WO2013169023A1 - High-capacity power storage system using salt water - Google Patents

High-capacity power storage system using salt water Download PDF

Info

Publication number
WO2013169023A1
WO2013169023A1 PCT/KR2013/004067 KR2013004067W WO2013169023A1 WO 2013169023 A1 WO2013169023 A1 WO 2013169023A1 KR 2013004067 W KR2013004067 W KR 2013004067W WO 2013169023 A1 WO2013169023 A1 WO 2013169023A1
Authority
WO
WIPO (PCT)
Prior art keywords
brine
fresh water
fluidized bed
power
storage device
Prior art date
Application number
PCT/KR2013/004067
Other languages
French (fr)
Korean (ko)
Inventor
박종수
김동국
양승철
김태환
황교식
여정구
전성일
박홍란
양현경
김한기
Original Assignee
한국에너지기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국에너지기술연구원 filed Critical 한국에너지기술연구원
Publication of WO2013169023A1 publication Critical patent/WO2013169023A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N3/00Generators in which thermal or kinetic energy is converted into electrical energy by ionisation of a fluid and removal of the charge therefrom
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/26Cells without oxidising active material, e.g. Volta cells

Definitions

  • the present invention relates to a large-capacity power storage system using brine, and more particularly, to separate and store the brine as a high concentration of brine and fresh water using surplus power at low load, and a high concentration of brine at peak load power surge
  • the present invention relates to a large-capacity power storage system using brine capable of producing electric power using a difference in concentration of fresh water.
  • Centralized power generation such as thermal power generation and nuclear power generation, has a disadvantage in that it needs to secure a large amount of reserve power in advance even if the operation rate is normally lowered for maximum peak power demand.
  • new renewable energy using wind power, photovoltaic power generation, etc. has a disadvantage in that it is unsuitable for supplying stable power due to a large fluctuation in power generation due to climate change.
  • a large-capacity power storage system is required to solve the power supply and demand instability caused by the contrast of the maximum peak power demand in the centralized power generation and environmental factors of power generation using renewable energy.
  • batteries lead storage batteries, NaS, lithium ion batteries, metal-air batteries, redox flow batteries, etc.
  • CAES compressed air energy storage
  • SMES superconducting power devices
  • the large-capacity power storage system except for positive power generation and CAES, has a problem in that the initial investment cost is high and the storage capacity is limited (less than 1GW).
  • the object of the present invention devised to solve this problem, unlike the large-capacity power storage system according to the prior art, using a low-cost salt water to eliminate the constraints and ecological impact of the installation, centralized power generation and renewable energy It is to provide a large-capacity power storage system that can solve the power supply and demand instability of the power generation using.
  • the present invention for achieving the above object, a concentrated device for supplying concentrated brine and fresh water by separating the brine; A concentrated brine storage device and a fresh water storage device for storing the concentrated brine and fresh water supplied from the concentration device, respectively; A salt differential generator connected to the concentrated brine storage device and the fresh water storage device and generating power using a difference in concentration between the concentrated brine and fresh water; And a brine storage device for storing the brine passing through the brine generator and supplying the brine to the concentrator.
  • the brine supplied to the concentrator is characterized in that it is supplied from the brine storage or the brine source.
  • the fresh water supplied to the salt differential generator is characterized in that the fresh water storage device or a fresh water supply is supplied from.
  • the power generation apparatus includes one or more power generation cells, wherein the power generation cell has a fluidized bed flow path in which a fluidized anode having a flowing cathode active material flows, and a fluidized bed flow path in which a fluidized cathode having a flowing anode active material flows. And an electrolyte channel through which an electrolyte flowing between the fluidized bed anode channel and the fluidized bed cathode channel moves, wherein the concentration of the electrolyte is different from that of the fluidized bed anode and the concentration of the fluidized bed cathode.
  • a potential difference is generated between the fluidized bed anode channel and the fluidized bed cathode channel to generate electrical energy, and the fluidized bed anode and the fluidized bed cathode each contain one of concentrated brine and fresh water and a mixture of positive electrode active material or negative electrode active material.
  • the electrolyte is characterized in that the other of the concentrated brine and fresh water.
  • a cation separation membrane is installed between the fluidized anode channel and the electrolyte channel
  • an anion separation membrane is installed between the fluidized cathode channel and the electrolyte channel.
  • the present invention through the power storage by the brine separation, and the power generation by the mixing of the separated concentrated brine and fresh water, it is possible to form a waste cycle circulating the brine as an energy storage medium.
  • it can also be used for the purpose of collecting useful resources (salt, minerals) from concentrated brine or drinking water for fresh water.
  • the power storage system according to the present invention has the advantage of very low initial investment due to the use of very low cost salt (salt).
  • energy storage using a high concentration of salt can provide a competitive storage system because the energy density is higher and the storage volume is smaller than that of a hydropower system.
  • FIG. 1 is a schematic diagram of a large-capacity power storage system using brine according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a power generation cell of a salt differential power generation apparatus used in the large-capacity power storage system of FIG. 1.
  • FIG. 3 is a graph of voltage over time in the power generation cell of FIG. 2.
  • the large-capacity power storage system 100 using the brine according to an exemplary embodiment of the present invention is largely divided into a power storage unit 102 and a power generation unit 104.
  • brine is used as a comprehensive concept including brackish water.
  • the power storage unit 102 includes a concentrating device 106, the power generation unit 104 includes a salt differential generator 114, the power storage unit 102 and the power generation unit 104 is stored brine
  • the brine storage device 112 the concentrated brine storage device 110, the concentrated brine is stored, and the fresh water storage device 108 is stored fresh water.
  • freshwater and high concentration concentrated brine generated by the concentrating device 106 are stored in fresh water by using electric power remaining at low load in thermal power generation and nuclear power generation, or power fluctuating by wind power or solar power generation. Separately stored in the device 108 and the concentrated brine storage device (110).
  • the thickening device 106 may be a known technique.
  • the thickener 106 may include distillation (multi-stage flash distillation (MSF), multiple-effect distillation (MED), vapor-compression (VC)), ion exchange, membrane processes (electrodialysis reversal (EDR), reverse osmosis (RO), nanofiltration (NF), membrane distillation (MD)), capacitive deionization, freezing desalination, geothermal desalination, solar desalination (solar humidification-dehumidification (HDH), multiple-effect humidification (MEH)), methane hydrate crystallization, Various techniques, such as high grade water recycling and seawater greenhouse, may be used, but the present invention is not limited thereto.
  • salt differential generator 114 various processes such as pressure-retarded osmosis, reversed electrodialysis, capacitive method, absorption refrigeration cycle, solar pond, etc. may be used, but the present invention is not limited thereto.
  • the power generation cell 130 may be used by connecting a plurality of in parallel or in series.
  • a space formed between the positive electrode current collector 131 and the negative electrode current collector 139 is divided by the positive electrode separator 134 and the negative electrode separator 136. . That is, the power generation cell 130 flows between the positive electrode flow path 133 between the positive electrode separator 134 and the positive electrode current collector 131, the negative electrode separator 136, and the negative electrode current collector 139.
  • the fluidized bed anode flows through the fluidized bed anode flow path 133, and the fluidized bed cathode flows through the fluidized bed cathode flow path 138.
  • the fluidized bed anode is a slurry in which a cathode active material 132 is mixed and dispersed in a fluid
  • the fluidized bed cathode is a slurry in which a cathode active material 137 is mixed and dispersed in a fluid.
  • Different materials may be used for the cathode active material 132 and the cathode active material 137, but the same material may be used.
  • porous carbon activated carbon, carbon fiber, carbon aerogel, carbon nanotube, graphene, etc.
  • graphite powder metal oxide powder, or the like
  • the fluid may optionally use the concentrated brine or fresh water.
  • the cation separation membrane 134 is a dense membrane that prevents the flow of electrolyte liquid and selectively passes only cations
  • the anion separation membrane 136 is a dense membrane that prevents the flow of electrolyte liquid and selectively passes only anions.
  • an electrolyte moves to the electrolyte flow path 135, and concentrated electrolyte or fresh water may be selectively used as the electrolyte. Therefore, the electrolyte and the fluid can be selected and used one by one from fresh water and concentrated brine.
  • the moving direction of the electrolyte and the moving direction of the fluidized bed anode and the fluidized bed anode may be the same or opposite to each other.
  • the electrode current collectors 131 and 139 and the ion separation membranes 134 and 136 may be used as long as they are used in conventional fluidized electrode systems (batteries, storage batteries, etc.), and those skilled in the art It can be selected according to the purpose of use and conditions.
  • a voltmeter 140 measuring electrical energy is connected to the power generation cell 130 to measure a potential difference currently generated in the power generation cell 130.
  • anions and cations are respectively passed through the anion separator 136 and the cation separator 134 as a fluidized cathode and a fluidized anode having low concentration.
  • the negative ions and positive ions are transferred to the negative electrode active material and the positive electrode active material, and as a result, a potential difference is generated between the positive electrode current collector 131 and the negative electrode current collector 139.
  • the electricity generated at this time decreases with time, as shown in FIG. 3, but may maintain approximately 0.28V after 8000 sec.
  • cathode active material of the fluidized bed anode and the cathode active material of the fluidized bed cathode may be collected and recycled separately by a separate collection device (for example, a filter) after passing through the salt differential generator 114 and the concentration difference disappears from each other. have.
  • a separate collection device for example, a filter
  • the brine generator 114 passes, the concentrated brine and fresh water exchange ions with each other to become brine having a lower concentration than that of the brine, and is stored in the brine storage device 112.
  • the brine stored in the brine storage device 112 is supplied to the concentrator 106 again, and the cycle of power storage and discharge is completed.
  • the concentrated brine separated by the concentrator 106 is discharged through the concentrated brine discharge valve 118 can be used for the production of useful resources (salt, mineral) salt, fresh water through the fresh water discharge valve 120 It can be discharged and used as drinking water.
  • the depleted concentrated water or fresh water is supplied to the concentrator 106 by a salt water supply valve connected to an external salt water supply source, or the salt differential power generation by a fresh water supply valve 122 connected to the external fresh water supply source. May be supplied to the device 114.
  • the total salt content in the system of the power storage device 100 may be increased, thereby increasing the salinity of concentrated brine.
  • power storage device 102 storage unit
  • anode active material 133 fluidized bed anode flow path
  • cathode separator 137 anode active material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Hybrid Cells (AREA)

Abstract

The present invention relates to a high-capacity power storage system using salt water, capable of separating salt water into highly concentrated salt water and fresh water, storing the salt water and fresh water using surplus electric power in the event of a small load, and producing power using the difference in the salt concentration between the highly concentrated salt water and the fresh water in the event of a peak load for which power consumption suddenly increases. The ultrahigh-capacity power storage system using salt water comprises: a concentrating device for concentrating and separating salt water so as to supply concentrated salt water and fresh water; a concentrated salt water storage device and a fresh water storage device for storing the concentrated salt water and the fresh water supplied from the concentrating device, respectively; a power-generating device using the difference in salinity, which is connected to the concentrated salt water storage device and the fresh water storage device and which generates power using the difference in the salt concentration between the concentrated salt water and the fresh water; and a salt water storage device for storing the salt water that has passed through the power-generating device using the difference in salinity and supplying the salt water to the concentrating device.

Description

염수를 이용한 대용량 전력저장시스템Large capacity power storage system using brine
본 발명은 염수를 이용한 대용량 전력저장시스템에 관한 것으로, 더욱 상세하게는 저부하 시 잉여 전력을 사용하여 염수를 고농도의 염수와 담수로 분리 저장하고, 전력 소비가 급증하는 피크 부하시, 고농도 염수와 담수의 농도차를 이용하여 전력을 생산할 수 있는 염수를 이용한 대용량 전력저장시스템에 관한 것이다.The present invention relates to a large-capacity power storage system using brine, and more particularly, to separate and store the brine as a high concentration of brine and fresh water using surplus power at low load, and a high concentration of brine at peak load power surge The present invention relates to a large-capacity power storage system using brine capable of producing electric power using a difference in concentration of fresh water.
화력발전, 원자력발전 등의 중앙 집중형 발전은 최대 피크(peak) 전력 수요를 위하여 평상시에는 가동률이 떨어지는 것을 감수하더라도 대규모 예비전력을 미리 확보해야 하는 단점이 있다.Centralized power generation, such as thermal power generation and nuclear power generation, has a disadvantage in that it needs to secure a large amount of reserve power in advance even if the operation rate is normally lowered for maximum peak power demand.
또한, 풍력발전, 태양광발전 등을 이용하는 신재생에너지는 기후 변동에 따라 발전 변동폭이 매우 커서 안정적인 전력의 공급에 부적합한 단점이 있다.In addition, new renewable energy using wind power, photovoltaic power generation, etc. has a disadvantage in that it is unsuitable for supplying stable power due to a large fluctuation in power generation due to climate change.
따라서, 중앙 집중형 발전에서 최대 피크(peak) 전력 수요의 대비 및 신재생에너지를 이용한 발전의 환경적인 요인에 의해 발생하는 전력 수급 불안정을 해결하기 위해 대용량 전력저장시스템이 요구된다.Therefore, a large-capacity power storage system is required to solve the power supply and demand instability caused by the contrast of the maximum peak power demand in the centralized power generation and environmental factors of power generation using renewable energy.
현재 사용되고 있는 대용량 전력저장시스템으로는, 전지 (납축전지, NaS, 리튬이온전지, metal-air 전지, redox flow 전지 등), 양수 발전, CAES(Compressed air energy storage), 슈퍼 커패시터, 플라이휠(Flywheel), 초전도 전력장치(SMES) 등이 있다.Currently used large-capacity power storage systems include batteries (lead storage batteries, NaS, lithium ion batteries, metal-air batteries, redox flow batteries, etc.), positive power generation, compressed air energy storage (CAES), supercapacitors, and flywheels. And superconducting power devices (SMES).
양수 발전, CAES 을 제외한 상기 대용량 전력저장시스템은 시스템은 초기 투자비가 높은 문제점이 있고 저장용량의 제한(1GW 미만)이 있어 GW급 초대용량 전력저장시스템으로 활용은 문제점이 있다.The large-capacity power storage system, except for positive power generation and CAES, has a problem in that the initial investment cost is high and the storage capacity is limited (less than 1GW).
또, 초기 투자비가 낮은 양수 발전의 경우 입지 선정의 한계성과 생태계 교란의 위험성으로 건설자체가 어려운 문제점이 있다(한국특허등록 제10-1020569호)In addition, there is a problem in that the construction itself is difficult due to the limitation of location selection and the risk of ecosystem disturbance in the case of pumped power generation with low initial investment cost (Korean Patent Registration No. 10-1020569).
또한, CAES의 경우 압축공기를 저장할 수 있을 만큼 단단한 지반을 찾아야 한다는 제약이 존재한다(한국특허공개 제10-2011-7026187호).In addition, in the case of CAES, there is a restriction to find a ground that is hard enough to store compressed air (Korean Patent Publication No. 10-2011-7026187).
이러한 문제점을 해결하기 위해 안출된 본 발명의 목적은, 종래기술에 따른 대용량 전력저장시스템과 달리 설치장소 제약성과 생태계 영향을 배제할 수 있도록 저가의 염수를 이용하여, 중앙 집중형 발전과 신재생에너지를 이용한 발전의 전력 수급 불안정을 해결할 수 있는 대용량 전력저장시스템을 제공하는 데에 있다.The object of the present invention devised to solve this problem, unlike the large-capacity power storage system according to the prior art, using a low-cost salt water to eliminate the constraints and ecological impact of the installation, centralized power generation and renewable energy It is to provide a large-capacity power storage system that can solve the power supply and demand instability of the power generation using.
상술한 목적을 달성하기 위한 본 발명은, 염수를 농축분리하여 농축염수와 담수를 공급하는 농축장치; 상기 농축장치로부터 공급되는 농축염수 및 담수를 각각 저장하는 농축염수저장장치 및 담수저장장치; 상기 농축염수저장장치 및 상기 담수저장장치와 연결되어서, 상기 농축염수와 담수 사이의 농도차를 이용하여 발전하는 염분차발전장치; 및 상기 염분차발전장치를 통과한 염수를 저장하고, 상기 농축장치로 염수를 공급하는 염수저장장치를 포함하는 염수를 이용한 초대용량 전력저장시스템이다.The present invention for achieving the above object, a concentrated device for supplying concentrated brine and fresh water by separating the brine; A concentrated brine storage device and a fresh water storage device for storing the concentrated brine and fresh water supplied from the concentration device, respectively; A salt differential generator connected to the concentrated brine storage device and the fresh water storage device and generating power using a difference in concentration between the concentrated brine and fresh water; And a brine storage device for storing the brine passing through the brine generator and supplying the brine to the concentrator.
상기 농축장치로 공급되는 염수는 상기 염수저장장치 또는 염수공급원으로부터 공급되는 것을 특징으로 한다.The brine supplied to the concentrator is characterized in that it is supplied from the brine storage or the brine source.
또, 상기 염분차발전장치로 공급되는 담수는 상기 담수저장장치 또는 담수공급원으로부터 공급되는 것을 특징으로 한다.In addition, the fresh water supplied to the salt differential generator is characterized in that the fresh water storage device or a fresh water supply is supplied from.
또, 상기 발전장치는 하나 이상의 발전셀을 포함하고, 상기 발전셀은 유동하는 양극활물질을 가지는 유동상 양극이 흐르는 유동상 양극유로와, 유동하는 음극 활물질을 가지는 유동상 음극이 흐르는 유동상 음극유로와, 상기 유동상 양극유로와 상기 유동상 음극유로의 사이를 흐르는 전해질이 이동하는 전해질유로를 가지며, 상기 전해질의 농도는 상기 유동상 양극의 농도 및 상기 유동상 음극의 농도와 다르게 공급하는 것에 의해 상기 유동상 양극유로와 상기 유동상 음극유로 사이에 전위차를 발생시켜 전기에너지를 생성하며, 상기 유동상 양극 및 상기 유동상 음극은 각각 농축염수 및 담수 중 일방과 양극상활물질 또는 음극상활물질의 혼합물이고, 상기 전해질은 농축염수 및 담수 중 타방인 것을 특징으로 한다.In addition, the power generation apparatus includes one or more power generation cells, wherein the power generation cell has a fluidized bed flow path in which a fluidized anode having a flowing cathode active material flows, and a fluidized bed flow path in which a fluidized cathode having a flowing anode active material flows. And an electrolyte channel through which an electrolyte flowing between the fluidized bed anode channel and the fluidized bed cathode channel moves, wherein the concentration of the electrolyte is different from that of the fluidized bed anode and the concentration of the fluidized bed cathode. A potential difference is generated between the fluidized bed anode channel and the fluidized bed cathode channel to generate electrical energy, and the fluidized bed anode and the fluidized bed cathode each contain one of concentrated brine and fresh water and a mixture of positive electrode active material or negative electrode active material. The electrolyte is characterized in that the other of the concentrated brine and fresh water.
또, 상기 유동상 양극유로와 상기 전해질 유로 사이에는 양이온 분리막이 설치되고, 상기 유동상 음극유로와 상기 전해질 유로 사이에는 음이온 분리막이 설치되는 것을 특징으로 한다.In addition, a cation separation membrane is installed between the fluidized anode channel and the electrolyte channel, and an anion separation membrane is installed between the fluidized cathode channel and the electrolyte channel.
본 발명을 통하여, 염수 분리에 의한 축전과, 분리된 농축염수와 담수의 혼합으로 인한 발전을 통해, 에너지저장매체인 염수가 순환하는 폐싸이클을 형성할 수 있다. 또한, 필요한 경우, 농축염수로부터 유용자원(소금, 미네랄)의 채취 또는, 담수의 식수활용 등의 목적으로도 사용할 수 있어서 부산물의 활용도 가능하다.Through the present invention, through the power storage by the brine separation, and the power generation by the mixing of the separated concentrated brine and fresh water, it is possible to form a waste cycle circulating the brine as an energy storage medium. In addition, if necessary, it can also be used for the purpose of collecting useful resources (salt, minerals) from concentrated brine or drinking water for fresh water.
또, 본 발명에 따른 전력저장시스템은 초저가의 염수(소금물)의 사용으로 초기 투자비가 매우 낮은 장점. 또한, 고농도 염을 이용한 에너지 저장으로 수력발전 시스템에 비해서 에너지 밀도가 높고 저장고의 부피가 작기 때문에 경쟁력 있는 저정시스템을 제공할 수 있다.In addition, the power storage system according to the present invention has the advantage of very low initial investment due to the use of very low cost salt (salt). In addition, energy storage using a high concentration of salt can provide a competitive storage system because the energy density is higher and the storage volume is smaller than that of a hydropower system.
도 1은 본 발명의 실시예에 따른 염수를 이용한 대용량 전력저장시스템의 개략도이다.1 is a schematic diagram of a large-capacity power storage system using brine according to an embodiment of the present invention.
도 2는 도 1의 대용량 전력저장시스템에 사용되는 염분차발전장치의 발전셀의 개략도이다.FIG. 2 is a schematic diagram of a power generation cell of a salt differential power generation apparatus used in the large-capacity power storage system of FIG. 1.
도 3은 도 2의 발전셀에서 시간에 따른 전압의 그래프이다.3 is a graph of voltage over time in the power generation cell of FIG. 2.
이하, 본 발명을 바람직한 실시예를 첨부한 도면을 참조하여 설명하기로 한다. 하기의 각 도면의 구성 요소들에 참조 부호를 부가함에 있어서, 동일한 구성 요소들에 한해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하며, 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 공지 기능 및 구성에 대한 상세한 설명은 생략한다.Hereinafter, with reference to the accompanying drawings, preferred embodiments of the present invention will be described. In adding reference numerals to components of the following drawings, it is determined that the same components have the same reference numerals as much as possible even if displayed on different drawings, and it is determined that they may unnecessarily obscure the subject matter of the present invention. Detailed descriptions of well-known functions and configurations will be omitted.
본 발명의 실시예에 따른 염수를 이용한 대용량 전력저장시스템(100)은 도 1에 도시된 바와 같이, 크게 축전부(102)와 발전부(104)로 나누어진다. 본 발명에서 염수는 기수를 포함하는 포괄적인 개념으로 사용된다.As shown in FIG. 1, the large-capacity power storage system 100 using the brine according to an exemplary embodiment of the present invention is largely divided into a power storage unit 102 and a power generation unit 104. In the present invention, brine is used as a comprehensive concept including brackish water.
상기 축전부(102)에는 농축장치(106)가 포함되고, 상기 발전부(104)에는 염분차발전장치(114)가 포함되며, 축전부(102)와 발전부(104)는 염수가 저장되는 염수저장장치(112)와, 농축염수가 저장되는 농축염수저장장치(110)와, 담수가 저장되는 담수저장장치(108)를 공유한다.The power storage unit 102 includes a concentrating device 106, the power generation unit 104 includes a salt differential generator 114, the power storage unit 102 and the power generation unit 104 is stored brine The brine storage device 112, the concentrated brine storage device 110, the concentrated brine is stored, and the fresh water storage device 108 is stored fresh water.
따라서, 화력발전 및 원자력발전 등에서 저부하시 남는 전력, 또는 풍력발전 또는 태양열발전에 의한 변동이 큰 전력을 이용하여, 농축장치(106)에 의해 발생된 담수 및 고농도로 농축된 농축염수를 담수저장장치(108) 및 농축염수저장장치(110)에 각각 분리하여 저장한다.Therefore, freshwater and high concentration concentrated brine generated by the concentrating device 106 are stored in fresh water by using electric power remaining at low load in thermal power generation and nuclear power generation, or power fluctuating by wind power or solar power generation. Separately stored in the device 108 and the concentrated brine storage device (110).
상기 농축장치(106)로는 공지의 기술을 사용할 수 있다. 예를 들어, 농축장치(106)에 distillation (multi-stage flash distillation (MSF), multiple-effect distillation (MED), vapor-compression (VC)), ion exchange, membrane processes (electrodialysis reversal (EDR), reverse osmosis (RO), nanofiltration (NF), membrane distillation (MD)), capacitive deionization, freezing desalination, geothermal desalination, solar desalination (solar humidification-dehumidification (HDH), multiple-effect humidification (MEH)), methane hydrate crystallization, high grade water recycling, seawater greenhouse 등의 다양한 기술이 사용될 수 있으나 본 발명에 있어 이를 제한하는 것은 아니다.The thickening device 106 may be a known technique. For example, the thickener 106 may include distillation (multi-stage flash distillation (MSF), multiple-effect distillation (MED), vapor-compression (VC)), ion exchange, membrane processes (electrodialysis reversal (EDR), reverse osmosis (RO), nanofiltration (NF), membrane distillation (MD)), capacitive deionization, freezing desalination, geothermal desalination, solar desalination (solar humidification-dehumidification (HDH), multiple-effect humidification (MEH)), methane hydrate crystallization, Various techniques, such as high grade water recycling and seawater greenhouse, may be used, but the present invention is not limited thereto.
상기 염분차발전장치(114)로는 pressure-retarded osmosis, reversed electrodialysis, capacitive method, absorption refrigeration cycle, solar pond 등의 다양한 공정이 사용될 수 있으나 본 발명에 있어 이를 제한하는 것은 아니다.As the salt differential generator 114, various processes such as pressure-retarded osmosis, reversed electrodialysis, capacitive method, absorption refrigeration cycle, solar pond, etc. may be used, but the present invention is not limited thereto.
도 2에서는 염분차발전장치(114)를 구성하기 위하여 사용될 수 있는 유동전극을 이용하는 발전셀(130)을 도시하고 있다. 상기 발전셀(130)은 복수개를 병렬 또는 직렬로 연결하여 사용할 수 있다.2 shows a power generation cell 130 using a flow electrode that can be used to construct the salt differential generator 114. The power generation cell 130 may be used by connecting a plurality of in parallel or in series.
상기 발전셀(130)은 도 2에 도시된 바와 같이, 양극집전체(131)와 음극집전체(139) 사이에 형성되는 공간이, 양극분리막(134)와 음극분리막(136)에 의해 구분된다. 즉, 상기 발전셀(130)은 상기 양극분리막(134)과 상기 양극집전체(131) 사이의 유동상 양극유로(133), 상기 음극분리막(136)과 상기 음극집전체(139) 사이의 유동상 음극유로(138), 및 상기 양극분리막(134)와 상기 음극분리막(136) 사이의 전해질 유로(135)으로 이루어진다.  As shown in FIG. 2, a space formed between the positive electrode current collector 131 and the negative electrode current collector 139 is divided by the positive electrode separator 134 and the negative electrode separator 136. . That is, the power generation cell 130 flows between the positive electrode flow path 133 between the positive electrode separator 134 and the positive electrode current collector 131, the negative electrode separator 136, and the negative electrode current collector 139. A phase negative electrode flow path 138 and an electrolyte flow path 135 between the positive electrode separation membrane 134 and the negative electrode separation membrane 136.
상기 유동상 양극유로(133)에는 유동상 양극이 흐르고, 상기 유동상 음극유로(138)에는 유동상 음극이 흐른다. 상기 유동상 양극은 유동액에 양극활물질(132)이 혼합되어 분산된 슬러리 상태이고, 상기 유동상 음극은 유동액에 음극활물질(137)이 혼합되어 분산된 슬러리 상태이다. 상기 양극활물질(132) 및 상기 음극`활물질(137)은 서로 다른 물질이 사용될 수도 있지만, 동일한 물질이 사용될 수도 있다. 상기 양극활물질(132) 및 상기 음극활물질(137)은 다공성 탄소(활성탄, 카본파이버, 탄소에어로젤, 탄소나노튜브, 그래핀 등), 흑연분말, 금속산화물 분말 등이 사용될 수 있다. The fluidized bed anode flows through the fluidized bed anode flow path 133, and the fluidized bed cathode flows through the fluidized bed cathode flow path 138. The fluidized bed anode is a slurry in which a cathode active material 132 is mixed and dispersed in a fluid, and the fluidized bed cathode is a slurry in which a cathode active material 137 is mixed and dispersed in a fluid. Different materials may be used for the cathode active material 132 and the cathode active material 137, but the same material may be used. As the cathode active material 132 and the anode active material 137, porous carbon (activated carbon, carbon fiber, carbon aerogel, carbon nanotube, graphene, etc.), graphite powder, metal oxide powder, or the like may be used.
또, 상기 유동액은 상기 농축염수 또는 담수를 선택적으로 이용할 수 있다.In addition, the fluid may optionally use the concentrated brine or fresh water.
상기 양이온 분리막(134)은 전해질 액체의 유통을 막고 양이온만 선택적으로 통과시키는 치밀막이고, 상기 음이온 분리막(136)은 전해질 액체의 유통을 막고 음이온만 선택적으로 통과시키는 치밀막이다.The cation separation membrane 134 is a dense membrane that prevents the flow of electrolyte liquid and selectively passes only cations, and the anion separation membrane 136 is a dense membrane that prevents the flow of electrolyte liquid and selectively passes only anions.
그리고, 상기 전해질 유로(135)에는 전해질이 이동하며, 상기 전해질로는 농축염수 또는 담수를 선택적으로 이용할 수 있다. 따라서, 전해질과 유동액은 담수와 농축염수 중에서 하나씩 선택하여 이용할 수 있다.In addition, an electrolyte moves to the electrolyte flow path 135, and concentrated electrolyte or fresh water may be selectively used as the electrolyte. Therefore, the electrolyte and the fluid can be selected and used one by one from fresh water and concentrated brine.
상기 전해질의 이동방향과 상기 유동상 음극 및 유동상 양극의 이동방향은 서로 동일하거나 반대방향일 수 있다.The moving direction of the electrolyte and the moving direction of the fluidized bed anode and the fluidized bed anode may be the same or opposite to each other.
상기 전극집전체(131,139) 및 상기 이온분리막(134,136)은 종래 유동상 전극 시스템(전지, 축전지 등)에 사용되어 오고 있는 것들이라면 어느 것이나 다 사용가능하며, 당해 기술분야에 속하는 통상의 전문가가 그 사용목적 및 조건에 따라 적절하게 선택하여 사용할 수 있다.The electrode current collectors 131 and 139 and the ion separation membranes 134 and 136 may be used as long as they are used in conventional fluidized electrode systems (batteries, storage batteries, etc.), and those skilled in the art It can be selected according to the purpose of use and conditions.
상기 발전셀(130)에는 전기에너지를 측정하는 전압계(140)가 연결돼서, 현재 상기 발전셀(130)에 생성된 전위차를 측정할 수 있다.A voltmeter 140 measuring electrical energy is connected to the power generation cell 130 to measure a potential difference currently generated in the power generation cell 130.
예를 들어, 전해질로 농축염수를 사용하고, 유동액으로 담수를 사용하면, 농도가 낮은 유동상 음극과 유동상 양극으로 상기 음이온 분리막(136) 및 상기 양이온 분리막(134)를 통해 각각 음이온과 양이온이 이동하게 되고, 이동된 음이온과 양이온은 음극활물질과 양극활물질에 흡착되며, 이 결과 상기 양극집전체(131)와 상기 음극집전체(139) 사이에는 전위차가 발생하게 된다. 이 때 발생하는 전기는 도 3에 도시된 바와 같이, 시간에 따라 감소하지만, 8000sec가 지난 시점에서 대략 0.28V를 유지할 수 있다. 또, 유동상 양극의 양극활물질과 유동상 음극의 음극활물질은 상기 염분차발전장치(114)를 지나서 서로 농도차가 없어진 이후에 별도의 수거장치(예를 들어, 필터)로 각각 수거하여 재활용할 수 있다. For example, when concentrated brine is used as an electrolyte and fresh water is used as a fluid, anions and cations are respectively passed through the anion separator 136 and the cation separator 134 as a fluidized cathode and a fluidized anode having low concentration. The negative ions and positive ions are transferred to the negative electrode active material and the positive electrode active material, and as a result, a potential difference is generated between the positive electrode current collector 131 and the negative electrode current collector 139. The electricity generated at this time decreases with time, as shown in FIG. 3, but may maintain approximately 0.28V after 8000 sec. In addition, the cathode active material of the fluidized bed anode and the cathode active material of the fluidized bed cathode may be collected and recycled separately by a separate collection device (for example, a filter) after passing through the salt differential generator 114 and the concentration difference disappears from each other. have.
따라서, 상기 발전셀(130)을 이용한 염분차발전장치(114)에 의해 농축염수와 담수에 의해 발전이 가능하게 된다.Therefore, power generation by concentrated brine and fresh water is possible by the salt differential power generator 114 using the power generation cell 130.
그리고, 염분차발전장치(114)를 지나면 농축염수와 담수는 서로 이온을 교환하여 다시 농축염수에 비해 농도가 낮아진 염수가 돼서, 상기 염수저장장치(112)에 저장된다. 상기 염수저장장치(112)에 저장된 염수는 다시 상기 농축장치(106)로 공급돼서, 축전과 방전의 사이클이 완성된다.When the brine generator 114 passes, the concentrated brine and fresh water exchange ions with each other to become brine having a lower concentration than that of the brine, and is stored in the brine storage device 112. The brine stored in the brine storage device 112 is supplied to the concentrator 106 again, and the cycle of power storage and discharge is completed.
또, 상기 농축장치(106)로 분리되는 농축염수는 농축염수배출밸브(118)을 통해 배출되어 유용자원(소금, 미네랄)소금의 생산에 사용될 수 있으며, 담수는 담수배출밸브(120)를 통해 배출되어 식용수로 활용될 수 있다. 이 때, 부족해진 농축수 또는 담수는 외부의 염수공급원과 연결되는 염수공급밸브로 상기 농축장치(106)에 공급하거나, 상기 외부의 담수공급원과 연결되는 담수공급밸브(122)로 상기 염분차발전장치(114)에 공급할 수 있다.In addition, the concentrated brine separated by the concentrator 106 is discharged through the concentrated brine discharge valve 118 can be used for the production of useful resources (salt, mineral) salt, fresh water through the fresh water discharge valve 120 It can be discharged and used as drinking water. At this time, the depleted concentrated water or fresh water is supplied to the concentrator 106 by a salt water supply valve connected to an external salt water supply source, or the salt differential power generation by a fresh water supply valve 122 connected to the external fresh water supply source. May be supplied to the device 114.
특히, 의도적으로 상기 담수를 제거하고, 추가로 염수를 제공하면, 상기 전력저장장치(100)의 계(system) 내에 전체 염의 양이 증가하여, 농축염수의 염도를 증가시킬 수 있다. 이 결과, 담수와 농축염수간 농도차를 크게 하여, 발전효율을 상승시키는 것이 가능하다.In particular, by deliberately removing the fresh water and providing additional brine, the total salt content in the system of the power storage device 100 may be increased, thereby increasing the salinity of concentrated brine. As a result, it is possible to increase the concentration difference between fresh water and concentrated brine and to increase the power generation efficiency.
상기와 같이, 본 발명의 바람직한 실시예를 참조하여 설명하였지만 해당 기술 분야의 숙련된 당업자라면 하기의 특허청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.As described above, it has been described with reference to the preferred embodiment of the present invention, but those skilled in the art various modifications and changes of the present invention without departing from the spirit and scope of the present invention described in the claims below I can understand that you can.
[부호의 설명][Description of the code]
100: 전력저장장치 102: 저장부100: power storage device 102: storage unit
104: 발전부 106: 농축장치104: power generation unit 106: concentration device
108: 담수저장장치 110: 농축염수저장장치108: fresh water storage device 110: concentrated brine storage device
112: 염수저장장치 114: 염분차발전장치112: brine storage unit 114: salt differential generator
116: 염수공급밸브 118: 농축염수배출밸브116: brine supply valve 118: concentrated brine discharge valve
120: 담수배출밸브 122: 담수공급밸브120: fresh water discharge valve 122: fresh water supply valve
130: 농도차 발전셀 131: 양극집전체130: concentration difference generation cell 131: positive electrode current collector
132: 양극활물질 133: 유동상 양극유로132: anode active material 133: fluidized bed anode flow path
134: 양극분리막 135: 전해질유로134: anode membrane 135: electrolyte flow path
136: 음극분리막 137: 음극활물질136: cathode separator 137: anode active material
138: 유동상 음극유로 139: 음극집전체138: fluidized bed cathode flow path 139: anode collector
140: 전압계140: voltmeter

Claims (5)

  1. 염수를 농축분리하여 농축염수와 담수를 공급하는 농축장치;A concentrating device for concentrating and separating brine to supply concentrated brine and fresh water;
    상기 농축장치로부터 공급되는 농축염수 및 담수를 각각 저장하는 농축염수저장장치 및 담수저장장치;A concentrated brine storage device and a fresh water storage device for storing the concentrated brine and fresh water supplied from the concentration device, respectively;
    상기 농축염수저장장치 및 상기 담수저장장치와 연결되어서, 상기 농축염수와 담수 사이의 농도차를 이용하여 발전하는 염분차발전장치; 및A salt differential generator connected to the concentrated brine storage device and the fresh water storage device and generating power using a difference in concentration between the concentrated brine and fresh water; And
    상기 염분차발전장치를 통과한 염수를 저장하고, 상기 농축장치로 염수를 공급하는 염수저장장치를 포함하는 염수를 이용한 초대용량 전력저장시스템.And a brine storage device for storing the brine passing through the brine generator and supplying the brine to the concentrator.
  2. 제1항에 있어서, 상기 농축장치로 공급되는 염수는 상기 염수저장장치 또는 염수공급원으로부터 공급되는 것을 특징으로 하는 염수를 이용한 초대용량 전력저장시스템.The supercapacity power storage system using a brine of claim 1, wherein the brine supplied to the concentrator is supplied from the brine storage device or a brine supply source.
  3. 제1항에 있어서, 상기 염분차발전장치로 공급되는 담수는 상기 담수저장장치 또는 담수공급원으로부터 공급되는 것을 특징으로 하는 염수를 이용한 초대용량 전력저장시스템.The system of claim 1, wherein the fresh water supplied to the salt power generation device is supplied from the freshwater storage device or a freshwater supply source.
  4. 제1항에 있어서, 상기 발전장치는 하나 이상의 발전셀을 포함하고,The power generating apparatus of claim 1, wherein the power generating apparatus includes at least one power generating cell.
    상기 발전셀은 유동하는 양극활물질을 가지는 유동상 양극이 흐르는 유동상 양극유로와, 유동하는 음극 활물질을 가지는 유동상 음극이 흐르는 유동상 음극유로와, 상기 유동상 양극유로와 상기 유동상 음극유로의 사이를 흐르는 전해질이 이동하는 전해질유로를 가지며, The power generation cell includes a fluidized bed anode channel through which a fluidized anode having a flowing anode active material flows, a fluidized bed cathode channel through which a fluidized cathode having a flowing anode active material flows, and the fluidized cathode channel and the fluidized cathode channel. Has an electrolyte flow path through which the electrolyte flowing
    상기 전해질의 농도는 상기 유동상 양극의 농도 및 상기 유동상 음극의 농도와 다르게 공급하는 것에 의해 상기 유동상 양극유로와 상기 유동상 음극유로 사이에 전위차를 발생시켜 전기에너지를 생성하며,The concentration of the electrolyte is different from the concentration of the fluidized bed anode and the concentration of the fluidized bed cathode, thereby generating a potential difference between the fluidized bed anode channel and the fluidized bed cathode channel to generate electrical energy.
    상기 유동상 양극 및 상기 유동상 음극은 각각 농축염수 및 담수 중 일방과 양극상활물질 또는 음극상활물질의 혼합물이고, 상기 전해질은 농축염수 및 담수 중 타방인 것을 특징으로 하는 염수를 이용한 초대용량 전력저장시스템. The fluidized bed anode and the fluidized bed cathode are mixtures of one of concentrated brine and fresh water, and a positive electrode active material or a negative electrode active material, respectively, and the electrolyte is ultra-capacity power storage using brine, characterized in that the other of concentrated brine and fresh water. system.
  5. 제4항에 있어서, 상기 유동상 양극유로와 상기 전해질 유로 사이에는 양이온 분리막이 설치되고, 상기 유동상 음극유로와 상기 전해질 유로 사이에는 음이온 분리막이 설치되는 것을 특징으로 하는 염수를 이용한 초대용량 전력저장시스템.5. The supercapacity power storage using brine according to claim 4, wherein a cation separator is installed between the fluidized bed anode channel and the electrolyte channel, and an anion separator is installed between the fluidized bed cathode channel and the electrolyte channel. system.
PCT/KR2013/004067 2012-05-11 2013-05-09 High-capacity power storage system using salt water WO2013169023A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120050198A KR101291768B1 (en) 2012-05-11 2012-05-11 Mass electrical storage system using salt water
KR10-2012-0050198 2012-05-11

Publications (1)

Publication Number Publication Date
WO2013169023A1 true WO2013169023A1 (en) 2013-11-14

Family

ID=48998339

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/004067 WO2013169023A1 (en) 2012-05-11 2013-05-09 High-capacity power storage system using salt water

Country Status (2)

Country Link
KR (1) KR101291768B1 (en)
WO (1) WO2013169023A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11502323B1 (en) 2022-05-09 2022-11-15 Rahul S Nana Reverse electrodialysis cell and methods of use thereof
US11502322B1 (en) 2022-05-09 2022-11-15 Rahul S Nana Reverse electrodialysis cell with heat pump
US11855324B1 (en) 2022-11-15 2023-12-26 Rahul S. Nana Reverse electrodialysis or pressure-retarded osmosis cell with heat pump
US12040517B2 (en) 2022-11-15 2024-07-16 Rahul S. Nana Reverse electrodialysis or pressure-retarded osmosis cell and methods of use thereof

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101668244B1 (en) * 2013-10-08 2016-10-21 한국에너지기술연구원 Multi-stage salinity gradient power system using salty feed solution
KR101540965B1 (en) * 2013-10-21 2015-08-04 한국에너지기술연구원 An energy storage system using a capmix device
KR101544747B1 (en) 2014-07-03 2015-08-19 한국에너지기술연구원 Independent power generator based on the salinity gradient
KR101743565B1 (en) 2015-03-24 2017-06-15 한국에너지기술연구원 Permanent power generation method using carbon dioxide capture process
NL2015572B1 (en) * 2015-10-06 2017-05-01 Stichting Wetsus European Centre Of Excellence For Sustainable Water Tech Method for fluidized bed capacitive de-ionization of a fluid and de-ionization device there for.
NL2020752B1 (en) * 2018-04-12 2019-10-22 Cen Jiajun A method for storing energy and generating electric power and a device for storing solar energy and generating electric power

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004335312A (en) * 2003-05-08 2004-11-25 Ishikawajima Harima Heavy Ind Co Ltd Power generation method and power generation device utilizing concentrated sea water generated at sea water desalting device
JP2008309014A (en) * 2007-06-13 2008-12-25 Kansai Electric Power Co Inc:The Osmotic pressure type compressed air storage turbine generator system
JP2010027213A (en) * 2008-07-15 2010-02-04 Fujimura Denshino Gijutsu Kenkyusho:Kk Salinity difference power generation system
JP2010077934A (en) * 2008-09-26 2010-04-08 Taiheiyo Cement Corp Electric power generation system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004335312A (en) * 2003-05-08 2004-11-25 Ishikawajima Harima Heavy Ind Co Ltd Power generation method and power generation device utilizing concentrated sea water generated at sea water desalting device
JP2008309014A (en) * 2007-06-13 2008-12-25 Kansai Electric Power Co Inc:The Osmotic pressure type compressed air storage turbine generator system
JP2010027213A (en) * 2008-07-15 2010-02-04 Fujimura Denshino Gijutsu Kenkyusho:Kk Salinity difference power generation system
JP2010077934A (en) * 2008-09-26 2010-04-08 Taiheiyo Cement Corp Electric power generation system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11502323B1 (en) 2022-05-09 2022-11-15 Rahul S Nana Reverse electrodialysis cell and methods of use thereof
US11502322B1 (en) 2022-05-09 2022-11-15 Rahul S Nana Reverse electrodialysis cell with heat pump
US11563229B1 (en) 2022-05-09 2023-01-24 Rahul S Nana Reverse electrodialysis cell with heat pump
US11611099B1 (en) 2022-05-09 2023-03-21 Rahul S Nana Reverse electrodialysis cell and methods of use thereof
US11699803B1 (en) 2022-05-09 2023-07-11 Rahul S Nana Reverse electrodialysis cell with heat pump
US11855324B1 (en) 2022-11-15 2023-12-26 Rahul S. Nana Reverse electrodialysis or pressure-retarded osmosis cell with heat pump
US12040517B2 (en) 2022-11-15 2024-07-16 Rahul S. Nana Reverse electrodialysis or pressure-retarded osmosis cell and methods of use thereof

Also Published As

Publication number Publication date
KR101291768B1 (en) 2013-07-31

Similar Documents

Publication Publication Date Title
WO2013169023A1 (en) High-capacity power storage system using salt water
WO2014181898A1 (en) Large-capacity electric power storage system using thermal energy/chemical potential
Gajda et al. Simultaneous electricity generation and microbially-assisted electrosynthesis in ceramic MFCs
CN103109336B (en) The method for treating water of Continuous Flow electrode system and high power capacity power storage and these systems of use
US9670077B2 (en) Redox desalination system for clean water production and energy storage
Jia et al. Blue energy: Current technologies for sustainable power generation from water salinity gradient
US20120135282A1 (en) Batteries for efficient energy extraction from a salinity difference
KR101318331B1 (en) Concentration gradient power production device using flow electrode
US20180126336A1 (en) Renewable Energy Storage Methods and Systems
Guo et al. Integrating Desalination and Energy Storage using a Saltwater‐based Hybrid Sodium‐ion Supercapacitor
CN202586809U (en) Horizontal water inflow stack-type salinity gradient energy reverse electrodialysis generating set
CN109487081A (en) Lithium unit and expanding unit and continuous operation method are mentioned using flowing electrode
KR20150008348A (en) Hybrid seawater desalination systems
CN201746366U (en) Drinking water purification machine with self-generating device mainly based on solar cell for generating electricity
EP3912707A1 (en) Industrial salinity gradient battery and associated method
Saleem et al. Performance optimization of integrated electrochemical capacitive deionization and reverse electrodialysis model through a series pass desorption process
CN110214391A (en) Electrochemical cell including channel-style Flow-through electrode cellular construction
CN109692575B (en) Double-chamber membrane capacitance deionization device
Han et al. Technologies and materials for water salinity gradient energy harvesting
He et al. Emerging electro-driven technologies for phosphorus enrichment and recovery from wastewater: A review
CN107534161B (en) Grid type flow battery structure
KR101621033B1 (en) Capacitive flow electrode device with ion-exchanged current collector
Zhou et al. Efficient regeneration of activated carbon electrode by half-wave rectified alternating fields in capacitive deionization system
Khodadousti et al. Batteries in desalination: A review of emerging electrochemical desalination technologies
US10522849B2 (en) Electrochemical cell comprising channel-type flowable electrode units

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13788298

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13788298

Country of ref document: EP

Kind code of ref document: A1