正面図。The front view of the semi-finished product of a 7th process. 基板120の右面への蒸着が完成したものを左に倒して拡大した縦断正面の模式図。The schematic diagram of the longitudinal front which expanded what was vapor deposition to the right surface of the board | substrate 120 by tilting to the left. 浸透圧発電システムの横断面図。The cross-sectional view of an osmotic pressure power generation system. 淡水を積載し、塩分濃度差発電システムで得た電力で推進期その他の動作をさせる浚渫船の平面図。A plan view of a tugboat loaded with fresh water and propelled during the propulsion period and other operations using electric power obtained by a salinity difference power generation system. 浚渫船の左半部の拡大縦断正面図。An enlarged vertical front view of the left half of the dredger. 浚渫船の右半部の拡大縦断正面図。The enlarged vertical front view of the right half part of a dredger. 淡水タンク147の前壁に取り付けた塩分濃度差発電システム158の発生する塩素ガスと、水素ガスを用いて海底下の地震探査を行なうシステムの拡大縦断面図。The expanded longitudinal cross-sectional view of the system which performs the seismic survey under the seabed using the chlorine gas which the salinity difference power generation system 158 attached to the front wall of the freshwater tank 147, and hydrogen gas. 濃淡電池を用いる鼻洗浄装置の平面図。The top view of the nasal washing apparatus using a density battery. その縦断正面図。The longitudinal front view.

符号の説明Explanation of symbols

1 絶縁容器。
2 淡水供給管。
3 電磁弁。
4 淡水供給筒。
5 超音波水位計。
6 通気孔。
7 塩水供給管。
8 電磁弁。
9 塩水供給筒。
10 超音波水位計。
11 通気孔。
12 廃淡水排出管。
13 廃塩水排出管。
14 マイナス側導電線。
15〜16 突起。
17 蓋。
18 突起。
19 ボルト。
20 突起。
21 ボルト。
22 プラス側導電線。
23〜28 点滴装置形成用フレーム。
29 淡水供給溝。
30〜32 淡水点滴ノズル。
33 塩水供給溝。
34〜35 塩水点滴ノズル。
36 マイナス電極板。
36B 淡水流下空間形成用スペーサー。
37〜38 陰イオン交換膜。
39〜40 陽イオン交換膜。
41 電極板。
41A スペーサー。
42〜44 淡水点滴落下空間。
45 導電性隔壁。
45A〜45B スペーサー。
46〜47 導電性隔壁。
46A〜47A スペーサー。
46B〜47B スペーサー。
48〜50 淡水流下空間形成用の隔壁。
51〜52 塩水流下空間。
53 淡水水位検出電極。
54〜56 廃淡水点滴ノズル。
57〜59 廃淡水点滴落下空間。
60 廃淡水排出溝。
61 塩水点滴落下空間。
65 塩水水位検出電極。
66 廃塩水点滴ノズル。
68 廃塩水点滴落下空間。
70 廃塩水排出溝。
71 給水容器。
72 淡水供給管。
73 塩水供給管。
74 駆動装置。
75 ラック。
76 駆動板。
77〜78 弁体。
79〜80 並列ユニット。
81〜82 マイナス導電線。
83〜84 プラス導電線。
85 連結導電線。
86A〜87A 塩素域廃淡水排出7字形管。
86B〜87B 水素域廃淡水排出7字形管。
88〜89 廃塩水排出7字形管。
86AC〜89C 水滴検出電極。
90 淡水供給空洞。
91A〜91B 貫通孔。
92A〜92B 貫通孔。
93A〜93B 貫通孔。
94 塩水供給空洞。
95〜99 フレーム。
100A 塩素域淡水供給溝。
100B 水素域淡水供給溝。
100c 塩素域淡水供給溝。
100D 水素域淡水供給溝。
101A〜101B 塩水供給溝。
102A 塩素域廃淡水排出溝。
102B 水素域廃淡水排出溝。
103 廃塩水排出溝。
104〜105 マイナス電極板。
106 プラス電極板。
107A〜107B ユニット80の塩素域・水素域廃淡水排出溝。
108 廃塩水排出溝。
109〜110 陰イオン交換膜。
111〜112 陽イオン交換膜。
113 淡水供給管。
114 塩水供給管。
115〜116 大規模直列熱電堆。
117〜118 断熱材。
119 真空容器。
120 蒸着基板。
121 蒸着源。
122〜123 巻き取りドラム。
124 シャドーマスク。
125〜126 ローラー。
127 銅製電極群。
127A 接続部。
127B 接続突起部。
128 コンスタンタン製電極群。
128A 接続部。
129 絶縁膜。
129A 延長部。
130 銅製電極群。
130A 接続部。
131 絶縁膜。
131A 接続部。
132 コンスタンタン電極。
132A 接続部。
133 銅製電極。
133A 接続部。
133B 接続突起部。
134 耐圧容器。
135 塩水供給中継管。
136 淡水供給管。
137 中空糸膜。
138 淡水排出管。
139 塩水排出管。
140 タービン。
141 発電電動機。
142 塩水供給高圧ポンプ。
143 塩水供給管。
144 船尾アダプター。
145 推進方向変更装置。
146 電撃爆発推進機。
147 淡水タンク。
147A 操船室。
148 船首アダプター。
149 排水管駆動装置。
150 排水管。
151 ホース。
152 ホース。
153 浚渫本管駆動装置。
154 浚渫本管。
155 浚渫端管回転装置。
156 浚渫端管。
157 小孔。
158 塩分濃度差発電システム。
159 モーター。
160 昇圧回路。
161 高圧コンデンサー。
162 スイッチング回路 。
163 爆発電極管。
164 絶縁管。
165 棒状電極。
166 防水ボルトホルダー。
167 防水ボルト。
168 ワッシャー。
169 パッキング。
170 ワッシャー。
171 フクロナット。
172 防水ボルトホルダー。
173 防水ボルト。
174 パッキング。
175 フクロナット。
176〜177 モーター。
178 半円形板
179 歯車状の半円形板。
180〜182 歯車。
183 モーター。
184 送水ポンプ。
185 淡水タンク147の前壁。
186 油圧シリンダー。
187 ピストン。
188 ピストンロッド。
189 内燃シリンダー。
190 送気ホース。
191 電磁弁。
192 スパークプラグ。
193 ピストン。
194 ピストンのストッパー。
195 衝撃波発生用シリンダー。
196 ピストン。
197 衝撃波発生盤。
198 ストッパー。
199 点線で示した海面。
200 生理的食塩水容器。
201 蝶番。
202 蓋。
203 食塩収納ポケット。
204 は、容器200の第2底壁。
205 空気室。
206 膜状弁体。
207 濃淡電池。
208 点滴ノズルと点滴落下空間のセット。
209 食塩投下管。
210 水流制限体。
211 モーター。
212 ポンプ。
213 ビニール管。
214 洗浄ノズル。
215 排水ノズル。
216 ビニール管。
217 鼻挟み。
218 挟み状の突起。
1 Insulated container.
2 Fresh water supply pipe.
3 Solenoid valve.
4 Fresh water supply cylinder.
5 Ultrasonic water level gauge.
6 Vents.
7 Salt water supply pipe.
8 Solenoid valve.
9 Salt water supply tube.
10 Ultrasonic water level gauge.
11 Vent.
12 Waste fresh water discharge pipe.
13 Waste brine discharge pipe.
14 Negative conductive wire.
15 to 16 protrusions.
17 Lid.
18 Protrusions.
19 volts.
20 Protrusion.
21 volts.
22 Positive conductive wire.
23-28 Infusion device forming frame.
29 Freshwater supply channel.
30-32 Freshwater drip nozzle.
33 Salt water supply channel.
34-35 Saline drip nozzle.
36 Negative electrode plate.
36B A spacer for forming a freshwater flow space.
37-38 anion exchange membrane.
39-40 Cation exchange membrane.
41 Electrode plate.
41A spacer.
42-44 Freshwater drip fall space.
45 Conductive partition.
45A-45B spacer.
46-47 Conductive partition walls.
46A-47A Spacer.
46B-47B spacer.
48-50 A partition for forming a freshwater flow space.
51-52 Salt water flow down space.
53 Freshwater level detection electrode.
54-56 Waste freshwater drip nozzle.
57-59 Waste freshwater drip drop space.
60 Waste freshwater drain.
61 Salt water drip fall space.
65 Salt water level detection electrode.
66 Waste salt drip nozzle.
68 Waste saline drip fall space.
70 Waste brine drain.
71 Water supply container.
72 Freshwater supply pipe.
73 Salt water supply pipe.
74 Drive device.
75 racks.
76 Drive plate.
77-78 Valve body.
79-80 Parallel units.
81-82 Negative conductive wire.
83-84 plus conductive wire.
85 Connecting conductive wire.
86A ~ 87A Chlorine zone wastewater discharge 7-shaped pipe.
86B-87B Hydrogen zone waste freshwater discharge 7-shaped pipe.
88-89 Waste salt water discharge 7-shaped tube.
86AC-89C Water drop detection electrode.
90 Freshwater supply cavity.
91A-91B Through-hole.
92A to 92B through-holes.
93A-93B Through-hole.
94 Salt water supply cavity.
95-99 frames.
100A Chlorine fresh water supply groove.
100B Hydrogen fresh water supply groove.
100c Chlorine fresh water supply groove.
100D Hydrogen fresh water supply groove.
101A to 101B Salt water supply groove.
102A Chlorine zone wastewater drainage ditch.
102B Hydrogen zone wastewater drainage ditch.
103 Waste brine drain.
104-105 Negative electrode plate.
106 Positive electrode plate.
107A-107B Chlorine / hydrogen waste freshwater discharge groove of unit 80.
108 Waste brine drain.
109-110 anion exchange membrane.
111-112 Cation exchange membrane.
113 Freshwater supply pipe.
114 Salt water supply pipe.
115-116 Large series thermopile.
117-118 Thermal insulation material.
119 vacuum vessel.
120 Deposition substrate.
121 Deposition source.
122-123 Winding drum.
124 Shadow mask.
125-126 rollers.
127 Copper electrode group.
127A connection part.
127B Connection protrusion.
128 Constantan electrode group.
128A connection.
129 insulating film.
129A extension.
130 Copper electrode group.
130A connection part.
131 Insulating film.
131A connection part.
132 Constantan electrode.
132A connection part.
133 Copper electrode.
133A connection part.
133B Connection protrusion.
134 Pressure vessel.
135 Salt water supply relay pipe.
136 Freshwater supply pipe.
137 Hollow fiber membrane.
138 Freshwater discharge pipe.
139 Saltwater discharge pipe.
140 Turbine.
141 Generator motor.
142 salt water supply high pressure pump.
143 Salt water supply pipe.
144 Stern adapter.
145 Propulsion direction change device.
146 Dengeki Explosion Propulsion Machine.
147 Freshwater tank.
147A Maneuvering room.
148 Bow adapter.
149 Drain pipe drive device.
150 Drain pipe.
151 Hose.
152 hose.
153 Main pipe drive.
154 The main.
155 End tube rotating device.
156 End tube.
157 Small holes.
158 Salinity difference power generation system.
159 motor.
160 Booster circuit.
161 High voltage condenser.
162 switching circuit.
163 Explosion electrode tube.
164 Insulation tube.
165 Rod electrode.
166 Waterproof bolt holder.
167 Waterproof bolt.
168 Washer.
169 packing.
170 washer.
171 Furonut.
172 Waterproof bolt holder.
173 Waterproof bolt.
174 packing.
175 Fukuronut.
176-177 motor.
178 Semicircular plate 179 A gear-shaped semicircular plate.
180-182 gears.
183 Motor.
184 Water pump.
185 Front wall of freshwater tank 147.
186 Hydraulic cylinder.
187 piston.
188 Piston rod.
189 Internal cylinder.
190 Air supply hose.
191 Solenoid valve.
192 Spark plug.
193 Piston.
194 Piston stopper.
195 Shock wave generating cylinder.
196 Piston.
197 Shock wave generation board.
198 Stopper.
199 Sea level indicated by dotted lines.
200 Saline container.
201 Hinge.
202 lid.
203 salt storage pocket.
Reference numeral 204 denotes a second bottom wall of the container 200.
205 Air chamber.
206 Membrane valve.
207 Concentration cell.
208 Set of drip nozzle and drip fall space.
209 Salt drop tube.
210 Water flow restrictor.
211 Motor.
212 Pump.
213 Vinyl tube.
214 Cleaning nozzle.
215 Drain nozzle.
216 Vinyl tube.
217 Nose pinching.
218 A pinched protrusion.

Claims (13)

各1枚の陰イオン交換膜と陽イオン交換膜を対向させ、両イオン交換膜間に塩水流下空間を形成させ、各イオン交換膜の外面に接する淡水流下空間を設け、両空間に存在する淡水層間に単位起電力を発生させる塩分濃度差発電セルを、並列または直列に多数接続し大出力を得るシステムにおいて、作動時に等電位を示す以外の、各流下空間に淡水または塩水を供給する給水経路中に、各流下空間相互の電気的短絡を防止するための、点滴落下空間内の電気絶縁体である気体層を介在させるか、断続開閉する、1次側(給水側)と、2次側(排水側)との間が電気絶縁材料から成る、電気的駆動弁を介在させて成る、塩分濃度差発電システム。   Each anion exchange membrane and cation exchange membrane face each other, a salt water flow space is formed between both ion exchange membranes, and a fresh water flow space in contact with the outer surface of each ion exchange membrane is provided. In a system in which a large number of salinity-difference power generation cells that generate unit electromotive force between layers are connected in parallel or in series to obtain high output, a water supply path that supplies fresh water or salt water to each downstream space, other than showing equipotentials when operating Primary side (water supply side) and secondary side that interpose a gas layer, which is an electrical insulator in the drip drop space, or intermittently open and close, to prevent electrical short circuit between the respective flowing-down spaces A salinity-difference power generation system that is made of an electrically insulating material between the (drainage side) and an electrically driven valve. 各1枚の陰イオン交換膜と陽イオン交換膜を対向させ、両イオン交換膜間に塩水流下空間を形成させ、各イオン交換膜の外面に接する淡水流下空間を設け、両空間に存在する淡水層間に単位起電力を発生させる塩分濃度差発電セルを、並列または直列に多数接続し大出力を得るシステムにおいて、作動時に等電位を示す以外の、各流下空間に淡水または塩水を供給する給水経路中に、各流下空間相互の電気的短絡を防止するための、点滴落下空間内の電気絶縁体である気体層を介在させるか、断続開閉する、1次側(給水側)と、2次側(排水側)との間が電気絶縁材料から成る、電気的駆動弁を介在させて成る、請求項1に記載の塩分濃度差発電システムを用いたことを特徴とする発電法。   Each anion exchange membrane and cation exchange membrane face each other, a salt water flow space is formed between both ion exchange membranes, and a fresh water flow space in contact with the outer surface of each ion exchange membrane is provided. In a system in which a large number of salinity-difference power generation cells that generate unit electromotive force between layers are connected in parallel or in series to obtain high output, a water supply path that supplies fresh water or salt water to each downstream space, other than showing equipotentials when operating Primary side (water supply side) and secondary side that interpose a gas layer, which is an electrical insulator in the drip drop space, or intermittently open and close, to prevent electrical short circuit between the respective flowing-down spaces A power generation method using the salinity difference power generation system according to claim 1, wherein an electric drive valve made of an electrically insulating material is interposed between the (drainage side) and the drainage side. 垂直な四角形の陰極板を設け、それと平行に並ぶ同形の、陰イオン拡散淡水流下空間→陰イオン交換膜→塩水流下空間→陽イオン交換膜→陽イオン拡散淡水流下空間→陽極板、これらのセットから成る単位起電力発生セルを、一つの絶縁材料製容器内に、異名極板が隣接する直列状、または、同名極板が隣接する並列状で、多数詰め込んだ塩分濃度差発電システムにおいて、それらのセルの各上端に、セルを囲む絶縁材料製フレームの上縁の切欠、または陥凹から成り、下方の淡水または塩水の流下空間に通じ、上方は、発生したガスの排気管に通じる貫通孔を設け、それら貫通孔の上端に接する、絶縁材料製の、底壁に多数の貫通孔を有する淡水供給用と、塩水供給用の空洞(水槽)を設け、該底壁上に、底壁に設けた貫通孔に、順次連なりうる、電動式の絶縁材料製の弁体を設け、各セルの流下空間の下端に廃水排出用の貫通孔と、それに連なる、上昇部分と、下に向く湾曲部とより成る、7字形の廃水排出管を設けて成る、請求項1の塩分濃度差発電システムに用いる、直列接続型または並列接続型塩分濃度差発電システム。   An anion diffusion fresh water flow space → anion exchange membrane → salt water flow space → cation exchange membrane → cation diffusion fresh water flow space → anode plate In a salinity-difference power generation system in which a large number of unit electromotive force generation cells are packed in a single insulating material container in a series of adjacent plates with different name plates or in parallel with adjacent electrode plates with the same name, The upper edge of each cell consists of a notch or depression on the upper edge of the frame made of an insulating material surrounding the cell, leading to the lower fresh water or salt water flowing space, and the upper part is a through hole leading to the exhaust pipe of the generated gas And provided with a hollow (water tank) for supplying fresh water having a large number of through holes in the bottom wall and a salt water supply made of an insulating material in contact with the upper ends of the through holes, and on the bottom wall. Sequentially connected to the through holes provided A seven-letter shaped waste water which is provided with a valve body made of an electrically insulating material and which comprises a through hole for discharging waste water at the lower end of the flow-down space of each cell, a rising portion connected thereto, and a curved portion facing downward. A series-connected or parallel-connected salinity-difference power generation system used in the salinity-difference power generation system according to claim 1 provided with a discharge pipe. 第1工程として、絶縁材料製蒸着基板面の上半部に、隣接部には達しない程度、左方に伸びた接続突起部を下端に有する、縦長の多数の平行な銅製電極をメッキし、第2工程として、その接続突起部以外の面及び、基板の下半部にいたるコンスタンタン製電極をメッキシ、第3工程として、その上半部に絶縁体層をメッキし、第4工程として、絶縁体層及び、コンスタンタン露出面に銅製電極をメッキし、第5工程として、その下半部に絶縁体層をメッキし、ついで、第2〜5工程を任意の回数、反復し、最終工程として、直前の工程で露出している金属面及び、第1工程における最左側の接続突起以外の各接続突起部と、最右側のメッキ部の上下の中間部の右側の基板面に、接続突起付銅製電極をメッキして成る、請求項1の塩分濃度差発電システムに供給する淡水及び塩水の温度差を利用する、大規模直列熱電堆発電システム。   As the first step, the upper half of the insulating material-deposited substrate surface is plated with a large number of elongated parallel copper electrodes having connection protrusions extending leftward to the extent that they do not reach the adjacent portions, As the second step, the constantan electrode leading to the surface other than the connection projection and the lower half of the substrate is plated, and as the third step, an insulator layer is plated on the upper half, and as the fourth step, insulation is performed. The copper electrode is plated on the body layer and the constantan exposed surface, and as the fifth step, the insulator layer is plated on the lower half, and then the second to fifth steps are repeated an arbitrary number of times, and the final step is Made of copper with connection protrusions on the metal surface exposed in the immediately preceding process, each connection protrusion other than the leftmost connection protrusion in the first process, and the right side substrate surface of the upper and lower intermediate parts of the rightmost plating part The salinity difference occurrence according to claim 1, wherein the electrode is plated. Utilizing the temperature difference between the fresh and salt water supplied to the system, large-scale series thermopile power generation system. 真空蒸着源から蒸発する金属・非金属物質の蒸気を、蒸着パターンをうがった多数のシャドーマスクを順次切り替えて、蒸着基板に、重層蒸着する蒸着装置において、多数の蒸着パターンを長い1本の連続ベルトにうがったパーホレーション付の連続シャドーマスクと、それを1コマずつ送る駆動装置とを設けたことを特徴とする、請求項4に記載の装置の製造に用いる真空蒸着装置。   In a vapor deposition device that sequentially deposits multiple shadow masks over the vapor deposition pattern of vapors of metal and non-metallic substances evaporating from a vacuum vapor deposition source, and deposits multiple vapor deposition patterns on a vapor deposition substrate, a single long continuous vapor deposition pattern. The vacuum evaporation apparatus used for manufacturing the apparatus according to claim 4, wherein a continuous shadow mask with perforation over the belt and a driving device for sending the perforation mask one frame at a time are provided. 耐圧容器内に、水分子は通すが、塩類分子やイオンは通さない、半透膜製の中空糸膜を多数本、両端の外面を相互に固形材料で結合し、かつ耐圧容器内面に固着し、中空糸膜内に低濃度塩水または淡水を連続的に供給する給水系を設け、耐圧容器内の中空糸膜外に高濃度塩水を送りこむ小流量の塩水供給ポンプを設け、中空糸膜内の淡水が浸透して増量した該膜外の希釈された出力塩水を導く管に連なる出力駆動装置を設け、その出力駆動軸に連なる前記の塩水供給ポンプをつないだ発電システムにおいて、出力駆動軸に、発電機にも、電動機にもなる発電電動機をつなぎ、発電電動器の発電出力を充電する蓄電池を設け、該蓄電池の充電電力を始動スイッチを経て、発電電動機に供給する電気回路を設けた出力取り出し回路を設けたこと、または、希釈された出力塩水の一部を出力シリンダーに導き、そのピストンロッドの他端に連なる小直径のピストン及びシリンダーにより、高濃度塩水を耐圧容器内の中空糸膜外に送り込むようにしたことを特徴とする、請求項1に記載の塩分濃度差発電システムの廃水を利用しうる浸透圧発電システム。   A large number of semipermeable membrane hollow fiber membranes that allow water molecules to pass but not salt molecules or ions to pass through the pressure vessel, and the outer surfaces of both ends are bonded to each other with a solid material, and fixed to the inner surface of the pressure vessel. A water supply system for continuously supplying low-concentration salt water or fresh water in the hollow fiber membrane, a small-flow salt water supply pump for feeding high-concentration salt water outside the hollow fiber membrane in the pressure vessel, In the power generation system provided with the output drive device connected to the pipe that guides the diluted output salt water outside the membrane increased by permeation of fresh water, and connected to the salt water supply pump connected to the output drive shaft, in the output drive shaft, Connect the generator and the generator motor, connect the generator motor, and provide a storage battery that charges the generator motor's power generation output, and take out the output that provides an electric circuit that supplies the storage battery's charging power to the generator motor through the start switch Having a circuit, Alternatively, a part of the diluted output salt water is led to the output cylinder, and the high-concentration salt water is sent out of the hollow fiber membrane in the pressure vessel by the small diameter piston and cylinder connected to the other end of the piston rod. The osmotic pressure power generation system which can utilize the waste water of the salinity difference power generation system of Claim 1 characterized by the above-mentioned. エネルギー源としての船内や曳航する貯水タンクを設け、その内蔵淡水や甲板上に流れる雨水と、船外の海水を用い、前記請求項1の発電システムの出力電力で駆動する推進機を設けて成る船舶。   An onboard or towed water storage tank is provided as an energy source, and a built-in fresh water, rainwater flowing on the deck, and seawater outside the ship are provided, and a propulsion device driven by the output power of the power generation system according to claim 1 is provided. Ship. 請求項1のシステムの電気出力を昇圧して高圧コンデンサーに蓄積し、水中に水平に保持される爆発電極管を設け、その一端内に絶縁管を介して保持された棒状電極を設け、スイッチング回路を経て、前記高圧コンデンサーの蓄積電圧を爆発電極管と棒状電極管に印加し、爆発的に発生した水蒸気を爆発電極管の他端から噴出させる船舶用推進機。   An electric output of the system according to claim 1 is boosted and accumulated in a high-voltage condenser, and an explosion electrode tube that is held horizontally in water is provided, and a rod-like electrode held through an insulating tube is provided in one end thereof, and a switching circuit Then, a marine propulsion device that applies the accumulated voltage of the high-voltage capacitor to the explosive electrode tube and the rod-shaped electrode tube, and ejects explosively generated water vapor from the other end of the explosive electrode tube. 鉛直に保持された、多数の同サイズの爆発電極管の一端面を一平面内にそろえて平行に並べ、各他端内に、絶縁体を介して保持された棒状電極を設け、全爆発電極管と、全棒状電極とを大容量高圧コンデンサーに、同時に接続し、全爆発電極管内に水蒸気の衝撃波を発生させるようにして成る、船舶の推進装置にも、地震探査装置の音源にもなる、大面積の平面水中衝撃波を発生する請求項8に記載の電撃推進装置。   One end face of a large number of explosion electrode tubes of the same size, which are held vertically, are arranged in parallel in one plane, and a rod-like electrode held via an insulator is provided in each other end. The tube and all rod electrodes are connected to a large-capacity high-voltage condenser at the same time, and the shock wave of water vapor is generated in all explosion electrode tubes. The electric shock propulsion apparatus according to claim 8, which generates a plane underwater shock wave having a large area. 上端が閉じ、下端は開放され、海水が入っている衝撃波発生用シリンダーを用いた地震探査システムにおいて、該シリンダー内の水面状に硬質材料から成る衝撃波発生用円盤を浮かべ、該円盤の上方に、請求項1に記載の塩分濃度差発電システムから発生する可念性ガス、または、別のガス源から供給する可燃性ガスの爆発エネルギー、または、請求項1に記載の塩分濃度差発電システムで生産された電力、または、他のエネルギー源から生産された電力で作製された高圧空気を、前記衝撃波発生用円盤の上面に急速に衝突させる装置に加えて成る、地震探査システム。   In the seismic exploration system using the shock wave generating cylinder in which the upper end is closed and the lower end is open and seawater is contained, a shock wave generating disk made of a hard material is floated on the water surface in the cylinder, and above the disk, The explosive energy of the flammable gas generated from the salinity-difference power generation system according to claim 1 or the combustible gas supplied from another gas source, or produced by the salinity-difference power generation system according to claim 1 A seismic exploration system comprising a device for rapidly colliding high-pressure air produced by generated electric power or electric power produced from another energy source with the upper surface of the shock wave generating disk. 推進機を持たない、直方体状の浮遊性構造物(浮体)の平行な二つの端面の一つに密接しうる、同サイズの端面を持つ、通常の船舶の船首と同様の構造をなす、両接触面を結合するためのねじ止め装置を設け、宋銭室を備えた、汎用の船首アダプター、及び、請求項1に記載の塩分濃度差発電システムの出力電力、または、その他のエネルギー源により駆動する推進機と、操舵機を設けた、前記浮遊性構造物の船首アダプターの取り付け面と反対の面に密接しうる、同サイズの端面を持ち、両面を結合するためのねじ止め装置を設けた、汎用の船尾アダプターとより成る、船舶の運航システム。   A structure similar to the bow of a normal ship with the same size end face that can be in close contact with one of the two parallel end faces of a rectangular parallelepiped floating structure (floating body) without a propulsion unit. A general-purpose bow adapter provided with a screwing device for coupling the contact surfaces and provided with a money chamber, and driven by the output power of the salinity difference power generation system according to claim 1 or other energy source Provided with a screwing device having an end surface of the same size, which can be in close contact with the surface opposite to the mounting surface of the bow adapter of the floating structure, provided with a propulsion device and a steering device. A ship navigation system consisting of a general purpose stern adapter. 請求項1の発電システムで駆動するポンプによる水流や、水位差で流れる水流を流す管路を船舶に設け、その管路の一端を水平方向に方向転換可能にする駆動装置(ジョイント)を介して、端末が海底や湖底に接し、端末の一側面に吸水用小孔を設け、かつ、その位置を変更しうる浚渫管を設け、海底や湖底の土砂と共に、吸引する水流の方向と逆方向の推進力を発生しながら吸水し、船舶外の埋め立て区域に送水する、自動推進浚渫管付浚渫船。   Through a driving device (joint) that provides a water flow by a pump driven by the power generation system of claim 1 or a pipe for flowing water flowing at a difference in water level to one end of the pipe in a horizontal direction. The terminal is in contact with the bottom of the sea or the lake, a small hole for water absorption is provided on one side of the terminal, and a dredger that can change its position is installed. A dredger with an automatic propelling dredger that absorbs water while generating propulsion and sends it to a landfill area outside the ship. 一定量の容器に入れた0.9%の生理的食塩水を鼻腔内に流し込む鼻洗浄装置において、一定容量の洗浄水容器を設け、該容器の内部に生理的食塩水を作成するのに適した量の食塩収納ポケットを設けるか、製造段階で、予め適量の食塩を容器内に収めておき、それら一定量食塩により、容器中に淡水を注入すれば容易に生理的食塩水が作製されるようにし、該投入食塩の一部を含む、濃厚食塩水を供給する管と、低濃度食塩水を供給する管とを有する、請求項1に記載の塩分濃度差発電システムを設け、その起電力、または手動力で得た揚水力を用い、生理的食塩水容器内の生理的食塩水を、鼻腔に差し入れたノズルに送水するビニール管を設けて成る、鼻洗浄装置。   In a nasal irrigation device that pours 0.9% physiological saline in a fixed volume into the nasal cavity, it is suitable for preparing a fixed volume of rinsing water container and creating physiological saline inside the container. If a sufficient amount of salt storage pocket is provided or an appropriate amount of salt is previously stored in the container at the manufacturing stage, and fresh water is injected into the container with the fixed amount of salt, physiological saline is easily produced. The salinity-difference power generation system according to claim 1, further comprising a pipe for supplying concentrated saline and a pipe for supplying low-concentration saline, including a part of the input salt, and the electromotive force thereof. Or a nasal irrigation device comprising a vinyl tube for supplying physiological saline in a physiological saline container to a nozzle inserted into the nasal cavity using a lifting force obtained by manual force.
JP2008183393A 2008-07-15 2008-07-15 Salinity difference power generation system Pending JP2010027213A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008183393A JP2010027213A (en) 2008-07-15 2008-07-15 Salinity difference power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008183393A JP2010027213A (en) 2008-07-15 2008-07-15 Salinity difference power generation system

Publications (1)

Publication Number Publication Date
JP2010027213A true JP2010027213A (en) 2010-02-04

Family

ID=41732874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008183393A Pending JP2010027213A (en) 2008-07-15 2008-07-15 Salinity difference power generation system

Country Status (1)

Country Link
JP (1) JP2010027213A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012002263A1 (en) * 2010-06-28 2012-01-05 協和機電工業株式会社 Hollow fiber forward osmosis membrane
WO2012158941A2 (en) * 2011-05-17 2012-11-22 The Penn State Research Foundation Reverse electrodialysis supported microbial fuel cells and microbial electrolysis cells
KR101291768B1 (en) 2012-05-11 2013-07-31 한국에너지기술연구원 Mass electrical storage system using salt water
KR101311360B1 (en) * 2012-06-01 2013-10-14 한국에너지기술연구원 Salinity gradient electric generating device using closed-loop flow electrode
KR101394132B1 (en) 2012-11-20 2014-05-14 한국에너지기술연구원 High efficiency salinity gradient electric generating device
KR101394081B1 (en) 2013-05-06 2014-05-15 한국에너지기술연구원 Improved reverse electrodialysis electric generating device
KR101431636B1 (en) 2013-09-04 2014-08-20 한국에너지기술연구원 Salinity gradient electric generating device with high efficiency
JP2019209241A (en) * 2018-06-01 2019-12-12 オルガノ株式会社 Device and method of decontaminating scrubber effluent, and salinity difference power generation system
CN112442661A (en) * 2019-08-28 2021-03-05 佳能株式会社 Evaporation plating device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2011271943B2 (en) * 2010-06-28 2013-09-05 Kyowakiden Industry Co., Ltd. Hollow fiber forward osmosis membrane
WO2012002263A1 (en) * 2010-06-28 2012-01-05 協和機電工業株式会社 Hollow fiber forward osmosis membrane
WO2012158941A2 (en) * 2011-05-17 2012-11-22 The Penn State Research Foundation Reverse electrodialysis supported microbial fuel cells and microbial electrolysis cells
WO2012158941A3 (en) * 2011-05-17 2013-03-21 The Penn State Research Foundation Reverse electrodialysis supported microbial fuel cells and microbial electrolysis cells
WO2013169023A1 (en) * 2012-05-11 2013-11-14 한국에너지기술연구원 High-capacity power storage system using salt water
KR101291768B1 (en) 2012-05-11 2013-07-31 한국에너지기술연구원 Mass electrical storage system using salt water
KR101311360B1 (en) * 2012-06-01 2013-10-14 한국에너지기술연구원 Salinity gradient electric generating device using closed-loop flow electrode
KR101394132B1 (en) 2012-11-20 2014-05-14 한국에너지기술연구원 High efficiency salinity gradient electric generating device
KR101394081B1 (en) 2013-05-06 2014-05-15 한국에너지기술연구원 Improved reverse electrodialysis electric generating device
KR101431636B1 (en) 2013-09-04 2014-08-20 한국에너지기술연구원 Salinity gradient electric generating device with high efficiency
JP2019209241A (en) * 2018-06-01 2019-12-12 オルガノ株式会社 Device and method of decontaminating scrubber effluent, and salinity difference power generation system
CN112203989A (en) * 2018-06-01 2021-01-08 奥加诺株式会社 Scrubber drain water purification device and method, and salinity concentration difference power generation system
JP7175636B2 (en) 2018-06-01 2022-11-21 オルガノ株式会社 Scrubber wastewater purification device and method, and salinity concentration difference power generation system
CN112442661A (en) * 2019-08-28 2021-03-05 佳能株式会社 Evaporation plating device

Similar Documents

Publication Publication Date Title
JP2010027213A (en) Salinity difference power generation system
JP6915198B2 (en) Chemical reactor with water-repellent porous membrane
AU2008209322B2 (en) Carbon dioxide sequestration and capture
US20080231053A1 (en) Apparatus For Production of Hydrogen Gas Using Wind and Wave Action
BRPI0807930A2 (en) FILTERING, WATER TREATMENT, DOUBLE PASSAGE SYSTEMS FOR WATER DESALINATION AND WATER TREATMENT, WATER TREATMENT MODULE MANUFACTURES
BRPI0417121B1 (en) Seawater desalination system, Seawater desalination method on board a vessel positioned on the surface of a seawater body
CN101932755B (en) A hydrogen generator
CN113144904A (en) Hydrogen recovery device, hydrogen recovery method, and carbon dioxide fixation system
US20140110252A1 (en) Biomass production and harvesting system
WO2023165115A1 (en) Sea surface oil recovery device
US8470161B2 (en) Biomass production and harvesting system
CN102745650B (en) Gas-liquid separation oxygen-making device and submersible vehicle adopting same
US8925294B2 (en) Solute ion coulomb force accelaration and electric field monopole passive voltage source
KR20230105676A (en) Electrolytic hydrogen production device
RU2380320C1 (en) Desalination installation
KR101489642B1 (en) Complex fresh water production system using fuel cell apparatus
RU2814347C1 (en) Method for irreversible extraction of carbon dioxide dissolved in sea water, and complex for its implementation
RU2275527C1 (en) Complex sea power station
JP3711501B2 (en) Water reforming unit using electrolysis
Willauer et al. Extraction of Carbon Dioxide and Hydrogen from Seawater by an Electrochemical Acidification Cell Part III: Scaled-up Mobile Unit Studies (Calendar Year 2011)
Patents SEPARATING COLLECTOR FOR SUBSEA BLOWOUTS
JPS5581780A (en) Oil/water separator
Kashyap Analysis and Implementation of Polyphase Alternating Current Bi Ionic Propulsion System for Desalination of Water
WO2016042073A1 (en) Power plant arrangement having a thermal water outlet on the seabed and operational procedure therefor
JPS5911741B2 (en) Fuel gas generator for internal combustion engines